JPH07161703A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH07161703A
JPH07161703A JP33956593A JP33956593A JPH07161703A JP H07161703 A JPH07161703 A JP H07161703A JP 33956593 A JP33956593 A JP 33956593A JP 33956593 A JP33956593 A JP 33956593A JP H07161703 A JPH07161703 A JP H07161703A
Authority
JP
Japan
Prior art keywords
film
plasma cvd
substrate
bias
ecr plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33956593A
Other languages
Japanese (ja)
Inventor
Akihiro Fuse
晃広 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP33956593A priority Critical patent/JPH07161703A/en
Publication of JPH07161703A publication Critical patent/JPH07161703A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To restrain damage on a semiconductor device by a bias ECR plasma CVD method, and form a high reliability insulating film with excellent controllability which has an excellent step-covering form. CONSTITUTION:Firstly a bias ECR plasma CVD process is performed for a specified period by introducing film forming material gas and argon gas, and a silicon oxide film 3 having an overhang form to some extent is formed on a metal wiring 2 as shown by (A). Secondly the introduction of film forming gas is interrupted, and a sputter etching process is performed for a specified period. By primarily etching the overhang part of the silicon oxide film 3, a form shown by (B) is obtained. After that, the bias ECR plasma CVD process and the sputter etching are sequentially repeated, and an insulating film 3 having excellent step-covering form wherein the part between the metal wirings 2 and 2 is filled without voids and flattened as shown by (H) is finally formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体集積回路装置の製
造プロセスにおいて層間絶縁膜やパッシベーション膜な
どの絶縁膜を形成する工程を含む半導体装置の製造方法
に関するものである。特に、本発明は半導体集積回路装
置の製造プロセスにおいて、層間絶縁膜やパッシベーシ
ョン膜などの絶縁膜をバイアスECRプラズマCVD法
により形成する方法に特徴をもつ半導体装置の製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device including a step of forming an insulating film such as an interlayer insulating film or a passivation film in a manufacturing process of a semiconductor integrated circuit device. In particular, the present invention relates to a method of manufacturing a semiconductor integrated circuit device, which is characterized by a method of forming an insulating film such as an interlayer insulating film or a passivation film by a bias ECR plasma CVD method.

【0002】[0002]

【従来の技術】現在、LSI(大規模集積回路)に代表
される半導体装置の製造プロセスにおいて、特に層間絶
縁膜やパッシベーション膜の形成手段としてECR(電
子サイクロトロン共鳴)プラズマCVD法が積極的に検
討されている。ECRプラズマCVD法は低温で膜形成
が可能なことや、利用するラジカルやイオンのエネルギ
ーの大きさが揃っていること、また従来の高周波プラズ
マCVD法に比べてプラズマにより基板が受けるダメー
ジが少なく、さらに高真空領域で膜形成が可能であるこ
となど、多くの利点を備えている。
2. Description of the Related Art At present, in a manufacturing process of a semiconductor device typified by LSI (Large Scale Integrated Circuit), an ECR (Electron Cyclotron Resonance) plasma CVD method is actively studied as a means for forming an interlayer insulating film and a passivation film. Has been done. The ECR plasma CVD method is capable of forming a film at a low temperature, the amounts of energy of radicals and ions used are uniform, and the substrate is less damaged by plasma as compared with the conventional high frequency plasma CVD method. Furthermore, it has many advantages such as film formation in a high vacuum region.

【0003】また、基板に高周波バイアスを印加し、ア
ルゴンなどのガスを添加して成膜と同時にアルゴンなど
のイオンによるスパッタエッチングを起こさせることに
より、段差被覆性を向上させたバイアスECRプラズマ
CVD法が提案されている。バイアスECRプラズマC
VD法は基板に高周波バイアスを印加し、ECRプラズ
マによりイオン化された陽イオンを基板近傍に発生した
イオンシースによる自己バイアス効果により引き寄せ、
陽イオンによるスパッタエッチングの効果を利用する方
法である。スパッタエッチングは基板表面の傾斜部にお
いてより顕著に現われることから、絶縁膜のオーバーエ
ッチング部を優先的にエッチングし、金属配線間をボイ
ドなく埋め込む手法として注目されている。
Further, a high frequency bias is applied to the substrate and a gas such as argon is added to cause film formation and sputter etching by ions such as argon to occur at the same time as the film formation, whereby a bias ECR plasma CVD method with improved step coverage. Is proposed. Bias ECR plasma C
In the VD method, a high frequency bias is applied to the substrate, and the cations ionized by the ECR plasma are attracted by the self-bias effect of the ion sheath generated near the substrate,
This is a method that utilizes the effect of sputter etching with cations. Since sputter etching is more prominent in the inclined portion of the substrate surface, it is attracting attention as a method of preferentially etching the overetched portion of the insulating film and filling the metal wiring with no voids.

【0004】一般に、バイアスECRプラズマCVD法
は成膜とエッチングの同時進行による競争反応である。
スパッタエッチングの速度は基板に印加する高周波電力
の大きさに比例する。ECRプラズマCVD法の特徴の
1つである高い成膜速度に対抗するスパッタエッチング
速度を得るため、一般的なバイアスECRプラズマCV
D法は、基板に印加する高周波電力が少なくとも600
W、通常は1kW程度で使用されている。
Generally, the bias ECR plasma CVD method is a competitive reaction due to simultaneous progress of film formation and etching.
The speed of sputter etching is proportional to the magnitude of high frequency power applied to the substrate. In order to obtain a sputter etching rate that opposes the high film formation rate that is one of the characteristics of the ECR plasma CVD method, a general bias ECR plasma CV is used.
The D method requires at least 600 high-frequency power applied to the substrate.
W, usually about 1 kW is used.

【0005】しかし、このような高出力の高周波バイア
スを印加すると、段差被覆性は向上しても、高い高周波
電力を印加することにより次のような問題が発生する。
その1つは、アルゴンイオンなどの陽イオンのスパッタ
リングにより金属配線そのものがエッチングされてしま
い、配線の寿命を低下させるという問題である。他の問
題は、絶縁膜表面のチャージアップが起こり、基板表面
とプラズマの間で局所放電が起こり、異物が発生して表
面性が著しく低下する点である。これらの問題は積層配
線を実現する上では大きな問題となる。また、一般的な
バイアスECRプラズマCVD法は、膜形成とスパッタ
エッチングの同時進行による競争反応であるため、その
条件設定が難しいという問題点も挙げられる。
However, when such a high-frequency high-frequency bias is applied, the following problems occur due to the application of high high-frequency power even though the step coverage is improved.
One of the problems is that the metal wiring itself is etched by the sputtering of cations such as argon ions, which shortens the life of the wiring. Another problem is that charge-up on the surface of the insulating film occurs, local discharge occurs between the substrate surface and plasma, foreign matter is generated, and the surface property is significantly deteriorated. These problems become major problems in realizing laminated wiring. Further, the general bias ECR plasma CVD method has a problem that it is difficult to set the conditions because it is a competitive reaction due to simultaneous progress of film formation and sputter etching.

