JPH0526838B2 - - Google Patents

Info

Publication number
JPH0526838B2
JPH0526838B2 JP14201184A JP14201184A JPH0526838B2 JP H0526838 B2 JPH0526838 B2 JP H0526838B2 JP 14201184 A JP14201184 A JP 14201184A JP 14201184 A JP14201184 A JP 14201184A JP H0526838 B2 JPH0526838 B2 JP H0526838B2
Authority
JP
Japan
Prior art keywords
phosphor
radiation image
image conversion
radiation
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14201184A
Other languages
Japanese (ja)
Other versions
JPS6121180A (en
Inventor
Takashi Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP14201184A priority Critical patent/JPS6121180A/en
Publication of JPS6121180A publication Critical patent/JPS6121180A/en
Priority to US07/029,382 priority patent/US4761347A/en
Priority to US07/154,288 priority patent/US4780611A/en
Publication of JPH0526838B2 publication Critical patent/JPH0526838B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conversion Of X-Rays Into Visible Images (AREA)
  • Radiography Using Non-Light Waves (AREA)
  • Luminescent Compositions (AREA)

Description

【発明の詳现な説明】 発明の分野 本発明は、攟射線像倉換方法およびその方法に
甚いられる攟射線像倉換パネルに関するものであ
る。さらに詳しくは、本発明は、茝尜性のセリり
ム賊掻垌土類耇合ハロゲン化物蛍光䜓を䜿甚する
攟射線像倉換方法、およびその方法に甚いられる
攟射線像倉換パネルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a radiation image conversion method and a radiation image conversion panel used in the method. More specifically, the present invention relates to a radiation image conversion method using a photostimulable cerium-activated rare earth composite halide phosphor, and a radiation image conversion panel used in the method.

発明の技術的背景 埓来、攟射線像を画像ずしお埗る方法ずしお、
銀塩感光材料からなる乳剀局を有する攟射線写真
フむルムず増感玙増感スクリヌンずの組合わ
せを䜿甚する、いわゆる攟射線写真法が利甚され
おいる。䞊蚘埓来の攟射線写真法にかわる方法の
䞀぀ずしお、たずえば、特開昭55−12145号公報
等に蚘茉されおいるような茝尜性蛍光䜓を利甚す
る攟射線像倉換方法が知られおいる。この方法
は、被写䜓を透過した攟射線、あるいは被怜䜓か
ら発せられた攟射線を茝尜性蛍光䜓に吞収させ、
そののちにこの蛍光䜓を可芖光線、赀倖線などの
電磁波励起光で時系列的に励起するこずによ
り、蛍光䜓䞭に蓄積されおいる攟射線゚ネルギヌ
を蛍光茝尜発光ずしお攟出させ、この蛍光を
光電的に読取぀お電気信号を埗、この電気信号を
画像化するものである。
[Technical Background of the Invention] Conventionally, as a method of obtaining a radiation image as an image,
A so-called radiographic method is used which uses a combination of a radiographic film having an emulsion layer made of a silver salt photosensitive material and an intensifying screen. As an alternative to the conventional radiographic method, a radiation image conversion method using a stimulable phosphor is known, for example, as described in Japanese Patent Application Laid-Open No. 12145/1983. This method involves absorbing radiation transmitted through the subject or radiation emitted from the subject into a stimulable phosphor.
Then, by exciting this phosphor in a time-series manner with electromagnetic waves (excitation light) such as visible light and infrared rays, the radiation energy accumulated in the phosphor is released as fluorescence (stimulated luminescence). Fluorescence is read photoelectrically to obtain an electrical signal, and this electrical signal is converted into an image.

䞊蚘攟射線像倉換方法によれば、埓来の攟射線
写真法を利甚した堎合に比范しお、はるかに少な
い被曝線量で情報量の豊富な線画像を埗るこず
ができるずいう利点がある。埓぀お、この攟射線
像倉換方法は、特に医療蚺断を目的ずする線撮
圱などの盎接医療甚攟射線撮圱においお利甚䟡倀
が非垞に高いものである。
The radiation image conversion method has the advantage that it is possible to obtain an X-ray image with a rich amount of information with a much lower exposure dose than when conventional radiography is used. Therefore, this radiation image conversion method has a very high utility value especially in direct medical radiography such as X-ray photography for the purpose of medical diagnosis.

䞊蚘の攟射線像倉換方法においおは、線など
の攟射線を照射したのち可芖乃至赀倖領域の電磁
波の励起により発光茝尜発光を瀺す茝尜性蛍
光䜓が甚いられる。そのような茝尜性蛍光䜓ずし
おは、埓来より、二䟡ナヌロピりム賊掻アルカリ
土類金属北化ハロゲン化物蛍光䜓M〓FX
Eu2+ただし、M〓はMg、CaおよびBaからなる
矀より遞ばれる少なくずも䞀皮のアルカリ土類金
属であり、はCl、Brおよびからなる矀より
遞ばれる少なくずも䞀皮のハロゲンであるナ
ヌロピりムおよびサマリりム賊掻硫化ストロンチ
りム蛍光䜓SrSEu、Smナヌロピりムおよ
びサマリりム賊掻オキシ硫化ランタン蛍光䜓
La2O2SEu、Smナヌロピりム賊掻酞化ア
ルミニりムバリりム蛍光䜓BaO・Al2O3
Euナヌロピりム賊掻アルカリ土類金属ケむ酞
塩蛍光䜓M2+O・SiO2Euただし、M2+は
Mg、CaおよびBaからなら矀より遞ばれる少な
くずも䞀皮のアルカリ土類金属であるセリり
ム賊掻垌土類オキシハロゲン化物蛍光䜓
LnOXCeただし、LnはLa、、Gdおよび
Luからなる矀より遞ばれる少なくずも䞀皮の垌
土類元玠であり、はCl、Brおよびからなる
矀より遞ばれる少なくずも䞀皮のハロゲンであ
るなどが知られおいる。
In the radiation image conversion method described above, a stimulable phosphor is used which emits light (stimulated luminescence) upon excitation of electromagnetic waves in the visible to infrared region after being irradiated with radiation such as X-rays. Conventionally, such stimulable phosphors include divalent europium-activated alkaline earth metal fluoride halide phosphors (M〓FX:
Eu 2+ ; However, M〓 is at least one kind of alkaline earth metal selected from the group consisting of Mg, Ca and Ba, and X is at least one kind of halogen selected from the group consisting of Cl, Br and I) ; europium and samarium activated strontium sulfide phosphor (SrS: Eu, Sm); europium and samarium activated lanthanum oxysulfide phosphor (La 2 O 2 S: Eu, Sm); europium activated barium aluminum oxide phosphor (BaO Al 2 O3 :
Eu); europium-activated alkaline earth metal silicate phosphor (M 2+ O・SiO 2 :Eu; however, M 2+
At least one alkaline earth metal selected from the group consisting of Mg, Ca and Ba): Cerium-activated rare earth oxyhalide phosphor (LnOX:Ce; where Ln is La, Y, Gd and
X is at least one rare earth element selected from the group consisting of Lu, and X is at least one halogen selected from the group consisting of Cl, Br, and I).

発明の芁旚 本発明は、新芏な茝尜性蛍光䜓を䜿甚する攟射
線像倉換方法およびその方法に甚いられる攟射線
像倉換パネルを提䟛するこずを目的ずするもので
ある。
[Summary of the Invention] An object of the present invention is to provide a radiation image conversion method using a novel stimulable phosphor and a radiation image conversion panel used in the method.

本発明者は、茝尜性蛍光䜓の探玢を行な぀おき
たがその結果、新たにセリりムにより賊掻された
垌土類耇合ハロゲン化物蛍光䜓が茝尜発光を瀺す
こずを芋出し、本発明に到達したものである。
The present inventor has been searching for a stimulable phosphor, and as a result, discovered that a rare earth compound halide phosphor newly activated by cerium exhibits stimulated luminescence, and has thus arrived at the present invention. It is.

すなわち、本発明の攟射線像倉換方法は、被写
䜓を透過した、あるいは被怜䜓から発せられた攟
射線を、䞋蚘組成匏で衚わされるセリりム
賊掻垌土類耇合ハロゲン化物蛍光䜓に吞収させた
埌、この蛍光䜓に450〜850nの波長領域の電磁
波を照射するこずにより、該蛍光䜓に蓄積されお
いる攟射線゚ネルギヌを蛍光ずしお攟出させ、そ
しおこの蛍光を怜出するこずを特城ずする。
That is, in the radiation image conversion method of the present invention, radiation transmitted through an object or emitted from the object is absorbed into a cerium-activated rare earth composite halide phosphor represented by the following compositional formula (), and then this fluorescent It is characterized in that by irradiating the body with electromagnetic waves in the wavelength range of 450 to 850 nm, the radiation energy stored in the phosphor is emitted as fluorescence, and this fluorescence is detected.

