JPH0620816A - R-t-m-n bonded magnet and manufacture thereof - Google Patents
R-t-m-n bonded magnet and manufacture thereofInfo
- Publication number
- JPH0620816A JPH0620816A JP4202934A JP20293492A JPH0620816A JP H0620816 A JPH0620816 A JP H0620816A JP 4202934 A JP4202934 A JP 4202934A JP 20293492 A JP20293492 A JP 20293492A JP H0620816 A JPH0620816 A JP H0620816A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- powder
- thmn
- bonded magnet
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000000843 powder Substances 0.000 claims abstract description 52
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 48
- 239000000956 alloy Substances 0.000 claims abstract description 48
- 239000013078 crystal Substances 0.000 claims abstract description 34
- 229920005989 resin Polymers 0.000 claims abstract description 23
- 239000011347 resin Substances 0.000 claims abstract description 23
- 238000005121 nitriding Methods 0.000 claims abstract description 22
- 239000002245 particle Substances 0.000 claims abstract description 15
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 12
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims abstract description 10
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 10
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 10
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 10
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 13
- 238000010791 quenching Methods 0.000 claims description 12
- 229910052779 Neodymium Inorganic materials 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 6
- 229910001092 metal group alloy Inorganic materials 0.000 abstract 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 20
- 239000006247 magnetic powder Substances 0.000 description 6
- 229910000859 α-Fe Inorganic materials 0.000 description 6
- 238000000748 compression moulding Methods 0.000 description 5
- 238000001746 injection moulding Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- 230000005415 magnetization Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- -1 RTM compound Chemical class 0.000 description 2
- 229910011212 Ti—Fe Inorganic materials 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 229910001172 neodymium magnet Inorganic materials 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910001199 N alloy Inorganic materials 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000010902 jet-milling Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 238000010299 mechanically pulverizing process Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000011027 product recovery Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/059—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
- H01F1/0593—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2 of tetragonal ThMn12-structure
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、各種モーター、アク
チュエーター等に用いることが可能なR−T−M−N系
ボンド磁石とその製造方法に係り、所要合金溶湯を超急
冷合金となして粗粉砕し、さらにN2ガスジェット・ミ
ル粉砕し、窒化処理を行い、得られたThMn12型構造
を有する合金粉末を樹脂で結合して希土類元素量が少な
く、低コスト、高耐食性のボンド磁石を得るR−T−M
−N系ボンド磁石及びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an RTMN-N type bonded magnet which can be used in various motors, actuators and the like, and a method for producing the same. The alloy powder having a ThMn 12 type structure obtained by pulverizing, further pulverizing with N 2 gas jet mill, and nitriding treatment is combined with a resin to form a bonded magnet having a small amount of rare earth elements, low cost, and high corrosion resistance. Get R-T-M
-N type | system | group bonded magnet and its manufacturing method.
【0002】[0002]
【従来の技術】Nd−Fe−B系永久磁石用粉末として
は、超急冷法などにより得られた超微細組織を有する磁
石用粉末が用いられてきた。Nd−Fe−B系永久磁石
用粉末は、キューリ点(Tc)が300℃前後と低く、
Br、iHcの温度係数が大きいため、磁石特性の温度
係数が大きいという問題があり、Co等の添加によりT
cを上昇させてBrの温度係数を改善することが可能で
あるが、Brの温度係数αはせいぜい−0.08%/d
eg程度が限度であった。2. Description of the Related Art As powders for Nd-Fe-B system permanent magnets, powders for magnets having an ultrafine structure obtained by a superquenching method have been used. The Nd-Fe-B system permanent magnet powder has a low Curie point (Tc) of around 300 ° C,
Since the temperature coefficient of Br and iHc is large, there is a problem that the temperature coefficient of magnet characteristics is large.
Although it is possible to increase the temperature coefficient of Br by increasing c, the temperature coefficient α of Br is at most −0.08% / d.
The limit was about eg.
【0003】最近、R2Fe17化合物はN2を吸蔵するこ
とにより、Tcが絶対温度で2倍近く高くなり、Nd−
Fe−B系のTcよりも160℃も高く、さらにSm2
Fe17窒化物ではR2Fe14Bの異方性を上回る異方性
磁界が得られることが報告されている。Recently, the R 2 Fe 17 compound has occluded N 2 to increase Tc nearly twice as much as an absolute temperature, resulting in Nd-
160 ° C higher than Tc of Fe-B system, and further Sm 2
It has been reported that the Fe 17 nitride can provide an anisotropic magnetic field exceeding the anisotropy of R 2 Fe 14 B.
【0004】[0004]
【発明が解決しようとする課題】Sm2Fe17窒化物に
は、資源的に少ないSmを多く含有することから比較的
高価になる問題があり、資源的に豊富な他元素を含有す
る永久磁石粉末が求められている。Since the Sm 2 Fe 17 nitride contains a large amount of Sm, which is a small amount of resources, there is a problem that it is relatively expensive, and a permanent magnet containing a rich amount of other elements. A powder is sought.