【0006】これらの問題点を解決する方法として次の
方法が提案されている。絶縁膜形成の初期過程は高周波
バイアスを印加しないか、又は低出力の高周波バイアス
を印加して金属配線に損傷を与えないようにし、その後
はより高出力の高周波バイアスを印加して絶縁膜の形成
を行なう(特開平3−280539号公報参照)。しか
し、その方法によれば、金属配線への損傷は確かに避け
られるものの、より高出力の、例えば出力600Wの高
周波バイアスを印加しての絶縁膜形成工程では、絶縁膜
表面でのチャージアップは避けられず、局所放電による
異物の発生や絶縁破壊の問題がある。
The following method has been proposed as a method for solving these problems. In the initial process of forming the insulating film, a high frequency bias is not applied or a low output high frequency bias is applied to prevent damage to the metal wiring, and then a higher output high frequency bias is applied to form the insulating film. (See Japanese Patent Laid-Open No. 3-280539). However, according to this method, damage to the metal wiring can be avoided, but charge-up on the surface of the insulating film does not occur in the step of forming the insulating film by applying a high-frequency bias of higher output, for example, 600 W output. There is an unavoidable problem of foreign matter generation and dielectric breakdown due to local discharge.

【0007】別の提案として、基板に高周波バイアスを
印加せず、またアルゴンガスなどのスパッタリングガス
となるガスを導入しないで成膜のみを行なう工程と、高
周波バイアスを印加し、アルゴンなどの陽イオンでスパ
ッタエッチングのみを行なう工程とを繰り返す方法が提
案されている(特開平3−52232号公報参照)。し
かし、その方法は、成膜工程とスパッタエッチング工程
を分離して、成膜のみの工程とスパッタエッチングのみ
の工程とを繰り返す方法であるため、成膜とスパッタエ
ッチングの同時進行による段差被覆性の向上というバイ
アスECRプラズマCVD法の特徴を全く利用していな
い。そのため、次のような問題が発生する。一般にEC
RプラズマCVD法の場合、基板に高周波バイアスを印
加しないで成膜を行なうと、金属配線上の絶縁膜形状は
オーバーハング形状となることはよく知られており、こ
のオーバーハング形状が金属配線間のスペースのボイド
の原因となる。ECRプラズマCVD法の場合は、一般
にその成膜速度が大きく、シリコン酸化膜で数1000
Å/分〜数μm/分の値である。したがって、半導体装
置の素子寸法及び金属配線の微細化が進むにつれて、オ
ーバーハング形状によるボイドの発生という問題は、絶
縁膜形成開始後のごく短時間のうちに決定的となり、そ
の後にスパッタエッチングを行なってもボイドの解消は
不可能となる。この問題を解決するには、成膜工程開始
後のごく僅かの時間、例えば成膜速度が1μm/分、デ
ザインルールのライン・アンド・スペース(L/S)が
0.5μm/0.5μmの場合では10〜20秒程度の時
間を制御下におくことが必要となるが、プラズマ状態の
不安定さからいっても再現性が低く、非常に不安定なプ
ロセスになるという問題がある。
As another proposal, a step of performing only film formation without applying a high frequency bias to the substrate and without introducing a gas that becomes a sputtering gas such as argon gas, and a step of applying a high frequency bias and cations such as argon. In JP-A-3-52232, a method of repeating the step of performing only sputter etching has been proposed. However, since the method is a method in which the film forming step and the sputter etching step are separated and the film forming only step and the sputter etching only step are repeated, the step coverage due to the simultaneous progress of the film forming and the sputter etching. It does not take advantage of the improved bias ECR plasma CVD process feature. Therefore, the following problems occur. EC in general
In the case of the R plasma CVD method, it is well known that when the film is formed without applying a high frequency bias to the substrate, the shape of the insulating film on the metal wiring becomes an overhang shape. Cause voids in the space. In the case of the ECR plasma CVD method, the film formation rate is generally high, and a silicon oxide film of several thousand is used.
The value is Å / min to several μm / min. Therefore, as the element size of the semiconductor device and the miniaturization of the metal wiring progress, the problem of the generation of voids due to the overhang shape becomes decisive within a very short time after the start of the insulating film formation, and then the sputter etching is performed. However, it is impossible to eliminate the void. To solve this problem, a very short time after the film formation process is started, for example, the film formation rate is 1 μm / min, and the design rule line and space (L / S) is 0.5 μm / 0.5 μm. In some cases, it is necessary to keep the time under control for about 10 to 20 seconds, but even if the plasma state is unstable, the reproducibility is low and the process becomes very unstable.

【0008】[0008]

【発明が解決しようとする課題】本発明は以上に述べた
ような問題点を解決するために、バイアスECRプラズ
マCVD法の特徴を有しつつ、しかも半導体装置に与え
る損傷を抑え、優れた段差被覆形状を有する信頼性の高
い絶縁膜を制御性よく形成することを特徴とするもので
ある。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention has the features of the bias ECR plasma CVD method, yet suppresses damage to a semiconductor device and has an excellent step. It is characterized in that a highly reliable insulating film having a coating shape is formed with good controllability.

【0009】[0009]

【課題を解決するための手段】本発明は、絶縁膜を形成
する工程では、基板に低出力の高周波バイアスを印加し
つつ、成膜原料となるガスと、イオン化して陽イオンと
なる元素を含むガスとを同時に導入し、成膜と陽イオン
によるスパッタエッチングとを同時に行なわせる第1の
工程と、基板に低出力の高周波バイアスを印加しつつ、
成膜原料となるガスを導入せず、イオン化して陽イオン
となる元素を含むガスのみを導入して陽イオンによるス
パッタエッチングのみを行なわせる第2の工程とを繰り
返すことを特徴とする半導体装置の製造方法である。こ
れにより、バイアスECRプラズマCVDプロセスによ
る成膜と、陽イオンによるスパッタエッチングのプロセ
スを繰り返すことによって、半導体装置に与える損傷を
抑え、金属配線間をボイドなしに埋め込み、かつ優れた
段差被覆性を有する絶縁膜を形成する。
According to the present invention, in the step of forming an insulating film, a gas serving as a film-forming raw material and an element which becomes an cation by ionization are applied while applying a low-power high-frequency bias to a substrate. A first step of simultaneously introducing a gas containing the same and performing film formation and sputter etching with cations, and applying a low-output high-frequency bias to the substrate,
A semiconductor device characterized by repeating a second step of introducing only a gas containing an element which is ionized and becomes a cation without introducing a gas as a film-forming raw material and performing only sputter etching by the cation. Is a manufacturing method. Thus, by repeating the film formation by the bias ECR plasma CVD process and the sputter etching process by positive ions, damage to the semiconductor device is suppressed, the metal wiring is filled without voids, and excellent step coverage is provided. An insulating film is formed.

