JPH0526838B2 - - Google Patents
Info
- Publication number
- JPH0526838B2 JPH0526838B2 JP14201184A JP14201184A JPH0526838B2 JP H0526838 B2 JPH0526838 B2 JP H0526838B2 JP 14201184 A JP14201184 A JP 14201184A JP 14201184 A JP14201184 A JP 14201184A JP H0526838 B2 JPH0526838 B2 JP H0526838B2
- Authority
- JP
- Japan
- Prior art keywords
- phosphor
- radiation image
- image conversion
- radiation
- rare earth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 137
- 230000005855 radiation Effects 0.000 claims description 121
- 238000006243 chemical reaction Methods 0.000 claims description 84
- 238000000034 method Methods 0.000 claims description 43
- 229910052684 Cerium Inorganic materials 0.000 claims description 36
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 34
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims description 29
- 150000004820 halides Chemical class 0.000 claims description 29
- 150000002910 rare earth metals Chemical class 0.000 claims description 25
- 239000002131 composite material Substances 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 23
- 239000011230 binding agent Substances 0.000 claims description 15
- 229910052794 bromium Inorganic materials 0.000 claims description 10
- 229910052801 chlorine Inorganic materials 0.000 claims description 10
- 229910052736 halogen Inorganic materials 0.000 claims description 9
- 150000002367 halogens Chemical class 0.000 claims description 9
- 230000001678 irradiating effect Effects 0.000 claims description 7
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 6
- 229910052746 lanthanum Inorganic materials 0.000 claims description 6
- 239000010410 layer Substances 0.000 description 45
- 238000004020 luminiscence type Methods 0.000 description 21
- 239000011248 coating agent Substances 0.000 description 19
- 238000000576 coating method Methods 0.000 description 19
- 239000010408 film Substances 0.000 description 16
- 239000002994 raw material Substances 0.000 description 15
- -1 samarium activated strontium sulfide phosphor Chemical class 0.000 description 14
- 230000005284 excitation Effects 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- 238000002156 mixing Methods 0.000 description 10
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 9
- 239000000460 chlorine Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 229910052693 Europium Inorganic materials 0.000 description 8
- 238000010304 firing Methods 0.000 description 8
- 229920000728 polyester Polymers 0.000 description 8
- 230000001681 protective effect Effects 0.000 description 8
- 238000000295 emission spectrum Methods 0.000 description 7
- 230000035945 sensitivity Effects 0.000 description 7
- 238000003860 storage Methods 0.000 description 7
- 239000000020 Nitrocellulose Substances 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- 229920001220 nitrocellulos Polymers 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- 229910052772 Samarium Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 4
- 238000000695 excitation spectrum Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- XKUYOJZZLGFZTC-UHFFFAOYSA-K lanthanum(iii) bromide Chemical compound Br[La](Br)Br XKUYOJZZLGFZTC-UHFFFAOYSA-K 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 238000002601 radiography Methods 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Inorganic materials [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 150000001785 cerium compounds Chemical class 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 3
- 229910052740 iodine Inorganic materials 0.000 description 3
- ICAKDTKJOYSXGC-UHFFFAOYSA-K lanthanum(iii) chloride Chemical compound Cl[La](Cl)Cl ICAKDTKJOYSXGC-UHFFFAOYSA-K 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 3
- 239000002985 plastic film Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000004408 titanium dioxide Substances 0.000 description 3
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- 229910003317 GdCl3 Inorganic materials 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 2
- 229910052771 Terbium Inorganic materials 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- FLKPEMZONWLCSK-UHFFFAOYSA-N diethyl phthalate Chemical compound CCOC(=O)C1=CC=CC=C1C(=O)OCC FLKPEMZONWLCSK-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- MEANOSLIBWSCIT-UHFFFAOYSA-K gadolinium trichloride Chemical compound Cl[Gd](Cl)Cl MEANOSLIBWSCIT-UHFFFAOYSA-K 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920006255 plastic film Polymers 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920002689 polyvinyl acetate Polymers 0.000 description 2
- 239000011118 polyvinyl acetate Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- PZBLUWVMZMXIKZ-UHFFFAOYSA-N 2-o-(2-ethoxy-2-oxoethyl) 1-o-ethyl benzene-1,2-dicarboxylate Chemical compound CCOC(=O)COC(=O)C1=CC=CC=C1C(=O)OCC PZBLUWVMZMXIKZ-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 150000000703 Cerium Chemical class 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- FUIMOMPSNDYGBL-UHFFFAOYSA-N Cl.[Br-].[PH4+] Chemical compound Cl.[Br-].[PH4+] FUIMOMPSNDYGBL-UHFFFAOYSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- AEMRFAOFKBGASW-UHFFFAOYSA-M Glycolate Chemical compound OCC([O-])=O AEMRFAOFKBGASW-UHFFFAOYSA-M 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910002249 LaCl3 Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 241000978776 Senegalia senegal Species 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 206010047571 Visual impairment Diseases 0.000 description 1
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910001618 alkaline earth metal fluoride Inorganic materials 0.000 description 1
- 229910052915 alkaline earth metal silicate Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910001864 baryta Inorganic materials 0.000 description 1
- HSUIVCLOAAJSRE-UHFFFAOYSA-N bis(2-methoxyethyl) benzene-1,2-dicarboxylate Chemical compound COCCOC(=O)C1=CC=CC=C1C(=O)OCCOC HSUIVCLOAAJSRE-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- ASMQGLCHMVWBQR-UHFFFAOYSA-M diphenyl phosphate Chemical compound C=1C=CC=CC=1OP(=O)([O-])OC1=CC=CC=C1 ASMQGLCHMVWBQR-UHFFFAOYSA-M 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000001748 luminescence spectrum Methods 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 125000001557 phthalyl group Chemical group C(=O)(O)C1=C(C(=O)*)C=CC=C1 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000010979 ruby Substances 0.000 description 1
- 229910001750 ruby Inorganic materials 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- GGCZERPQGJTIQP-UHFFFAOYSA-N sodium;9,10-dioxoanthracene-2-sulfonic acid Chemical compound [Na+].C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 GGCZERPQGJTIQP-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- XZZNDPSIHUTMOC-UHFFFAOYSA-N triphenyl phosphate Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=O)OC1=CC=CC=C1 XZZNDPSIHUTMOC-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Conversion Of X-Rays Into Visible Images (AREA)
- Radiography Using Non-Light Waves (AREA)
- Luminescent Compositions (AREA)
Description
ãçºæã®è©³çŽ°ãªèª¬æã
çºæã®åé
æ¬çºæã¯ãæŸå°ç·åå€ææ¹æ³ããã³ãã®æ¹æ³ã«
çšããããæŸå°ç·åå€æããã«ã«é¢ãããã®ã§ã
ããããã«è©³ããã¯ãæ¬çºæã¯ãèŒå°œæ§ã®ã»ãªãŠ
ã 賊掻åžåé¡è€åããã²ã³åç©èå
äœã䜿çšãã
æŸå°ç·åå€ææ¹æ³ãããã³ãã®æ¹æ³ã«çšãããã
æŸå°ç·åå€æããã«ã«é¢ãããã®ã§ãããDETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a radiation image conversion method and a radiation image conversion panel used in the method. More specifically, the present invention relates to a radiation image conversion method using a photostimulable cerium-activated rare earth composite halide phosphor, and a radiation image conversion panel used in the method.
çºæã®æè¡çèæ¯ïŒœ
åŸæ¥ãæŸå°ç·åãç»åãšããŠåŸãæ¹æ³ãšããŠã
éå¡©æå
ææãããªãä¹³å€å±€ãæããæŸå°ç·åç
ãã€ã«ã ãšå¢æçŽïŒå¢æã¹ã¯ãªãŒã³ïŒãšã®çµåã
ãã䜿çšãããããããæŸå°ç·åçæ³ãå©çšãã
ãŠãããäžèšåŸæ¥ã®æŸå°ç·åçæ³ã«ãããæ¹æ³ã®
äžã€ãšããŠãããšãã°ãç¹éæ55â12145å·å
¬å ±
çã«èšèŒãããŠãããããªèŒå°œæ§èå
äœãå©çšã
ãæŸå°ç·åå€ææ¹æ³ãç¥ãããŠããããã®æ¹æ³
ã¯ã被åäœãééããæŸå°ç·ããããã¯è¢«æ€äœã
ãçºããããæŸå°ç·ãèŒå°œæ§èå
äœã«åžåããã
ãã®ã®ã¡ã«ãã®èå
äœãå¯èŠå
ç·ãèµ€å€ç·ãªã©ã®
é»ç£æ³¢ïŒå±èµ·å
ïŒã§æç³»åçã«å±èµ·ããããšã«ã
ããèå
äœäžã«èç©ãããŠããæŸå°ç·ãšãã«ã®ãŒ
ãèå
ïŒèŒå°œçºå
ïŒãšããŠæŸåºããããã®èå
ã
å
é»çã«èªåã€ãŠé»æ°ä¿¡å·ãåŸããã®é»æ°ä¿¡å·ã
ç»ååãããã®ã§ããã[Technical Background of the Invention] Conventionally, as a method of obtaining a radiation image as an image,
A so-called radiographic method is used which uses a combination of a radiographic film having an emulsion layer made of a silver salt photosensitive material and an intensifying screen. As an alternative to the conventional radiographic method, a radiation image conversion method using a stimulable phosphor is known, for example, as described in Japanese Patent Application Laid-Open No. 12145/1983. This method involves absorbing radiation transmitted through the subject or radiation emitted from the subject into a stimulable phosphor.
Then, by exciting this phosphor in a time-series manner with electromagnetic waves (excitation light) such as visible light and infrared rays, the radiation energy accumulated in the phosphor is released as fluorescence (stimulated luminescence). Fluorescence is read photoelectrically to obtain an electrical signal, and this electrical signal is converted into an image.
äžèšæŸå°ç·åå€ææ¹æ³ã«ããã°ãåŸæ¥ã®æŸå°ç·
åçæ³ãå©çšããå Žåã«æ¯èŒããŠãã¯ããã«å°ãª
ã被æç·éã§æ
å ±éã®è±å¯ãªïŒžç·ç»åãåŸãããš
ãã§ãããšããå©ç¹ããããåŸã€ãŠããã®æŸå°ç·
åå€ææ¹æ³ã¯ãç¹ã«å»ç蚺æãç®çãšããç·æ®
圱ãªã©ã®çŽæ¥å»ççšæŸå°ç·æ®åœ±ã«ãããŠå©çšäŸ¡å€
ãéåžžã«é«ããã®ã§ããã The radiation image conversion method has the advantage that it is possible to obtain an X-ray image with a rich amount of information with a much lower exposure dose than when conventional radiography is used. Therefore, this radiation image conversion method has a very high utility value especially in direct medical radiography such as X-ray photography for the purpose of medical diagnosis.
äžèšã®æŸå°ç·åå€ææ¹æ³ã«ãããŠã¯ãç·ãªã©
ã®æŸå°ç·ãç
§å°ããã®ã¡å¯èŠä¹è³èµ€å€é åã®é»ç£
æ³¢ã®å±èµ·ã«ããçºå
ïŒèŒå°œçºå
ïŒã瀺ãèŒå°œæ§è
å
äœãçšããããããã®ãããªèŒå°œæ§èå
äœãšã
ãŠã¯ãåŸæ¥ãããäºäŸ¡ãŠãŒãããŠã 賊掻ã¢ã«ã«ãª
åé¡éå±åŒåããã²ã³åç©èå
äœïŒMãFXïŒ
Eu2+ïŒãã ããMãã¯MgãCaããã³Baãããªã
矀ããéžã°ããå°ãªããšãäžçš®ã®ã¢ã«ã«ãªåé¡é
å±ã§ãããã¯ClãBrããã³ïŒ©ãããªã矀ãã
éžã°ããå°ãªããšãäžçš®ã®ããã²ã³ã§ããïŒïŒãŠ
ãŒãããŠã ããã³ãµããªãŠã 賊掻硫åã¹ããã³ã
ãŠã èå
äœïŒSrSïŒEuãSmïŒïŒãŠãŒãããŠã ãã
ã³ãµããªãŠã 賊掻ãªãã·ç¡«åã©ã³ã¿ã³èå
äœ
ïŒLa2O2SïŒEuãSmïŒïŒãŠãŒãããŠã 賊掻é
žåã¢
ã«ãããŠã ããªãŠã èå
äœïŒBaOã»Al2O3ïŒ
EuïŒïŒãŠãŒãããŠã 賊掻ã¢ã«ã«ãªåé¡éå±ã±ã€é
ž
å¡©èå
äœïŒM2+Oã»SiO2ïŒEuïŒãã ããM2+ã¯
MgãCaããã³Baãããªã矀ããéžã°ããå°ãª
ããšãäžçš®ã®ã¢ã«ã«ãªåé¡éå±ã§ããïŒïŒã»ãªãŠ
ã 賊掻åžåé¡ãªãã·ããã²ã³åç©èå
äœ
ïŒLnOXïŒCeïŒãã ããLnã¯LaããGdããã³
Luãããªã矀ããéžã°ããå°ãªããšãäžçš®ã®åž
åé¡å
çŽ ã§ãããã¯ClãBrããã³ïŒ©ãããªã
矀ããéžã°ããå°ãªããšãäžçš®ã®ããã²ã³ã§ã
ãïŒãªã©ãç¥ãããŠããã In the radiation image conversion method described above, a stimulable phosphor is used which emits light (stimulated luminescence) upon excitation of electromagnetic waves in the visible to infrared region after being irradiated with radiation such as X-rays. Conventionally, such stimulable phosphors include divalent europium-activated alkaline earth metal fluoride halide phosphors (MãFX:
Eu 2+ ; However, Mã is at least one kind of alkaline earth metal selected from the group consisting of Mg, Ca and Ba, and X is at least one kind of halogen selected from the group consisting of Cl, Br and I) ; europium and samarium activated strontium sulfide phosphor (SrS: Eu, Sm); europium and samarium activated lanthanum oxysulfide phosphor (La 2 O 2 S: Eu, Sm); europium activated barium aluminum oxide phosphor (BaO Al 2 O3 :
Eu); europium-activated alkaline earth metal silicate phosphor (M 2+ Oã»SiO 2 :Eu; however, M 2+
At least one alkaline earth metal selected from the group consisting of Mg, Ca and Ba): Cerium-activated rare earth oxyhalide phosphor (LnOX:Ce; where Ln is La, Y, Gd and
X is at least one rare earth element selected from the group consisting of Lu, and X is at least one halogen selected from the group consisting of Cl, Br, and I).
çºæã®èŠæšïŒœ
æ¬çºæã¯ãæ°èŠãªèŒå°œæ§èå
äœã䜿çšããæŸå°
ç·åå€ææ¹æ³ããã³ãã®æ¹æ³ã«çšããããæŸå°ç·
åå€æããã«ãæäŸããããšãç®çãšãããã®ã§
ããã[Summary of the Invention] An object of the present invention is to provide a radiation image conversion method using a novel stimulable phosphor and a radiation image conversion panel used in the method.