【0005】また、Nd−Ti−Fe窒化物系磁石も提
案されているが、Nd−Ti−Fe窒化物系はNdを約
18wt%含有することで磁石化され、低融点の亜鉛結
合磁石の製造には使用できるが、樹脂結合磁石としては
十分な保磁力が得られなかった。これは、亜鉛結合磁石
ではThMn12型結晶構造を有する主相の結晶粒径が単
磁区粒子臨界径よりもはるかに大きく数μmもあること
による。すなわち、ボンド磁石用粉末として、亜鉛結合
磁石を粉砕すると、粉体の粒子径に比べ結晶粒径が十分
に小さくないため、磁気特性に大きな粉末粒径依存性が
現れ、粒径が小さくなると固有保磁力iHcが極端に劣
化する問題がある。Nd-Ti-Fe nitride based magnets have also been proposed, but Nd-Ti-Fe nitride based magnets are magnetized by containing about 18 wt% of Nd, which is a low melting point zinc-bonded magnet. Although it can be used for production, a sufficient coercive force was not obtained as a resin-bonded magnet. This is because in the zinc-bonded magnet, the crystal grain size of the main phase having the ThMn 12 type crystal structure is much larger than the critical diameter of single domain grains and is several μm. That is, when a zinc-bonded magnet is pulverized as a powder for a bonded magnet, the crystal grain size is not sufficiently smaller than the particle size of the powder, so that a large dependence of the magnetic properties on the powder grain size appears, and when the grain size becomes small, it is unique. There is a problem that the coercive force iHc is extremely deteriorated.
【0006】この発明は、Sm2Fe17N2■3系永久磁
石に代わる組成のThMn12型構造を有するボンド磁石
を得るため、3kOe以上の保磁力が得られる超微細結
晶の該磁石用粉末を容易に製造でき、かつその後の粉末
の取り扱いならびにボンド磁石化が容易なR−T−M−
N系ボンド磁石とその製造方法の提供を目的としてい
る。In order to obtain a bonded magnet having a ThMn 12 type structure having a composition which replaces the Sm 2 Fe 17 N 2 3 system permanent magnet, the present invention is an ultrafine crystal powder for the magnet, which has a coercive force of 3 kOe or more. R-T-M-, which can be easily manufactured, and which is easy to handle powder and magnetize bond thereafter.
The purpose is to provide an N-based bonded magnet and a method for manufacturing the same.
【0007】[0007]
【課題を解決するための手段】この発明は、R 7〜9
at%(R:希土類元素の少なくとも1種でかつPrま
たはNdの1種または2種を50%以上含有)、T 7
6〜87at%(T:FeあるいはFeの一部を50%
以下のCo、Niにて置換)、M 3.5〜17at%
(M:Ti,V,Cr,Moの少なくとも1種含有)、
N 3〜12at%からなり、ThMn12型構造を有す
る合金粉末を樹脂で結合してなることを特徴とするR−
T−M−N系ボンド磁石である。The present invention provides R 7-9.
at% (R: at least one rare earth element and 50% or more of one or two Pr or Nd), T 7
6 to 87 at% (T: Fe or a part of Fe is 50%
Substituted with Co and Ni below), M 3.5 to 17 at%
(M: contains at least one of Ti, V, Cr and Mo),
R− characterized by comprising an alloy powder containing N 3 to 12 at % and having a ThMn 12 type structure bonded with a resin.
It is a T-M-N bond magnet.
【0008】また、この発明は、R 7〜9at%
(R:希土類元素の少なくとも1種でかつPrまたはN
dの1種または2種を50%以上含有)、T 76〜8
7at%(T:FeあるいはFeの一部を50%以下の
Co、Niにて置換)、M 3.5〜17at%(M:
Ti,V,Cr,Moの少なくとも1種含有)、N 3
〜12at%からなり、ThMn12型構造を有し平均結
晶粒径0.01〜1.0μmの組織が全体の80%以上
占める平均粒径2〜300μmの合金粉末を樹脂で結合
してなることを特徴とするR−T−M−N系ボンド磁石
である。The present invention also provides R 7-9 at%
(R: at least one rare earth element and Pr or N
50% or more of 1 type or 2 types of d), T 76-8
7 at% (T: Fe or a part of Fe is replaced with 50% or less of Co and Ni), M 3.5 to 17 at% (M:
Containing at least one of Ti, V, Cr and Mo), N 3
Consists ~12at%, the structure of average grain size 0.01~1.0μm have ThMn 12 type structure is formed by an alloy powder having an average particle size 2~300μm occupying total more than 80% bound with resin The R-T-M-N system bonded magnet characterized by the above.
【0009】また、この発明は、1)R 7〜9at%
(R:希土類元素の少なくとも1種でかつPrまたはN
dの1種または2種を50%以上含有)、T 76〜8
7at%(T:FeあるいはFeの一部を50%以下の
Co、Niにて置換)、M 3.5〜17at%(M:
Ti,V,Cr,Moの少なくとも1種含有)からなる
合金溶湯を回転ロールにて超急冷処理して、平均結晶粒
径が0.01〜1.0μmの組織を有するThMn12型
結晶構造の薄帯状超急冷合金を得た後、2)該合金を平
均粒径2〜300μmの微粉砕粉となし、3)この微粉
砕粉を0.1〜10atmのN2ガス中で300〜65
0℃に10分〜6時間保持する窒化処理を行い、得られ
たR 7〜9at%、T 76〜87at%、M 3.
5〜17at%、N 3〜12at%を含有しThMn
12型構造を有する合金粉末を樹脂で結合してなることを
特徴とするR−T−M−N系ボンド磁石の製造方法であ
る。The present invention also provides 1) R 7-9 at%
(R: at least one rare earth element and Pr or N
50% or more of 1 type or 2 types of d), T 76-8
7 at% (T: Fe or a part of Fe is replaced with 50% or less of Co and Ni), M 3.5 to 17 at% (M:
A molten alloy containing at least one of Ti, V, Cr, and Mo) is subjected to ultra-quenching with a rotating roll to obtain a ThMn 12 type crystal structure having a structure with an average crystal grain size of 0.01 to 1.0 μm. After obtaining the ribbon-shaped ultra-quenched alloy, 2) the alloy is made into a finely pulverized powder having an average particle diameter of 2 to 300 μm, and 3) the finely pulverized powder is 300 to 65 in a N 2 gas of 0.1 to 10 atm.