【0010】好ましい態様では高周波バイアスの電力を
50〜500Wに設定する。本発明での好ましい条件
は、第1の工程の成膜速度をA(Å/分)、その第1の
工程の1回当りの成膜時間をt1(分)とし、第2の工
程のエッチング速度をB(Å/分)、その第2の工程の
1回当りのエッチング時間をt2(分)としたとき、次
の関係式が成り立つように設定する。 0.4≦A・t1/B・t2≦20
In a preferred embodiment, the high frequency bias power is set to 50 to 500W. Preferred conditions in the present invention are that the film forming rate in the first step is A (Å / min), the film forming time per one time in the first step is t 1 (minute), and the second step is When the etching rate is B (Å / min) and the etching time per one time in the second step is t 2 (min), the following relational expression is set. 0.4 ≦ A · t 1 / B · t 2 ≦ 20

【0011】本発明に用いるECRプラズマCVD装置
は、基板に高周波バイアスを印加できるECRプラズマ
CVD装置である。一般に用意されている高周波電源は
その出力が1kW以上の能力を有するものが多いが、本
発明では低出力の高周波バイアスで効果が得られるの
で、高々500Wクラスの高周波電源を用意すればす
む。
The ECR plasma CVD apparatus used in the present invention is an ECR plasma CVD apparatus capable of applying a high frequency bias to a substrate. Most of the high-frequency power supplies that are generally prepared have an output capability of 1 kW or more. However, in the present invention, the effect can be obtained with a low-frequency high-frequency bias. Therefore, it is sufficient to prepare a high-frequency power supply of 500 W class at most.

【0012】本発明においてスパッタエッチング用とし
て用いるガスはイオン化して陽イオンとなる元素を含む
ガスであれば使用可能であり、通常はスパッタ効率や取
扱いの容易さからいってAr(アルゴン)ガスを選ぶの
が最も適切である。He(ヘリウム)もまたイオン化し
てHeイオンを供給するので、単体で、又はArガスと
の混合ガスとして使用することができる。絶縁膜形成用
に用いる原料ガスは、形成する膜がシリコン酸化膜の場
合はシラン(SiH4)と酸素が好ましく、また形成す
る膜がシリコン窒化膜の場合はシランと窒素が好まし
い。
The gas used for sputter etching in the present invention may be any gas containing an element which is ionized to become cations. Usually, Ar (argon) gas is used because of its sputtering efficiency and easy handling. The most appropriate is to choose. Since He (helium) is also ionized to supply He ions, it can be used alone or as a mixed gas with Ar gas. The raw material gas used for forming the insulating film is preferably silane (SiH 4 ) and oxygen when the film to be formed is a silicon oxide film, and is preferably silane and nitrogen when the film to be formed is a silicon nitride film.

【0013】[0013]

【実施例】図1に本発明に従ってシリコン酸化膜を形成
したときのプロセスを工程順に示す。成膜原料ガスとし
てシランと酸素を用い、またスパッタリング用のガスと
してアルゴンを用いた。図中で(A),(C),
(E),(G)は成膜原料ガスとスパッタリング用ガス
をともに導入して行なう、いわゆるバイアスECRプラ
ズマCVD工程後の形状を示している。一方、(B),
(D),(F),(H)はスパッタリング用ガスのみを
導入して行なうスパッタエッチング工程後の形状を示し
ている。両工程での基板に印加する高周波バイアスの出
力は250Wとした。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a process of forming a silicon oxide film according to the present invention in order of steps. Silane and oxygen were used as film forming source gases, and argon was used as a gas for sputtering. In the figure, (A), (C),
(E) and (G) show the shapes after the so-called bias ECR plasma CVD process, which is performed by introducing both the film forming source gas and the sputtering gas. On the other hand, (B),
(D), (F), and (H) show the shapes after the sputter etching step performed by introducing only the sputtering gas. The output of the high frequency bias applied to the substrate in both steps was 250W.

【0014】先ず、バイアスECRプラズマCVD工程
を所定の時間行なうと、(A)のように、基板1上の金
属配線2上のシリコン酸化膜3は多少オーバーハング形
状を有するものとなる。通常のバイアスECRプラズマ
CVDではこのようなオーバーハング形状が発生しない
ように高出力の高周波バイアスを印加するが、本発明で
は後にスパッタエッチング工程を有するため、多少のオ
ーバーハング形状は許容できる。
First, when the bias ECR plasma CVD process is performed for a predetermined time, the silicon oxide film 3 on the metal wiring 2 on the substrate 1 has an overhang shape as shown in FIG. In normal bias ECR plasma CVD, a high-power high-frequency bias is applied so that such an overhang shape does not occur, but since the present invention has a sputter etching step later, some overhang shape can be tolerated.

【0015】次に、成膜原料ガスの導入を中止し、スパ
ッタエッチング工程に移る。スパッタエッチング工程を
所定時間行なったときの形状は、オーバーハング部が優
先的にスパッタエッチングされ、その結果(B)に示さ
れるような形状となる。その後さらにバイアスECRプ
ラズマCVD工程を行なうと、(C)に示される形状と
なり、その後さらにスパッタエッチングを行なうと
(D)に示される形状となる。
Next, the introduction of the film forming source gas is stopped, and the process proceeds to the sputter etching process. The shape when the sputter etching step is performed for a predetermined time is such that the overhang portion is preferentially sputter-etched and the result is as shown in (B). When the bias ECR plasma CVD process is further performed thereafter, the shape shown in (C) is obtained, and when the sputter etching is further performed thereafter, the shape shown in (D) is obtained.

【0016】このようにバイアスECRプラズマCVD
工程とスパッタエッチング工程を順次繰り返していくこ
とによって、最終的には(H)に示されるように、金属
配線2,2間がボイドなく埋め込まれ、平坦化も行なわ
れた優れた段差被覆形状を有する絶縁膜3が形成され
る。このように、バイアスECRプラズマCVD工程と
スパッタエッチングを繰り返すことにより、低出力の高
周波バイアスであっても優れた段差被覆性を有する絶縁
膜が半導体装置に与える損傷を抑えながら形成させるこ
とができる。
Thus, the bias ECR plasma CVD
By successively repeating the steps and the sputter etching step, finally, as shown in (H), an excellent step coverage shape in which the metal wirings 2 and 2 are filled without voids and flattened is also formed. The insulating film 3 having is formed. As described above, by repeating the bias ECR plasma CVD process and the sputter etching, it is possible to form the insulating film having excellent step coverage even with a low output high frequency bias while suppressing damage to the semiconductor device.

【0017】(実施例1)4インチの単結晶シリコンウ
エハ上に既知の方法によりアルミニウム薄膜を約900
0Åの厚さに形成し、写真製版とエッチングによりライ
ン・アンド・スペース(L/S)=0.7μm/0.7μ
mにパターン化したものを基板とした。バイアスECR
プラズマCVD及びスパッタエッチングの条件は以下の
通りである。
Example 1 An aluminum thin film of about 900 was formed on a 4-inch single crystal silicon wafer by a known method.
Formed to a thickness of 0Å, and line and space (L / S) = 0.7μm / 0.7μ by photoengraving and etching.
The substrate patterned to m was used. Bias ECR
The conditions of plasma CVD and sputter etching are as follows.