æ¬çºæè
ã¯ãèŒå°œæ§èå
äœã®æ¢çŽ¢ãè¡ãªã€ãŠã
ãããã®çµæãæ°ãã«ã»ãªãŠã ã«ãã賊掻ããã
åžåé¡è€åããã²ã³åç©èå
äœãèŒå°œçºå
ã瀺ã
ããšãèŠåºããæ¬çºæã«å°éãããã®ã§ããã The present inventor has been searching for a stimulable phosphor, and as a result, discovered that a rare earth compound halide phosphor newly activated by cerium exhibits stimulated luminescence, and has thus arrived at the present invention. It is.
ããªãã¡ãæ¬çºæã®æŸå°ç·åå€ææ¹æ³ã¯ã被å
äœãééããããããã¯è¢«æ€äœããçºããããæŸ
å°ç·ããäžèšçµæåŒïŒïŒã§è¡šããããã»ãªãŠã
賊掻åžåé¡è€åããã²ã³åç©èå
äœã«åžåããã
åŸããã®èå
äœã«450ã850nïœã®æ³¢é·é åã®é»ç£
æ³¢ãç
§å°ããããšã«ããã該èå
äœã«èç©ãããŠ
ããæŸå°ç·ãšãã«ã®ãŒãèå
ãšããŠæŸåºãããã
ããŠãã®èå
ãæ€åºããããšãç¹åŸŽãšããã That is, in the radiation image conversion method of the present invention, radiation transmitted through an object or emitted from the object is absorbed into a cerium-activated rare earth composite halide phosphor represented by the following compositional formula (), and then this fluorescent It is characterized in that by irradiating the body with electromagnetic waves in the wavelength range of 450 to 850 nm, the radiation energy stored in the phosphor is emitted as fluorescence, and this fluorescence is detected.
çµæåŒïŒïŒïŒ
LnX3ã»aLnâ²Xâ²3ïŒxCe3+ ïŒïŒ
ïŒãã ããLnããã³Lnâ²ã¯ããããLaããã³Gd
ãããªã矀ããéžã°ããå°ãªããšãäžçš®ã®åžåé¡
å
çŽ ã§ããïŒïŒžããã³Xâ²ã¯ããããClããã³Br
ãããªã矀ããéžã°ããå°ãªããšãäžçš®ã®ããã²
ã³ã§ãã€ãŠããã€ïŒžâ Xâ²ã§ããïŒãããŠïœã¯0.1
âŠïœâŠ10.0ã®ç¯å²ã®æ°å€ã§ãããïœã¯ïŒïŒïœâŠ
0.2ã®ç¯å²ã®æ°å€ã§ããïŒ
ãŸããæ¬çºæã®æŸå°ç·åå€æããã«ã¯ãæ¯æäœ
ãšããã®æ¯æäœäžã«èšããããèŒå°œæ§èå
äœãå
æ£ç¶æ
ã§å«ææ¯æããçµåå€ãããªãèå
äœå±€ãš
ããå®è³ªçã«æ§æãããŠããã該èå
äœå±€ããäž
èšçµæåŒïŒïŒã§è¡šããããã»ãªãŠã 賊掻åžåé¡
è€åããã²ã³åç©èå
äœãå«æããããšãç¹åŸŽãš
ããã Compositional formula (): LnX 3ã»aLnâ²Xâ² 3 :xCe 3+ () (However, Ln and Lnâ² are La and Gd, respectively.
at least one rare earth element selected from the group consisting of; X and X' are Cl and Br, respectively;
at least one halogen selected from the group consisting of, and Xâ Xâ²; and a is 0.1
It is a numerical value in the range of âŠaâŠ10.0, and x is 0<xâŠ
0.2) Furthermore, the radiation image conversion panel of the present invention includes a phosphor layer comprising a support and a binder containing and supporting the stimulable phosphor in a dispersed state provided on the support. The phosphor layer is characterized in that it contains a cerium-activated rare earth composite halide phosphor represented by the above compositional formula ().
çºæã®æ§æ
第ïŒå³ã¯ãæ¬çºæã®æŸå°ç·åå€ææ¹æ³ã«çšãã
ããã»ãªãŠã 賊掻åžåé¡è€åããã²ã³åç©èå
äœ
ã®å
·äœäŸã§ããLaCl3ã»LaBr3ïŒ0.001Ca3+èå
äœ
ã®èŒå°œå±èµ·ã¹ãã¯ãã«ã§ããã[Structure of the Invention] Figure 1 shows the photostimulated excitation spectrum of LaCl 3 .LaBr 3 :0.001Ca 3+ phosphor, which is a specific example of the cerium-activated rare earth composite halide phosphor used in the radiation image conversion method of the present invention. It is.
第ïŒå³ããæãããªããã«ãæ¬çºæã«çšããã
ãã»ãªãŠã 賊掻åžåé¡è€åããã²ã³åç©èå
äœ
ã¯ãæŸå°ç·ã®ç
§å°åŸ450ã850nïœã®æ³¢é·é åã®é»
ç£æ³¢ã§å±èµ·ãããšèŒå°œçºå
ã瀺ããç¹ã«ã450ã
700nïœã®æ³¢é·é åã®é»ç£æ³¢ã§å±èµ·ããå Žåã«é«
èŒåºŠã®èŒå°œçºå
ã瀺ããæ¬çºæã®æŸå°ç·åå€ææ¹
æ³ã«ãããŠãå±èµ·å
ãšããŠçšããããé»ç£æ³¢ã®æ³¢
é·ã450ã850nïœãšèŠå®ããã®ã¯ããã®ãããªäº
å®ã«åºã¥ããŠã§ããã As is clear from FIG. 1, the cerium-activated rare earth composite halide phosphor used in the present invention exhibits stimulated luminescence when excited by electromagnetic waves in the wavelength range of 450 to 850 nm after irradiation with radiation. Especially from 450
It exhibits high-intensity stimulated luminescence when excited with electromagnetic waves in the 700 nm wavelength range. It is based on this fact that in the radiation image conversion method of the present invention, the wavelength of the electromagnetic wave used as excitation light is defined as 450 to 850 nm.
ãŸã第ïŒå³ã¯ãæ¬çºæã®æŸå°ç·åå€ææ¹æ³ã«çš
ããããã»ãªãŠã 賊掻åžåé¡è€åããã²ã³åç©è
å
äœã®èŒå°œçºå
ã¹ãã¯ãã«ãäŸç€ºãããã®ã§ã
ãã第ïŒå³ã®æ²ç·ïŒããã³ïŒã¯ããããã
ïŒïŒLaCl3ã»LaBr3ïŒ0.001Ce3+èå
äœã®èŒå°œçº
å
ã¹ãã¯ãã«
ïŒïŒGdCl3ã»GdBr3ïŒ0.001Ce3+èå
äœã®èŒå°œçº
å
ã¹ãã¯ãã«
ã§ããã第ïŒå³ããæãããªããã«ãæ¬çºæã«çš
ããããã»ãªãŠã 賊掻åžåé¡è€åããã²ã³åç©è
å
äœã¯è¿çŽ«å€ä¹è³éè²é åã«èŒå°œçºå
ã瀺ããã
ã®èŒå°œçºå
ã¹ãã¯ãã«ã®ããŒã¯ã¯çŽ380ã410nïœ
ã«ããã Further, FIG. 2 illustrates the stimulated emission spectrum of the cerium-activated rare earth composite halide phosphor used in the radiation image conversion method of the present invention, and curves 1 and 2 in FIG. 2 are respectively 1:LaCl 3ã»LaBr 3 : Stimulated emission spectrum of 0.001Ce 3+ phosphor 2: Stimulated emission spectrum of GdCl 3ã»GdBr 3 :0.001Ce 3+ phosphor. As is clear from FIG. 2, the cerium-activated rare earth composite halide phosphor used in the present invention exhibits stimulated luminescence in the near ultraviolet to blue region, and the peak of its stimulated luminescence spectrum is approximately 380 to 410 nm.
It is in.
以äžç¹å®ã®èå
äœãäŸã«ãšããæ¬çºæã«çšãã
ããã»ãªãŠã 賊掻åžåé¡è€åããã²ã³åç©èå
äœ
ã®èŒå°œçºå
æ§ã«ã€ããŠèª¬æããããæ¬çºæã«çšã
ããããã®ä»ã®èå
äœã«ã€ããŠããã®èŒå°œçºå
ç¹
æ§ã¯äžèšã®èå
äœã®èŒå°œçºå
ç¹æ§ãšã»ãŒåæ§ã§ã
ããæŸå°ç·ã®ç
§å°åŸ450ã850nïœã®æ³¢é·é åã®é»
ç£æ³¢ã§å±èµ·ãããšè¿çŽ«å€ä¹è³éè²é åã«èŒå°œçºå
ã瀺ãããã®çºå
ã®ããŒã¯ã¯çŽ380ã410nïœä»è¿
ã«ããããšã確èªãããŠããã The stimulated luminescence properties of the cerium-activated rare earth composite halide phosphor used in the present invention have been explained above using a specific phosphor as an example. However, the stimulated luminescence properties of other phosphors used in the present invention are also as described above. It exhibits stimulated luminescence properties in the near-ultraviolet to blue region when excited with electromagnetic waves in the wavelength range of 450 to 850 nm after irradiation with radiation, and its emission peak is approximately 380 to 410 nm. Confirmed to be nearby.
第ïŒå³ã¯ãLaCl3ã»aLaBr3ïŒ0.001Ce3+èå
äœ
ã«ãããïœå€ãšèŒå°œçºå
匷床80KVpã®ïŒžç·ã
ç
§å°ããåŸãHeâNeã¬ãŒã¶ãŒïŒ632.8nïœã§å±èµ·
ããæã®èŒå°œçºå
匷床ãšã®é¢ä¿ã瀺ãã°ã©ãã§
ããã第ïŒå³ããæãããªããã«ãïœå€ã0.1âŠ
ïœâŠ10.0ã®ç¯å²ã«ããLaCl3ã»aLaBr3ïŒ
0.001Ce3+èå
äœã¯èŒå°œçºå
ã瀺ããæ¬çºæã®æŸ
å°ç·åå€ææ¹æ³ã«çšããããã»ãªãŠã 賊掻åžåé¡
è€åããã²ã³åç©èå
äœã«ãããïœå€ã0.1âŠïœ
âŠ10.0ã®ç¯å²ã«èŠå®ããã®ã¯ããã®ãããªäºå®ã«
åºã¥ããŠã§ããããŸãã第ïŒå³ãããç¹ã«ïœå€ã
0.25âŠïœâŠ5.0ã®ç¯å²ã«ããèå
äœã¯é«èŒåºŠã®èŒ
å°œçºå
ã瀺ãããšãæããã§ããããªããäžèšä»¥
å€ã®æ¬çºæã«çšããããã»ãªãŠã 賊掻åžåé¡è€å
ããã²ã³åç©èå
äœã«ã€ããŠããïœå€ãšèŒå°œçºå
匷床ãšã®é¢ä¿ã¯ç¬¬ïŒå³ãšåããããªåŸåã«ããã
ãšã確èªãããŠããã Figure 3 shows the a value and stimulated emission intensity of LaCl 3 / aLaBr 3 :0.001Ce 3+ phosphor [stimulated emission when irradiated with 80 KVp X-rays and then excited with He-Ne laser (632.8 nm). This is a graph showing the relationship between the intensity and the intensity.As is clear from Fig. 3, when the a value is 0.1âŠ
LaCl3ã»aLaBr3 in the range of aâŠ10.0:
0.001Ce 3+ phosphor exhibits stimulated luminescence. The a value of the cerium-activated rare earth composite halide phosphor used in the radiation image conversion method of the present invention is 0.1âŠa.
It is based on this fact that the range is defined as âŠ10.0. Also, from Figure 3, especially the a value
It is clear that phosphors in the range of 0.25âŠaâŠ5.0 exhibit high-intensity stimulated luminescence. It has been confirmed that for cerium-activated rare earth composite halide phosphors other than those described above used in the present invention, the relationship between the a value and the stimulated luminescence intensity tends to be similar to that shown in FIG. 3.
æ¬çºæã®æŸå°ç·åå€ææ¹æ³ã«ãããŠãäžèšçµæ
åŒïŒïŒã§è¡šããããã»ãªãŠã 賊掻åžåé¡è€åã
ãã²ã³åç©èå
äœã¯ããããå«æããæŸå°ç·åå€
æããã«ïŒèç©æ§èå
äœã·ãŒããšãããïŒã®åœ¢æ
ã§çšããã®ã奜ãŸããã In the radiation image conversion method of the present invention, the cerium-activated rare earth composite halide phosphor represented by the above composition formula () is used in the form of a radiation image conversion panel (also referred to as a stimulable phosphor sheet) containing it. preferable.
æŸå°ç·åå€æããã«ã¯ãåºæ¬æ§é ãšããŠãæ¯æ
äœãšããã®çé¢ã«èšããããå°ãªããšãäžå±€ã®è
å
äœå±€ãšãããªããã®ã§ãããèå
äœå±€ã¯ãèŒå°œ
æ§èå
äœãšãã®èŒå°œæ§èå
äœãåæ£ç¶æ
ã§å«ææ¯
æããçµåå€ãããªãããªãããã®èå
äœå±€ã®æ¯
æäœãšã¯å察åŽã®è¡šé¢ïŒæ¯æäœã«é¢ããŠããªãåŽ
ã®è¡šé¢ïŒã«ã¯äžè¬ã«ãéæãªä¿è·èãèšããããŠ
ããŠãèå
äœå±€ãååŠçãªå€è³ªãããã¯ç©ççãª
è¡æããä¿è·ããŠããã The basic structure of a radiation image storage panel is a support and at least one phosphor layer provided on one side of the support. The phosphor layer consists of a stimulable phosphor and a binder that contains and supports the stimulable phosphor in a dispersed state. Note that a transparent protective film is generally provided on the surface of the phosphor layer opposite to the support (the surface not facing the support) to protect the phosphor layer from chemical deterioration or Protects from physical impact.
ããªãã¡ãæ¬çºæã®æŸå°ç·åå€ææ¹æ³ã¯ãåèš
ã®çµæåŒïŒïŒã§è¡šããããã»ãªãŠã 賊掻åžåé¡
è€åããã²ã³åç©èå
äœãããªãèå
äœå±€ãæã
ãæŸå°ç·åå€æããã«ãçšããŠå®æœããã®ãæãŸ
ããã That is, the radiation image conversion method of the present invention is preferably carried out using a radiation image conversion panel having a phosphor layer made of a cerium-activated rare earth composite halide phosphor represented by the above compositional formula ().