Nitriding treatment was carried out by holding at 0 ° C. for 10 minutes to 6 hours, and obtained R 7 to 9 at%, T 76 to 87 at%, M 3.
ThMn containing 5 to 17 at% and N 3 to 12 at%
A method for producing an R-T-M-N based bonded magnet, which is characterized in that an alloy powder having a 12- type structure is bonded with a resin.
【0010】また、この発明は、1)R 7〜9at%
(R:希土類元素の少なくとも1種でかつPrまたはN
dの1種または2種を50%以上含有)、T 76〜8
7at%(T:FeあるいはFeの一部を50%以下の
Co、Niにて置換)、M 3.5〜17at%(M:
Ti,V,Cr,Moの少なくとも1種含有)からなる
合金溶湯を回転ロールにて超急冷処理する際に、超急冷
速度を大きくしてThMn12型結晶構造を有しない組織
を有する薄帯状超急冷合金を得、2)さらに600℃〜
950℃で5分〜60分の熱処理を施して、平均結晶粒
径0.01〜1.0μmの組織を有するThMn12型結
晶構造の薄帯状合金を得た後、3)該合金を平均粒径2
〜300μmの微粉砕粉となし、4)この微粉砕粉を
0.1〜10atmのN2ガス中で300〜650℃に
10分〜6時間保持する窒化処理を行い、得られたR
7〜9at%、T 76〜87at%、M 3.5〜1
7at%、N 3〜12at%を含有しThMn12型構
造を有する合金粉末を樹脂で結合してなることを特徴と
するR−T−M−N系ボンド磁石の製造方法である。The present invention also provides 1) R 7-9 at%
(R: at least one rare earth element and Pr or N
50% or more of 1 type or 2 types of d), T 76-8
7 at% (T: Fe or a part of Fe is replaced with 50% or less of Co and Ni), M 3.5 to 17 at% (M:
When a molten alloy containing at least one of Ti, V, Cr, and Mo) is subjected to ultra-quenching treatment with a rotating roll, the ultra-quenching rate is increased to obtain a ribbon-shaped ultra-thin structure having no ThMn 12 type crystal structure. To obtain a quenched alloy, 2) 600 ℃
After heat treatment at 950 ° C. for 5 minutes to 60 minutes to obtain a ribbon-shaped alloy of ThMn 12 type crystal structure having a structure with an average crystal grain size of 0.01 to 1.0 μm, 3) average grain size of the alloy Diameter 2
˜300 μm finely pulverized powder, 4) this finely pulverized powder was subjected to a nitriding treatment in which it was kept at 300 to 650 ° C. for 10 minutes to 6 hours in 0.1 to 10 atm of N 2 gas to obtain R.
7-9 at%, T 76-87 at%, M 3.5-1
A method for producing an R-T-M-N based bonded magnet, characterized in that alloy powder containing 7 at% and N 3 to 12 at % and having a ThMn 12 type structure is bonded with a resin.
【0011】[0011]
【作用】この発明は、製造が容易でかつその後の粉末の
取扱いが容易なThMn12型R−T−M−N系ボンド磁
石用合金粉末の製造方法を目的に種々検討した結果、特
定組成のR−T−M系合金溶湯を回転ロールにて超急冷
処理して得た特定結晶粒径のThMn12型結晶構造を有
するR−T−M系超急冷合金薄帯を粗粉砕し、さらにこ
の粗粉砕粉をN2ガスの超音速気流中でジェット・ミル
粉砕することにより、微粉砕粉の表面を活性化し、かつ
表面積を大きくすることができ、特定条件でのN2ガス
中窒化処理による窒化が可能となり、さらにボンド磁石
として樹脂結合することでN 3〜12at%を含有す
るThMn12型R−T−M−N系合金ボンド磁石が得ら
れる。The present invention has been studied variously for the purpose of producing a ThMn 12 type RTMN-based alloy powder for bonded magnets, which is easy to produce and easy to handle thereafter. The R-T-M type ultra-quenched alloy ribbon having a ThMn 12 type crystal structure of a specific crystal grain size obtained by subjecting the R-T-M type molten alloy to a super-quenching process with a rotating roll is roughly crushed, and further By jet-milling the coarsely pulverized powder in a supersonic stream of N 2 gas, the surface of the finely pulverized powder can be activated and the surface area can be increased. By nitriding in N 2 gas under specific conditions It becomes possible to perform nitriding, and by further resin-bonding as a bonded magnet, a ThMn 12 type RTMN-based alloy bonded magnet containing N 3 to 12 at % can be obtained.
【0012】また、この発明は、上記の超急冷処理時に
超急冷速度を大きくするとアモルファスまたはTbCu
7型結晶構造を有する組織となるが、これを特定の熱処
理することによりThMn12型結晶構造相に変換でき、
これを同様に窒化して樹脂結合することでN 3〜12
at%を含有するThMn12型R−T−M−N系合金ボ
ンド磁石が得られる。Further, according to the present invention, when the super-quenching rate is increased during the above-mentioned super-quenching treatment, amorphous or TbCu is formed.
The structure has a 7- type crystal structure, but it can be converted into a ThMn 12- type crystal structure phase by subjecting it to a specific heat treatment,
This is similarly nitrided and resin-bonded to form N 3-12.
A ThMn 12 type RTMN-based alloy bonded magnet containing at% is obtained.