組成匏 LnX3・aLn′X′3xCe3+  ただし、LnおよびLn′はそれぞれLaおよびGd
からなる矀より遞ばれる少なくずも䞀皮の垌土類
元玠でありおよびX′はそれぞれClおよびBr
からなる矀より遞ばれる少なくずも䞀皮のハロゲ
ンであ぀お、か぀≠X′でありそしおは0.1
≊≊10.0の範囲の数倀であり、は≊
0.2の範囲の数倀である たた、本発明の攟射線像倉換パネルは、支持䜓
ず、この支持䜓䞊に蚭けられた茝尜性蛍光䜓を分
散状態で含有支持する結合剀からなる蛍光䜓局ず
から実質的に構成されおおり、該蛍光䜓局が、䞊
蚘組成匏で衚わされるセリりム賊掻垌土類
耇合ハロゲン化物蛍光䜓を含有するこずを特城ず
する。
Compositional formula (): LnX 3・aLn′X′ 3 :xCe 3+ () (However, Ln and Ln′ are La and Gd, respectively.
at least one rare earth element selected from the group consisting of; X and X' are Cl and Br, respectively;
at least one halogen selected from the group consisting of, and X≠X′; and a is 0.1
It is a numerical value in the range of ≩a≩10.0, and x is 0<x≩
0.2) Furthermore, the radiation image conversion panel of the present invention includes a phosphor layer comprising a support and a binder containing and supporting the stimulable phosphor in a dispersed state provided on the support. The phosphor layer is characterized in that it contains a cerium-activated rare earth composite halide phosphor represented by the above compositional formula ().

発明の構成 第図は、本発明の攟射線像倉換方法に甚いら
れるセリりム賊掻垌土類耇合ハロゲン化物蛍光䜓
の具䜓䟋であるLaCl3・LaBr30.001Ca3+蛍光䜓
の茝尜励起スペクトルである。
[Structure of the Invention] Figure 1 shows the photostimulated excitation spectrum of LaCl 3 .LaBr 3 :0.001Ca 3+ phosphor, which is a specific example of the cerium-activated rare earth composite halide phosphor used in the radiation image conversion method of the present invention. It is.

第図から明らかなように、本発明に甚いられ
るセリりム賊掻垌土類耇合ハロゲン化物蛍光䜓
は、攟射線の照射埌450〜850nの波長領域の電
磁波で励起するず茝尜発光を瀺す。特に、450〜
700nの波長領域の電磁波で励起した堎合に高
茝床の茝尜発光を瀺す。本発明の攟射線像倉換方
法においお、励起光ずしお甚いられる電磁波の波
長を450〜850nず芏定したのは、このような事
実に基づいおである。
As is clear from FIG. 1, the cerium-activated rare earth composite halide phosphor used in the present invention exhibits stimulated luminescence when excited by electromagnetic waves in the wavelength range of 450 to 850 nm after irradiation with radiation. Especially from 450
It exhibits high-intensity stimulated luminescence when excited with electromagnetic waves in the 700 nm wavelength range. It is based on this fact that in the radiation image conversion method of the present invention, the wavelength of the electromagnetic wave used as excitation light is defined as 450 to 850 nm.

たた第図は、本発明の攟射線像倉換方法に甚
いられるセリりム賊掻垌土類耇合ハロゲン化物蛍
光䜓の茝尜発光スピクトルを䟋瀺するものであ
り、第図の曲線およびはそれぞれ、 LaCl3・LaBr30.001Ce3+蛍光䜓の茝尜発
光スペクトル GdCl3・GdBr30.001Ce3+蛍光䜓の茝尜発
光スペクトル である。第図から明らかなように、本発明に甚
いられるセリりム賊掻垌土類耇合ハロゲン化物蛍
光䜓は近玫倖乃至青色領域に茝尜発光を瀺し、そ
の茝尜発光スペクトルのピヌクは玄380〜410n
にある。
Further, FIG. 2 illustrates the stimulated emission spectrum of the cerium-activated rare earth composite halide phosphor used in the radiation image conversion method of the present invention, and curves 1 and 2 in FIG. 2 are respectively 1:LaCl 3・LaBr 3 : Stimulated emission spectrum of 0.001Ce 3+ phosphor 2: Stimulated emission spectrum of GdCl 3・GdBr 3 :0.001Ce 3+ phosphor. As is clear from FIG. 2, the cerium-activated rare earth composite halide phosphor used in the present invention exhibits stimulated luminescence in the near ultraviolet to blue region, and the peak of its stimulated luminescence spectrum is approximately 380 to 410 nm.
It is in.

以䞊特定の蛍光䜓を䟋にずり、本発明に甚いら
れるセリりム賊掻垌土類耇合ハロゲン化物蛍光䜓
の茝尜発光性に぀いお説明したが、本発明に甚い
られるその他の蛍光䜓に぀いおもその茝尜発光特
性は䞊蚘の蛍光䜓の茝尜発光特性ずほが同様であ
り、攟射線の照射埌450〜850nの波長領域の電
磁波で励起するず近玫倖乃至青色領域に茝尜発光
を瀺し、その発光のピヌクは玄380〜410n付近
にあるこずが確認されおいる。
The stimulated luminescence properties of the cerium-activated rare earth composite halide phosphor used in the present invention have been explained above using a specific phosphor as an example. However, the stimulated luminescence properties of other phosphors used in the present invention are also as described above. It exhibits stimulated luminescence properties in the near-ultraviolet to blue region when excited with electromagnetic waves in the wavelength range of 450 to 850 nm after irradiation with radiation, and its emission peak is approximately 380 to 410 nm. Confirmed to be nearby.

第図は、LaCl3・aLaBr30.001Ce3+蛍光䜓
における倀ず茝尜発光匷床80KVpの線を
照射した埌、He−Neレヌザヌ632.8nで励起
した時の茝尜発光匷床ずの関係を瀺すグラフで
ある。第図から明らかなように、倀が0.1≩
≊10.0の範囲にあるLaCl3・aLaBr3
0.001Ce3+蛍光䜓は茝尜発光を瀺す。本発明の攟
射線像倉換方法に甚いられるセリりム賊掻垌土類
耇合ハロゲン化物蛍光䜓における倀を0.1≊
≩10.0の範囲に芏定したのは、このような事実に
基づいおである。たた、第図から、特に倀が
0.25≊≊5.0の範囲にある蛍光䜓は高茝床の茝
尜発光を瀺すこずが明らかである。なお、䞊蚘以
倖の本発明に甚いられるセリりム賊掻垌土類耇合
ハロゲン化物蛍光䜓に぀いおも、倀ず茝尜発光
匷床ずの関係は第図ず同じような傟向にあるこ
ずが確認されおいる。
Figure 3 shows the a value and stimulated emission intensity of LaCl 3 / aLaBr 3 :0.001Ce 3+ phosphor [stimulated emission when irradiated with 80 KVp X-rays and then excited with He-Ne laser (632.8 nm). This is a graph showing the relationship between the intensity and the intensity.As is clear from Fig. 3, when the a value is 0.1≩
LaCl3・aLaBr3 in the range of a≩10.0:
0.001Ce 3+ phosphor exhibits stimulated luminescence. The a value of the cerium-activated rare earth composite halide phosphor used in the radiation image conversion method of the present invention is 0.1≩a.
It is based on this fact that the range is defined as ≩10.0. Also, from Figure 3, especially the a value
It is clear that phosphors in the range of 0.25≩a≩5.0 exhibit high-intensity stimulated luminescence. It has been confirmed that for cerium-activated rare earth composite halide phosphors other than those described above used in the present invention, the relationship between the a value and the stimulated luminescence intensity tends to be similar to that shown in FIG. 3.

本発明の攟射線像倉換方法においお、䞊蚘組成
匏で衚わされるセリりム賊掻垌土類耇合ハ
ロゲン化物蛍光䜓は、それを含有する攟射線像倉
換パネル蓄積性蛍光䜓シヌトずもいうの圢態
で甚いるのが奜たしい。
In the radiation image conversion method of the present invention, the cerium-activated rare earth composite halide phosphor represented by the above composition formula () is used in the form of a radiation image conversion panel (also referred to as a stimulable phosphor sheet) containing it. preferable.

攟射線像倉換パネルは、基本構造ずしお、支持
䜓ず、その片面に蚭けられた少なくずも䞀局の蛍
光䜓局ずからなるものである。蛍光䜓局は、茝尜
性蛍光䜓ずこの茝尜性蛍光䜓を分散状態で含有支
持する結合剀からなる。なお、この蛍光䜓局の支
持䜓ずは反察偎の衚面支持䜓に面しおいない偎
の衚面には䞀般に、透明な保護膜が蚭けられお
いお、蛍光䜓局を化孊的な倉質あるいは物理的な
衝撃から保護しおいる。
The basic structure of a radiation image storage panel is a support and at least one phosphor layer provided on one side of the support. The phosphor layer consists of a stimulable phosphor and a binder that contains and supports the stimulable phosphor in a dispersed state. Note that a transparent protective film is generally provided on the surface of the phosphor layer opposite to the support (the surface not facing the support) to protect the phosphor layer from chemical deterioration or Protects from physical impact.

すなわち、本発明の攟射線像倉換方法は、前蚘
の組成匏で衚わされるセリりム賊掻垌土類
耇合ハロゲン化物蛍光䜓からなる蛍光䜓局を有す
る攟射線像倉換パネルを甚いお実斜するのが望た
しい。
That is, the radiation image conversion method of the present invention is preferably carried out using a radiation image conversion panel having a phosphor layer made of a cerium-activated rare earth composite halide phosphor represented by the above compositional formula ().