【0018】バイアスECRプラズマCVD工程 SiH4流量: 10sccm O2流量 : 15sccm Ar流量 : 20sccm スパッタエッチング工程 Ar流量 : 20sccm 両工程とも圧力は1mTorr、基板温度は150℃、マイ
クロ波電力は700W、高周波(13.56MHz)電
力は250Wである。
Bias ECR plasma CVD step SiH 4 flow rate: 10 sccm O 2 flow rate: 15 sccm Ar flow rate: 20 sccm Sputter etching step Ar flow rate: 20 sccm Both steps have a pressure of 1 mTorr, a substrate temperature of 150 ° C., a microwave power of 700 W and a high frequency ( 13.56 MHz) power is 250W.

【0019】各工程の条件をこのように設定し、バイア
スECRプラズマCVD工程の単位時間を3分間、スパ
ッタエッチング工程の単位時間を5分間とし、またそれ
らを交互に繰り返す繰返し回数を8回とした。その結
果、金属配線間をボイドなく埋め込んで、かつ表面性も
平坦なシリコン酸化膜が得られた。
The conditions of each process are set as described above, the unit time of the bias ECR plasma CVD process is 3 minutes, the unit time of the sputter etching process is 5 minutes, and the number of times of repeating these alternately is 8 times. . As a result, a silicon oxide film was obtained in which the space between the metal wirings was filled without voids and the surface property was flat.

【0020】(実施例2)実施例1と同様であるが、基
板のライン・アンド・スペース(L/S)=0.5μm
/0.5μmとし、バイアスECRプラズマCVD工程
の単位時間を2分間、スパッタエッチング工程の単位時
間を6分間とし、繰返し回数を8回とした。その結果、
金属配線間をボイドなく埋め込んで、かつ表面性も平坦
なシリコン酸化膜が得られた。
(Embodiment 2) Same as Embodiment 1, but the line and space (L / S) of the substrate is 0.5 μm.
/0.5 μm, the unit time of the bias ECR plasma CVD process was 2 minutes, the unit time of the sputter etching process was 6 minutes, and the number of repetitions was 8 times. as a result,
A silicon oxide film was obtained in which the metal wiring was filled in without voids and the surface property was flat.

【0021】第1の工程、すなわちバイアスECRプラ
ズマCVD工程の成膜速度をA(Å/分)、その1回当
りの成膜時間、すなわち第1の工程の単位時間をt
1(分)とする。第2の工程、すなわちスパッタエッチ
ング工程のエッチング速度をB(Å/分)、その1回当
りのエッチング時間、すなわち第2の工程の単位時間を
2(分)とする。
The first step, the bias ECR plastic
Zuma CVD process deposition rate is A (Å / min), once
Film formation time, that is, the unit time of the first step is t
1(Minutes) Second step, sputter etch
Etching rate of the etching process is B (Å / min), once
Etching time, that is, the unit time of the second step
t 2(Minutes)

【0022】図2に、基板に印加する高周波バイアスの
出力を変化させながら、バイアスECRプラズマCVD
法によりシリコン酸化膜を成膜したときの成膜速度を示
す。高周波バイアス電力が0のときの成膜速度はバイア
スを印加しない場合の成膜速度であり、約800Å/分
である。一方、高周波バイアス電力を250W印加した
場合の成膜速度Aは、グラフから約600Å/分と読み
取ることができる。また、この結果から、高周波バイア
スを250W印加することによって得られる見掛けのエ
ッチング速度Bは、 800−600=200(Å/分) と考えられる。ここで、第1の工程の成膜速度Aと単位
時間t1との積A・t1と、第2の工程のエッチング速度
Bと単位時間t2との積B・t2との比A・t1/B・t2
よって両工程の繰返し周期を評価する。
FIG. 2 shows the bias ECR plasma CVD while changing the output of the high frequency bias applied to the substrate.
The film-forming speed at the time of forming a silicon oxide film by the method is shown. The film forming rate when the high frequency bias power is 0 is the film forming rate when the bias is not applied, and is about 800 Å / min. On the other hand, the film forming rate A when the high frequency bias power of 250 W is applied can be read from the graph as about 600 Å / min. Further, from this result, it is considered that the apparent etching rate B obtained by applying the high frequency bias of 250 W is 800-600 = 200 (Å / min). Here, first the product A · t 1 the deposition rate A and the unit time t 1 step, the ratio A and the product B · t 2 between the etching rate B and the unit time t 2 of the second step Evaluate the repetition cycle of both processes by t 1 / B · t 2 .

【0023】実施例1及び2を含み、さらに条件を変え
て測定を行ない、金属配線間にすがなく埋め込めるかど
うかを評価した結果を表1に示す。
Table 1 shows the results including the measurements of Examples 1 and 2 and changing the conditions, and evaluating whether or not the metal wiring can be embedded without any space.

【0024】[0024]

【表1】 [Table 1]

【0025】条件の欄で、例えば(5,3)×5は第1
の工程の単位時間が5分、第2の工程の単位時間が3
分、繰返し回数が5回であることを示している。ライン
・アンド・スペース(L/S)は小さい方が良好な絶縁
膜の形成が難しく、表中の○は金属配線間の層間膜にす
がなく埋込みができた結果を示し、×印はすが発生した
結果を示している。
In the condition column, for example, (5,3) × 5 is the first
Unit time for the process is 5 minutes, unit time for the second process is 3
It shows that the number of repetitions is 5 minutes. The smaller the line and space (L / S) is, the more difficult it is to form a good insulating film. In the table, ○ indicates the result that the interlayer film between the metal wirings can be embedded without any scratch, and the mark x indicates Shows the result of occurrence.

【0026】[0026]

【発明の効果】本発明によれば低出力の高周波バイアス
によるバイアスECRプラズマCVD工程とスパッタエ
ッチング工程を繰り返すことにより、半導体装置に与え
る損傷を抑えることができ、金属配線間をボイドなく埋
め込んで、かつ表面性も平坦な、段差被覆性に優れた絶
縁膜を得ることができる。また、本発明の工程はバイア
スECRプラズマCVD工程とスパッタエッチング工程
であり、それぞれの時間と繰返し回数という制御しやす
いパラメータを最適化することにより、種々の配線寸法
に対応することができので、再現性も得られやすく、制
御性に優れている。
According to the present invention, by repeating the bias ECR plasma CVD process and the sputter etching process with a low-power high-frequency bias, damage to the semiconductor device can be suppressed, and the metal wiring can be embedded without voids. In addition, it is possible to obtain an insulating film having a flat surface property and excellent step coverage. Further, the process of the present invention is a bias ECR plasma CVD process and a sputter etching process, and various wiring dimensions can be dealt with by optimizing parameters that are easy to control, such as the time and the number of repetitions. Is easy to obtain and has excellent controllability.