【0013】合金溶湯及び得られる合金粉末組成の限定
理由 この発明において、希土類元素Rは、Y,La,Ce,
Pr,Nd,Sm,Gd,Tb,Dy,Ho,Er,T
m,Luが包含され、これらのうち少なくとも1種以上
で、PrまたはNdの1種または2種をRの50%以上
含有し、さらにRのすべてがPrまたはNdあるいはP
rとNdの場合がある。Rの50%以上をPrまたはN
dの1種または2種とするのは、PrまたはNdの1種
または2種が50%未満では十分な残留磁化が得られな
いためであり、またPrあるいはNdの使用によりSm
に比較して原料コストの低減効果がある。Rは、7at
%未満ではα−Feの折出により保磁力が低下し、また
9at%を超えるとR2Fe17相などが折出して保磁力
が劣化するため、7〜9at%とする。Reasons for Limiting Composition of Molten Alloy and Obtained Alloy Powder In the present invention, the rare earth element R is Y, La, Ce,
Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, T
m, Lu, at least one of which contains one or two of Pr or Nd in an amount of 50% or more of R, and all of R is Pr, Nd, or P.
There are cases of r and Nd. 50% or more of R is Pr or N
The reason for using 1 or 2 kinds of d is that sufficient residual magnetization cannot be obtained when 1 or 2 kinds of Pr or Nd is less than 50%.
There is an effect of reducing raw material cost as compared with. R is 7 at
If it is less than 0.1%, the coercive force is reduced due to the protrusion of α-Fe, and if it exceeds 9 at%, the R 2 Fe 17 phase and the like are protruded to deteriorate the coercive force.
【0014】鉄族元素TはFe、Co、Niの少なくと
も1種を包含し、FeをTの50%以上含有することが
重要である。すなわち、T中のFeが50%未満では十
分な磁化が得られず好ましくない。なお、CoをTの5
0%未満添加することはキュリー温度が上昇し、異方性
磁界を若干増加させるので特に好ましい。Tは、67a
t%未満では低保磁力の第2相が折出して保磁力が低下
し、87at%を超えるとα−Fe析出により保磁力、
角型性が低下するため、67〜87at%とする。It is important that the iron group element T contains at least one of Fe, Co and Ni, and contains Fe in an amount of 50% or more of T. That is, when Fe in T is less than 50%, sufficient magnetization cannot be obtained, which is not preferable. Note that Co is 5 of T
It is particularly preferable to add less than 0% because the Curie temperature rises and the anisotropic magnetic field increases slightly. T is 67a
If it is less than t%, the second phase having a low coercive force is projected to lower the coercive force, and if it exceeds 87 at%, the coercive force due to α-Fe precipitation,
Since the squareness is deteriorated, it is set to 67 to 87 at%.
【0015】M、すなわちTi,V,Cr,Moの少な
くとも1種は、ThMn12型構造を有するRFe12-xM
x化合物を生成させる必須元素であり、3.5at%未
満(xが0.5未満)ではR2Fe17相やα−Feが析
出して、目的とする上記化合物が得られず、また17a
t%を超える(xが2.0を超える)と磁化が著しく低
下するため、3.5〜17at%とする。M, that is, at least one of Ti, V, Cr and Mo is RFe 12-x M having a ThMn 12 type structure.
It is an essential element for forming the x compound, and if it is less than 3.5 at% (x is less than 0.5), the R 2 Fe 17 phase and α-Fe are precipitated, and the desired compound cannot be obtained.
If it exceeds t% (x exceeds 2.0), the magnetization remarkably decreases, so the content is set to 3.5 to 17 at%.
【0016】またNは、0.8at%未満では一軸異方
性が得られず、また12at%を超えるとThMn12型
構造が不安定となり、母相がR2Fe17相やα−Feに
分解して好ましくないため、0.8〜12at%とす
る。When N is less than 0.8 at%, uniaxial anisotropy cannot be obtained, and when it exceeds 12 at %, the ThMn 12 type structure becomes unstable, and the parent phase becomes R 2 Fe 17 phase or α-Fe. Since it is not preferable because it decomposes, it is set to 0.8 to 12 at%.
【0017】製造条件の限定理由 この発明において、合金粉末をThMn12型結晶構造の
微結晶集合体として得ることが最も重要であり、微結晶
集合体を得るには超急冷処理が採用でき、その具体的な
方法として公知の回転ロールを用いた超急冷法を採用す
ることができる。例えば、Cu製ロールを用いる場合
は、そのロール表面周速度が10〜30m/秒の範囲が
好適な組織が得られるため好ましい。すなわち周速度が
10m/秒未満では、ThMn12型結晶構造は得られる
が、その結晶粒径が粗大となり、好ましくない。一方、
ロール表面周速度が30m/秒を超えるとTbCu7型
結晶構造のR−T−M相とα−Fe相及びアモルファス
相が混在した組織もしくは粉末X線回折パターンによれ
ばアモルファス相からなる合金薄帯となる。Reasons for Limiting Manufacturing Conditions In the present invention, it is most important to obtain the alloy powder as a fine crystal aggregate having a ThMn 12 type crystal structure, and ultra-quench treatment can be adopted to obtain the fine crystal aggregate. As a specific method, a super-quenching method using a known rotating roll can be adopted. For example, when a Cu roll is used, a roll surface peripheral velocity in the range of 10 to 30 m / sec is preferable because a suitable structure can be obtained. That is, when the peripheral speed is less than 10 m / sec, a ThMn 12 type crystal structure is obtained, but the crystal grain size becomes coarse, which is not preferable. on the other hand,
When the roll surface peripheral velocity exceeds 30 m / sec, a structure in which the RT-M phase of the TbCu 7 type crystal structure, the α-Fe phase, and the amorphous phase are mixed, or an alloy thin film composed of the amorphous phase according to the powder X-ray diffraction pattern It becomes a belt.