çµæåŒïŒïŒã§è¡šããããèŒå°œæ§èå
äœãæŸå°
ç·åå€æããã«ã®åœ¢æ
ã§çšããæ¬çºæã®æŸå°ç·å
å€ææ¹æ³ã«ãããŠã¯ã被åäœãééãããããã
ã¯è¢«æ€äœããçºããããæŸå°ç·ã¯ããã®æŸå°ç·é
ã«æ¯äŸããŠæŸå°ç·åå€æããã«ã®èå
äœå±€ã«åžå
ãããæŸå°ç·åå€æããã«äžã«ã¯è¢«åäœãããã¯
被æ€äœã®æŸå°ç·åãæŸå°ç·ãšãã«ã®ãŒã®èç©åãš
ããŠåœ¢æãããããã®èç©åã¯ã450ã850nïœã®
æ³¢é·é åã®é»ç£æ³¢ïŒå±èµ·å
ïŒã§å±èµ·ããããšã«ã
ããèŒå°œçºå
ïŒèå
ïŒãšããŠæŸå°ãããããšãã§
ãããã®èŒå°œçºå
ãå
é»çã«èªã¿åã€ãŠé»æ°ä¿¡å·
ã«å€æããããšã«ãããæŸå°ç·ãšãã«ã®ãŒã®èç©
åãç»ååããããšãå¯èœãšãªãã In the radiation image conversion method of the present invention using a stimulable phosphor represented by the composition formula () in the form of a radiation image conversion panel, the radiation transmitted through the subject or emitted from the subject is It is proportionally absorbed by the phosphor layer of the radiation image conversion panel, and a radiation image of the subject or subject is formed on the radiation image conversion panel as an image of accumulated radiation energy. This accumulated image can be emitted as stimulated luminescence (fluorescence) by exciting it with electromagnetic waves (excitation light) in the wavelength range of 450 to 850 nm, and this stimulated luminescence can be read photoelectrically and converted into an electrical signal. By doing so, it becomes possible to image the accumulated radiation energy.
æ¬çºæã®æŸå°ç·åå€ææ¹æ³ããçµæåŒïŒïŒã§
è¡šããããèŒå°œæ§èå
äœãæŸå°ç·åå€æããã«ã®
圢æ
ã§çšããæ
æ§ãäŸã«ãšãã第ïŒå³ã«ç€ºãæŠç¥
å³ãçšããŠå
·äœçã«èª¬æããã The radiation image conversion method of the present invention will be specifically explained using the schematic diagram shown in FIG. 4, taking as an example an embodiment in which a stimulable phosphor represented by the composition formula () is used in the form of a radiation image conversion panel. .
第ïŒå³ã«ãããŠãïŒïŒã¯ïŒžç·ãªã©ã®æŸå°ç·çºç
è£
眮ãïŒïŒã¯è¢«åäœãïŒïŒã¯äžèšçµæåŒïŒïŒã§
è¡šããããèŒå°œæ§èå
äœãå«æããæŸå°ç·åå€æ
ããã«ãïŒïŒã¯æŸå°ç·åå€æããã«ïŒïŒäžã®æŸå°
ç·ãšãã«ã®ãŒã®èç©åãèå
ãšããŠæŸå°ãããã
ãã®å±èµ·æºãšããŠã®å
æºãïŒïŒã¯æŸå°ç·åå€æã
ãã«ïŒïŒããæŸå°ãããèå
ãæ€åºããå
é»å€æ
è£
眮ãïŒïŒã¯å
é»å€æè£
眮ïŒïŒã§æ€åºãããå
é»
å€æä¿¡å·ãç»åãšããŠåçããè£
眮ãïŒïŒã¯åç
ãããç»åã衚瀺ããè£
眮ããããŠãïŒïŒã¯å
æº
ïŒïŒããã®åå°å
ãééãããªãã§æŸå°ç·åå€æ
ããã«ïŒïŒããæŸå°ãããèå
ã®ã¿ãééããã
ããã®ãã€ã«ã¿ãŒã§ããã In FIG. 4, 11 is a radiation generating device such as an X-ray, 12 is a subject, 13 is a radiation image conversion panel containing a stimulable phosphor represented by the above composition formula (), and 14 is a radiation image conversion panel 13. 15 is a photoelectric conversion device that detects the fluorescence emitted from the radiation image conversion panel 13; 16 is a photoelectric conversion device detected by the photoelectric conversion device 15; A device for reproducing the signal as an image, 17 a device for displaying the reproduced image, and 18 a filter for transmitting only the fluorescence emitted from the radiation image conversion panel 13 without transmitting the reflected light from the light source 14. It is.
ãªãã第ïŒå³ã¯è¢«åäœã®æŸå°ç·ééåãåŸãå Ž
åã®äŸã瀺ããŠãããã被åäœïŒïŒèªäœãæŸå°ç·
ãçºãããã®ïŒæ¬æ现æžã«ãããŠã¯ããã被æ€äœ
ãšããïŒã§ããå Žåã«ã¯ãäžèšã®æŸå°ç·çºçè£
眮
ïŒïŒã¯ç¹ã«èšçœ®ããå¿
èŠã¯ãªãããŸããå
é»å€æ
è£
眮ïŒïŒãç»å衚瀺è£
眮ïŒïŒãŸã§ã¯ãæŸå°ç·åå€
æããã«ïŒïŒããèå
ãšããŠæŸå°ãããæ
å ±ãäœ
ããã®åœ¢ã§ç»åãšããŠåçã§ããä»ã®é©åœãªè£
眮
ã«å€ããããšãã§ããã Note that FIG. 4 shows an example of obtaining a radiographic image of a subject, but if the subject 12 itself emits radiation (herein referred to as the subject), the above method may be used. It is not necessary to particularly install the radiation generating device 11. Further, the photoelectric conversion device 15 to the image display device 17 may be replaced with other appropriate devices that can reproduce information emitted as fluorescence from the radiation image conversion panel 13 as an image in some form.
第ïŒå³ã«ç€ºãããããã«ã被åäœïŒïŒã«æŸå°ç·
çºçè£
眮ïŒïŒããç·ãªã©ã®æŸå°ç·ãç
§å°ãã
ãšããã®æŸå°ç·ã¯è¢«åäœïŒïŒããã®åéšã®æŸå°ç·
ééçã«æ¯äŸããŠééããã被åäœïŒïŒãééã
ãæŸå°ç·ã¯ã次ã«æŸå°ç·åå€æããã«ïŒïŒã«å
¥å°
ãããã®æŸå°ç·ã®åŒ·åŒ±ã«æ¯äŸããŠæŸå°ç·åå€æã
ãã«ïŒïŒã®èå
äœå±€ã«åžåããããããªãã¡ãæŸ
å°ç·åå€æããã«ïŒïŒäžã«ã¯æŸå°ç·ééåã«çžåœ
ããæŸå°ç·ãšãã«ã®ãŒã®èç©åïŒäžçš®ã®æœåïŒã
圢æãããã As shown in FIG. 4, when a subject 12 is irradiated with radiation such as X-rays from the radiation generating device 11, the radiation passes through the subject 12 in proportion to the radiation transmittance of each part of the subject 12. The radiation that has passed through the subject 12 then enters the radiation image conversion panel 13 and is absorbed by the phosphor layer of the radiation image conversion panel 13 in proportion to the intensity of the radiation. That is, a radiation energy accumulation image (a kind of latent image) corresponding to a radiation transmission image is formed on the radiation image conversion panel 13.
次ã«ãæŸå°ç·åå€æããã«ïŒïŒã«å
æºïŒïŒãçš
ããŠ450ã850nïœã®æ³¢é·é åã®é»ç£æ³¢ãç
§å°ãã
ãšãæŸå°ç·åå€æããã«ïŒïŒã«åœ¢æãããæŸå°ç·
ãšãã«ã®ãŒã®èç©åã¯ãèå
ãšããŠæŸå°ãããã
ãã®æŸå°ãããèå
ã¯ãæŸå°ç·åå€æããã«ïŒïŒ
ã®èå
äœå±€ã«åžåãããæŸå°ç·ãšãã«ã®ãŒã®åŒ·åŒ±
ã«æ¯äŸããŠããããã®èå
ã®åŒ·åŒ±ã§æ§æãããå
ä¿¡å·ããããšãã°ãå
é»åå¢å管ãªã©ã®å
é»å€æ
è£
眮ïŒïŒã§é»æ°ä¿¡å·ã«å€æããç»ååçè£
眮ïŒïŒ
ã«ãã€ãŠç»åãšããŠåçããç»å衚瀺è£
眮ïŒïŒã«
ãã€ãŠãã®ç»åã衚瀺ããã Next, when the radiation image conversion panel 13 is irradiated with electromagnetic waves in the wavelength range of 450 to 850 nm using the light source 14, the accumulated radiation energy image formed on the radiation image conversion panel 13 is emitted as fluorescence.
This emitted fluorescence is transmitted to the radiation image conversion panel 13
It is proportional to the strength of the radiation energy absorbed by the phosphor layer. This optical signal composed of the intensity of fluorescence is converted into an electrical signal by a photoelectric conversion device 15 such as a photomultiplier tube, and an image reproduction device 16 converts the optical signal into an electrical signal.
The image is reproduced as an image by the image display device 17, and this image is displayed by the image display device 17.
æŸå°ç·åå€æããã«ã«èç©ãããç»åæ
å ±ãè
å
ãšããŠèªã¿åºãæäœã¯ãäžè¬ã«ã¬ãŒã¶ãŒå
ã§ã
ãã«ãæç³»åçã«èµ°æ»ãããã®èµ°æ»ã«ãã€ãŠãã
ã«ããæŸå°ãããèå
ãé©åœãªéå
äœãä»ããŠå
é»åå¢å管çã®å
æ€åºåšã§æ€åºããæç³»åé»æ°ä¿¡
å·ãåŸãããšã«ãã€ãŠè¡ãªãããããã®èªåºãã¯
芳å¯èªåœ±æ§èœã®ããåªããç»åãåŸãããã«ãäœ
ãšãã«ã®ãŒã®å±èµ·å
ã®ç
§å°ã«ããå
èªã¿æäœãšé«
ãšãã«ã®ãŒã®å±èµ·å
ã®ç
§å°ã«ããæ¬èªã¿æäœãšã
ãæ§æãããŠããŠãããïŒç¹éæ58â67240å·å
¬
å ±åç
§ïŒããã®å
èªã¿æäœãè¡ãªãããšã«ããæ¬
èªã¿æäœã«ãããèªåºãæ¡ä»¶ã奜é©ã«èšå®ããã
ãšãã§ãããšã®å©ç¹ãããã The operation of reading out the image information accumulated in a radiation image conversion panel as fluorescence is generally performed by scanning the panel in time series with a laser beam, and then transmitting the fluorescence emitted from the panel by this scanning through a suitable light condenser. This is done by detecting with a photodetector such as a photomultiplier tube and obtaining a time-series electrical signal. In order to obtain an image with better observation and interpretation performance, this readout may consist of a pre-reading operation by irradiating low-energy excitation light and a main-reading operation by irradiating high-energy excitation light (Japanese Patent Laid-Open No. 58 -Refer to Publication No. 67240). By performing this pre-read operation, there is an advantage that the read conditions for the main read operation can be suitably set.
ãŸããããšãã°å
é»å€æè£
眮ãšããŠå
å°é»äœã
ãã³ããªããã€ãªãŒããªã©ã®åºäœå
é»å€æçŽ åã
çšããããšãã§ããïŒç¹é¡æ58â86226å·ãç¹é¡
æ58â86227å·ãç¹é¡æ58â219313å·ããã³ç¹é¡
æ58â219314å·ã®åæ现æžãããã³ç¹éæ58â
121874å·å
¬å ±åç
§ïŒããã®å Žåã«ã¯ãå€æ°ã®åºäœ
å
é»å€æçŽ åãããã«å
šè¡šé¢ãèŠãããã«æ§æã
ããããã«ãšäžäœåãããŠããŠãããããããã
ã¯ããã«ã«è¿æ¥ããç¶æ
ã§é
眮ãããŠããŠãã
ãããŸããå
é»å€æè£
眮ã¯è€æ°ã®å
é»å€æçŽ åã
綿ç¶ã«é£ãªã€ãã©ã€ã³ã»ã³ãµã§ãã€ãŠããããã
ãããã¯äžç»çŽ ã«å¯Ÿå¿ããäžåã®åºäœå
é»å€æçŽ
åããæ§æãããŠããŠãããã Furthermore, for example, solid-state photoelectric conversion elements such as photoconductors and photodiodes can be used as photoelectric conversion devices (Japanese Patent Application No. 58-86226, Japanese Patent Application No. 58-86227, Japanese Patent Application No. 58-219313, and Specifications of Application No. 58-219314 and JP-A-58-
(See Publication No. 121874). In this case, a large number of solid-state photoelectric conversion elements may be configured to cover the entire surface of the panel, and may be integrated with the panel, or may be arranged in close proximity to the panel. Further, the photoelectric conversion device may be a line sensor in which a plurality of photoelectric conversion elements are connected in a cotton-like manner,
Alternatively, it may be composed of one solid-state photoelectric conversion element corresponding to one pixel.
äžèšã®å Žåã®å
æºãšããŠã¯ãã¬ãŒã¶ãŒçã®ãã
ãªç¹å
æºã®ã»ãã«ãçºå
ãã€ãªãŒãïŒLEDïŒã
åå°äœã¬ãŒã¶ãŒçãåç¶ã«é£ããŠãªãã¢ã¬ã€ãªã©
ã®ç·å
æºã§ãã€ãŠãããããã®ãããªè£
眮ãçšã
ãŠèªåºããè¡ãªãããšã«ãããããã«ããæŸåºã
ããèå
ã®æ倱ãé²ããšåæã«åå
ç«äœè§ã倧ã
ãããŠïŒ³ïŒïŒšæ¯ãé«ããããšãã§ããããŸããåŸ
ãããé»æ°ä¿¡å·ã¯å±èµ·å
ã®æç³»åçãªç
§å°ã«ãã€
ãŠã§ã¯ãªããå
æ€åºåšã®é»æ°çãªåŠçã«ãã€ãŠæ
ç³»ååãããããã«ãèªåºãé床ãéãããããš
ãå¯èœã§ããã In addition to a point light source such as a laser, the light source in the above case may be a line light source such as an array of light emitting diodes (LEDs), semiconductor lasers, etc. arranged in a row. By performing readout using such a device, it is possible to prevent loss of fluorescence emitted from the panel, and at the same time, increase the solid angle of light reception and increase the S/H ratio. Furthermore, since the obtained electrical signals are converted into time series not by time series irradiation of excitation light but by electrical processing of the photodetector, it is possible to increase the readout speed. .
ç»åæ
å ±ã®èªåºããè¡ãªãããæŸå°ç·åå€æã
ãã«ã«å¯ŸããŠã¯ãèå
äœã®å±èµ·å
ã®æ³¢é·é åã®å
ãç
§å°ããããšã«ããããããã¯å ç±ããããšã«
ãããæ®åããŠããæŸå°ç·ãšãã«ã®ãŒã®æ¶å»ãè¡
ãªã€ãŠããããããããã®ã奜ãŸããïŒç¹éæ56
â11392å·ããã³ç¹éæ56â12599å·å
¬å ±åç
§ïŒã
ãã®æ¶å»æäœãè¡ãªãããšã«ããã次ã«ãã®ãã
ã«ã䜿çšããæã®æ®åã«ãããã€ãºã®çºçãé²æ¢
ããããšãã§ãããããã«ãèªåºãåŸãšæ¬¡ã®äœ¿çš
çŽåã®äºåºŠã«æž¡ã€ãŠæ¶å»æäœãè¡ãªãããšã«ã
ããèªç¶æŸå°èœãªã©ã«ãããã€ãºã®çºçãé²ãã§
æŽã«å¹çè¯ãæ¶å»ãè¡ãªãããšãã§ããïŒç¹éæ
57â116300å·å
¬å ±åç
§ïŒã The radiation image conversion panel from which the image information has been read is irradiated with light in the wavelength range of the excitation light of the phosphor or heated to erase any remaining radiation energy. It is possible and preferable to do so (Japanese Patent Laid-open No. 1983
-11392 and Japanese Unexamined Patent Publication No. 12599/1983).