【図面の簡単な説明】[Brief description of drawings]

【図1】一実施例におけるシリコン酸化膜形成工程を示
す工程断面図である。
FIG. 1 is a process cross-sectional view showing a silicon oxide film forming process in one example.

【図2】一実施例における高周波バイアス電力に対する
成膜速度を示す図である。
FIG. 2 is a diagram showing a film forming rate with respect to a high frequency bias power in one example.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 金属配線 3 シリコン酸化膜 1 Silicon substrate 2 Metal wiring 3 Silicon oxide film

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年9月2日[Submission date] September 2, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項3[Name of item to be corrected] Claim 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0003[Name of item to be corrected] 0003

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0003】また、基板に高周波バイアスを印加し、ア
ルゴンなどのガスを添加して成膜と同時にアルゴンなど
のイオンによるスパッタエッチングを起こさせることに
より、段差被覆性を向上させたバイアスECRプラズマ
CVD法が提案されている。バイアスECRプラズマC
VD法は基板に高周波バイアスを印加し、ECRプラズ
マによりイオン化された陽イオンを基板近傍に発生した
イオンシースによる自己バイアス効果により引き寄せ、
陽イオンによるスパッタエッチングの効果を利用する方
法である。スパッタエッチングは基板表面の傾斜部にお
いてより顕著に現われることから、絶縁膜のオーバーエ
ッチング部を優先的にエッチングし、金属配線間をボイ
(本明細書では「空隙」の意味で使用している)なく
埋め込む手法として注目されている。
Further, a high frequency bias is applied to the substrate and a gas such as argon is added to cause film formation and sputter etching by ions such as argon to occur at the same time as the film formation, whereby a bias ECR plasma CVD method with improved step coverage. Is proposed. Bias ECR plasma C
In the VD method, a high frequency bias is applied to the substrate, and the cations ionized by the ECR plasma are attracted by the self-bias effect of the ion sheath generated near the substrate,
This is a method that utilizes the effect of sputter etching with cations. Since sputter etching appears more prominently in the inclined portion of the substrate surface, the over-etched portion of the insulating film is preferentially etched to form voids between the metal wirings (used in this specification as "void"). It is attracting attention as a method of embedding without using.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0010】好ましい態様では高周波バイアスの電力を
50〜500Wに設定する。本発明での好ましい条件
は、第1の工程の成膜速度をA(Å/分)、その第1の
工程の1回当りの成膜時間をt1(分)とし、第2の工
程のエッチング速度をB(Å/分)、その第2の工程の
1回当りのエッチング時間をt2(分)としたとき、次
の関係式が成り立つように設定する。 0.4≦A・t1/B・t22.0
In a preferred embodiment, the high frequency bias power is set to 50 to 500W. Preferred conditions in the present invention are that the film forming rate in the first step is A (Å / min), the film forming time per one time in the first step is t 1 (minute), and the second step is When the etching rate is B (Å / min) and the etching time per one time in the second step is t 2 (min), the following relational expression is set. 0.4 ≦ A · t 1 / B · t 22.0

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/768 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H01L 21/768

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板に高周波バイアスを印加できるEC
RプラズマCVD法により基板上に絶縁膜を形成する工
程を含む半導体装置の製造方法において、 絶縁膜を形成する前記工程では、基板に低出力の高周波
バイアスを印加しつつ、成膜原料となるガスと、イオン
化して陽イオンとなる元素を含むガスとを同時に導入
し、成膜と陽イオンによるスパッタエッチングとを同時
に行なわせる第1の工程と、 基板に低出力の高周波バイアスを印加しつつ、成膜原料
となるガスを導入せず、イオン化して陽イオンとなる元
素を含むガスのみを導入して陽イオンによるスパッタエ
ッチングのみを行なわせる第2の工程とを繰り返すこと
を特徴とする半導体装置の製造方法。
1. An EC capable of applying a high frequency bias to a substrate
In a method of manufacturing a semiconductor device including a step of forming an insulating film on a substrate by R plasma CVD method, in the step of forming the insulating film, a gas used as a film forming raw material while applying a low-power high-frequency bias to the substrate. And a gas containing an element which is ionized to become cations at the same time, so that film formation and sputter etching by cations are simultaneously performed, and while applying a low-power high-frequency bias to the substrate, A semiconductor device characterized by repeating a second step of introducing only a gas containing an element which is ionized and becomes a cation without introducing a gas as a film-forming raw material and performing only sputter etching by the cation. Manufacturing method.
【請求項2】 基板に印加する高周波バイアスの電力が
50〜500Wの範囲内である請求項1に記載の半導体
装置の製造方法。
2. The method of manufacturing a semiconductor device according to claim 1, wherein the power of the high frequency bias applied to the substrate is in the range of 50 to 500 W.
【請求項3】 前記第1の工程の成膜速度をA(Å/
分)、その第1の工程の1回当りの成膜時間をt
1(分)とし、前記第2の工程のエッチング速度をB
(Å/分)、その第2の工程の1回当りのエッチング時
間をt2(分)としたとき、次の関係式が成り立つよう
に条件を設定する請求項1又は2に記載の半導体装置の
製造方法。 0.4≦A・t1/B・t2≦20
3. The film forming rate in the first step is A (Å /
Min), and the film formation time for each of the first steps is t
1 (min) and the etching rate in the second step is B
3. The semiconductor device according to claim 1, wherein the condition is set such that the following relational expression is satisfied, where (Å / min) and an etching time per one time of the second step are t 2 (min). Manufacturing method. 0.4 ≦ A · t 1 / B · t 2 ≦ 20
JP33956593A 1993-12-03 1993-12-03 Manufacture of semiconductor device Pending JPH07161703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33956593A JPH07161703A (en) 1993-12-03 1993-12-03 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33956593A JPH07161703A (en) 1993-12-03 1993-12-03 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH07161703A true JPH07161703A (en) 1995-06-23

Family

ID=18328678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33956593A Pending JPH07161703A (en) 1993-12-03 1993-12-03 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH07161703A (en)