【0018】この合金薄帯を600℃〜950℃で5分
〜60分の熱処理することで、全体の80%以上をTh
Mn12型構造を持つ薄帯とすることができる。この熱処
理の際の温度が600℃未満では十分な反応が進行せ
ず。950℃を越えるとThMn12型構造が安定する温
度範囲で行なわれ結晶粒が粗大化してピニング型の保磁
力が得られないため好ましくない。また、熱処理は粉砕
後に行ってもよいが、酸化などの問題があるため薄帯の
状態で行うことが望ましい。従って、この発明では、得
られる粉末の80%以上をThMn12型構造を持つ相を
主相として含むことが必須要件である。By heat-treating this alloy ribbon at 600 to 950 ° C. for 5 to 60 minutes, 80% or more of the whole is Th.
It can be a ribbon having an Mn 12 type structure. If the temperature during this heat treatment is less than 600 ° C., a sufficient reaction does not proceed. If it exceeds 950 ° C., it is carried out in a temperature range where the ThMn 12 type structure is stabilized, and the crystal grains become coarse, so that pinning type coercive force cannot be obtained, which is not preferable. Further, the heat treatment may be performed after pulverization, but it is desirable to perform the heat treatment in a ribbon state because of problems such as oxidation. Therefore, in the present invention, it is essential that 80% or more of the obtained powder contains a phase having a ThMn 12 type structure as a main phase.
【0019】合金溶湯を回転ロールにて超急冷処理して
得た超急冷合金薄帯の平均結晶粒径は、0.01μm未
満では十分なiHcが得られず、回転ロールのロール表
面周速度を著しく大きくする必要があり、安定的な製造
が困難となり、製品の回収率も低下して好ましくなく、
また平均結晶粒径が1.0μmを超えると、単磁区粒子
径よりもはるかに大きくなり、ボンド磁石用合金粉末と
して必要なピニング型の保磁力が得られないため、超急
冷合金薄帯の平均結晶粒径を0.01〜1.0μmに限
定する。If the average crystal grain size of the ultra-quenched alloy ribbon obtained by subjecting the molten alloy to ultra-quenching with a rotating roll is less than 0.01 μm, sufficient iHc cannot be obtained. It is necessary to make it significantly larger, stable manufacturing becomes difficult, and the product recovery rate also decreases, which is not desirable.
If the average crystal grain size exceeds 1.0 μm, the grain size becomes much larger than the single domain grain size, and the pinning type coercive force required for the alloy powder for bonded magnets cannot be obtained. The crystal grain size is limited to 0.01 to 1.0 μm.
【0020】微粉砕粉の平均粒径は、2μm未満ではボ
ンド磁石用合金粉末として流動性が悪化し、また300
μmを超えると粉末の窒化が進行し難いので、平均粒径
を2〜300μmに限定する。If the average particle size of the finely pulverized powder is less than 2 μm, the fluidity of the alloy powder for bonded magnets deteriorates.
If it exceeds μm, nitriding of the powder is difficult to proceed, so the average particle size is limited to 2 to 300 μm.
【0021】窒化処理時の温度を300〜650℃に限
定した理由は、300℃未満では窒化が進行せず、65
0℃を超えるとα−FeとRNが生成してR−T−M化
合物(RT12-xMx)が分解して磁石特性の劣化を招来
するためである。ただし、最適の窒化温度は組成に依存
し、例えばMがTi 7.4〜80at%のときは35
0℃〜450℃、MがMo 14.5〜15.5at%
のときは500〜650℃が好ましい。窒化処理時の保
持時間は10分未満では十分な窒化が進行せず、また6
時間を超えると分解が起こり、磁石特性の劣化を招来す
るため、10分〜6時間とする。窒化処理時のN2圧力
を0.1〜50atmに限定した理由は、0.1atm
未満では窒化反応速度が遅く、圧力を上げると反応は速
やかに進行するが、50atmを超えると処理設備が大
きくなりすぎ、工業生産コスト的に好ましくないためで
ある。The reason for limiting the temperature during nitriding treatment to 300 to 650 ° C. is that nitriding does not proceed below 300 ° C.
This is because if the temperature exceeds 0 ° C., α-Fe and RN are formed, the RTM compound (RT 12-x M x ) is decomposed, and the magnet characteristics are deteriorated. However, the optimum nitriding temperature depends on the composition. For example, when M is Ti 7.4 to 80 at%, it is 35
0 ° C to 450 ° C, M is Mo 14.5 to 15.5 at%
In this case, the temperature is preferably 500 to 650 ° C. If the holding time during the nitriding treatment is less than 10 minutes, sufficient nitriding does not proceed, and 6
If the time is exceeded, decomposition will occur and the magnet characteristics will be deteriorated, so the time is set to 10 minutes to 6 hours. The reason for limiting the N 2 pressure during nitriding treatment to 0.1 to 50 atm is 0.1 atm.
If it is less than 50 atm, the nitriding reaction rate is slow, and if the pressure is increased, the reaction proceeds rapidly, but if it exceeds 50 atm, the processing equipment becomes too large, which is not preferable in terms of industrial production cost.
【0022】この発明において、ボンド磁石として複雑
形状や関薄形状の磁石の成形を高精度に行うためには、
磁石粉末の粒径は十分に小さい必要があり、一方、粉末
粒径を小さくしすぎると比表面積増大に伴って多量の樹
脂をバインダーとして使用する必要が生じるため、充填
密度が低下して好ましくなく、従って粉末粒径を3μm
〜500μmに限定する。In the present invention, in order to accurately form a magnet having a complicated shape or a thin shape as a bonded magnet,
The particle size of the magnet powder needs to be sufficiently small. On the other hand, if the particle size of the powder is too small, it is necessary to use a large amount of resin as a binder as the specific surface area increases. , Therefore the powder particle size is 3 μm
To 500 μm.