By performing this erasing operation, it is possible to prevent noise from occurring due to afterimages when the panel is used next time. Furthermore, by performing the erasing operation twice, once after reading and immediately before the next use, it is possible to prevent the generation of noise due to natural radioactivity, etc., and to perform erasing more efficiently (Japanese Patent Laid-Open Publication No.
(Refer to Publication No. 57-116300).
æ¬çºæã®æŸå°ç·åå€ææ¹æ³ã«ãããŠã被åäœã®
æŸå°ç·ééåãåŸãå Žåã«çšããããæŸå°ç·ãšã
ãŠã¯ãäžèšèå
äœããã®æŸå°ç·ã®ç
§å°ãåããã®
ã¡äžèšé»ç£æ³¢ã§å±èµ·ãããæã«ãããŠèŒå°œçºå
ã
瀺ããããã®ã§ããã°ãããªãæŸå°ç·ã§ãã€ãŠã
ãããäŸãã°ïŒžç·ãé»åç·ã玫å€ç·ãªã©äžè¬ã«ç¥
ãããŠããæŸå°ç·ãçšããããšãã§ããããŸãã
被æ€äœã®æŸå°ç·åãåŸãå Žåã«ãããŠè¢«æ€äœãã
çŽæ¥çºããããæŸå°ç·ã¯ãåæ§ã«äžèšèå
äœã«åž
åãããŠèŒå°œçºå
ã®ãšãã«ã®ãŒæºãšãªããã®ã§ã
ãã°ãããªãæŸå°ç·ã§ãã€ãŠãããããã®äŸãšã
ãŠã¯Î³ç·ãαç·ãβç·ãªã©ã®æŸå°ç·ãæããããš
ãã§ããã In the radiation image conversion method of the present invention, the radiation used to obtain a radiation transmission image of the subject is capable of exhibiting stimulated luminescence when the phosphor is excited by the electromagnetic waves after being irradiated with this radiation. Any type of radiation may be used, and for example, commonly known radiation such as X-rays, electron beams, and ultraviolet rays can be used. Also,
When obtaining a radiation image of a subject, the radiation directly emitted from the subject may be any radiation that is similarly absorbed by the phosphor and serves as an energy source for stimulated luminescence. Examples include radiation such as gamma rays, alpha rays, and beta rays.
被åäœãããã¯è¢«æ€äœããã®æŸå°ç·ãåžåãã
èå
äœãå±èµ·ããããã®å±èµ·å
ã®å
æºãšããŠã¯ã
450ã850nïœã®æ³¢é·é åã«ãã³ãã¹ãã¯ãã«ååž
ããã€å
ãæŸå°ããå
æºã®ã»ãã«ãããšãã°Ar
ã€ãªã³ã¬ãŒã¶ãŒãKrã€ãªã³ã¬ãŒã¶ãŒãHeâNe
ã¬ãŒã¶ãŒãã«ããŒã»ã¬ãŒã¶ãŒãåå°äœã¬ãŒã¶ãŒã
ã¬ã©ã¹ã»ã¬ãŒã¶ãŒãYAGã¬ãŒã¶ãŒãè²çŽ ã¬ãŒã¶
ãŒçã®ã¬ãŒã¶ãŒããã³çºå
ãã€ãªãŒããªã©ã®å
æº
ã䜿çšããããšãã§ããããªãã§ãã¬ãŒã¶ãŒã¯ã
åäœé¢ç©åœãã®ãšãã«ã®ãŒå¯åºŠã®é«ãã¬ãŒã¶ãŒã
ãŒã ãæŸå°ç·åå€æããã«ã«ç
§å°ããããšãã§ã
ããããæ¬çºæã«ãããŠçšããå±èµ·çšå
æºãšããŠ
ã¯åçš®ã®ã¬ãŒã¶ãŒã奜ãŸããããããã®ãã¡ã§ã
ã®å®å®æ§ããã³åºåãªã©ã®ç¹ããã奜ãŸããã¬ãŒ
ã¶ãŒã¯HeâNeã¬ãŒã¶ãŒãArã€ãªã³ã¬ãŒã¶ãŒã
ãã³Krã€ãªã³ã¬ãŒã¶ãŒã§ããããŸããåå°äœã¬
ãŒã¶ãŒã¯å°åã§ããããšãé§åé»åãå°ããã
ãšãçŽæ¥å€èª¿ãå¯èœãªã®ã§ã¬ãŒã¶ãŒåºåã®å®å®å
ãç°¡åã«ã§ããããšããªã©ã®çç±ã«ããå±èµ·çšå
æºãšããŠå¥œãŸããã As a light source for excitation light to excite the phosphor that has absorbed radiation from the subject or subject,
In addition to light sources that emit light with a band spectral distribution in the wavelength region of 450 to 850 nm, for example, Ar
Ion laser, Kr ion laser, HeâNe
laser, ruby laser, semiconductor laser,
Lasers such as glass lasers, YAG lasers, dye lasers, and light sources such as light emitting diodes can also be used. Among them, the laser
Various types of lasers are preferable as the excitation light source used in the present invention because the radiation image conversion panel can be irradiated with a laser beam having a high energy density per unit area. Among them, preferred lasers are He--Ne laser, Ar ion laser, and Kr ion laser from the viewpoint of stability and output. In addition, semiconductor lasers are preferable as excitation light sources because they are compact, require low driving power, and can be directly modulated, making it easy to stabilize laser output.
ãŸããæ¶å»ã«çšããããå
æºãšããŠã¯ãèŒå°œæ§
èå
äœã®å±èµ·æ³¢é·é åã®å
ãæŸå°ãããã®ã§ãã
ã°ããããã®äŸãšããŠã¯ã¿ã³ã°ã¹ãã³ã©ã³ããè
å
ç¯ãããã²ã³ã©ã³ããæããããšãã§ããã Further, the light source used for erasing may be any light source that emits light in the excitation wavelength range of the stimulable phosphor, and examples thereof include a tungsten lamp, a fluorescent lamp, and a halogen lamp.
æ¬çºæã®æŸå°ç·åå€ææ¹æ³ã¯ãèŒå°œæ§èå
äœã«
æŸå°ç·ã®ãšãã«ã®ãŒãåžåèç©ãããèç©éšãã
ã®èå
äœã«å±èµ·å
ãç
§å°ããŠæŸå°ç·ã®ãšãã«ã®ãŒ
ãèå
ãšããŠæŸåºãããå
æ€åºïŒèªåºãïŒéšãã
ãã³èå
äœäžã«æ®åãããšãã«ã®ãŒãæŸåºããã
ããã®æ¶å»éšãäžã€ã®è£
眮ã«å
èµãããã«ãã€ã³
åã®æŸå°ç·åå€æè£
眮ã«é©çšããããšãã§ãã
ïŒç¹é¡æ57â84436å·ããã³ç¹é¡æ58â66730å·æ
现æžåç
§ïŒããã®ãããªãã«ãã€ã³åã®è£
眮ãå©
çšããããšã«ããæŸå°ç·åå€æããã«ïŒãŸãã¯èŒ
å°œæ§èå
äœãå«æããŠãªãèšé²äœïŒã埪ç°å䜿çš
ããããšãã§ããå®å®ããå質ãªç»åãåŸãããš
ãã§ããããŸãããã«ãã€ã³åãšããããšã«ãã
è£
眮ãå°ååã軜éåããããšãã§ãããã®èš
眮ã移åãªã©ã容æã«ãªããããã«ãã®è£
眮ã移
åè»ã«æèŒããããšã«ãããå·¡åæŸå°ç·æ®åœ±ãå¯
èœãšãªãã The radiation image conversion method of the present invention includes: a storage section that absorbs and stores radiation energy in a stimulable phosphor; a photodetection (readout) section that irradiates the phosphor with excitation light and emits the radiation energy as fluorescence; It can also be applied to a built-in type radiation image conversion device in which an eraser for emitting the energy remaining in the phosphor is built into one device (Japanese Patent Application No. 57-84436 and Patent Application No. 66730-1989). (see specification). By using such a built-in device, it is possible to reuse the radiation image conversion panel (or the recording material containing the stimulable phosphor) and obtain stable and homogeneous images. . Further, by using a built-in type, the device can be made smaller and lighter, and its installation and movement become easier. Furthermore, by mounting this device on a mobile vehicle, it becomes possible to carry out circular radiography.
次ã«ãæ¬çºæã®æŸå°ç·åå€ææ¹æ³ã«çšãããã
æŸå°ç·åå€æããã«ã«ã€ããŠèª¬æããã Next, a radiation image conversion panel used in the radiation image conversion method of the present invention will be explained.
ãã®æŸå°ç·åå€æããã«ã¯ãåè¿°ã®ããã«ãå®
質çã«æ¯æäœãšããã®æ¯æäœäžã«èšããããåèš
çµæåŒïŒïŒã§è¡šããããã»ãªãŠã 賊掻åžåé¡è€
åããã²ã³åç©èå
äœãåæ£ç¶æ
ã§å«ææ¯æãã
çµåå€ãããªãèå
äœå±€ãšããæ§æãããã As described above, this radiation image conversion panel includes a support substantially including a support and a cerium-activated rare earth composite halide phosphor provided on the support in a dispersed state represented by the above compositional formula (). and a phosphor layer made of a binder.
äžèšã®æ§æãæããæŸå°ç·åå€æããã«ã¯ãã
ãšãã°ã次ã«è¿°ã¹ããããªæ¹æ³ã«ãã補é ããã
ãšãã§ããã The radiation image conversion panel having the above configuration can be manufactured, for example, by the method described below.
ãŸããæŸå°ç·åå€æããã«ã«çšããããäžèšçµ
æåŒïŒïŒã§è¡šããããã»ãªãŠã 賊掻åžåé¡è€å
ããã²ã³åç©èå
äœã«ã€ããŠèª¬æããã First, a cerium-activated rare earth composite halide phosphor represented by the above composition formula () used in a radiation image storage panel will be explained.
ãã®ã»ãªãŠã 賊掻åžåé¡è€åããã²ã³åç©èå
äœã¯ãããšãã°ã次ã«èšèŒãããããªè£œé æ³ã«ã
ã補é ããããšãã§ããã This cerium-activated rare earth composite halide phosphor can be manufactured, for example, by the manufacturing method described below.
ãŸããèå
äœåæãšããŠã
(1) LaCl3ãLaBr3ãGdCl3ããã³GdBr3ãããª
ã矀ããéžã°ããå°ãªããšãäºçš®ã®åžåé¡å
çŽ
ããã²ã³åç©ã
(2) ããã²ã³åç©ãé
žåç©ãç¡é
žå¡©ãç¡«é
žå¡©ãªã©
ã®ã»ãªãŠã ã®ååç©ãããªã矀ããéžã°ããå°
ãªããšãäžçš®ã®ååç©ã
ã䜿çšãããå Žåã«ãã€ãŠã¯ãããã«ããã²ã³å
ã¢ã³ã¢ããŠã ïŒNH4Xâ³ïŒãã ããXâ³ã¯ClãBrãŸ
ãã¯ïŒ©ã§ããïŒãªã©ããã©ãã¯ã¹ãšããŠäœ¿çšããŠ
ãããã First, as raw materials for the phosphor, (1) at least two rare earth element halides selected from the group consisting of LaCl 3 , LaBr 3 , GdCl 3 and GdBr 3 , (2) halides, oxides, nitrates, sulfates, etc. At least one compound selected from the group consisting of cerium compounds is used. In some cases, ammonium halide (NH 4 X''; where X'' is Cl, Br or I) may also be used as a flux.
èå
äœã®è£œé ã«éããŠã¯ãäžèš(1)ã®åžåé¡å
çŽ
ããã²ã³åç©ããã³(2)ã®ã»ãªãŠã ååç©ãçšã
ãŠãååŠéè«çã«ãçµæåŒïŒïŒïŒ
LnX3ã»aLnâ²âX'â²3ïŒxCe ïŒïŒ
ïŒãã ããLnããã³Lnâ²ã¯ããããLaããã³Gd
ãããªã矀ããéžã°ããå°ãªããšãäžçš®ã®åžåé¡
å
çŽ ã§ããïŒïŒžããã³Xâ²ã¯ããããClããã³Br
ãããªã矀ããéžã°ããå°ãªããšãäžçš®ã®ããã²
ã³ã§ãã€ãŠããã€ïŒžâ Xâ²ã§ããïŒãããŠïœã¯0.1
âŠïœâŠ10.0ã®ç¯å²ã®æ°å€ã§ãããïœã¯ïŒïŒïœâŠ
0.2ã®ç¯å²ã®æ°å€ã§ããïŒ
ã«å¯Ÿå¿ããçžå¯Ÿæ¯ãšãªãããã«ç§€éæ··åããŠãè
å
äœåæã®æ··åç©ã調補ããã When manufacturing a phosphor, the above (1) rare earth element halide and (2) cerium compound are used to form a stoichiometric composition formula (): LnX 3 aLn''X'' 3 :xCe () (where Ln and Lnâ² are La and Gd, respectively)
at least one rare earth element selected from the group consisting of; X and X' are Cl and Br, respectively;
at least one halogen selected from the group consisting of, and Xâ Xâ²; and a is 0.1
A numerical value in the range of âŠaâŠ10.0, and x is 0<xâŠ
A mixture of phosphor raw materials is prepared by weighing and mixing to have a relative ratio corresponding to (a numerical value in the range of 0.2).
èå
äœåææ··åç©ã®èª¿è£œã¯ã
(i) äžèš(1)ããã³(2)ã®èå
äœåæãåã«æ··åãã
ããšã«ãã€ãŠè¡ãªã€ãŠãããããããã¯ã
(ii) ãŸããäžèš(1)ã®èå
äœåæãæ··åãããã®æ··
åç©ã100â以äžã®æž©åºŠã§æ°æéå ç±ããã®ã¡ã
åŸãããç±åŠçç©ã«äžèš(2)ã®èå
äœåæãæ··å
ããããšã«ãã€ãŠè¡ãªã€ãŠãããããããã
ã¯ã
(iii) ãŸããäžèš(1)ã®èå
äœåæã溶液ã®ç¶æ
ã§æ··
åãããã®æº¶æ¶²ãå æž©äžïŒå¥œãŸããã¯50ã200
âïŒã§æžå§ä¹Ÿç¥ãç空也ç¥ãåŽé§ä¹Ÿç¥ãªã©ã«ã
ã也ç¥ãããããã®ã¡åŸããã也ç¥ç©ã«äžèš(2)
ã®èå
äœåæãæ··åããããšã«ãã€ãŠè¡ãªã€ãŠ
ãããã The phosphor raw material mixture may be prepared by (i) simply mixing the phosphor raw materials in (1) and (2) above, or (ii) first, the phosphor raw materials in (1) above may be prepared. After mixing the raw materials and heating this mixture at a temperature of 100â or more for several hours,
This may be carried out by mixing the phosphor raw material in (2) above with the obtained heat-treated product, or (iii) first, the phosphor raw material in (1) above is mixed in a solution state. , this solution is heated (preferably 50 to 200
â) by vacuum drying, vacuum drying, spray drying, etc., and then add the above (2) to the dried product obtained.
This may be carried out by mixing phosphor raw materials.