Cited By (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002189139A (en) * 2000-12-19 2002-07-05 Sumitomo Electric Ind Ltd Method for manufacturing optical waveguide deice
US6559026B1 (en) 2000-05-25 2003-05-06 Applied Materials, Inc Trench fill with HDP-CVD process including coupled high power density plasma deposition
US6596653B2 (en) 2001-05-11 2003-07-22 Applied Materials, Inc. Hydrogen assisted undoped silicon oxide deposition process for HDP-CVD
KR100403630B1 (en) * 2001-07-07 2003-10-30 삼성전자주식회사 Method for forming inter-layer dielectric film of semiconductor device by HDP CVD
WO2003105220A1 (en) * 2002-06-11 2003-12-18 Infineon Technologies Ag Method for filling trench and relief geometries in semiconductor structures
US6683000B2 (en) 2001-10-31 2004-01-27 Mitsubishi Denki Kabushiki Kaisha Semiconductor-device fabrication method
US6740601B2 (en) 2001-05-11 2004-05-25 Applied Materials Inc. HDP-CVD deposition process for filling high aspect ratio gaps
US6808748B2 (en) 2003-01-23 2004-10-26 Applied Materials, Inc. Hydrogen assisted HDP-CVD deposition process for aggressive gap-fill technology
US6812153B2 (en) 2002-04-30 2004-11-02 Applied Materials Inc. Method for high aspect ratio HDP CVD gapfill
US6821577B2 (en) 1998-03-20 2004-11-23 Applied Materials, Inc. Staggered in-situ deposition and etching of a dielectric layer for HDP CVD
US6869880B2 (en) 2002-01-24 2005-03-22 Applied Materials, Inc. In situ application of etch back for improved deposition into high-aspect-ratio features
JP2005101597A (en) * 2003-09-04 2005-04-14 Seiko Epson Corp Semiconductor device and its manufacturing method
US6908862B2 (en) 2002-05-03 2005-06-21 Applied Materials, Inc. HDP-CVD dep/etch/dep process for improved deposition into high aspect ratio features
US7052552B2 (en) 2000-08-24 2006-05-30 Applied Materials Gas chemistry cycling to achieve high aspect ratio gapfill with HDP-CVD
US7081414B2 (en) 2003-05-23 2006-07-25 Applied Materials, Inc. Deposition-selective etch-deposition process for dielectric film gapfill
US7087497B2 (en) 2004-03-04 2006-08-08 Applied Materials Low-thermal-budget gapfill process
US7097886B2 (en) 2002-12-13 2006-08-29 Applied Materials, Inc. Deposition process for high aspect ratio trenches
US7205240B2 (en) 2003-06-04 2007-04-17 Applied Materials, Inc. HDP-CVD multistep gapfill process
US7294588B2 (en) 2003-09-03 2007-11-13 Applied Materials, Inc. In-situ-etch-assisted HDP deposition
US7329586B2 (en) 2005-06-24 2008-02-12 Applied Materials, Inc. Gapfill using deposition-etch sequence
US7524750B2 (en) 2006-04-17 2009-04-28 Applied Materials, Inc. Integrated process modulation (IPM) a novel solution for gapfill with HDP-CVD
US7628897B2 (en) 2002-10-23 2009-12-08 Applied Materials, Inc. Reactive ion etching for semiconductor device feature topography modification
JP2013510445A (en) * 2009-11-09 2013-03-21 スリーエム イノベイティブ プロパティズ カンパニー Anisotropic etching process of semiconductor
US8414747B2 (en) 2005-01-08 2013-04-09 Applied Materials, Inc. High-throughput HDP-CVD processes for advanced gapfill applications
US8801952B1 (en) 2013-03-07 2014-08-12 Applied Materials, Inc. Conformal oxide dry etch
US8895449B1 (en) 2013-05-16 2014-11-25 Applied Materials, Inc. Delicate dry clean
US8921234B2 (en) 2012-12-21 2014-12-30 Applied Materials, Inc. Selective titanium nitride etching
US8927390B2 (en) 2011-09-26 2015-01-06 Applied Materials, Inc. Intrench profile
US8951429B1 (en) 2013-10-29 2015-02-10 Applied Materials, Inc. Tungsten oxide processing
US8956980B1 (en) 2013-09-16 2015-02-17 Applied Materials, Inc. Selective etch of silicon nitride
US8969212B2 (en) 2012-11-20 2015-03-03 Applied Materials, Inc. Dry-etch selectivity
US8980763B2 (en) 2012-11-30 2015-03-17 Applied Materials, Inc. Dry-etch for selective tungsten removal
US8999856B2 (en) 2011-03-14 2015-04-07 Applied Materials, Inc. Methods for etch of sin films
US9023734B2 (en) 2012-09-18 2015-05-05 Applied Materials, Inc. Radical-component oxide etch
US9023732B2 (en) 2013-03-15 2015-05-05 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9034770B2 (en) 2012-09-17 2015-05-19 Applied Materials, Inc. Differential silicon oxide etch
US9040422B2 (en) 2013-03-05 2015-05-26 Applied Materials, Inc. Selective titanium nitride removal
US9064816B2 (en) 2012-11-30 2015-06-23 Applied Materials, Inc. Dry-etch for selective oxidation removal
US9064815B2 (en) 2011-03-14 2015-06-23 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US9111877B2 (en) 2012-12-18 2015-08-18 Applied Materials, Inc. Non-local plasma oxide etch
US9117855B2 (en) 2013-12-04 2015-08-25 Applied Materials, Inc. Polarity control for remote plasma
US9114438B2 (en) 2013-05-21 2015-08-25 Applied Materials, Inc. Copper residue chamber clean
US9136273B1 (en) 2014-03-21 2015-09-15 Applied Materials, Inc. Flash gate air gap
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
US9159606B1 (en) 2014-07-31 2015-10-13 Applied Materials, Inc. Metal air gap
US9165786B1 (en) 2014-08-05 2015-10-20 Applied Materials, Inc. Integrated oxide and nitride recess for better channel contact in 3D architectures
US9190293B2 (en) 2013-12-18 2015-11-17 Applied Materials, Inc. Even tungsten etch for high aspect ratio trenches
US9236266B2 (en) 2011-08-01 2016-01-12 Applied Materials, Inc. Dry-etch for silicon-and-carbon-containing films
US9236265B2 (en) 2013-11-04 2016-01-12 Applied Materials, Inc. Silicon germanium processing
US9245762B2 (en) 2013-12-02 2016-01-26 Applied Materials, Inc. Procedure for etch rate consistency
US9263278B2 (en) 2013-12-17 2016-02-16 Applied Materials, Inc. Dopant etch selectivity control
US9287095B2 (en) 2013-12-17 2016-03-15 Applied Materials, Inc. Semiconductor system assemblies and methods of operation
US9287134B2 (en) 2014-01-17 2016-03-15 Applied Materials, Inc. Titanium oxide etch
US9293568B2 (en) 2014-01-27 2016-03-22 Applied Materials, Inc. Method of fin patterning
US9299582B2 (en) 2013-11-12 2016-03-29 Applied Materials, Inc. Selective etch for metal-containing materials
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9299538B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9299575B2 (en) 2014-03-17 2016-03-29 Applied Materials, Inc. Gas-phase tungsten etch
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9324576B2 (en) 2010-05-27 2016-04-26 Applied Materials, Inc. Selective etch for silicon films
US9355856B2 (en) 2014-09-12 2016-05-31 Applied Materials, Inc. V trench dry etch
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9373517B2 (en) 2012-08-02 2016-06-21 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US9378978B2 (en) 2014-07-31 2016-06-28 Applied Materials, Inc. Integrated oxide recess and floating gate fin trimming
US9378969B2 (en) 2014-06-19 2016-06-28 Applied Materials, Inc. Low temperature gas-phase carbon removal
US9385028B2 (en) 2014-02-03 2016-07-05 Applied Materials, Inc. Air gap process
US9390937B2 (en) 2012-09-20 2016-07-12 Applied Materials, Inc. Silicon-carbon-nitride selective etch
US9396989B2 (en) 2014-01-27 2016-07-19 Applied Materials, Inc. Air gaps between copper lines
US9406523B2 (en) 2014-06-19 2016-08-02 Applied Materials, Inc. Highly selective doped oxide removal method
US9425058B2 (en) 2014-07-24 2016-08-23 Applied Materials, Inc. Simplified litho-etch-litho-etch process
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US9847289B2 (en) 2014-05-30 2017-12-19 Applied Materials, Inc. Protective via cap for improved interconnect performance
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
WO2019208397A1 (en) * 2018-04-23 2019-10-31 東京エレクトロン株式会社 Treatment device and embedding method
JP2021039975A (en) * 2019-08-30 2021-03-11 東京エレクトロン株式会社 Film deposition apparatus and film deposition method