【0023】この発明によるFe−B−R系ボンド磁石
は、異方性及び等方性磁石に関するものであり、以下に
示す圧縮成型、射出成型、押し出し成型、圧延成型、樹
脂含浸法等、公知のいずれの製造方法であってもよい。
圧縮成型の場合は、磁性粉末に熱硬化性樹脂、カップリ
ング剤、滑剤等を添加混練した後、圧縮成型後加熱し、
樹脂を硬化して得られる。射出成型、押し出し成型、圧
延成型の場合は、磁性粉末に熱可塑性樹脂、カップリン
グ剤、滑剤等を添加混練した後、射出成型、押し出し成
型、圧延成型のいずれかの方法で成型して得られる。樹
脂含浸法においては、磁性粉末を圧縮成型後、必要に応
じて熱処理した後、熱硬化性樹脂を含浸し、加熱して樹
脂を硬化させて得る。また、磁性粉末を圧縮成型後、必
要に応じて熱処理した後、熱可塑性樹脂を含浸して得
る。The Fe-BR type bonded magnet according to the present invention relates to anisotropic and isotropic magnets, and is known by the following compression molding, injection molding, extrusion molding, rolling molding, resin impregnation method and the like. Any of the above manufacturing methods may be used.
In the case of compression molding, a thermosetting resin, a coupling agent, a lubricant, etc. are added to the magnetic powder and kneaded, followed by heating after compression molding,
It is obtained by curing a resin. In the case of injection molding, extrusion molding, and rolling molding, it is obtained by adding and kneading a magnetic powder with a thermoplastic resin, a coupling agent, a lubricant, etc., and then molding by injection molding, extrusion molding, or rolling molding. . In the resin impregnation method, the magnetic powder is compression-molded, heat-treated as required, impregnated with a thermosetting resin, and heated to cure the resin. In addition, the magnetic powder is obtained by compression molding, heat treatment if necessary, and then impregnated with a thermoplastic resin.
【0024】この発明において、ボンド磁石中の磁性粉
末の充填率は、前記製造方法により異なるが、70〜9
9.5wt%であり、残部0.5〜30wt%が樹脂そ
の他である。圧縮成型法の場合、磁性粉末の充填率は9
5〜99.5wt%、射出成型法の場合、90〜95w
t%、樹脂含浸法の場合、96〜99.5wt%が好ま
しい。この発明において、バインダーとして用いる合成
樹脂は熱硬化性、熱可塑性のいずれも利用できるが、熱
的に安定な樹脂が好ましく、例えばボリアミド、ポリイ
ミド、ポリエステル、フェノール樹脂、フッ素樹脂、ケ
イ素樹脂、エポキシ樹脂などが適宜選択される。In the present invention, the filling rate of the magnetic powder in the bonded magnet depends on the manufacturing method, but is 70-9.
It is 9.5 wt% and the balance 0.5 to 30 wt% is resin or the like. In the case of compression molding, the filling rate of magnetic powder is 9
5-99.5 wt%, 90-95w in case of injection molding method
t%, and in the case of the resin impregnation method, 96 to 99.5 wt% is preferable. In the present invention, the synthetic resin used as the binder may be either thermosetting or thermoplastic, but a thermally stable resin is preferable, for example, polyamide, polyimide, polyester, phenol resin, fluororesin, silicon resin, epoxy resin. Etc. are appropriately selected.
【0025】実施例1 高周波溶解炉にて溶製して得られた表1に示すNo.1
〜10の合金溶湯を、径250mm×幅30mmのCu
製の回転ロールにて、表1に示すロール表面周速度で超
急冷を行い表1に示す相を得た。ThMn12以外の構造
のものは表1に示す条件の熱処理で表1に示す、平均結
晶粒径の集合組織を有するThMn12型結晶構造の合金
薄帯を得た。その時の平均結晶粒径を薄帯断面のSEM
写真により評価して表1に示す。厚み約15μm、幅2
mmの超急冷合金薄帯を機械的粉砕により平均粒径0.
1mmに粉砕して平均粒径約20μmの微粉砕粉を得
た。さらに、各微粉砕粉をN2分圧が1.0atm(常
温換算)のN2ガス中で表1に示す温度、時間で窒化処
理した後、冷却してR−T−M−N系合金粉末を得た。
このR−T−M−N系合金粉末の窒化量及び2wt%の
エポキシで樹脂結合後の磁気特性を表2に示す。Example 1 No. 1 shown in Table 1 obtained by melting in a high frequency melting furnace. 1
Cu alloy with a diameter of 250 mm and a width of 30 mm
Ultra-quick cooling was performed at a roll surface peripheral velocity shown in Table 1 with a rotating roll manufactured by the company, and the phases shown in Table 1 were obtained. The alloy ribbons having a structure other than ThMn 12 were heat-treated under the conditions shown in Table 1 to obtain alloy ribbons of the ThMn 12 type crystal structure having the texture of the average crystal grain size shown in Table 1. The average grain size at that time was determined by SEM of the ribbon cross section.
It is evaluated by photographs and shown in Table 1. Thickness about 15μm, width 2
The ultra-quenched alloy ribbon of mm has an average particle size of 0.
It was pulverized to 1 mm to obtain a finely pulverized powder having an average particle size of about 20 μm. Further, each finely pulverized powder was subjected to a nitriding treatment in N 2 gas having an N 2 partial pressure of 1.0 atm (converted to normal temperature) at the temperature and time shown in Table 1, and then cooled to obtain an RTMNM-based alloy. A powder was obtained.
Table 2 shows the nitriding amount of this R-T-M-N alloy powder and the magnetic properties after resin bonding with 2 wt% epoxy.