ãªããäžèš(ii)ã®æ¹æ³ã®å€æ³ãšããŠãäžèš(1)ãã
ã³(2)ã®èå
äœåæãæ··åããåŸãããæ··åç©ã«äž
èšç±åŠçãæœãæ¹æ³ãå©çšããŠãããããŸããäž
èš(iii)ã®æ¹æ³ã®å€æ³ãšããŠãäžèš(1)ããã³(2)ã®èå
äœåæã溶液ã®ç¶æ
ã§æ··åãããã®æº¶æ¶²ã也ç¥ã
ãæ¹æ³ãå©çšããŠãããã Note that as a modification of the method (ii) above, a method may be used in which the phosphor raw materials of (1) and (2) above are mixed and the resulting mixture is subjected to the heat treatment. Further, as a modification of the method (iii) above, a method may be used in which the phosphor raw materials of (1) and (2) above are mixed in a solution state and this solution is dried.
äžèš(i)ã(ii)ãããã³(iii)ã®ãããã®æ¹æ³ã«ãããŠ
ããæ··åã«ã¯ãåçš®ãããµãŒãåãã¬ã³ããŒã
ããŒã«ãã«ãããããã«ãªã©ã®éåžžã®æ··åæ©ãçš
ããããã In any of the above methods (i), (ii), and (iii), mixing can be done using various mixers, V-type blenders,
Conventional mixers such as ball mills and rod mills are used.
次ã«ãäžèšã®ããã«ããŠåŸãããèå
äœåææ··
åç©ãç³è±ããŒããã¢ã«ããã«ãããç³è±ã«ãã
ãªã©ã®èç±æ§å®¹åšã«å
å¡«ããé»æ°çäžã§çŒæãè¡
ãªããçŒæ枩床ã¯500ã1400âã®ç¯å²ãé©åœã§ã
ãã奜ãŸããã¯700ã1000âã®ç¯å²ã§ãããçŒæ
æéã¯èå
äœåææ··åç©ã®å
å¡«éããã³çŒæ枩床
ãªã©ã«ãã€ãŠãç°ãªãããäžè¬ã«ã¯0.5ãïŒæé
ãé©åœã§ãããçŒæé°å²æ°ãšããŠã¯ãå°éã®æ°ŽçŽ
ã¬ã¹ãå«æããçªçŽ ã¬ã¹é°å²æ°ããããã¯ãäžé
ž
åççŽ ãå«æããäºé
žåççŽ é°å²æ°ãªã©ã®åŒ±éå
æ§ã®é°å²æ°ãå©çšãããäžèš(2)ã®èå
äœåæãšã
ãŠãã»ãªãŠã ã®äŸ¡æ°ãå䟡ã®ã»ãªãŠã ååç©ãçš
ããããå Žåã«ã¯ãçŒæéçšã«ãããŠäžèšåŒ±éå
æ§ã®é°å²æ°ã«ãã€ãŠå䟡ã®ã»ãªãŠã ã¯äžäŸ¡ã®ã»ãª
ãŠã ã«éå
ãããã Next, the phosphor raw material mixture obtained as described above is filled into a heat-resistant container such as a quartz boat, an alumina crucible, or a quartz crucible, and fired in an electric furnace. The firing temperature is suitably in the range of 500 to 1400°C, preferably in the range of 700 to 1000°C. Although the firing time varies depending on the filling amount of the phosphor raw material mixture and the firing temperature, 0.5 to 6 hours is generally appropriate. As the firing atmosphere, a weakly reducing atmosphere such as a nitrogen gas atmosphere containing a small amount of hydrogen gas or a carbon dioxide atmosphere containing carbon monoxide is used. When a cerium compound in which the valence of cerium is tetravalent is used as the phosphor raw material in (2) above, the tetravalent cerium is reduced to trivalent cerium by the weakly reducing atmosphere mentioned above during the firing process. be done.
äžèšçŒæã«ãã€ãŠç²æ«ç¶ã®èå
äœãåŸãããã
ãªããåŸãããç²æ«ç¶ã®èå
äœã«ã€ããŠã¯ãå¿
èŠ
ã«å¿ããŠãããã«ãæŽæµã也ç¥ããµããåããªã©
ã®èå
äœã®è£œé ã«ãããåçš®ã®äžè¬çãªæäœãè¡
ãªã€ãŠãããã A powdered phosphor is obtained by the above firing.
Note that the obtained powdered phosphor may be further subjected to various general operations in the production of phosphors, such as washing, drying, and sieving, as necessary.
ãªããçµæåŒïŒïŒã§è¡šããããã»ãªãŠã 賊掻
åžåé¡è€åããã²ã³åç©èå
äœã«ãããŠãåžåé¡
å
çŽ ãè¡šããLnããã³Lnâ²ã¯åäžã§ãã€ãŠããã
ããç°ãªã€ãŠããŠãããããŸããããã²ã³ãè¡šã
ãã¯Clã§ããã®ããåããããã²ã³ãè¡šãã
Xâ²ã¯Brã§ããã®ã奜ãŸããããã®å Žåã«ãLnX3
ãšLnâ²Xâ²3ãšã®å²åãè¡šããïœå€ã¯0.25âŠïœâŠ5.0
ç¯å²ã«ããã®ã奜ãŸããã In the cerium-activated rare earth composite halide phosphor represented by the composition formula (), Ln and Ln' representing rare earth elements may be the same or different. Also, X representing halogen is Cl, which also represents halogen.
Preferably, Xâ² is Br, in which case LnX 3
The a value representing the ratio between and Lnâ²Xâ² 3 is 0.25âŠaâŠ5.0
Preferably within the range.
åããèŒå°œçºå
èŒåºŠã®ç¹ãããçµæåŒïŒïŒã«
ãããŠã»ãªãŠã ã®è³ŠæŽ»éãè¡šããïœå€ã¯10-5âŠïœ
âŠ10-2ã®ç¯å²ã«ããã®ã奜ãŸããã Similarly, from the viewpoint of stimulated luminescence brightness, the x value representing the activation amount of cerium in the composition formula () is 10 -5 âŠx
It is preferably in the range âŠ10 -2 .
次ã«ãã»ãªãŠã 賊掻åžåé¡è€åããã²ã³åç©è
å
äœããã®äžã«åæ£ããããããŠåœ¢æãããèå
äœå±€ã®çµåå€ã®äŸãšããŠã¯ããŒã©ãã³çã®èçœ
質ãããã¹ãã©ã³çã®ããªãµãã«ã©ã€ãããŸãã¯
ã¢ã©ãã¢ãŽã ã®ãããªå€©ç¶é«ååç©è³ªïŒããã³ã
ããªããã«ããã©ãŒã«ãããªé
¢é
žããã«ãããã
ã»ã«ããŒã¹ããšãã«ã»ã«ããŒã¹ãå¡©åãããªã
ã³ã»å¡©åããã«ã³ãããªããŒãããªã¢ã«ãã«ïŒã¡
ã¿ïŒã¢ã¯ãªã¬ãŒããå¡©åããã«ã»é
¢é
žããã«ã³ã
ãªããŒãããªãŠã¬ã¿ã³ãã»ã«ããŒã¹ã¢ã»ããŒãã
ãã¬ãŒããããªããã«ã¢ã«ã³ãŒã«ãç·ç¶ããªãšã¹
ãã«ãªã©ã®ãããªåæé«ååç©è³ªãªã©ã«ãã代衚
ãããçµåå€ãæããããšãã§ããããã®ãããª
çµåå€ã®ãªãã§ç¹ã«å¥œãŸãããã®ã¯ããããã»ã«
ããŒã¹ãç·ç¶ããªãšã¹ãã«ãããªã¢ã«ãã«ïŒã¡
ã¿ïŒã¢ã¯ãªã¬ãŒãããããã»ã«ããŒã¹ãšç·ç¶ããª
ãšã¹ãã«ãšã®æ··åç©ãããã³ãããã»ã«ããŒã¹ãš
ããªã¢ã«ãã«ïŒã¡ã¿ïŒã¢ã¯ãªã¬ãŒããšã®æ··åç©ã§
ããã Examples of binders for the phosphor layer formed by dispersing the cerium-activated rare earth compound halide phosphor include proteins such as gelatin, polysaccharides such as dextran, or gum arabic. natural polymeric substances; and
Polyvinyl butyral, polyvinyl acetate, nitrocellulose, ethylcellulose, vinylidene chloride/vinyl chloride copolymer, polyalkyl (meth)acrylate, vinyl chloride/vinyl acetate copolymer, polyurethane, cellulose acetate butyrate, polyvinyl alcohol, linear polyester, etc. Examples include binders typified by synthetic polymeric substances. Particularly preferred among such binders are nitrocellulose, linear polyesters, polyalkyl (meth)acrylates, mixtures of nitrocellulose and linear polyesters, and mixtures of nitrocellulose and polyalkyl (meth)acrylates. It is.
èå
äœå±€ã¯ãããšãã°ã次ã®ãããªæ¹æ³ã«ãã
æ¯æäœäžã«åœ¢æããããšãã§ããã The phosphor layer can be formed on the support, for example, by the following method.
ãŸããç²åç¶ã®èŒå°œæ§èå
äœãšçµåå€ãšãé©åœ
ãªæº¶å€ã«å ãããããå
åã«æ··åããŠãçµåå€æº¶
液äžã«èŒå°œæ§èå
äœãåäžã«åæ£ããå¡åžæ¶²ã調
補ããã First, a particulate stimulable phosphor and a binder are added to a suitable solvent and thoroughly mixed to prepare a coating solution in which the stimulable phosphor is uniformly dispersed in the binder solution.
å¡åžæ¶²èª¿è£œçšã®æº¶å€ã®äŸãšããŠã¯ãã¡ã¿ããŒ
ã«ããšã¿ããŒã«ãïœâãããããŒã«ãïœâãã¿ã
ãŒã«ãªã©ã®äœçŽã¢ã«ã³ãŒã«ïŒã¡ãã¬ã³ã¯ãã©ã€
ãããšãã¬ã³ã¯ãã©ã€ããªã©ã®å¡©çŽ ååå«æçå
æ°ŽçŽ ïŒã¢ã»ãã³ãã¡ãã«ãšãã«ã±ãã³ãã¡ãã«ã€
ãœããã«ã±ãã³ãªã©ã®ã±ãã³ïŒé
¢é
žã¡ãã«ãé
¢é
ž
ãšãã«ãé
¢é
žããã«ãªã©ã®äœçŽèèªé
žãšäœçŽã¢ã«
ã³ãŒã«ãšã®ãšã¹ãã«ïŒãžãªããµã³ããšãã¬ã³ã°ãª
ã³ãŒã«ã¢ããšãã«ãšãŒãã«ããšãã¬ã³ã°ãªã³ãŒã«
ã¢ãã¡ãã«ãšãŒãã«ãªã©ã®ãšãŒãã«ïŒãããŠãã
ããã®æ··åç©ãæããããšãã§ããã Examples of solvents for preparing coating solutions include lower alcohols such as methanol, ethanol, n-propanol, and n-butanol; chlorine-containing hydrocarbons such as methylene chloride and ethylene chloride; and ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone. ; esters of lower fatty acids and lower alcohols such as methyl acetate, ethyl acetate, and butyl acetate; ethers such as dioxane, ethylene glycol monoethyl ether, and ethylene glycol monomethyl ether; and mixtures thereof.
å¡åžæ¶²ã«ãããçµåå€ãšèŒå°œæ§èå
äœãšã®æ··å
æ¯ã¯ãç®çãšããæŸå°ç·åå€æããã«ã®ç¹æ§ãè
å
äœã®çš®é¡ãªã©ã«ãã€ãŠç°ãªãããäžè¬ã«ã¯çµå
å€ãšèå
äœãšã®æ··åæ¯ã¯ãïŒïŒïŒä¹è³ïŒïŒ100ïŒé
éæ¯ïŒã®ç¯å²ããéžã°ãããããŠç¹ã«ïŒïŒïŒä¹è³
ïŒïŒ40ïŒééæ¯ïŒã®ç¯å²ããéžã¶ã®ã奜ãŸããã The mixing ratio of the binder and the stimulable phosphor in the coating solution varies depending on the characteristics of the intended radiation image conversion panel, the type of phosphor, etc., but in general, the mixing ratio of the binder and the stimulable phosphor is , 1:1 to 1:100 (weight ratio), and particularly preferably 1:8 to 1:40 (weight ratio).
ãªããå¡åžæ¶²ã«ã¯ã該å¡åžæ¶²äžã«ãããèå
äœ
ã®åæ£æ§ãåäžãããããã®åæ£å€ããŸãã圢æ
åŸã®èå
äœå±€äžã«ãããçµåå€ãšèå
äœãšã®éã®
çµååãåäžãããããã®å¯å¡æ§ãªã©ã®çš®ã
ã®æ·»
å å€ãæ··åãããŠããŠãããããã®ãããªç®çã«
çšããããåæ£å€ã®äŸãšããŠã¯ããã¿ã«é
žãã¹ã
ã¢ãªã³é
žãã«ããã³é
žã芪油æ§çé¢æŽ»æ§å€ãªã©ã
æããããšãã§ããããããŠå¯å¡æ§ã®äŸãšããŠ
ã¯ãçé
žããªããšãã«ãçé
žããªã¯ã¬ãžã«ãçé
ž
ãžããšãã«ãªã©ã®çé
žãšã¹ãã«ïŒãã¿ã«é
žãžãšã
ã«ããã¿ã«é
žãžã¡ããã·ãšãã«ãªã©ã®ãã¿ã«é
žãš
ã¹ãã«ïŒã°ãªã³ãŒã«é
žãšãã«ãã¿ãªã«ãšãã«ãã°
ãªã³ãŒã«é
žããã«ãã¿ãªã«ããã«ãªã©ã®ã°ãªã³ãŒ
ã«é
žãšã¹ãã«ïŒãããŠãããªãšãã¬ã³ã°ãªã³ãŒã«
ãšã¢ãžãã³é
žãšã®ããªãšã¹ãã«ããžãšãã¬ã³ã°ãª
ã³ãŒã«ãšã³ãã¯é
žãšã®ããªãšã¹ãã«ãªã©ã®ããªãš
ãã¬ã³ã°ãªã³ãŒã«ãšèèªæäºé
žåºé
žãšã®ããªãšã¹
ãã«ãªã©ãæããããšãã§ããã The coating liquid also contains a dispersant to improve the dispersibility of the phosphor in the coating liquid, and a dispersant to improve the bonding force between the binder and the phosphor in the phosphor layer after formation. Various additives such as plasticity may be mixed. Examples of dispersants used for such purposes include phthalic acid, stearic acid, caproic acid, lipophilic surfactants, and the like. Examples of plasticity include phosphate esters such as triphenyl phosphate, tricresyl phosphate, and diphenyl phosphate; phthalate esters such as diethyl phthalate and dimethoxyethyl phthalate; and glycols such as ethyl phthalyl ethyl glycolate and butyl phthalyl glycolate. Acid esters; and polyesters of polyethylene glycol and aliphatic diacid base acids, such as polyesters of triethylene glycol and adipic acid, polyesters of diethylene glycol and succinic acid, and the like.