Cited By (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7455893B2 (en) 1998-03-20 2008-11-25 Applied Materials, Inc. Staggered in-situ deposition and etching of a dielectric layer for HDP-CVD
US7132134B2 (en) 1998-03-20 2006-11-07 Applied Materials, Inc. Staggered in-situ deposition and etching of a dielectric layer for HDP CVD
US6821577B2 (en) 1998-03-20 2004-11-23 Applied Materials, Inc. Staggered in-situ deposition and etching of a dielectric layer for HDP CVD
US6559026B1 (en) 2000-05-25 2003-05-06 Applied Materials, Inc Trench fill with HDP-CVD process including coupled high power density plasma deposition
US7052552B2 (en) 2000-08-24 2006-05-30 Applied Materials Gas chemistry cycling to achieve high aspect ratio gapfill with HDP-CVD
JP2002189139A (en) * 2000-12-19 2002-07-05 Sumitomo Electric Ind Ltd Method for manufacturing optical waveguide deice
US6740601B2 (en) 2001-05-11 2004-05-25 Applied Materials Inc. HDP-CVD deposition process for filling high aspect ratio gaps
US6914016B2 (en) 2001-05-11 2005-07-05 Applied Materials, Inc. HDP-CVD deposition process for filling high aspect ratio gaps
US6596653B2 (en) 2001-05-11 2003-07-22 Applied Materials, Inc. Hydrogen assisted undoped silicon oxide deposition process for HDP-CVD
KR100403630B1 (en) * 2001-07-07 2003-10-30 삼성전자주식회사 Method for forming inter-layer dielectric film of semiconductor device by HDP CVD
US6683000B2 (en) 2001-10-31 2004-01-27 Mitsubishi Denki Kabushiki Kaisha Semiconductor-device fabrication method
US6869880B2 (en) 2002-01-24 2005-03-22 Applied Materials, Inc. In situ application of etch back for improved deposition into high-aspect-ratio features
US7399707B2 (en) 2002-01-24 2008-07-15 Applied Materials, Inc. In situ application of etch back for improved deposition into high-aspect-ratio features
US7064077B2 (en) 2002-04-30 2006-06-20 Applied Materials Method for high aspect ratio HDP CVD gapfill
US6812153B2 (en) 2002-04-30 2004-11-02 Applied Materials Inc. Method for high aspect ratio HDP CVD gapfill
US6908862B2 (en) 2002-05-03 2005-06-21 Applied Materials, Inc. HDP-CVD dep/etch/dep process for improved deposition into high aspect ratio features
WO2003105220A1 (en) * 2002-06-11 2003-12-18 Infineon Technologies Ag Method for filling trench and relief geometries in semiconductor structures
US7265025B2 (en) 2002-06-11 2007-09-04 Infineon Technologies Ag Method for filling trench and relief geometries in semiconductor structures
US7628897B2 (en) 2002-10-23 2009-12-08 Applied Materials, Inc. Reactive ion etching for semiconductor device feature topography modification
US7097886B2 (en) 2002-12-13 2006-08-29 Applied Materials, Inc. Deposition process for high aspect ratio trenches
US6808748B2 (en) 2003-01-23 2004-10-26 Applied Materials, Inc. Hydrogen assisted HDP-CVD deposition process for aggressive gap-fill technology
US7799698B2 (en) 2003-05-23 2010-09-21 Applied Materials, Inc. Deposition-selective etch-deposition process for dielectric film gapfill
US7081414B2 (en) 2003-05-23 2006-07-25 Applied Materials, Inc. Deposition-selective etch-deposition process for dielectric film gapfill
US7691753B2 (en) 2003-05-23 2010-04-06 Applied Materials, Inc. Deposition-selective etch-deposition process for dielectric film gapfill
US7205240B2 (en) 2003-06-04 2007-04-17 Applied Materials, Inc. HDP-CVD multistep gapfill process
US7294588B2 (en) 2003-09-03 2007-11-13 Applied Materials, Inc. In-situ-etch-assisted HDP deposition
JP2005101597A (en) * 2003-09-04 2005-04-14 Seiko Epson Corp Semiconductor device and its manufacturing method
US7087497B2 (en) 2004-03-04 2006-08-08 Applied Materials Low-thermal-budget gapfill process
US8414747B2 (en) 2005-01-08 2013-04-09 Applied Materials, Inc. High-throughput HDP-CVD processes for advanced gapfill applications
US7329586B2 (en) 2005-06-24 2008-02-12 Applied Materials, Inc. Gapfill using deposition-etch sequence
US7524750B2 (en) 2006-04-17 2009-04-28 Applied Materials, Inc. Integrated process modulation (IPM) a novel solution for gapfill with HDP-CVD
JP2013510445A (en) * 2009-11-09 2013-03-21 スリーエム イノベイティブ プロパティズ カンパニー Anisotropic etching process of semiconductor
US9324576B2 (en) 2010-05-27 2016-04-26 Applied Materials, Inc. Selective etch for silicon films
US8999856B2 (en) 2011-03-14 2015-04-07 Applied Materials, Inc. Methods for etch of sin films
US9064815B2 (en) 2011-03-14 2015-06-23 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US9236266B2 (en) 2011-08-01 2016-01-12 Applied Materials, Inc. Dry-etch for silicon-and-carbon-containing films
US8927390B2 (en) 2011-09-26 2015-01-06 Applied Materials, Inc. Intrench profile
US9012302B2 (en) 2011-09-26 2015-04-21 Applied Materials, Inc. Intrench profile
US9373517B2 (en) 2012-08-02 2016-06-21 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US9034770B2 (en) 2012-09-17 2015-05-19 Applied Materials, Inc. Differential silicon oxide etch
US9887096B2 (en) 2012-09-17 2018-02-06 Applied Materials, Inc. Differential silicon oxide etch
US9023734B2 (en) 2012-09-18 2015-05-05 Applied Materials, Inc. Radical-component oxide etch
US9390937B2 (en) 2012-09-20 2016-07-12 Applied Materials, Inc. Silicon-carbon-nitride selective etch
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
US8969212B2 (en) 2012-11-20 2015-03-03 Applied Materials, Inc. Dry-etch selectivity
US9064816B2 (en) 2012-11-30 2015-06-23 Applied Materials, Inc. Dry-etch for selective oxidation removal
US8980763B2 (en) 2012-11-30 2015-03-17 Applied Materials, Inc. Dry-etch for selective tungsten removal
US9111877B2 (en) 2012-12-18 2015-08-18 Applied Materials, Inc. Non-local plasma oxide etch
US8921234B2 (en) 2012-12-21 2014-12-30 Applied Materials, Inc. Selective titanium nitride etching
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9040422B2 (en) 2013-03-05 2015-05-26 Applied Materials, Inc. Selective titanium nitride removal
US9607856B2 (en) 2013-03-05 2017-03-28 Applied Materials, Inc. Selective titanium nitride removal
US8801952B1 (en) 2013-03-07 2014-08-12 Applied Materials, Inc. Conformal oxide dry etch
US9093390B2 (en) 2013-03-07 2015-07-28 Applied Materials, Inc. Conformal oxide dry etch
US9153442B2 (en) 2013-03-15 2015-10-06 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9184055B2 (en) 2013-03-15 2015-11-10 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9991134B2 (en) 2013-03-15 2018-06-05 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9023732B2 (en) 2013-03-15 2015-05-05 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9093371B2 (en) 2013-03-15 2015-07-28 Applied Materials, Inc. Processing systems and methods for halide scavenging
US8895449B1 (en) 2013-05-16 2014-11-25 Applied Materials, Inc. Delicate dry clean
US9114438B2 (en) 2013-05-21 2015-08-25 Applied Materials, Inc. Copper residue chamber clean
US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US8956980B1 (en) 2013-09-16 2015-02-17 Applied Materials, Inc. Selective etch of silicon nitride
US9209012B2 (en) 2013-09-16 2015-12-08 Applied Materials, Inc. Selective etch of silicon nitride
US8951429B1 (en) 2013-10-29 2015-02-10 Applied Materials, Inc. Tungsten oxide processing
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9236265B2 (en) 2013-11-04 2016-01-12 Applied Materials, Inc. Silicon germanium processing
US9520303B2 (en) 2013-11-12 2016-12-13 Applied Materials, Inc. Aluminum selective etch
US9299582B2 (en) 2013-11-12 2016-03-29 Applied Materials, Inc. Selective etch for metal-containing materials
US9711366B2 (en) 2013-11-12 2017-07-18 Applied Materials, Inc. Selective etch for metal-containing materials
US9245762B2 (en) 2013-12-02 2016-01-26 Applied Materials, Inc. Procedure for etch rate consistency
US9117855B2 (en) 2013-12-04 2015-08-25 Applied Materials, Inc. Polarity control for remote plasma
US9287095B2 (en) 2013-12-17 2016-03-15 Applied Materials, Inc. Semiconductor system assemblies and methods of operation
US9263278B2 (en) 2013-12-17 2016-02-16 Applied Materials, Inc. Dopant etch selectivity control
US9190293B2 (en) 2013-12-18 2015-11-17 Applied Materials, Inc. Even tungsten etch for high aspect ratio trenches
US9287134B2 (en) 2014-01-17 2016-03-15 Applied Materials, Inc. Titanium oxide etch
US9293568B2 (en) 2014-01-27 2016-03-22 Applied Materials, Inc. Method of fin patterning
US9396989B2 (en) 2014-01-27 2016-07-19 Applied Materials, Inc. Air gaps between copper lines
US9385028B2 (en) 2014-02-03 2016-07-05 Applied Materials, Inc. Air gap process
US9299575B2 (en) 2014-03-17 2016-03-29 Applied Materials, Inc. Gas-phase tungsten etch
US9299538B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9136273B1 (en) 2014-03-21 2015-09-15 Applied Materials, Inc. Flash gate air gap
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9847289B2 (en) 2014-05-30 2017-12-19 Applied Materials, Inc. Protective via cap for improved interconnect performance
US9378969B2 (en) 2014-06-19 2016-06-28 Applied Materials, Inc. Low temperature gas-phase carbon removal
US9406523B2 (en) 2014-06-19 2016-08-02 Applied Materials, Inc. Highly selective doped oxide removal method
US9425058B2 (en) 2014-07-24 2016-08-23 Applied Materials, Inc. Simplified litho-etch-litho-etch process
US9378978B2 (en) 2014-07-31 2016-06-28 Applied Materials, Inc. Integrated oxide recess and floating gate fin trimming
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9159606B1 (en) 2014-07-31 2015-10-13 Applied Materials, Inc. Metal air gap
US9165786B1 (en) 2014-08-05 2015-10-20 Applied Materials, Inc. Integrated oxide and nitride recess for better channel contact in 3D architectures
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US9355856B2 (en) 2014-09-12 2016-05-31 Applied Materials, Inc. V trench dry etch
WO2019208397A1 (en) * 2018-04-23 2019-10-31 東京エレクトロン株式会社 Treatment device and embedding method
JP2019192733A (en) * 2018-04-23 2019-10-31 東京エレクトロン株式会社 Processing apparatus and embedding method
KR20200141489A (en) * 2018-04-23 2020-12-18 도쿄엘렉트론가부시키가이샤 Treatment device and landfill method
JP2021039975A (en) * 2019-08-30 2021-03-11 東京エレクトロン株式会社 Film deposition apparatus and film deposition method