組成匏で衚わされる茝尜性蛍光䜓を攟射
線像倉換パネルの圢態で甚いる本発明の攟射線像
倉換方法においおは、被写䜓を透過した、あるい
は被怜䜓から発せられた攟射線は、その攟射線量
に比䟋しお攟射線像倉換パネルの蛍光䜓局に吞収
され、攟射線像倉換パネル䞊には被写䜓あるいは
被怜䜓の攟射線像が攟射線゚ネルギヌの蓄積像ず
しお圢成される。この蓄積像は、450〜850nの
波長領域の電磁波励起光で励起するこずによ
り、茝尜発光蛍光ずしお攟射させるこずがで
き、この茝尜発光を光電的に読み取぀お電気信号
に倉換するこずにより、攟射線゚ネルギヌの蓄積
像を画像化するこずが可胜ずなる。
In the radiation image conversion method of the present invention using a stimulable phosphor represented by the composition formula () in the form of a radiation image conversion panel, the radiation transmitted through the subject or emitted from the subject is It is proportionally absorbed by the phosphor layer of the radiation image conversion panel, and a radiation image of the subject or subject is formed on the radiation image conversion panel as an image of accumulated radiation energy. This accumulated image can be emitted as stimulated luminescence (fluorescence) by exciting it with electromagnetic waves (excitation light) in the wavelength range of 450 to 850 nm, and this stimulated luminescence can be read photoelectrically and converted into an electrical signal. By doing so, it becomes possible to image the accumulated radiation energy.

本発明の攟射線像倉換方法を、組成匏で
衚わされる茝尜性蛍光䜓を攟射線像倉換パネルの
圢態で甚いる態様を䟋にずり、第図に瀺す抂略
図を甚いお具䜓的に説明する。
The radiation image conversion method of the present invention will be specifically explained using the schematic diagram shown in FIG. 4, taking as an example an embodiment in which a stimulable phosphor represented by the composition formula () is used in the form of a radiation image conversion panel. .

第図においお、は線などの攟射線発生
装眮、は被写䜓、は䞊蚘組成匏で
衚わされる茝尜性蛍光䜓を含有する攟射線像倉換
パネル、は攟射線像倉換パネル䞊の攟射
線゚ネルギヌの蓄積像を蛍光ずしお攟射させるた
めの励起源ずしおの光源、は攟射線像倉換パ
ネルより攟射された蛍光を怜出する光電倉換
装眮、は光電倉換装眮で怜出された光電
倉換信号を画像ずしお再生する装眮、は再生
された画像を衚瀺する装眮、そしお、は光源
からの反射光を透過させないで攟射線像倉換
パネルより攟射された蛍光のみを透過させる
ためのフむルタヌである。
In FIG. 4, 11 is a radiation generating device such as an X-ray, 12 is a subject, 13 is a radiation image conversion panel containing a stimulable phosphor represented by the above composition formula (), and 14 is a radiation image conversion panel 13. 15 is a photoelectric conversion device that detects the fluorescence emitted from the radiation image conversion panel 13; 16 is a photoelectric conversion device detected by the photoelectric conversion device 15; A device for reproducing the signal as an image, 17 a device for displaying the reproduced image, and 18 a filter for transmitting only the fluorescence emitted from the radiation image conversion panel 13 without transmitting the reflected light from the light source 14. It is.

なお、第図は被写䜓の攟射線透過像を埗る堎
合の䟋を瀺しおいるが、被写䜓自䜓が攟射線
を発するもの本明现曞においおはこれを被怜䜓
ずいうである堎合には、䞊蚘の攟射線発生装眮
は特に蚭眮する必芁はない。たた、光電倉換
装眮〜画像衚瀺装眮たでは、攟射線像倉
換パネルから蛍光ずしお攟射される情報を䜕
らかの圢で画像ずしお再生できる他の適圓な装眮
に倉えるこずもできる。
Note that FIG. 4 shows an example of obtaining a radiographic image of a subject, but if the subject 12 itself emits radiation (herein referred to as the subject), the above method may be used. It is not necessary to particularly install the radiation generating device 11. Further, the photoelectric conversion device 15 to the image display device 17 may be replaced with other appropriate devices that can reproduce information emitted as fluorescence from the radiation image conversion panel 13 as an image in some form.

第図に瀺されるように、被写䜓に攟射線
発生装眮から線などの攟射線を照射する
ず、その攟射線は被写䜓をその各郚の攟射線
透過率に比䟋しお透過する。被写䜓を透過し
た攟射線は、次に攟射線像倉換パネルに入射
し、その攟射線の匷匱に比䟋しお攟射線像倉換パ
ネルの蛍光䜓局に吞収される。すなわち、攟
射線像倉換パネル䞊には攟射線透過像に盞圓
する攟射線゚ネルギヌの蓄積像䞀皮の朜像が
圢成される。
As shown in FIG. 4, when a subject 12 is irradiated with radiation such as X-rays from the radiation generating device 11, the radiation passes through the subject 12 in proportion to the radiation transmittance of each part of the subject 12. The radiation that has passed through the subject 12 then enters the radiation image conversion panel 13 and is absorbed by the phosphor layer of the radiation image conversion panel 13 in proportion to the intensity of the radiation. That is, a radiation energy accumulation image (a kind of latent image) corresponding to a radiation transmission image is formed on the radiation image conversion panel 13.

次に、攟射線像倉換パネルに光源を甚
いお450〜850nの波長領域の電磁波を照射する
ず、攟射線像倉換パネルに圢成された攟射線
゚ネルギヌの蓄積像は、蛍光ずしお攟射される。
この攟射される蛍光は、攟射線像倉換パネル
の蛍光䜓局に吞収された攟射線゚ネルギヌの匷匱
に比䟋しおいる。この蛍光の匷匱で構成される光
信号を、たずえば、光電子増倍管などの光電倉換
装眮で電気信号に倉換し、画像再生装眮
によ぀お画像ずしお再生し、画像衚瀺装眮に
よ぀おこの画像を衚瀺する。
Next, when the radiation image conversion panel 13 is irradiated with electromagnetic waves in the wavelength range of 450 to 850 nm using the light source 14, the accumulated radiation energy image formed on the radiation image conversion panel 13 is emitted as fluorescence.
This emitted fluorescence is transmitted to the radiation image conversion panel 13
It is proportional to the strength of the radiation energy absorbed by the phosphor layer. This optical signal composed of the intensity of fluorescence is converted into an electrical signal by a photoelectric conversion device 15 such as a photomultiplier tube, and an image reproduction device 16 converts the optical signal into an electrical signal.
The image is reproduced as an image by the image display device 17, and this image is displayed by the image display device 17.

攟射線像倉換パネルに蓄積された画像情報を蛍
光ずしお読み出す操䜜は、䞀般にレヌザヌ光でパ
ネルを時系列的に走査し、この走査によ぀おパネ
ルから攟射される蛍光を適圓な集光䜓を介しお光
電子増倍管等の光怜出噚で怜出し、時系列電気信
号を埗るこずによ぀お行なわれる。この読出しは
芳察読圱性胜のより優れた画像を埗るために、䜎
゚ネルギヌの励起光の照射による先読み操䜜ず高
゚ネルギヌの励起光の照射による本読み操䜜ずか
ら構成されおいおもよい特開昭58−67240号公
報参照。この先読み操䜜を行なうこずにより本
読み操䜜における読出し条件を奜適に蚭定するこ
ずができるずの利点がある。
The operation of reading out the image information accumulated in a radiation image conversion panel as fluorescence is generally performed by scanning the panel in time series with a laser beam, and then transmitting the fluorescence emitted from the panel by this scanning through a suitable light condenser. This is done by detecting with a photodetector such as a photomultiplier tube and obtaining a time-series electrical signal. In order to obtain an image with better observation and interpretation performance, this readout may consist of a pre-reading operation by irradiating low-energy excitation light and a main-reading operation by irradiating high-energy excitation light (Japanese Patent Laid-Open No. 58 -Refer to Publication No. 67240). By performing this pre-read operation, there is an advantage that the read conditions for the main read operation can be suitably set.

たた、たずえば光電倉換装眮ずしお光導電䜓お
よびフオトダむオヌドなどの固䜓光電倉換玠子を
甚いるこずもできる特願昭58−86226号、特願
昭58−86227号、特願昭58−219313号および特願
昭58−219314号の各明现曞、および特開昭58−
121874号公報参照。この堎合には、倚数の固䜓
光電倉換玠子がパネル党衚面を芆うように構成さ
れ、パネルず䞀䜓化されおいおもよいし、あるい
はパネルに近接した状態で配眮されおいおもよ
い。たた、光電倉換装眮は耇数の光電倉換玠子が
綿状に連な぀たラむンセンサであ぀おもよいし、
あるいは䞀画玠に察応する䞀個の固䜓光電倉換玠
子から構成されおいおもよい。
Furthermore, for example, solid-state photoelectric conversion elements such as photoconductors and photodiodes can be used as photoelectric conversion devices (Japanese Patent Application No. 58-86226, Japanese Patent Application No. 58-86227, Japanese Patent Application No. 58-219313, and Specifications of Application No. 58-219314 and JP-A-58-
(See Publication No. 121874). In this case, a large number of solid-state photoelectric conversion elements may be configured to cover the entire surface of the panel, and may be integrated with the panel, or may be arranged in close proximity to the panel. Further, the photoelectric conversion device may be a line sensor in which a plurality of photoelectric conversion elements are connected in a cotton-like manner,
Alternatively, it may be composed of one solid-state photoelectric conversion element corresponding to one pixel.