äžèšã®ããã«ããŠèª¿è£œãããèå
äœãšçµåå€ãš
ãå«æããå¡åžæ¶²ãã次ã«ãæ¯æäœã®è¡šé¢ã«åäž
ã«å¡åžããããšã«ããå¡åžæ¶²ã®å¡èã圢æããã
ãã®å¡åžæäœã¯ãéåžžã®å¡åžæ段ãããšãã°ãã
ã¯ã¿ãŒãã¬ãŒããããŒã«ã³ãŒã¿ãŒããã€ãã³ãŒã¿
ãŒãªã©ãçšããããšã«ããè¡ãªãããšãã§ããã The coating solution containing the phosphor and binder prepared as described above is then uniformly applied to the surface of the support to form a coating film of the coating solution.
This coating operation can be carried out using conventional coating means such as a doctor blade, roll coater, knife coater, etc.
æ¯æäœãšããŠã¯ãåŸæ¥ã®æŸå°ç·åçæ³ã«ããã
å¢æçŽïŒãŸãã¯å¢æçšã¹ã¯ãªãŒã³ïŒã®æ¯æäœãšã
ãŠçšããããŠããåçš®ã®ææããããã¯æŸå°ç·å
å€æããã«ã®æ¯æäœãšããŠå
¬ç¥ã®ææããä»»æã«
éžã¶ããšãã§ããããã®ãããªææã®äŸãšããŠ
ã¯ãã»ã«ããŒã¹ã¢ã»ããŒããããªãšã¹ãã«ãããª
ãšãã¬ã³ãã¬ãã¿ã¬ãŒããããªã¢ãããããªã€ã
ããããªã¢ã»ããŒããããªã«ãŒãããŒããªã©ã®ã
ã©ã¹ããã¯ç©è³ªã®ãã€ã«ã ãã¢ã«ãããŠã ç®ãã¢
ã«ãããŠã åéç®ãªã©ã®éå±ã·ãŒããéåžžã®çŽã
ãã©ã€ã¿çŽãã¬ãžã³ã³ãŒãçŽãäºé
žåãã¿ã³ãªã©
ã®é¡æãå«æãããã°ã¡ã³ãçŽãããªããã«ã¢ã«
ã³ãŒã«ãªã©ããµã€ãžã³ã°ããçŽãªã©ãæããããš
ãã§ããã The support may be arbitrarily selected from various materials used as supports for intensifying screens (or intensifying screens) in conventional radiography or materials known as supports for radiation image conversion panels. I can do it. Examples of such materials include films of plastic materials such as cellulose acetate, polyester, polyethylene terephthalate, polyamide, polyimide, triacetate, polycarbonate, metal sheets such as aluminum foil, aluminum alloy foil, ordinary paper,
Examples include baryta paper, resin-coated paper, pigment paper containing pigments such as titanium dioxide, and paper sized with polyvinyl alcohol.
ãã ããæŸå°ç·åå€æããã«ã®æ
å ±èšé²ææãš
ããŠã®ç¹æ§ããã³åæ±ããªã©ãèæ
®ããå Žåãæ¬
çºæã«ãããŠç¹ã«å¥œãŸããæ¯æäœã®ææã¯ãã©ã¹
ããã¯ãã€ã«ã ã§ããããã®ãã©ã¹ããã¯ãã€ã«
ã ã«ã¯ã«ãŒãã³ãã©ãã¯ãªã©ã®å
åžåæ§ç©è³ªãç·Ž
ã蟌ãŸããŠããŠãããããããã¯äºé
žåãã¿ã³ãª
ã©ã®å
åå°æ§ç©è³ªãç·Žã蟌ãŸããŠããŠããããå
è
ã¯é«é®®é床ã¿ã€ãã®æŸå°ç·åå€æããã«ã«é©ã
ãæ¯æäœã§ãããåŸè
ã¯é«æ床ã¿ã€ãã®æŸå°ç·å
å€æããã«ã«é©ããæ¯æäœã§ããã However, in consideration of the characteristics and handling of the radiation image storage panel as an information recording material, a particularly preferred material for the support in the present invention is plastic film. This plastic film may be kneaded with a light-absorbing substance such as carbon black, or may be kneaded with a light-reflecting substance such as titanium dioxide. The former is a support suitable for a high sharpness type radiation image conversion panel, and the latter is a support suitable for a high sensitivity type radiation image conversion panel.
å
¬ç¥ã®æŸå°ç·åå€æããã«ã«ãããŠãæ¯æäœãš
èå
äœå±€ã®çµåã匷åããããããããã¯æŸå°ç·
åå€æããã«ãšããŠã®æ床ãããã¯ç»è³ªïŒé®®é
床ãç²ç¶æ§ïŒãåäžãããããã«ãèå
äœå±€ãèš
ããããåŽã®æ¯æäœè¡šé¢ã«ãŒã©ãã³ãªã©ã®é«åå
ç©è³ªãå¡åžããŠæ¥çæ§ä»äžå±€ãšãããããããã¯
äºé
žåãã¿ã³ãªã©ã®å
åå°æ§ç©è³ªãããªãå
åå°
å±€ããããã¯ã«ãŒãã³ãã©ãã¯ãªã©ã®å
åžåæ§ç©
質ãããªãå
åžåå±€ãªã©ãèšããããšãç¥ãããŠ
ãããæ¬çºæã«ãããŠçšããããæ¯æäœã«ã€ããŠ
ãããããã®åçš®ã®å±€ãèšããããšãã§ãããã
ãã®æ§æã¯ææã®æŸå°ç·åå€æããã«ã®ç®çãçš
éãªã©ã«å¿ããŠä»»æã«éžæããããšãã§ããã In known radiation image conversion panels, the phosphor layer is used to strengthen the bond between the support and the phosphor layer, or to improve the sensitivity or image quality (sharpness, granularity) of the radiation image conversion panel. A polymeric substance such as gelatin is coated on the surface of the support on which it is applied to form an adhesion-imparting layer, or a light-reflecting layer made of a light-reflecting substance such as titanium dioxide, or a light-absorbing substance such as carbon black. It is known to provide a light absorption layer or the like. The support used in the present invention can also be provided with these various layers, and their configurations can be arbitrarily selected depending on the purpose, use, etc. of the desired radiation image storage panel.
ããã«ãç¹éæ58â200200å·å
¬å ±ã«èšèŒãããŠ
ããããã«ãåŸãããç»åã®é®®é床ãåäžããã
ç®çã§ãæ¯æäœã®èå
äœå±€åŽã®è¡šé¢ïŒæ¯æäœã®è
å
äœå±€åŽã®è¡šé¢ã«æ¥çæ§ä»äžå±€ãå
åå°å±€ããã
ã¯å
åžåå±€ãªã©ãèšããããŠããå Žåã«ã¯ããã®
è¡šé¢ãæå³ããïŒã«ã¯åŸ®å°ã®å¹åžã圢æãããŠã
ãŠãããã Furthermore, as described in Japanese Patent Application Laid-Open No. 58-200200, in order to improve the sharpness of the obtained image, the surface of the support on the phosphor layer side (the surface of the support on the phosphor layer side) When an adhesion-imparting layer, a light-reflecting layer, a light-absorbing layer, etc. are provided, minute irregularities may be formed on the surface (meaning the surface thereof).
äžèšã®ããã«ããŠæ¯æäœäžã«å¡èã圢æããã®
ã¡å¡èã也ç¥ããŠãæ¯æäœäžãžã®èŒå°œæ§èå
äœå±€
ã®åœ¢æãå®äºãããèå
äœå±€ã®å±€åã¯ãç®çãšã
ãæŸå°ç·åå€æããã«ã®ç¹æ§ãèå
äœã®çš®é¡ãçµ
åå€ãšèå
äœãšã®æ··åæ¯ãªã©ã«ãã€ãŠç°ãªããã
éåžžã¯20ÎŒïœä¹è³ïŒmmãšããããã ãããã®å±€å
ã¯50ä¹è³500ÎŒïœãšããã®ã奜ãŸããã After forming the coating film on the support as described above, the coating film is dried to complete the formation of the stimulable phosphor layer on the support. The thickness of the phosphor layer varies depending on the characteristics of the intended radiation image conversion panel, the type of phosphor, the mixing ratio of the binder and the phosphor, etc.
Usually it is 20 ÎŒm to 1 mm. However, the thickness of this layer is preferably 50 to 500 ÎŒm.
ãŸããèŒå°œæ§èå
äœå±€ã¯ãå¿
ãããäžèšã®ãã
ã«æ¯æäœäžã«å¡åžæ¶²ãçŽæ¥å¡åžããŠåœ¢æããå¿
èŠ
ã¯ãªããããšãã°ãå¥ã«ãã¬ã©ã¹æ¿ãéå±æ¿ãã
ã©ã¹ããã¯ã·ãŒããªã©ã®ã·ãŒãäžã«å¡åžæ¶²ãå¡åž
ã也ç¥ããããšã«ããèå
äœå±€ã圢æããã®ã¡ã
ããããæ¯æäœäžã«æŒå§ãããããããã¯æ¥çå€
ãçšãããªã©ããŠæ¯æäœãšèå
äœå±€ãšãæ¥åããŠ
ãããã Furthermore, the stimulable phosphor layer does not necessarily need to be formed by directly applying a coating solution onto the support as described above, but can be formed by separately applying it onto a sheet such as a glass plate, metal plate, or plastic sheet. After forming a phosphor layer by applying a liquid and drying it,
The support and the phosphor layer may be joined by pressing this onto the support or using an adhesive.
èŒå°œæ§èå
äœå±€ã¯äžå±€ã ãã§ãããããäºå±€ä»¥
äžãéå±€ããŠããããéå±€ããå Žåã«ã¯ãã®ãã¡
ã®å°ãªããšãäžå±€ãçµæåŒïŒïŒã®ã»ãªãŠã 賊掻
åžåé¡è€åããã²ã³åç©èå
äœãå«æããå±€ã§ã
ãã°ãããããã«ã®è¡šé¢ã«è¿ãæ¹ã«åã€ãŠé 次æŸ
å°ç·ã«å¯Ÿããçºå
å¹çãé«ããªãããã«è€æ°ã®è
å
äœå±€ãéå±€ããæ§æã«ããŠãããããŸããåå±€
ããã³éå±€ã®ãããã®å Žåããäžèšèå
äœãšãšã
ã«å
¬ç¥ã®èŒå°œæ§èå
äœã䜵çšããããšãã§ããã Although only one stimulable phosphor layer may be used, two or more layers may be stacked. In the case of multiple layers, at least one of the layers may contain a cerium-activated rare earth composite halide phosphor having the composition formula (), and the luminous efficiency against radiation increases sequentially toward the surface of the panel. It is also possible to have a structure in which a plurality of phosphor layers are stacked on top of each other. Furthermore, in both the single-layer and multilayer cases, a known stimulable phosphor can be used in combination with the above-mentioned phosphor.
ãã®ãããªå
¬ç¥ã®èŒå°œæ§èå
äœã®äŸãšããŠã¯ã
åè¿°ã®èå
äœã®ã»ãã«ãç¹éæ55â12142å·å
¬å ±
ã«èšèŒãããŠããZnSïŒCuãPbãBaOã»
xAl2O3ïŒEuïŒãã ãã0.8âŠïœâŠ10ïŒãããã³ã
Mãã»xSiO2ïŒïŒ¡ïŒãã ããMãã¯MgãCaãSrã
ZnãCdããŸãã¯Baã§ãããã¯CeãTbãEuã
TmãPbãTlãBiããŸãã¯Mnã§ãããïœã¯ã0.5
âŠïœâŠ2.5ã§ããïŒã
ç¹éæ55â12143å·å
¬å ±ã«èšèŒãããŠãã
ïŒBa1-x-yãMgxãCayïŒFXïŒaEu2+ïŒãã ãã
ã¯Clããã³Brã®ãã¡ã®å°ãªããšãäžã€ã§ããã
ïœããã³ïœã¯ãïŒâŠïœïŒïœâŠ0.6ããã€xyâ ïŒã§
ãããïœã¯ã10-6âŠïœâŠïŒÃ10-2ã§ããïŒããã
ã³ã
ç¹éæ55â12144å·å
¬å ±ã«èšèŒãããŠãã
LnOXïŒxAïŒãã ããLnã¯LaããGdãããã³
Luã®ãã¡å°ãªããšãäžãŠãã¯Clããã³Brã®ã
ã¡å°ãªããšãäžã€ãã¯Ceããã³Tbã®ãã¡ã®å°
ãªããšãäžã€ããããŠãïœã¯ãïŒïŒïœïŒ0.1ã§ã
ãïŒã
ãªã©ãæããããšãã§ããã Examples of such known stimulable phosphors include:
In addition to the above-mentioned phosphors, ZnS:Cu, Pb, BaO and
xAl 2 O 3 :Eu (however, 0.8âŠxâŠ10), and
MãOã»xSiO 2 :A (However, Mã is Mg, Ca, Sr,
Zn, Cd, or Ba, and A is Ce, Tb, Eu,
Tm, Pb, Tl, Bi, or Mn, and x is 0.5
âŠxâŠ2.5), (Ba 1-xy , Mgx, Cay) FX: aEu 2+ (However, X
is at least one of Cl and Br,
x and y are 0âŠx+yâŠ0.6 and xyâ 0, and a is 10 -6 âŠaâŠ5Ã10 -2 ), and as described in JP-A-55-12144. There is
LnOX:xA (Ln is La, Y, Gd, and
At least one of Lu, X is at least one of Cl and Br, A is at least one of Ce and Tb, and x is 0<x<0.1). .
éåžžã®æŸå°ç·åå€æããã«ã«ãããŠã¯ãåè¿°ã®
ããã«æ¯æäœã«æ¥ããåŽãšã¯å察åŽã®èå
äœå±€ã®
è¡šé¢ã«ãèå
äœå±€ãç©ççããã³ååŠçã«ä¿è·ã
ãããã®éæãªä¿è·èãèšããããŠããããã®ã
ããªéæä¿è·èã¯ãæ¬çºæã®æŸå°ç·åå€æããã«
ã«ã€ããŠãèšçœ®ããããšã奜ãŸããã In a normal radiation image storage panel, as mentioned above, a transparent protective film is provided on the surface of the phosphor layer on the side opposite to the side that contacts the support to physically and chemically protect the phosphor layer. It is being Such a transparent protective film is preferably provided also in the radiation image conversion panel of the present invention.