Similar Documents

Publication Publication Date Title
JPH07161703A (en) Manufacture of semiconductor device
US4547260A (en) Process for fabricating a wiring layer of aluminum or aluminum alloy on semiconductor devices
JPH07335612A (en) Manufacture of semiconductor integrated circuit device
JPH10189482A (en) Method for forming conductive plug in contact hole
US5854137A (en) Method for reduction of polycide residues
EP1207550B1 (en) Method of etching and method of plasma treatment
JPH09172079A (en) Semiconductor device and its manufacture
JP4068204B2 (en) Plasma deposition method
KR100524805B1 (en) Method for gapfilling trench in semiconductor device
JPH0822967A (en) Manufacture of semiconductor device
KR100780686B1 (en) Method for fabricating semiconductor device
JP2603989B2 (en) Method for manufacturing semiconductor device
JP3402937B2 (en) Method for manufacturing semiconductor device
JP3399494B2 (en) Low gas pressure plasma etching method for WSiN
JP3039006B2 (en) Method for manufacturing semiconductor device
JPH05217965A (en) Manufacture of semiconductor device
JPH08130248A (en) Deposition of film and fabrication of semiconductor device
JPH08288255A (en) Manufacture of semiconductor device
JPH08127885A (en) Method for cleaning film forming device and film forming device
JPH06318574A (en) Dry etching of ti/tin/w films
JPH07106323A (en) Semiconductor device and its manufacture
JPH05136101A (en) Manufacture of semiconductor integrated circuit device
JPH06169019A (en) Manufacture of semiconductor device
JPH10321606A (en) Method of forming wiring
JPS6353952A (en) Formation of multilayered interconnection