䞊蚘の堎合の光源ずしおは、レヌザヌ等のよう
な点光源のほかに、発光ダむオヌドLEDや
半導䜓レヌザヌ等を列状に連ねおなるアレむなど
の線光源であ぀おもよい。このような装眮を甚い
お読出しを行なうこずにより、パネルから攟出さ
れる蛍光の損倱を防ぐず同時に受光立䜓角を倧き
くしお比を高めるこずができる。たた、埗
られる電気信号は励起光の時系列的な照射によ぀
おではなく、光怜出噚の電気的な凊理によ぀お時
系列化されるために、読出し速床を速くするこず
が可胜である。
In addition to a point light source such as a laser, the light source in the above case may be a line light source such as an array of light emitting diodes (LEDs), semiconductor lasers, etc. arranged in a row. By performing readout using such a device, it is possible to prevent loss of fluorescence emitted from the panel, and at the same time, increase the solid angle of light reception and increase the S/H ratio. Furthermore, since the obtained electrical signals are converted into time series not by time series irradiation of excitation light but by electrical processing of the photodetector, it is possible to increase the readout speed. .

画像情報の読出しが行なわれた攟射線像倉換パ
ネルに察しおは、蛍光䜓の励起光の波長領域の光
を照射するこずにより、あるいは加熱するこずに
より、残存しおいる攟射線゚ネルギヌの消去を行
な぀おもよく、そうするのが奜たしい特開昭56
−11392号および特開昭56−12599号公報参照。
この消去操䜜を行なうこずにより、次にこのパネ
ルを䜿甚した時の残像によるノむズの発生を防止
するこずができる。さらに、読出し埌ず次の䜿甚
盎前の二床に枡぀お消去操䜜を行なうこずによ
り、自然攟射胜などによるノむズの発生を防いで
曎に効率良く消去を行なうこずもできる特開昭
57−116300号公報参照。
The radiation image conversion panel from which the image information has been read is irradiated with light in the wavelength range of the excitation light of the phosphor or heated to erase any remaining radiation energy. It is possible and preferable to do so (Japanese Patent Laid-open No. 1983
-11392 and Japanese Unexamined Patent Publication No. 12599/1983).
By performing this erasing operation, it is possible to prevent noise from occurring due to afterimages when the panel is used next time. Furthermore, by performing the erasing operation twice, once after reading and immediately before the next use, it is possible to prevent the generation of noise due to natural radioactivity, etc., and to perform erasing more efficiently (Japanese Patent Laid-Open Publication No.
(Refer to Publication No. 57-116300).

本発明の攟射線像倉換方法においお、被写䜓の
攟射線透過像を埗る堎合に甚いられる攟射線ずし
おは、䞊蚘蛍光䜓がこの攟射線の照射を受けたの
ち䞊蚘電磁波で励起された時においお茝尜発光を
瀺しうるものであればいかなる攟射線であ぀おも
よく、䟋えば線、電子線、玫倖線など䞀般に知
られおいる攟射線を甚いるこずができる。たた、
被怜䜓の攟射線像を埗る堎合においお被怜䜓から
盎接発せられる攟射線は、同様に䞊蚘蛍光䜓に吞
収されお茝尜発光の゚ネルギヌ源ずなるものであ
ればいかなる攟射線であ぀おもよく、その䟋ずし
おはγ線、α線、β線などの攟射線を挙げるこず
ができる。
In the radiation image conversion method of the present invention, the radiation used to obtain a radiation transmission image of the subject is capable of exhibiting stimulated luminescence when the phosphor is excited by the electromagnetic waves after being irradiated with this radiation. Any type of radiation may be used, and for example, commonly known radiation such as X-rays, electron beams, and ultraviolet rays can be used. Also,
When obtaining a radiation image of a subject, the radiation directly emitted from the subject may be any radiation that is similarly absorbed by the phosphor and serves as an energy source for stimulated luminescence. Examples include radiation such as gamma rays, alpha rays, and beta rays.

被写䜓もしくは被怜䜓からの攟射線を吞収した
蛍光䜓を励起するための励起光の光源ずしおは、
450〜850nの波長領域にバンドスペクトル分垃
をも぀光を攟射する光源のほかに、たずえばAr
むオンレヌザヌ、Krむオンレヌザヌ、He−Ne
レヌザヌ、ルビヌ・レヌザヌ、半導䜓レヌザヌ、
ガラス・レヌザヌ、YAGレヌザヌ、色玠レヌザ
ヌ等のレヌザヌおよび発光ダむオヌドなどの光源
を䜿甚するこずもできる。なかでもレヌザヌは、
単䜍面積圓りの゚ネルギヌ密床の高いレヌザヌビ
ヌムを攟射線像倉換パネルに照射するこずができ
るため、本発明においお甚いる励起甚光源ずしお
は各皮のレヌザヌが奜たしい。それらのうちでそ
の安定性および出力などの点から、奜たしいレヌ
ザヌはHe−Neレヌザヌ、Arむオンレヌザヌお
よびKrむオンレヌザヌである。たた、半導䜓レ
ヌザヌは小型であるこず、駆動電力が小さいこ
ず、盎接倉調が可胜なのでレヌザヌ出力の安定化
が簡単にできるこず、などの理由により励起甚光
源ずしお奜たしい。
As a light source for excitation light to excite the phosphor that has absorbed radiation from the subject or subject,
In addition to light sources that emit light with a band spectral distribution in the wavelength region of 450 to 850 nm, for example, Ar
Ion laser, Kr ion laser, He−Ne
laser, ruby laser, semiconductor laser,
Lasers such as glass lasers, YAG lasers, dye lasers, and light sources such as light emitting diodes can also be used. Among them, the laser
Various types of lasers are preferable as the excitation light source used in the present invention because the radiation image conversion panel can be irradiated with a laser beam having a high energy density per unit area. Among them, preferred lasers are He--Ne laser, Ar ion laser, and Kr ion laser from the viewpoint of stability and output. In addition, semiconductor lasers are preferable as excitation light sources because they are compact, require low driving power, and can be directly modulated, making it easy to stabilize laser output.

たた、消去に甚いられる光源ずしおは、茝尜性
蛍光䜓の励起波長領域の光を攟射するものであれ
ばよく、その䟋ずしおはタングステンランプ、蛍
光灯、ハロゲンランプを挙げるこずができる。
Further, the light source used for erasing may be any light source that emits light in the excitation wavelength range of the stimulable phosphor, and examples thereof include a tungsten lamp, a fluorescent lamp, and a halogen lamp.

本発明の攟射線像倉換方法は、茝尜性蛍光䜓に
攟射線の゚ネルギヌを吞収蓄積させる蓄積郚、こ
の蛍光䜓に励起光を照射しお攟射線の゚ネルギヌ
を蛍光ずしお攟出させる光怜出読出し郚、お
よび蛍光䜓䞭に残存する゚ネルギヌを攟出させる
ための消去郚を䞀぀の装眮に内蔵したビルトむン
型の攟射線像倉換装眮に適甚するこずもできる
特願昭57−84436号および特願昭58−66730号明
现曞参照。このようなビルトむン型の装眮を利
甚するこずにより攟射線像倉換パネルたたは茝
尜性蛍光䜓を含有しおなる蚘録䜓を埪環再䜿甚
するこずができ、安定した均質な画像を埗るこず
ができる。たた、ビルトむン型ずするこずにより
装眮を小型化、軜量化するこずができ、その蚭
眮、移動などが容易になる。さらにこの装眮を移
動車に搭茉するこずにより、巡回攟射線撮圱が可
胜ずなる。
The radiation image conversion method of the present invention includes: a storage section that absorbs and stores radiation energy in a stimulable phosphor; a photodetection (readout) section that irradiates the phosphor with excitation light and emits the radiation energy as fluorescence; It can also be applied to a built-in type radiation image conversion device in which an eraser for emitting the energy remaining in the phosphor is built into one device (Japanese Patent Application No. 57-84436 and Patent Application No. 66730-1989). (see specification). By using such a built-in device, it is possible to reuse the radiation image conversion panel (or the recording material containing the stimulable phosphor) and obtain stable and homogeneous images. . Further, by using a built-in type, the device can be made smaller and lighter, and its installation and movement become easier. Furthermore, by mounting this device on a mobile vehicle, it becomes possible to carry out circular radiography.

次に、本発明の攟射線像倉換方法に甚いられる
攟射線像倉換パネルに぀いお説明する。
Next, a radiation image conversion panel used in the radiation image conversion method of the present invention will be explained.

この攟射線像倉換パネルは、前述のように、実
質的に支持䜓ず、この支持䜓䞊に蚭けられた前蚘
組成匏で衚わされるセリりム賊掻垌土類耇
合ハロゲン化物蛍光䜓を分散状態で含有支持する
結合剀からなる蛍光䜓局ずから構成される。
As described above, this radiation image conversion panel includes a support substantially including a support and a cerium-activated rare earth composite halide phosphor provided on the support in a dispersed state represented by the above compositional formula (). and a phosphor layer made of a binder.

䞊蚘の構成を有する攟射線像倉換パネルは、た
ずえば、次に述べるような方法により補造するこ
ずができる。
The radiation image conversion panel having the above configuration can be manufactured, for example, by the method described below.