éæä¿è·èã¯ãããšãã°ãé
¢é
žã»ã«ããŒã¹ãã
ããã»ã«ããŒã¹ãªã©ã®ã»ã«ããŒã¹èªå°äœïŒããã
ã¯ããªã¡ãã«ã¡ã¿ã¯ãªã¬ãŒããããªããã«ããã©
ãŒã«ãããªããã«ãã«ããŒã«ãããªã«ãŒãããŒ
ããããªé
¢é
žããã«ãå¡©åããã«ã»é
¢é
žããã«ã³
ããªããŒãªã©ã®åæé«ååç©è³ªã®ãããªéæãªé«
ååç©è³ªãé©åœãªæº¶åªã«æº¶è§£ããŠèª¿è£œãã溶液ã
èå
äœå±€ã®è¡šé¢ã«å¡åžããæ¹æ³ã«ãã圢æããã
ãšãã§ããããããã¯ãããªãšãã¬ã³ãã¬ãã¿ã¬
ãŒããããªãšãã¬ã³ãããªå¡©åãããªãã³ãããª
ã¢ãããªã©ããå¥ã«åœ¢æããéæãªèèãèå
äœ
å±€ã®è¡šé¢ã«é©åœãªæ¥çå€ãçšããŠæ¥çãããªã©ã®
æ¹æ³ã«ãã€ãŠã圢æããããšãã§ããããã®ãã
ã«ããŠåœ¢æããéæä¿è·èã®èåã¯ãçŽ0.1ä¹è³
20ÎŒïœãšããã®ãæãŸããã The transparent protective film may be made of a transparent material such as a cellulose derivative such as cellulose acetate or nitrocellulose; or a synthetic polymer material such as polymethyl methacrylate, polyvinyl butyral, polyvinyl formal, polycarbonate, polyvinyl acetate, or vinyl chloride/vinyl acetate copolymer. It can be formed by coating the surface of the phosphor layer with a solution prepared by dissolving a polymeric substance in an appropriate solvent. Alternatively, it can also be formed by a method such as adhering a transparent thin film separately formed from polyethylene terephthalate, polyethylene, polyvinylidene chloride, polyamide, etc. to the surface of the phosphor layer using a suitable adhesive. The thickness of the transparent protective film formed in this way is approximately 0.1 to
It is desirable that the thickness be 20 ÎŒm.
次ã«æ¬çºæã®å®æœäŸãèšèŒããããã ãããã
ãã®åå®æœäŸã¯æ¬çºæãå¶éãããã®ã§ã¯ãªãã Next, examples of the present invention will be described. However, these examples do not limit the present invention.
å®æœäŸ ïŒ
å¡©åã©ã³ã¿ã³ïŒLaCl3ïŒ245.27ïœãèåã©ã³ã¿
ã³ïŒLaBr3ïŒ378.91ïœããã³é
žåã»ãªãŠã
ïŒCeO2ïŒ0.172ïœãèžçæ°ŽïŒH2OïŒ800mlã«æ·»å
ããæ··åããŠæ°Žæº¶æ¶²ãšããããã®æ°Žæº¶æ¶²ã60âã§
ïŒæéæžå§ä¹Ÿç¥ããåŸãããã«150âã§ïŒæéã®
ç空也ç¥ãè¡ãªã€ããExample 1 245.27 g of lanthanum chloride (LaCl 3 ), 378.91 g of lanthanum bromide (LaBr 3 ), and 0.172 g of cerium oxide (CeO 2 ) were added to 800 ml of distilled water (H 2 O) and mixed to form an aqueous solution. This aqueous solution was dried under reduced pressure at 60°C for 3 hours, and then further vacuum dried at 150°C for 3 hours.
次ã«ãåŸãããèå
äœåææ··åç©ãã¢ã«ããã«
ããã«å
å¡«ãããããé«æž©é»æ°çã«å
¥ããŠçŒæã
è¡ãªã€ããçŒæã¯ãäžé
žåççŽ ãå«ãäºé
žåççŽ
é°å²æ°äžã«ãŠ900âã®æž©åºŠã§1.5æéãããŠè¡ãªã€
ããçŒæãå®äºããã®ã¡çŒæç©ãçå€ã«åãåºã
ãŠå·åŽããããã®ããã«ããŠãç²æ«ç¶ã®ã»ãªãŠã
賊掻塩åèåã©ã³ã¿ã³èå
äœïŒLaCl3ã»LaBr3ïŒ
0.001Ce2+ïŒãåŸãã Next, the obtained phosphor raw material mixture was filled into an alumina crucible, which was then placed in a high-temperature electric furnace and fired. Firing was performed at a temperature of 900° C. for 1.5 hours in a carbon dioxide atmosphere containing carbon monoxide. After the firing was completed, the fired product was taken out of the furnace and cooled. In this way, powdered cerium-activated lanthanum chloride bromide phosphor (LaCl 3 / LaBr 3 :
0.001Ce 2+ ) was obtained.
å®æœäŸ ïŒ
å®æœäŸïŒã«ãããŠãå¡©åã©ã³ã¿ã³ããã³èåã©
ã³ã¿ã³ã®ä»£ãã«å¡©åã¬ããªããŠã ïŒGdCl3ïŒ
263.61ïœããã³èåã¬ããªããŠã ïŒGdBr3ïŒ
396.98ïœãçšããããšä»¥å€ã¯ãå®æœäŸïŒã®æ¹æ³ãš
åæ§ã®æäœãè¡ãªãããšã«ãããç²æ«ç¶ã®ã»ãªãŠ
ã 賊掻塩åèåã¬ããªããŠã èå
äœïŒGdCl3ã»
GdBr3ïŒ0.001Ce3+ïŒãåŸããExample 2 In Example 1, Gatrinium chloride (GdCl 3 ) was used instead of lanthanum chloride and lanthanum bromide.
263.61g and Gatrinium Bromide (GdBr 3 )
Powdered cerium-activated gatrinium chloride bromide phosphor ( GdCl3 .
GdBr 3 :0.001Ce 3+ ) was obtained.
次ã«ãå®æœäŸïŒã§åŸãããèå
äœã«ç®¡é»å§
80KVpã®ïŒžç·ãç
§å°ããåŸã450ã850nïœã®æ³¢é·
é åã®å
ã§å±èµ·ããæã®380nïœã®çºå
æ³¢é·ã«ã
ããèŒå°œå±èµ·ã¹ãã¯ãã«ã枬å®ããããã®çµæã
第ïŒå³ã«ç€ºãã Next, the tube voltage was applied to the phosphor obtained in Example 1.
After irradiating with 80 KVp of X-rays, the photostimulation excitation spectrum at an emission wavelength of 380 nm when excited with light in the wavelength range of 450 to 850 nm was measured. The results are shown in FIG.
第ïŒå³ã¯LaCl3ã»LaBr3ïŒ0.001Ce3+èå
äœã®èŒ
å°œå±èµ·ã¹ãã¯ãã«ã瀺ãå³ã§ããã FIG. 1 is a diagram showing the photostimulation excitation spectrum of LaCl 3 .LaBr 3 :0.001Ce 3+ phosphor.
ãŸããå®æœäŸïŒããã³ïŒã§åŸãããåèå
äœã«
管é»å§80KVpã®ïŒžç·ãç
§å°ããã®ã¡ãHeâNeã¬
ãŒã¶ãŒïŒæ³¢é·ïŒ632.8nïœïŒã§å±èµ·ãããšãã®èŒå°œ
çºå
ã¹ãã¯ãã«ã枬å®ããããã®çµæã第ïŒå³ã«
瀺ãã Furthermore, after irradiating each of the phosphors obtained in Examples 1 and 2 with X-rays at a tube voltage of 80 KVp, the stimulated emission spectra were measured when excited with a He--Ne laser (wavelength: 632.8 nm). The results are shown in FIG.
第ïŒå³ã«ãããŠæ²ç·ïŒïŒïŒã¯ããããã
ïŒïŒLaCl3ã»LaBr3ïŒ0.001Ce3+èå
äœå®æœäŸïŒ
ã®èŒå°œçºå
ã¹ãã¯ãã«
ïŒïŒGdCl3ã»GdBr3ïŒ0.001Ce3+èå
äœå®æœäŸïŒ
èŒå°œçºå
ã¹ãã¯ãã«
ã瀺ãã In Fig. 2, curves 1 and 2 are as follows: 1: LaCl 3ã»LaBr 3 : 0.001Ce 3+ Phosphor Example 1
Stimulated emission spectrum of 2: GdCl 3 / GdBr 3 : 0.001Ce 3+ Phosphor Example 2
The photostimulated emission spectrum is shown.
å®æœäŸ ïŒ
å®æœäŸïŒã«ãããŠãèåã©ã³ã¿ã³ã®éã
LaCl31ã¢ã«ã«äœããŠïŒã10.0ã¢ã«ã®ç¯å²ã§å€åã
ããããšä»¥å€ã¯ãå®æœäŸïŒãšåæ§ã®æäœãè¡ãªã
ããšã«ãããèåã©ã³ã¿ã³ã®å«æéã®ç°ãªãåçš®
ã®ã»ãªãŠã 賊掻塩åèåã©ã³ã¿ã³èå
äœ
ïŒLaCl3ã»aLaBr3ïŒ0.001Ce3+ïŒãåŸããExample 3 In Example 1, the amount of lanthanum bromide was
Various cerium-activated lanthanum chloride bromide fluorescent materials with different lanthanum bromide contents were obtained by performing the same operation as in Example 1 except that the amount was varied in the range of 0 to 10.0 mol based on 1 mol of LaCl 3 . A body (LaCl 3ã»aLaBr 3 :0.001Ce 3+ ) was obtained.
次ã«ãå®æœäŸïŒã§åŸãããåèå
äœã«ç®¡é»å§
80KVpã®ïŒžç·ãç
§å°ããã®ã¡ãHeâNeã¬ãŒã¶ãŒ
ïŒæ³¢é·ïŒ632.8nïœïŒã§å±èµ·ãããšãã®èŒå°œçºå
匷
床ã枬å®ããããã®çµæã第ïŒå³ã«ç€ºãã Next, the tube voltage was applied to each phosphor obtained in Example 3.
After irradiating with 80 KVp X-rays, the stimulated luminescence intensity was measured when excited with a He-Ne laser (wavelength: 632.8 nm). The results are shown in FIG.
第ïŒå³ã¯ãLaCl3ã»aLaBr3ïŒ0.001Ce3+èå
äœ
ã«ãããèåã©ã¿ã³ã®å«æéïŒïœå€ïŒãšèŒå°œçºå
匷床ãšã®é¢ä¿ã瀺ãã°ã©ãã§ããã FIG. 3 is a graph showing the relationship between the ratanium bromide content (a value) and the stimulated luminescence intensity in the LaCl 3 ·aLaBr 3 :0.001Ce 3+ phosphor.
å®æœäŸ ïŒ
å®æœäŸïŒã§åŸãããã»ãªãŠã 賊掻塩åèåã©ã³
ã¿ã³èå
äœïŒLaCl3ã»LaBr3ïŒ0.001Ce3+ïŒã®ç²å
ãšç·ç¶ããªãšã¹ãã«æš¹èãšã®æ··åç©ã«ã¡ãã«ãšã
ã«ã±ãã³ãæ·»å ããããã«ç¡å床11.5ïŒ
ã®ããã
ã»ã«ããŒã¹ãæ·»å ããŠèå
äœãåæ£ç¶æ
ã§å«æã
ãåæ£æ¶²ã調補ããã次ã«ããã®åæ£æ¶²ã«çé
žã
ãªã¯ã¬ãžã«ãïœâãã¿ããŒã«ããããŠã¡ãã¬ãšã
ã«ã±ãã³ãæ·»å ããã®ã¡ããããã©ãããµãŒãçš
ããŠå
åã«æ¹ææ··åããŠãèå
äœãåäžã«åæ£
ãããã€çµåå€ãšèå
äœãšã®æ··åæ¯ãïŒïŒ10ãç²
床ã25ã35PSïŒ25âïŒã®å¡åžæ¶²ã調補ãããExample 4 Methyl ethyl ketone was added to a mixture of particles of the cerium-activated lanthanum chloride bromide phosphor (LaCl 3 · LaBr 3 : 0.001Ce 3+ ) obtained in Example 1 and a linear polyester resin, and the nitrification degree was further increased to 11.5. % of nitrocellulose was added to prepare a dispersion containing the phosphor in a dispersed state. Next, tricresyl phosphate, n-butanol, and methylethyl ketone were added to this dispersion, and the mixture was thoroughly stirred and mixed using a propeller mixer to ensure that the phosphor was uniformly dispersed and that the binder and phosphor were mixed together. A coating liquid having a mixing ratio of 1:10 and a viscosity of 25 to 35 PS (25°C) was prepared.
次ã«ãã¬ã©ã¹æ¿äžã«æ°Žå¹³ã«çœ®ããäºé
žåãã¿ã³
ç·Žã蟌ã¿ããªãšãã¬ã³ãã¬ãã¿ã¬ãŒãã·ãŒãïŒæ¯
æäœãåã¿ïŒ250ÎŒïœïŒã®äžã«å¡åžæ¶²ããã¯ã¿ãŒ
ãã¬ãŒããçšããŠåäžã«å¡åžããããããŠå¡åžåŸ
ã«å¡èã圢æãããæ¯æäœã也ç¥åšå
ã«å
¥ããã
ã®ä¹Ÿç¥åšã®å
éšã®æž©åºŠã25âãã100âã«åŸã
ã«
äžæãããŠãå¡èã®ä¹Ÿç¥ãè¡ãªã€ãããã®ããã«
ããŠãæ¯æäœäžã«å±€åã250ÎŒïœã®èå
äœå±€ã圢
æããã Next, the coating solution was uniformly applied using a doctor blade onto a titanium dioxide-mixed polyethylene terephthalate sheet (support, thickness: 250 ÎŒm) placed horizontally on a glass plate. After coating, the support on which the coating film was formed was placed in a dryer, and the temperature inside the dryer was gradually raised from 25°C to 100°C to dry the coating film. In this way, a phosphor layer with a layer thickness of 250 ÎŒm was formed on the support.
ãããŠããã®èå
äœå±€ã®äžã«ããªãšãã¬ã³ãã¬
ãã¿ã¬ãŒãã®éæãã€ã«ã ïŒåã¿ïŒ12ÎŒïœãããª
ãšã¹ãã«ç³»æ¥çå€ãä»äžãããŠãããã®ïŒãæ¥ç
å€å±€åŽãäžã«åããŠçœ®ããŠæ¥çããããšã«ããã
éæä¿è·èã圢æããæ¯æäœãèå
äœå±€ããã³é
æä¿è·èããæ§æãããæŸå°ç·åå€æããã«ã補
é ããã Then, a transparent film of polyethylene terephthalate (thickness: 12 ÎŒm, coated with a polyester adhesive) is placed on top of this phosphor layer with the adhesive layer side facing down, and bonded.
A transparent protective film was formed to produce a radiation image storage panel composed of a support, a phosphor layer, and a transparent protective film.
å®æœäŸ ïŒ
å®æœäŸïŒã«ãããŠãèŒå°œæ§èå
äœãšããŠå®æœäŸ
ïŒã§åŸãããã»ãªãŠã 賊掻塩åèåã¬ããªããŠã
åžåé¡è€åããã²ã³åç©èå
äœïŒGdCl3ã»
GdBr3ïŒ0.001Ce3+ïŒãçšããããšä»¥å€ã¯å®æœäŸ
ïŒã®æ¹æ³ãšåæ§ã®åŠçãè¡ãªãããšã«ãããæ¯æ
äœãèå
äœå±€ããã³éæä¿è·èããæ§æãããæŸ
å°ç·åå€æããã«ã補é ãããExample 5 In Example 4, the cerium-activated gadolinium chloride bromide rare earth composite halide phosphor ( GdCl3 .
A radiation image conversion panel consisting of a support, a phosphor layer and a transparent protective film was produced by carrying out the same treatment as in Example 4 except for using GdBr 3 :0.001Ce 3+ ).