【0026】比較例1 実施例1の表1の組成No.1〜3と同一の粗粉砕粉を
用いて機械的粉砕により平均粒径50μmの微粉末とな
した後、実施例1と同じ条件の窒化処理を行い、得られ
た合金粉末の窒化量及び2wt%のエポキシで樹脂結合
したボンド磁石の磁気特性を測定した。その結果を表2
に示す。Comparative Example 1 Composition No. 1 in Table 1 of Example 1 After mechanically pulverizing the same coarsely pulverized powders as 1 to 3 into fine powders having an average particle size of 50 μm, nitriding treatment under the same conditions as in Example 1 was performed, and the nitriding amount of the obtained alloy powder and 2 wt %, The magnetic properties of the resin-bonded bonded magnet were measured. The results are shown in Table 2.
Shown in.
【0027】[0027]
【表1】 [Table 1]
【0028】[0028]
【表2】 [Table 2]
【0029】[0029]
【発明の効果】この発明は、所要合金溶湯を平均結晶粒
径が0.01〜1.0μmの超急冷合金となして粉砕す
ることにより、特定条件でのN2ガス中窒化処理による
窒化が可能となり、製造が容易でかつその後の粉末の取
扱いが容易なThMn12型R−T−M−N系ボンド磁石
用合金粉末が得られ、さらに合金粉末を樹脂で結合する
ことにより、希土類元素量が少なく、低コスト、高耐食
性のボンド磁石が得られる。Industrial Applicability According to the present invention, nitriding by nitriding in N 2 gas under specific conditions is carried out by crushing the required molten alloy into an ultra-quenched alloy having an average crystal grain size of 0.01 to 1.0 μm. A ThMn 12 type R-T-M-N based alloy powder for bonded magnets is obtained which is possible and easy to manufacture and thereafter the powder can be easily handled. Further, by binding the alloy powder with a resin, the amount of rare earth element can be increased. And a low cost, high corrosion resistance bonded magnet can be obtained.
Claims (4)
なくとも1種でかつPrまたはNdの1種または2種を
50%以上含有)、T 76〜87at%(T:Feあ
るいはFeの一部を50%以下のCo、Niにて置
換)、M 3.5〜17at%(M:Ti,V,Cr,
Moの少なくとも1種含有)、N 3〜12at%から
なり、ThMn12型構造を有する合金粉末を樹脂で結合
してなることを特徴とするR−T−M−N系ボンド磁
石。1. R 7-9 at% (R: at least one rare earth element and 50% or more of one or two Pr or Nd), T 76-87 at% (T: Fe or Fe Part is replaced by 50% or less of Co and Ni), M 3.5 to 17 at% (M: Ti, V, Cr,
An R-T-M-N based bonded magnet, characterized in that an alloy powder containing at least one of Mo) and N 3 to 12 at % and having a ThMn 12 type structure is bonded with a resin.
なくとも1種でかつPrまたはNdの1種または2種を
50%以上含有)、T 76〜87at%(T:Feあ
るいはFeの一部を50%以下のCo、Niにて置
換)、M 3.5〜17at%(M:Ti,V,Cr,
Moの少なくとも1種含有)、N 3〜12at%から
なり、ThMn12型構造を有し平均結晶粒径0.01〜
1.0μmの組織が全体の80%以上占める平均粒径2
〜300μmの合金粉末を樹脂で結合してなることを特
徴とするR−T−M−N系ボンド磁石。2. R 7 to 9 at% (R: at least one kind of rare earth element and containing 50% or more of one or two kinds of Pr or Nd), T 76 to 87 at% (T: Fe or one of Fe) Part is replaced by 50% or less of Co and Ni), M 3.5 to 17 at% (M: Ti, V, Cr,
Mo containing at least one kind), N 3 to 12 at %, having a ThMn 12 type structure and having an average crystal grain size of 0.01 to
Average grain size of 80% or more of 1.0 μm structure 2
An R-T-M-N based bonded magnet, characterized in that an alloy powder having a particle size of 300 μm is bonded with a resin.
なくとも1種でかつPrまたはNdの1種または2種を
50%以上含有)、T 76〜87at%(T:Feあ
るいはFeの一部を50%以下のCo、Niにて置
換)、M 3.5〜17at%(M:Ti,V,Cr,
Moの少なくとも1種含有)からなる合金溶湯を回転ロ
ールにて超急冷処理して、平均結晶粒径0.01〜1.
0μmの組織を有するThMn12型結晶構造の薄帯状超
急冷合金を得た後、該合金を平均粒径2〜300μmの
微粉砕粉となし、この微粉砕粉を0.1〜10atmの
N2ガス中で300〜650℃に10分〜6時間保持す
る窒化処理を行い、得られたR 7〜9at%、T 7
6〜87at%、M 3.5〜17at%、N 3〜1
2at%を含有しThMn12型構造を有する合金粉末を
樹脂で結合してなることを特徴とするR−T−M−N系
ボンド磁石の製造方法。3. R 7-9 at% (R: at least one rare earth element and 50% or more of one or two Pr or Nd), T 76-87 at% (T: Fe or Fe Part is replaced by 50% or less of Co and Ni), M 3.5 to 17 at% (M: Ti, V, Cr,
A molten alloy containing at least one of Mo) is subjected to an ultra-quench treatment with a rotating roll to obtain an average crystal grain size of 0.01 to 1.
After obtaining a ribbon-shaped ultra-quenched alloy having a ThMn 12 type crystal structure having a structure of 0 μm, the alloy was made into a finely pulverized powder having an average particle size of 2 to 300 μm, and the finely pulverized powder was 0.1 to 10 atm of N 2 A nitriding treatment was carried out by holding the gas at 300 to 650 ° C. for 10 minutes to 6 hours, and the obtained R 7 to 9 at% and T 7 were obtained.