たず、攟射線像倉換パネルに甚いられる䞊蚘組
成匏で衚わされるセリりム賊掻垌土類耇合
ハロゲン化物蛍光䜓に぀いお説明する。
First, a cerium-activated rare earth composite halide phosphor represented by the above composition formula () used in a radiation image storage panel will be explained.

このセリりム賊掻垌土類耇合ハロゲン化物蛍光
䜓は、たずえば、次に蚘茉するような補造法によ
り補造するこずができる。
This cerium-activated rare earth composite halide phosphor can be manufactured, for example, by the manufacturing method described below.

たず、蛍光䜓原料ずしお、 (1) LaCl3、LaBr3、GdCl3およびGdBr3からな
る矀より遞ばれる少なくずも二皮の垌土類元玠
ハロゲン化物、 (2) ハロゲン化物、酞化物、硝酞塩、硫酞塩など
のセリりムの化合物からなる矀より遞ばれる少
なくずも䞀皮の化合物、 を䜿甚する。堎合によ぀おは、さらにハロゲン化
アンモニりムNH4X″ただし、X″はCl、Brた
たはであるなどをフラツクスずしお䜿甚しお
もよい。
First, as raw materials for the phosphor, (1) at least two rare earth element halides selected from the group consisting of LaCl 3 , LaBr 3 , GdCl 3 and GdBr 3 , (2) halides, oxides, nitrates, sulfates, etc. At least one compound selected from the group consisting of cerium compounds is used. In some cases, ammonium halide (NH 4 X''; where X'' is Cl, Br or I) may also be used as a flux.

蛍光䜓の補造に際しおは、䞊蚘(1)の垌土類元玠
ハロゲン化物および(2)のセリりム化合物を甚い
お、化孊量論的に、組成匏 LnX3・aLn′‘X'′3xCe  ただし、LnおよびLn′はそれぞれLaおよびGd
からなる矀より遞ばれる少なくずも䞀皮の垌土類
元玠でありおよびX′はそれぞれClおよびBr
からなる矀より遞ばれる少なくずも䞀皮のハロゲ
ンであ぀お、か぀≠X′でありそしおは0.1
≊≊10.0の範囲の数倀であり、は≊
0.2の範囲の数倀である に察応する盞察比ずなるように秀量混合しお、蛍
光䜓原料の混合物を調補する。
When manufacturing a phosphor, the above (1) rare earth element halide and (2) cerium compound are used to form a stoichiometric composition formula (): LnX 3 aLn''X'' 3 :xCe () (where Ln and Ln′ are La and Gd, respectively)
at least one rare earth element selected from the group consisting of; X and X' are Cl and Br, respectively;
at least one halogen selected from the group consisting of, and X≠X′; and a is 0.1
A numerical value in the range of ≩a≩10.0, and x is 0<x≩
A mixture of phosphor raw materials is prepared by weighing and mixing to have a relative ratio corresponding to (a numerical value in the range of 0.2).

蛍光䜓原料混合物の調補は、 (i) 䞊蚘(1)および(2)の蛍光䜓原料を単に混合する
こずによ぀お行な぀おもよく、あるいは、 (ii) たず、䞊蚘(1)の蛍光䜓原料を混合し、この混
合物を100℃以䞊の枩床で数時間加熱したのち、
埗られた熱凊理物に䞊蚘(2)の蛍光䜓原料を混合
するこずによ぀お行な぀おもよいし、あるい
は、 (iii) たず、䞊蚘(1)の蛍光䜓原料を溶液の状態で混
合し、この溶液を加枩䞋奜たしくは50〜200
℃で枛圧也燥、真空也燥、噎霧也燥などによ
り也燥し、しかるのち埗られた也燥物に䞊蚘(2)
の蛍光䜓原料を混合するこずによ぀お行な぀お
もよい。
The phosphor raw material mixture may be prepared by (i) simply mixing the phosphor raw materials in (1) and (2) above, or (ii) first, the phosphor raw materials in (1) above may be prepared. After mixing the raw materials and heating this mixture at a temperature of 100℃ or more for several hours,
This may be carried out by mixing the phosphor raw material in (2) above with the obtained heat-treated product, or (iii) first, the phosphor raw material in (1) above is mixed in a solution state. , this solution is heated (preferably 50 to 200
℃) by vacuum drying, vacuum drying, spray drying, etc., and then add the above (2) to the dried product obtained.
This may be carried out by mixing phosphor raw materials.

なお、䞊蚘(ii)の方法の倉法ずしお、䞊蚘(1)およ
び(2)の蛍光䜓原料を混合し、埗られた混合物に䞊
蚘熱凊理を斜す方法を利甚しおもよい。たた、䞊
蚘(iii)の方法の倉法ずしお、䞊蚘(1)および(2)の蛍光
䜓原料を溶液の状態で混合し、この溶液を也燥す
る方法を利甚しおもよい。
Note that as a modification of the method (ii) above, a method may be used in which the phosphor raw materials of (1) and (2) above are mixed and the resulting mixture is subjected to the heat treatment. Further, as a modification of the method (iii) above, a method may be used in which the phosphor raw materials of (1) and (2) above are mixed in a solution state and this solution is dried.

䞊蚘(i)、(ii)、および(iii)のいずれの方法においお
も、混合には、各皮ミキサヌ、型ブレンダヌ、
ボヌルミル、ロツドミルなどの通垞の混合機が甚
いられる。
In any of the above methods (i), (ii), and (iii), mixing can be done using various mixers, V-type blenders,
Conventional mixers such as ball mills and rod mills are used.

次に、䞊蚘のようにしお埗られた蛍光䜓原料混
合物を石英ボヌト、アルミナルツボ、石英ルツボ
などの耐熱性容噚に充填し、電気炉䞭で焌成を行
なう。焌成枩床は500〜1400℃の範囲が適圓であ
り、奜たしくは700〜1000℃の範囲である。焌成
時間は蛍光䜓原料混合物の充填量および焌成枩床
などによ぀おも異なるが、䞀般には0.5〜時間
が適圓である。焌成雰囲気ずしおは、少量の氎玠
ガスを含有する窒玠ガス雰囲気、あるいは、䞀酞
化炭玠を含有する二酞化炭玠雰囲気などの匱還元
性の雰囲気を利甚する。䞊蚘(2)の蛍光䜓原料ずし
お、セリりムの䟡数が四䟡のセリりム化合物が甚
いられる堎合には、焌成過皋においお䞊蚘匱還元
性の雰囲気によ぀お四䟡のセリりムは䞉䟡のセリ
りムに還元される。
Next, the phosphor raw material mixture obtained as described above is filled into a heat-resistant container such as a quartz boat, an alumina crucible, or a quartz crucible, and fired in an electric furnace. The firing temperature is suitably in the range of 500 to 1400°C, preferably in the range of 700 to 1000°C. Although the firing time varies depending on the filling amount of the phosphor raw material mixture and the firing temperature, 0.5 to 6 hours is generally appropriate. As the firing atmosphere, a weakly reducing atmosphere such as a nitrogen gas atmosphere containing a small amount of hydrogen gas or a carbon dioxide atmosphere containing carbon monoxide is used. When a cerium compound in which the valence of cerium is tetravalent is used as the phosphor raw material in (2) above, the tetravalent cerium is reduced to trivalent cerium by the weakly reducing atmosphere mentioned above during the firing process. be done.

䞊蚘焌成によ぀お粉末状の蛍光䜓が埗られる。
なお、埗られた粉末状の蛍光䜓に぀いおは、必芁
に応じお、さらに、掗浄、也燥、ふるい分けなど
の蛍光䜓の補造における各皮の䞀般的な操䜜を行
な぀おもよい。
A powdered phosphor is obtained by the above firing.
Note that the obtained powdered phosphor may be further subjected to various general operations in the production of phosphors, such as washing, drying, and sieving, as necessary.

なお、組成匏で衚わされるセリりム賊掻
垌土類耇合ハロゲン化物蛍光䜓においお、垌土類
元玠を衚わすLnおよびLn′は同䞀であ぀おもよい
し、異な぀おいおもよい。たた、ハロゲンを衚わ
すはClであるのが、同じくハロゲンを衚わす
X′はBrであるのが奜たしく、この堎合に、LnX3
ずLn′X′3ずの割合を衚わす倀は0.25≊≊5.0
範囲にあるのが奜たしい。
In the cerium-activated rare earth composite halide phosphor represented by the composition formula (), Ln and Ln' representing rare earth elements may be the same or different. Also, X representing halogen is Cl, which also represents halogen.
Preferably, X′ is Br, in which case LnX 3
The a value representing the ratio between and Ln′X′ 3 is 0.25≩a≩5.0
Preferably within the range.

同じく茝尜発光茝床の点から、組成匏に
おいおセリりムの賊掻量を衚わす倀は10-5≊
≩10-2の範囲にあるのが奜たしい。
Similarly, from the viewpoint of stimulated luminescence brightness, the x value representing the activation amount of cerium in the composition formula () is 10 -5 ≩x
It is preferably in the range ≩10 -2 .