次ã«ãå®æœäŸïŒããã³ïŒã§åŸãããåæŸå°ç·å
å€æããã«ã«ã管é»å§80KVpã®ïŒžç·ãç
§å°ãã
ã®ã¡HeâNeã¬ãŒã¶ãŒå
ïŒæ³¢é·ïŒ632.8nïœïŒã§å±
èµ·ããŠãããã«ã®æ床ïŒèŒå°œçºå
èŒåºŠïŒã枬å®ã
ãããã®çµæã第ïŒè¡šã«ç€ºãããªã第ïŒè¡šã«ãã
ãŠãåããã«ã®æ床ã¯ãäžèšLnOBrïŒCe3+èå
äœãçšããããšä»¥å€ã¯å®æœäŸïŒãšåæ§ã®åŠçãè¡
ãªãããšã«ããåŸãããæŸå°ç·åå€æããã«ã®ã
åäžæ¡ä»¶äžã§æž¬å®ããæ床ã100ãšããçžå¯Ÿæ床
ã§ç€ºããŠããã Next, each radiation image conversion panel obtained in Examples 4 and 5 was irradiated with X-rays with a tube voltage of 80 KVp, and then excited with He-Ne laser light (wavelength: 632.8 nm) to determine the panel's sensitivity (brightness). The total luminescence brightness) was measured. The results are shown in Table 1. In Table 1, the sensitivity of each panel is that of the radiation image conversion panel obtained by performing the same treatment as in Example 4 except for using the above-mentioned LnOBr:Ce 3+ phosphor.
The relative sensitivity is shown with the sensitivity measured under the same conditions set as 100.
第ïŒè¡š çžå¯Ÿæ床 å®æœäŸïŒ 25 å®æœäŸïŒ 10 Table 1 Relative sensitivity Example 4 25 Example 5 10
第ïŒå³ã¯ãæ¬çºæã«çšããããã»ãªãŠã 賊掻åž
åé¡è€åããã²ã³åç©èå
äœã®å
·äœäŸã§ãã
LaCl3ã»LaBr3ïŒ0.001Ce3+èå
äœã®èŒå°œå±èµ·ã¹ã
ã¯ãã«ã瀺ãå³ã§ããã第ïŒå³ã¯ãæ¬çºæã«çšã
ãããã»ãªãŠã 賊掻åžåé¡è€åããã²ã³åç©èå
äœã®å
·äœäŸã§ããLaCl3ã»LaBr3ïŒ0.001Ce3+èå
äœããã³GdCl3ã»GdBr3ïŒ0.001Ce3+èå
äœã®èŒå°œ
çºå
ã¹ãã¯ãã«ïŒããããæ²ç·ïŒïŒïŒïŒã瀺ãå³
ã§ããã第ïŒå³ã¯ãæ¬çºæã«çšããããã»ãªãŠã
賊掻åžåé¡è€åããã²ã³åç©èå
äœã®å
·äœäŸã§ã
ãLaCl3ã»aLaBr3ïŒ0.001Ce3+èå
äœã«ãããïœ
å€ãšèŒå°œçºå
匷床ãšã®é¢ä¿ã瀺ãã°ã©ãã§ããã
第ïŒå³ã¯ãæ¬çºæã®æŸå°ç·åå€ææ¹æ³ã説æãã
æŠç¥å³ã§ããã
ïŒïŒïŒæŸå°ç·çºçè£
眮ãïŒïŒïŒè¢«åäœãïŒïŒïŒ
æŸå°ç·åå€æããã«ãïŒïŒïŒå
æºãïŒïŒïŒå
é»å€
æè£
眮ãïŒïŒïŒç»ååçè£
眮ãïŒïŒïŒç»å衚瀺è£
眮ãïŒïŒïŒãã€ã«ã¿ãŒã
Figure 1 is a specific example of the cerium-activated rare earth composite halide phosphor used in the present invention.
It is a figure showing the photostimulation excitation spectrum of LaCl 3 .LaBr 3 :0.001Ce 3+ phosphor. Figure 2 shows the brightness of LaCl 3 .LaBr 3 :0.001Ce 3+ phosphor and GdCl 3 .GdBr 3 :0.001Ce 3+ phosphor, which are specific examples of the cerium-activated rare earth composite halide phosphor used in the present invention. FIG. 2 is a diagram showing exhaust emission spectra (curves 1 and 2, respectively). Figure 3 shows the a of LaCl 3ã»aLaBr 3 :0.001Ce 3+ phosphor, which is a specific example of the cerium-activated rare earth composite halide phosphor used in the present invention.
It is a graph showing the relationship between the value and the stimulated luminescence intensity.
FIG. 4 is a schematic diagram illustrating the radiation image conversion method of the present invention. 11: Radiation generator, 12: Subject, 13:
Radiation image conversion panel, 14: light source, 15: photoelectric conversion device, 16: image reproduction device, 17: image display device, 18: filter.
Claims (1)
ãããæŸå°ç·ããäžèšçµæåŒïŒïŒã§è¡šãããã
ã»ãªãŠã 賊掻åžåé¡è€åããã²ã³åç©èå äœã«åž
åãããåŸããã®èå äœã«450ã850nïœã®æ³¢é·é
åã®é»ç£æ³¢ãç §å°ããããšã«ããã該èå äœã«è
ç©ãããŠããæŸå°ç·ãšãã«ã®ãŒãèå ãšããŠæŸåº
ããããããŠãã®èå ãæ€åºããããšãç¹åŸŽãšã
ãæŸå°ç·åå€ææ¹æ³ã çµæåŒïŒïŒïŒ LnX3ã»aLnâ²Xâ²3ïŒxCe3+ ïŒïŒ ïŒãã ããLnããã³Lnâ²ã¯ããããLaããã³Gd
ãããªã矀ããéžã°ããå°ãªããšãäžçš®ã®åžåé¡
å çŽ ã§ããïŒïŒžããã³Xâ²ã¯ããããClããã³Br
ãããªã矀ããéžã°ããå°ãªããšãäžçš®ã®ããã²
ã³ã§ãã€ãŠããã€ïŒžâ Xâ²ã§ããïŒãããŠïœã¯0.1
âŠïœâŠ10.0ã®ç¯å²ã®æ°å€ã§ãããïœã¯ïŒïŒïœâŠ
0.2ã®ç¯å²ã®æ°å€ã§ããïŒ ïŒ çµæåŒïŒïŒã«ãããïœã0.25âŠïœâŠ5.0ã®
ç¯å²ã®æ°å€ã§ããç¹èš±è«æ±ã®ç¯å²ç¬¬ïŒé èšèŒã®æŸ
å°ç·åå€ææ¹æ³ã ïŒ çµæåŒïŒïŒã«ãããïœãïŒã§ããç¹èš±è«æ±
ã®ç¯å²ç¬¬ïŒé èšèŒã®æŸå°ç·åå€ææ¹æ³ã ïŒ çµæåŒïŒïŒã«ãããïœã10-5âŠïœâŠ10-2ã®
ç¯å²ã®æ°å€ã§ããç¹èš±è«æ±ã®ç¯å²ç¬¬ïŒé èšèŒã®æŸ
å°ç·åå€ææ¹æ³ã ïŒ äžèšé»ç£æ³¢ã450ã700nïœã®æ³¢é·é åã®é»ç£
æ³¢ã§ããç¹èš±è«æ±ã®ç¯å²ç¬¬ïŒé èšèŒã®æŸå°ç·åå€
ææ¹æ³ã ïŒ äžèšé»ç£æ³¢ãã¬ãŒã¶ãŒå ã§ããç¹èš±è«æ±ã®ç¯
å²ç¬¬ïŒé èšèŒã®æŸå°ç·åå€ææ¹æ³ã ïŒ æ¯æäœãšããã®æ¯æäœäžã«èšããããèŒå°œæ§
èå äœãåæ£ç¶æ ã§å«ææ¯æããçµåå€ãããªã
èå äœå±€ãšããå®è³ªçã«æ§æãããŠããã該èå
äœå±€ããäžèšçµæåŒïŒïŒã§è¡šããããã»ãªãŠã
賊掻åžåé¡è€åããã²ã³åç©èå äœãå«æããã
ãšãç¹åŸŽãšããæŸå°ç·åå€æããã«ã çµæåŒïŒïŒïŒ LnX3ã»aLnâ²Xâ²3ïŒxCe3+ ïŒïŒ ïŒãã ããLnããã³Lnâ²ã¯ããããLaããã³Gd
ãããªã矀ããéžã°ããå°ãªããšãäžçš®ã®åžåé¡
å çŽ ã§ããïŒïŒžããã³Xâ²ã¯ããããClããã³Br
ãããªã矀ããéžã°ããå°ãªããšãäžçš®ã®ããã²
ã³ã§ãã€ãŠããã€ïŒžâ Xâ²ã§ããïŒãããŠïœã¯0.1
âŠïœâŠ10.0ã®ç¯å²ã®æ°å€ã§ãããïœã¯ïŒïŒïœâŠ
0.2ã®ç¯å²ã®æ°å€ã§ããïŒ ïŒ çµæåŒïŒïŒã«ãããïœã0.25âŠïœâŠ5.0ã®
ç¯å²ã®æ°å€ã§ããç¹èš±è«æ±ã®ç¯å²ç¬¬ïŒé èšèŒã®æŸ
å°ç·åå€æããã«ã ïŒ çµæåŒïŒïŒã«ãããïœãïŒã§ããç¹èš±è«æ±
ã®ç¯å²ç¬¬ïŒé èšèŒã®æŸå°ç·åå€æããã«ã ïŒïŒ çµæåŒïŒïŒã«ãããïœã10-5âŠïœâŠ10-2
ã®ç¯å²ã®æ°å€ã§ããç¹èš±è«æ±ã®ç¯å²ç¬¬ïŒé èšèŒã®
æŸå°ç·åå€æããã«ã[Claims] 1. After the radiation transmitted through the subject or emitted from the subject is absorbed into a cerium-activated rare earth composite halide phosphor represented by the following compositional formula (), this phosphor is 1. A radiation image conversion method, comprising: emitting radiation energy stored in the phosphor as fluorescence by irradiating electromagnetic waves in a wavelength range of 850 nm, and detecting this fluorescence. Compositional formula (): LnX 3ã»aLnâ²Xâ² 3 :xCe 3+ () (However, Ln and Lnâ² are La and Gd, respectively.
at least one rare earth element selected from the group consisting of; X and X' are Cl and Br, respectively;
at least one halogen selected from the group consisting of, and Xâ Xâ²; and a is 0.1
A numerical value in the range of âŠaâŠ10.0, and x is 0<xâŠ
2. The radiation image conversion method according to claim 1, wherein a in the compositional formula () is a numerical value in the range of 0.25âŠaâŠ5.0. 3. The radiation image conversion method according to claim 1, wherein a in the compositional formula () is 1. 4. The radiation image conversion method according to claim 1, wherein x in the compositional formula () is a numerical value in the range of 10 -5 âŠxâŠ10 -2 . 5. The radiation image conversion method according to claim 1, wherein the electromagnetic wave is an electromagnetic wave in a wavelength range of 450 to 700 nm. 6. The radiation image conversion method according to claim 1, wherein the electromagnetic wave is a laser beam. 7 Substantially composed of a support and a phosphor layer provided on the support and made of a binder containing and supporting the stimulable phosphor in a dispersed state, and the phosphor layer has the following composition: A radiation image conversion panel characterized by containing a cerium-activated rare earth composite halide phosphor represented by the formula (). Compositional formula (): LnX 3ã»aLnâ²Xâ² 3 :xCe 3+ () (However, Ln and Lnâ² are La and Gd, respectively.
at least one rare earth element selected from the group consisting of; X and X' are Cl and Br, respectively;
at least one halogen selected from the group consisting of, and Xâ Xâ²; and a is 0.1
It is a numerical value in the range of âŠaâŠ10.0, and x is 0<xâŠ
8. The radiation image conversion panel according to claim 7, wherein a in the compositional formula () is a numerical value in the range of 0.25âŠaâŠ5.0. 9. The radiation image conversion panel according to claim 7, wherein a in the compositional formula () is 1. 10 x in composition formula () is 10 -5 âŠxâŠ10 -2
The radiation image conversion panel according to claim 7, wherein the radiation image conversion panel has a numerical value in the range of .
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14201184A JPS6121180A (en) | 1984-07-09 | 1984-07-09 | Method of converting radiation image and panel for converting radiation image to be used therefor |
US07/029,382 US4761347A (en) | 1984-07-09 | 1987-03-23 | Phosphor and radiation image storage panel containing the same |
US07/154,288 US4780611A (en) | 1984-07-09 | 1988-02-10 | Radiation image recording and reproducing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14201184A JPS6121180A (en) | 1984-07-09 | 1984-07-09 | Method of converting radiation image and panel for converting radiation image to be used therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6121180A JPS6121180A (en) | 1986-01-29 |
JPH0526838B2 true JPH0526838B2 (en) | 1993-04-19 |
Family
ID=15305297
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14201184A Granted JPS6121180A (en) | 1984-07-09 | 1984-07-09 | Method of converting radiation image and panel for converting radiation image to be used therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6121180A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL1014401C2 (en) * | 2000-02-17 | 2001-09-04 | Stichting Tech Wetenschapp | Cerium-containing inorganic scintillator material. |
US7084403B2 (en) * | 2003-10-17 | 2006-08-01 | General Electric Company | Scintillator compositions, and related processes and articles of manufacture |
FR2869115B1 (en) * | 2004-04-14 | 2006-05-26 | Saint Gobain Cristaux Detecteu | RARE EARTH-BASED SCINTILLATOR MATERIAL WITH REDUCED NUCLEAR BACKGROUND NOISE |
EP2091883B1 (en) | 2006-12-14 | 2011-02-16 | DSM IP Assets B.V. | D1364 bt secondary coating on optical fiber |
US8426020B2 (en) | 2006-12-14 | 2013-04-23 | Dsm Ip Assets B.V. | D1381 supercoatings for optical fiber |
-
1984
- 1984-07-09 JP JP14201184A patent/JPS6121180A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6121180A (en) | 1986-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5198679A (en) | Phosphor and image storage panel | |
JPS5975200A (en) | Radiation image conversion and radiation image conversion panel used therefor | |
US4835398A (en) | Phosphor, Radiation image recording and reproducing method and radiation image storage panel | |
JPH0214394B2 (en) | ||
US4780611A (en) | Radiation image recording and reproducing method | |
JPH089716B2 (en) | Phosphor, radiation image conversion method and radiation image conversion panel | |
JPH0475951B2 (en) | ||
US4999515A (en) | Radiation image recording and reproducing method | |
JPH0526838B2 (en) | ||
JPH0475949B2 (en) | ||
JPS60139781A (en) | Phosphor and radiation image converting panel using the same | |
JPH0214393B2 (en) | ||
JPH0460515B2 (en) | ||
JPH0554639B2 (en) | ||
US4891277A (en) | Phosphor, and radiation image storage panel | |
JPS60217354A (en) | Process for converting image of radiation | |
JPH0248596B2 (en) | ||
JPH0548276B2 (en) | ||
JPH0195183A (en) | Technique for radiation image transformation | |
JPH0527675B2 (en) | ||
JPH0526836B2 (en) | ||
JPH0662948B2 (en) | Radiation image conversion method and radiation image conversion panel used in the method | |
JPS60141781A (en) | Conversion of radiation image | |
JPH0625348B2 (en) | Radiation image conversion method and radiation image conversion panel used in the method | |
JPH0460151B2 (en) |