6 to 87 at%, M 3.5 to 17 at%, N 3-1
A method for producing an R-T-M-N based bonded magnet, characterized in that an alloy powder containing 2 at% and having a ThMn 12 type structure is bonded with a resin.
なくとも1種でかつPrまたはNdの1種または2種を
50%以上含有)、T 76〜87at%(T:Feあ
るいはFeの一部を50%以下のCo、Niにて置
換)、M 3.5〜17at%(M:Ti,V,Cr,
Moの少なくとも1種含有)からなる合金溶湯を回転ロ
ールにて超急冷処理する際に、超急冷速度を大きくして
ThMn12型結晶構造を有しない組織を有する薄帯状超
急冷合金を得、さらに600℃〜950℃で5分〜60
分の熱処理を施して、平均結晶粒径0.01〜1.0μ
mの組織を有するThMn12型結晶構造の薄帯状合金を
得た後、該合金を平均粒径2〜300μmの微粉砕粉と
なし、この微粉砕粉を0.1〜10atmのN2ガス中
で300〜650℃に10分〜6時間保持する窒化処理
を行い、得られたR7〜9at%、T 76〜87at
%、M 3.5〜17at%、N 3〜12at%を含
有しThMn12型構造を有する合金粉末を樹脂で結合し
てなることを特徴とするR−T−M−N系ボンド磁石の
製造方法。4. R 7 to 9 at% (R: at least one kind of rare earth element and containing 50% or more of one or two kinds of Pr or Nd), T 76 to 87 at% (T: Fe or one of Fe Part is replaced by 50% or less of Co and Ni), M 3.5 to 17 at% (M: Ti, V, Cr,
When super-quenching the molten alloy containing at least one of Mo) with a rotating roll, the super-quenching rate is increased to obtain a ribbon-shaped super-quenched alloy having a structure not having a ThMn 12 type crystal structure. 5 minutes to 60 at 600 ℃ to 950 ℃
Heat treatment for a minute, average crystal grain size 0.01-1.0μ
After obtaining a ribbon-shaped alloy having a ThMn 12 type crystal structure having a structure of m, the alloy was made into a finely pulverized powder having an average particle diameter of 2 to 300 μm, and the finely pulverized powder was contained in 0.1 to 10 atm of N 2 gas Nitriding treatment is carried out by holding at 300 to 650 ° C. for 10 minutes to 6 hours, and the obtained R7 to 9 at% and T 76 to 87 at are obtained.
%, M 3.5 to 17 at%, N 3 to 12 at %, and an alloy powder having a ThMn 12 type structure, which is bonded with a resin, to manufacture an R-T-M-N based bonded magnet. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4202934A JPH0620816A (en) | 1992-07-06 | 1992-07-06 | R-t-m-n bonded magnet and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4202934A JPH0620816A (en) | 1992-07-06 | 1992-07-06 | R-t-m-n bonded magnet and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0620816A true JPH0620816A (en) | 1994-01-28 |
Family
ID=16465585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4202934A Pending JPH0620816A (en) | 1992-07-06 | 1992-07-06 | R-t-m-n bonded magnet and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0620816A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005183630A (en) * | 2003-12-18 | 2005-07-07 | Tdk Corp | Permanent magnetic powder, method for manufacturing the same and bond magnet |
-
1992
- 1992-07-06 JP JP4202934A patent/JPH0620816A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005183630A (en) * | 2003-12-18 | 2005-07-07 | Tdk Corp | Permanent magnetic powder, method for manufacturing the same and bond magnet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2530641B2 (en) | Magnetically anisotropic bonded magnet, magnetic powder used therefor, and method for producing the same | |
JP3171558B2 (en) | Magnetic materials and bonded magnets | |
JPH01704A (en) | Rare earth-iron permanent magnet | |
JPS62198103A (en) | Rare earth-iron permanent magnet | |
JPH0774011A (en) | Manufacture of permanent magnet powder | |
JP2002043110A (en) | Magnetic anisotropic agglomerate of r2t17nx magnet material, its manufacturing method, and bonded magnet | |
JPH0620816A (en) | R-t-m-n bonded magnet and manufacture thereof | |
JP2708578B2 (en) | Bonded magnet | |
JP2000049006A (en) | Rare earth magnet material and rare earth bond magnet using it | |
JPH0669010A (en) | Manufacture method of r-t-m-n based bonded magnet | |
JP3547016B2 (en) | Rare earth bonded magnet and method of manufacturing the same | |
JP3710154B2 (en) | Iron-based permanent magnet, method for producing the same, iron-based permanent magnet alloy powder for bonded magnet, and iron-based bonded magnet | |
JPH07176417A (en) | Iron based bonded magnet and its manufacture | |
JPH0562815A (en) | Permanent magnet and manufacturing method thereof | |
JPH05211102A (en) | Powder for permanent magnet and permanent magnet | |
JPH10189320A (en) | Anisotropic magnet alloy powder, and its manufacture | |
JP3209292B2 (en) | Magnetic material and its manufacturing method | |
JPH07161513A (en) | Iron based bond magnet and its production | |
JPH05205921A (en) | Manufacture of magnet material powder and manufacture of bondded magnet using the powder | |
JP3032385B2 (en) | Fe-BR bonded magnet | |
JPH05291017A (en) | Manufacture of rare earth magnet powder | |
JP3795056B2 (en) | Iron-based bonded magnet and iron-based permanent magnet alloy powder for bonded magnet | |
JPH0633103A (en) | Production of rare earth-iron nitride | |
JPH0613212A (en) | Rare earth magnetic particle, manufacturing method thereof and rare earth bond magnet | |
JPH1088273A (en) | Alloy raw material for rare earth permanent magnet, alloy powder for rare earth permanent magnet and production of rare earth permanent magnet |