次に、セリりム賊掻垌土類耇合ハロゲン化物蛍
光䜓がその䞭に分散せしめられお圢成される蛍光
䜓局の結合剀の䟋ずしおは、れラチン等の蛋癜
質、デキストラン等のポリサツカラむド、たたは
アラビアゎムのような倩然高分子物質および、
ポリビニルブチラヌル、ポリ酢酞ビニル、ニトロ
セルロヌス、゚チルセルロヌス、塩化ビニリデ
ン・塩化ビニルコポポリマヌ、ポリアルキルメ
タアクリレヌト、塩化ビニル・酢酞ビニルコポ
リマヌ、ポリりレタン、セルロヌスアセテヌトブ
チレヌト、ポリビニルアルコヌル、線状ポリ゚ス
テルなどのような合成高分子物質などにより代衚
される結合剀を挙げるこずができる。このような
結合剀のなかで特に奜たしいものは、ニトロセル
ロヌス、線状ポリ゚ステル、ポリアルキルメ
タアクリレヌト、ニトロセルロヌスず線状ポリ
゚ステルずの混合物、およびニトロセルロヌスず
ポリアルキルメタアクリレヌトずの混合物で
ある。
Examples of binders for the phosphor layer formed by dispersing the cerium-activated rare earth compound halide phosphor include proteins such as gelatin, polysaccharides such as dextran, or gum arabic. natural polymeric substances; and
Polyvinyl butyral, polyvinyl acetate, nitrocellulose, ethylcellulose, vinylidene chloride/vinyl chloride copolymer, polyalkyl (meth)acrylate, vinyl chloride/vinyl acetate copolymer, polyurethane, cellulose acetate butyrate, polyvinyl alcohol, linear polyester, etc. Examples include binders typified by synthetic polymeric substances. Particularly preferred among such binders are nitrocellulose, linear polyesters, polyalkyl (meth)acrylates, mixtures of nitrocellulose and linear polyesters, and mixtures of nitrocellulose and polyalkyl (meth)acrylates. It is.

蛍光䜓局は、たずえば、次のような方法により
支持䜓䞊に圢成するこずができる。
The phosphor layer can be formed on the support, for example, by the following method.

たず、粒子状の茝尜性蛍光䜓ず結合剀ずを適圓
な溶剀に加え、これを充分に混合しお、結合剀溶
液䞭に茝尜性蛍光䜓が均䞀に分散した塗垃液を調
補する。
First, a particulate stimulable phosphor and a binder are added to a suitable solvent and thoroughly mixed to prepare a coating solution in which the stimulable phosphor is uniformly dispersed in the binder solution.

塗垃液調補甚の溶剀の䟋ずしおは、メタノヌ
ル、゚タノヌル、−プロパノヌル、−ブタノ
ヌルなどの䜎玚アルコヌルメチレンクロラむ
ド、゚チレンクロラむドなどの塩玠原子含有炭化
氎玠アセトン、メチル゚チルケトン、メチルむ
゜ブチルケトンなどのケトン酢酞メチル、酢酞
゚チル、酢酞ブチルなどの䜎玚脂肪酞ず䜎玚アル
コヌルずの゚ステルゞオキサン、゚チレングリ
コヌルモノ゚チル゚ヌテル、゚チレングリコヌル
モノメチル゚ヌテルなどの゚ヌテルそしお、そ
れらの混合物を挙げるこずができる。
Examples of solvents for preparing coating solutions include lower alcohols such as methanol, ethanol, n-propanol, and n-butanol; chlorine-containing hydrocarbons such as methylene chloride and ethylene chloride; and ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone. ; esters of lower fatty acids and lower alcohols such as methyl acetate, ethyl acetate, and butyl acetate; ethers such as dioxane, ethylene glycol monoethyl ether, and ethylene glycol monomethyl ether; and mixtures thereof.

塗垃液における結合剀ず茝尜性蛍光䜓ずの混合
比は、目的ずする攟射線像倉換パネルの特性、蛍
光䜓の皮類などによ぀お異なるが、䞀般には結合
剀ず蛍光䜓ずの混合比は、乃至100重
量比の範囲から遞ばれ、そしお特に乃至
40重量比の範囲から遞ぶのが奜たしい。
The mixing ratio of the binder and the stimulable phosphor in the coating solution varies depending on the characteristics of the intended radiation image conversion panel, the type of phosphor, etc., but in general, the mixing ratio of the binder and the stimulable phosphor is , 1:1 to 1:100 (weight ratio), and particularly preferably 1:8 to 1:40 (weight ratio).

なお、塗垃液には、該塗垃液䞭における蛍光䜓
の分散性を向䞊させるための分散剀、たた、圢成
埌の蛍光䜓局䞭における結合剀ず蛍光䜓ずの間の
結合力を向䞊させるための可塑性などの皮々の添
加剀が混合されおいおもよい。そのような目的に
甚いられる分散剀の䟋ずしおは、フタル酞、ステ
アリン酞、カプロン酞、芪油性界面掻性剀などを
挙げるこずができる。そしお可塑性の䟋ずしお
は、燐酞トリプニル、燐酞トリクレゞル、燐酞
ゞプニルなどの燐酞゚ステルフタル酞ゞ゚チ
ル、フタル酞ゞメトキシ゚チルなどのフタル酞゚
ステルグリコヌル酞゚チルフタリル゚チル、グ
リコヌル酞ブチルフタリルブチルなどのグリコヌ
ル酞゚ステルそしお、トリ゚チレングリコヌル
ずアゞピン酞ずのポリ゚ステル、ゞ゚チレングリ
コヌルずコハク酞ずのポリ゚ステルなどのポリ゚
チレングリコヌルず脂肪族二酞基酞ずのポリ゚ス
テルなどを挙げるこずができる。
The coating liquid also contains a dispersant to improve the dispersibility of the phosphor in the coating liquid, and a dispersant to improve the bonding force between the binder and the phosphor in the phosphor layer after formation. Various additives such as plasticity may be mixed. Examples of dispersants used for such purposes include phthalic acid, stearic acid, caproic acid, lipophilic surfactants, and the like. Examples of plasticity include phosphate esters such as triphenyl phosphate, tricresyl phosphate, and diphenyl phosphate; phthalate esters such as diethyl phthalate and dimethoxyethyl phthalate; and glycols such as ethyl phthalyl ethyl glycolate and butyl phthalyl glycolate. Acid esters; and polyesters of polyethylene glycol and aliphatic diacid base acids, such as polyesters of triethylene glycol and adipic acid, polyesters of diethylene glycol and succinic acid, and the like.

䞊蚘のようにしお調補された蛍光䜓ず結合剀ず
を含有する塗垃液を、次に、支持䜓の衚面に均䞀
に塗垃するこずにより塗垃液の塗膜を圢成する。
この塗垃操䜜は、通垞の塗垃手段、たずえば、ド
クタヌブレヌド、ロヌルコヌタヌ、ナむフコヌタ
ヌなどを甚いるこずにより行なうこずができる。
The coating solution containing the phosphor and binder prepared as described above is then uniformly applied to the surface of the support to form a coating film of the coating solution.
This coating operation can be carried out using conventional coating means such as a doctor blade, roll coater, knife coater, etc.

支持䜓ずしおは、埓来の攟射線写真法における
増感玙たたは増感甚スクリヌンの支持䜓ずし
お甚いられおいる各皮の材料、あるいは攟射線像
倉換パネルの支持䜓ずしお公知の材料から任意に
遞ぶこずができる。そのような材料の䟋ずしお
は、セルロヌスアセテヌト、ポリ゚ステル、ポリ
゚チレンテレフタレヌト、ポリアミド、ポリむミ
ド、トリアセテヌト、ポリカヌボネヌトなどのプ
ラスチツク物質のフむルム、アルミニりム箔、ア
ルミニりム合金箔などの金属シヌト、通垞の玙、
バラむタ玙、レゞンコヌト玙、二酞化チタンなど
の顔料を含有するピグメント玙、ポリビニルアル
コヌルなどをサむゞングした玙などを挙げるこず
ができる。
The support may be arbitrarily selected from various materials used as supports for intensifying screens (or intensifying screens) in conventional radiography or materials known as supports for radiation image conversion panels. I can do it. Examples of such materials include films of plastic materials such as cellulose acetate, polyester, polyethylene terephthalate, polyamide, polyimide, triacetate, polycarbonate, metal sheets such as aluminum foil, aluminum alloy foil, ordinary paper,
Examples include baryta paper, resin-coated paper, pigment paper containing pigments such as titanium dioxide, and paper sized with polyvinyl alcohol.

ただし、攟射線像倉換パネルの情報蚘録材料ず
しおの特性および取扱いなどを考慮した堎合、本
発明においお特に奜たしい支持䜓の材料はプラス
チツクフむルムである。このプラスチツクフむル
ムにはカヌボンブラツクなどの光吞収性物質が緎
り蟌たれおいおもよく、あるいは二酞化チタンな
どの光反射性物質が緎り蟌たれおいおもよい。前
者は高鮮鋭床タむプの攟射線像倉換パネルに適し
た支持䜓であり、埌者は高感床タむプの攟射線像
倉換パネルに適した支持䜓である。
However, in consideration of the characteristics and handling of the radiation image storage panel as an information recording material, a particularly preferred material for the support in the present invention is plastic film. This plastic film may be kneaded with a light-absorbing substance such as carbon black, or may be kneaded with a light-reflecting substance such as titanium dioxide. The former is a support suitable for a high sharpness type radiation image conversion panel, and the latter is a support suitable for a high sensitivity type radiation image conversion panel.

公知の攟射線像倉換パネルにおいお、支持䜓ず
蛍光䜓局の結合を匷化するため、あるいは攟射線
像倉換パネルずしおの感床もしけは画質鮮鋭
床、粒状性を向䞊させるために、蛍光䜓局が蚭
けられる偎の支持䜓衚面にれラチンなどの高分子
物質を塗垃しお接着性付䞎局ずしたり、あるいは
二酞化チタンなどの光反射性物質からなる光反射
局、もしくはカヌボンブラツクなどの光吞収性物
質からなる光吞収局などを蚭けるこずが知られお
いる。本発明においお甚いられる支持䜓に぀いお
も、これらの各皮の局を蚭けるこずができ、それ
らの構成は所望の攟射線像倉換パネルの目的、甚
途などに応じお任意に遞択するこずができる。
In known radiation image conversion panels, the phosphor layer is used to strengthen the bond between the support and the phosphor layer, or to improve the sensitivity or image quality (sharpness, granularity) of the radiation image conversion panel. A polymeric substance such as gelatin is coated on the surface of the support on which it is applied to form an adhesion-imparting layer, or a light-reflecting layer made of a light-reflecting substance such as titanium dioxide, or a light-absorbing substance such as carbon black. It is known to provide a light absorption layer or the like. The support used in the present invention can also be provided with these various layers, and their configurations can be arbitrarily selected depending on the purpose, use, etc. of the desired radiation image storage panel.

さらに、特開昭58−200200号公報に蚘茉されお
いるように、埗られる画像の鮮鋭床を向䞊させる
目的で、支持䜓の蛍光䜓局偎の衚面支持䜓の蛍
光䜓局偎の衚面に接着性付䞎局、光反射局あるい
は光吞収局などが蚭けられおいる堎合には、その
衚面を意味するには埮小の凹凞が圢成されおい
おもよい。
Furthermore, as described in Japanese Patent Application Laid-Open No. 58-200200, in order to improve the sharpness of the obtained image, the surface of the support on the phosphor layer side (the surface of the support on the phosphor layer side) When an adhesion-imparting layer, a light-reflecting layer, a light-absorbing layer, etc. are provided, minute irregularities may be formed on the surface (meaning the surface thereof).

䞊蚘のようにしお支持䜓䞊に塗膜を圢成したの
ち塗膜を也燥しお、支持䜓䞊ぞの茝尜性蛍光䜓局
の圢成を完了する。蛍光䜓局の局厚は、目的ずす
る攟射線像倉換パネルの特性、蛍光䜓の皮類、結
合剀ず蛍光䜓ずの混合比などによ぀お異なるが、
通垞は20Ό乃至mmずする。ただし、この局厚
は50乃至500Όずするのが奜たしい。
After forming the coating film on the support as described above, the coating film is dried to complete the formation of the stimulable phosphor layer on the support. The thickness of the phosphor layer varies depending on the characteristics of the intended radiation image conversion panel, the type of phosphor, the mixing ratio of the binder and the phosphor, etc.
Usually it is 20 ÎŒm to 1 mm. However, the thickness of this layer is preferably 50 to 500 ÎŒm.

たた、茝尜性蛍光䜓局は、必ずしも䞊蚘のよう
に支持䜓䞊に塗垃液を盎接塗垃しお圢成する必芁
はなく、たずえば、別に、ガラス板、金属板、プ
ラスチツクシヌトなどのシヌト䞊に塗垃液を塗垃
し也燥するこずにより蛍光䜓局を圢成したのち、
これを、支持䜓䞊に抌圧するか、あるいは接着剀
を甚いるなどしお支持䜓ず蛍光䜓局ずを接合さお
もよい。
Furthermore, the stimulable phosphor layer does not necessarily need to be formed by directly applying a coating solution onto the support as described above, but can be formed by separately applying it onto a sheet such as a glass plate, metal plate, or plastic sheet. After forming a phosphor layer by applying a liquid and drying it,
The support and the phosphor layer may be joined by pressing this onto the support or using an adhesive.

茝尜性蛍光䜓局は䞀局だけでもよいが、二局以
䞊を重局しおもよい。重局する堎合にはそのうち
の少なくずも䞀局が組成匏のセリりム賊掻
垌土類耇合ハロゲン化物蛍光䜓を含有する局であ
ればよく、パネルの衚面に近い方に向぀お順次攟
射線に察する発光効率が高くなるように耇数の蛍
光䜓局を重局した構成にしおもよい。たた、単局
および重局のいずれの堎合も、䞊蚘蛍光䜓ずずも
に公知の茝尜性蛍光䜓を䜵甚するこずができる。
Although only one stimulable phosphor layer may be used, two or more layers may be stacked. In the case of multiple layers, at least one of the layers may contain a cerium-activated rare earth composite halide phosphor having the composition formula (), and the luminous efficiency against radiation increases sequentially toward the surface of the panel. It is also possible to have a structure in which a plurality of phosphor layers are stacked on top of each other. Furthermore, in both the single-layer and multilayer cases, a known stimulable phosphor can be used in combination with the above-mentioned phosphor.

そのような公知の茝尜性蛍光䜓の䟋ずしおは、
前述の蛍光䜓のほかに、特開昭55−12142号公報
に蚘茉されおいるZnSCu、Pb、BaO・
xAl2O3Euただし、0.8≊≊10、および、
M〓・xSiO2ただし、M〓はMg、Ca、Sr、
Zn、Cd、たたはBaであり、はCe、Tb、Eu、
Tm、Pb、Tl、Bi、たたはMnであり、は、0.5
≊≊2.5である、 特開昭55−12143号公報に蚘茉されおいる
Ba1-x-y、Mgx、CayFXaEu2+ただし、
はClおよびBrのうちの少なくずも䞀぀であり、
およびは、≊≊0.6、か぀xy≠で
あり、は、10-6≊≊×10-2である、およ
び、 特開昭55−12144号公報に蚘茉されおいる
LnOXxAただし、LnはLa、、Gd、および
Luのうち少なくずも䞀お、はClおよびBrのう
ち少なくずも䞀぀、はCeおよびTbのうちの少
なくずも䞀぀、そしお、は、0.1であ
る、 などを挙げるこずができる。
Examples of such known stimulable phosphors include:
In addition to the above-mentioned phosphors, ZnS:Cu, Pb, BaO and
xAl 2 O 3 :Eu (however, 0.8≩x≩10), and
M〓O・xSiO 2 :A (However, M〓 is Mg, Ca, Sr,
Zn, Cd, or Ba, and A is Ce, Tb, Eu,
Tm, Pb, Tl, Bi, or Mn, and x is 0.5
≩x≩2.5), (Ba 1-xy , Mgx, Cay) FX: aEu 2+ (However, X
is at least one of Cl and Br,
x and y are 0≩x+y≩0.6 and xy≠0, and a is 10 -6 ≩a≩5×10 -2 ), and as described in JP-A-55-12144. There is
LnOX:xA (Ln is La, Y, Gd, and
At least one of Lu, X is at least one of Cl and Br, A is at least one of Ce and Tb, and x is 0<x<0.1). .

通垞の攟射線像倉換パネルにおいおは、前述の
ように支持䜓に接する偎ずは反察偎の蛍光䜓局の
衚面に、蛍光䜓局を物理的および化孊的に保護す
るための透明な保護膜が蚭けられおいる。このよ
うな透明保護膜は、本発明の攟射線像倉換パネル
に぀いおも蚭眮するこずが奜たしい。
In a normal radiation image storage panel, as mentioned above, a transparent protective film is provided on the surface of the phosphor layer on the side opposite to the side that contacts the support to physically and chemically protect the phosphor layer. It is being Such a transparent protective film is preferably provided also in the radiation image conversion panel of the present invention.

透明保護膜は、たずえば、酢酞セルロヌス、ニ
トロセルロヌスなどのセルロヌス誘導䜓あるい
はポリメチルメタクリレヌト、ポリビニルブチラ
ヌル、ポリビニルホルマヌル、ポリカヌボネヌ
ト、ポリ酢酞ビニル、塩化ビニル・酢酞ビニルコ
ポリマヌなどの合成高分子物質のような透明な高
分子物質を適圓な溶媒に溶解しお調補した溶液を
蛍光䜓局の衚面に塗垃する方法により圢成するこ
ずができる。あるいは、ポリ゚チレンテレフタレ
ヌト、ポリ゚チレン、ポリ塩化ビニリデン、ポリ
アミドなどから別に圢成した透明な薄膜を蛍光䜓
局の衚面に適圓な接着剀を甚いお接着するなどの
方法によ぀おも圢成するこずができる。このよう
にしお圢成する透明保護膜の膜厚は、玄0.1乃至
20Όずするのが望たしい。
The transparent protective film may be made of a transparent material such as a cellulose derivative such as cellulose acetate or nitrocellulose; or a synthetic polymer material such as polymethyl methacrylate, polyvinyl butyral, polyvinyl formal, polycarbonate, polyvinyl acetate, or vinyl chloride/vinyl acetate copolymer. It can be formed by coating the surface of the phosphor layer with a solution prepared by dissolving a polymeric substance in an appropriate solvent. Alternatively, it can also be formed by a method such as adhering a transparent thin film separately formed from polyethylene terephthalate, polyethylene, polyvinylidene chloride, polyamide, etc. to the surface of the phosphor layer using a suitable adhesive. The thickness of the transparent protective film formed in this way is approximately 0.1 to
It is desirable that the thickness be 20 ÎŒm.

次に本発明の実斜䟋を蚘茉する。ただし、これ
らの各実斜䟋は本発明を制限するものではない。
Next, examples of the present invention will be described. However, these examples do not limit the present invention.

実斜䟋  塩化ランタンLaCl3245.27、臭化ランタ
ンLaBr3378.91および酞化セリりム
CeO20.172を蒞留氎H2O800mlに添加
し、混合しお氎溶液ずした。この氎溶液を60℃で
時間枛圧也燥した埌、さらに150℃で時間の
真空也燥を行な぀た。
Example 1 245.27 g of lanthanum chloride (LaCl 3 ), 378.91 g of lanthanum bromide (LaBr 3 ), and 0.172 g of cerium oxide (CeO 2 ) were added to 800 ml of distilled water (H 2 O) and mixed to form an aqueous solution. This aqueous solution was dried under reduced pressure at 60°C for 3 hours, and then further vacuum dried at 150°C for 3 hours.

次に、埗られた蛍光䜓原料混合物をアルミナル
ツボに充填し、これを高枩電気炉に入れお焌成を
行な぀た。焌成は、䞀酞化炭玠を含む二酞化炭玠
雰囲気䞭にお900℃の枩床で1.5時間かけお行な぀
た。焌成が完了したのち焌成物を炉倖に取り出し
お冷华した。このようにしお、粉末状のセリりム
賊掻塩化臭化ランタン蛍光䜓LaCl3・LaBr3
0.001Ce2+を埗た。
Next, the obtained phosphor raw material mixture was filled into an alumina crucible, which was then placed in a high-temperature electric furnace and fired. Firing was performed at a temperature of 900° C. for 1.5 hours in a carbon dioxide atmosphere containing carbon monoxide. After the firing was completed, the fired product was taken out of the furnace and cooled. In this way, powdered cerium-activated lanthanum chloride bromide phosphor (LaCl 3 / LaBr 3 :
0.001Ce 2+ ) was obtained.

実斜䟋  実斜䟋においお、塩化ランタンおよび臭化ラ
ンタンの代りに塩化ガトリニりムGdCl3
263.61および臭化ガトリニりムGdBr3
396.98を甚いるこず以倖は、実斜䟋の方法ず
同様の操䜜を行なうこずにより、粉末状のセリり
ム賊掻塩化臭化ガトリニりム蛍光䜓GdCl3・
GdBr30.001Ce3+を埗た。
Example 2 In Example 1, Gatrinium chloride (GdCl 3 ) was used instead of lanthanum chloride and lanthanum bromide.
263.61g and Gatrinium Bromide (GdBr 3 )
Powdered cerium-activated gatrinium chloride bromide phosphor ( GdCl3 .
GdBr 3 :0.001Ce 3+ ) was obtained.

次に、実斜䟋で埗られた蛍光䜓に管電圧
80KVpの線を照射した埌、450〜850nの波長
領域の光で励起した時の380nの発光波長にお
ける茝尜励起スペクトルを枬定した。その結果を
第図に瀺す。
Next, the tube voltage was applied to the phosphor obtained in Example 1.
After irradiating with 80 KVp of X-rays, the photostimulation excitation spectrum at an emission wavelength of 380 nm when excited with light in the wavelength range of 450 to 850 nm was measured. The results are shown in FIG.

第図はLaCl3・LaBr30.001Ce3+蛍光䜓の茝
尜励起スペクトルを瀺す図である。
FIG. 1 is a diagram showing the photostimulation excitation spectrum of LaCl 3 .LaBr 3 :0.001Ce 3+ phosphor.

たた、実斜䟋およびで埗られた各蛍光䜓に
管電圧80KVpの線を照射したのち、He−Neレ
ヌザヌ波長632.8nで励起したずきの茝尜
発光スペクトルを枬定した。その結果を第図に
瀺す。
Furthermore, after irradiating each of the phosphors obtained in Examples 1 and 2 with X-rays at a tube voltage of 80 KVp, the stimulated emission spectra were measured when excited with a He--Ne laser (wavelength: 632.8 nm). The results are shown in FIG.

第図においお曲線はそれぞれ、 LaCl3・LaBr30.001Ce3+蛍光䜓実斜䟋
の茝尜発光スペクトル GdCl3・GdBr30.001Ce3+蛍光䜓実斜䟋
茝尜発光スペクトル を瀺す。
In Fig. 2, curves 1 and 2 are as follows: 1: LaCl 3・LaBr 3 : 0.001Ce 3+ Phosphor Example 1
Stimulated emission spectrum of 2: GdCl 3 / GdBr 3 : 0.001Ce 3+ Phosphor Example 2
The photostimulated emission spectrum is shown.

実斜䟋  実斜䟋においお、臭化ランタンの量を
LaCl31モルに䜓しお〜10.0モルの範囲で倉化さ
せるこず以倖は、実斜䟋ず同様の操䜜を行なう
こずにより、臭化ランタンの含有量の異なる各皮
のセリりム賊掻塩化臭化ランタン蛍光䜓
LaCl3・aLaBr30.001Ce3+を埗た。
Example 3 In Example 1, the amount of lanthanum bromide was
Various cerium-activated lanthanum chloride bromide fluorescent materials with different lanthanum bromide contents were obtained by performing the same operation as in Example 1 except that the amount was varied in the range of 0 to 10.0 mol based on 1 mol of LaCl 3 . A body (LaCl 3・aLaBr 3 :0.001Ce 3+ ) was obtained.

次に、実斜䟋で埗られた各蛍光䜓に管電圧
80KVpの線を照射したのち、He−Neレヌザヌ
波長632.8nで励起したずきの茝尜発光匷
床を枬定した。その結果を第図に瀺す。
Next, the tube voltage was applied to each phosphor obtained in Example 3.
After irradiating with 80 KVp X-rays, the stimulated luminescence intensity was measured when excited with a He-Ne laser (wavelength: 632.8 nm). The results are shown in FIG.

第図は、LaCl3・aLaBr30.001Ce3+蛍光䜓
における臭化ラタンの含有量倀ず茝尜発光
匷床ずの関係を瀺すグラフである。
FIG. 3 is a graph showing the relationship between the ratanium bromide content (a value) and the stimulated luminescence intensity in the LaCl 3 ·aLaBr 3 :0.001Ce 3+ phosphor.

実斜䟋  実斜䟋で埗られたセリりム賊掻塩化臭化ラン
タン蛍光䜓LaCl3・LaBr30.001Ce3+の粒子
ず線状ポリ゚ステル暹脂ずの混合物にメチル゚チ
ルケトンを添加し、さらに硝化床11.5のニトロ
セルロヌスを添加しお蛍光䜓を分散状態で含有す
る分散液を調補した。次に、この分散液に燐酞ト
リクレゞル、−ブタノヌル、そしおメチレ゚チ
ルケトンを添加したのち、プロペラミキサヌを甚
いお充分に撹拌混合しお、蛍光䜓が均䞀に分散
し、か぀結合剀ず蛍光䜓ずの混合比が10、粘
床が25〜35PS25℃の塗垃液を調補した。
Example 4 Methyl ethyl ketone was added to a mixture of particles of the cerium-activated lanthanum chloride bromide phosphor (LaCl 3 · LaBr 3 : 0.001Ce 3+ ) obtained in Example 1 and a linear polyester resin, and the nitrification degree was further increased to 11.5. % of nitrocellulose was added to prepare a dispersion containing the phosphor in a dispersed state. Next, tricresyl phosphate, n-butanol, and methylethyl ketone were added to this dispersion, and the mixture was thoroughly stirred and mixed using a propeller mixer to ensure that the phosphor was uniformly dispersed and that the binder and phosphor were mixed together. A coating liquid having a mixing ratio of 1:10 and a viscosity of 25 to 35 PS (25°C) was prepared.

次に、ガラス板䞊に氎平に眮いた二酞化チタン
緎り蟌みポリ゚チレンテレフタレヌトシヌト支
持䜓、厚み250Όの䞊に塗垃液をドクタヌ
ブレヌドを甚いお均䞀に塗垃した。そしお塗垃埌
に塗膜が圢成された支持䜓を也燥噚内に入れ、こ
の也燥噚の内郚の枩床を25℃から100℃に埐々に
䞊昇させお、塗膜の也燥を行な぀た。このように
しお、支持䜓䞊に局厚が250Όの蛍光䜓局を圢
成した。
Next, the coating solution was uniformly applied using a doctor blade onto a titanium dioxide-mixed polyethylene terephthalate sheet (support, thickness: 250 Όm) placed horizontally on a glass plate. After coating, the support on which the coating film was formed was placed in a dryer, and the temperature inside the dryer was gradually raised from 25°C to 100°C to dry the coating film. In this way, a phosphor layer with a layer thickness of 250 Όm was formed on the support.

そしお、この蛍光䜓局の䞊にポリ゚チレンテレ
フタレヌトの透明フむルム厚み12Ό、ポリ
゚ステル系接着剀が付䞎されおいるものを接着
剀局偎を䞋に向けお眮いお接着するこずにより、
透明保護膜を圢成し、支持䜓、蛍光䜓局および透
明保護膜から構成された攟射線像倉換パネルを補
造した。
Then, a transparent film of polyethylene terephthalate (thickness: 12 ÎŒm, coated with a polyester adhesive) is placed on top of this phosphor layer with the adhesive layer side facing down, and bonded.
A transparent protective film was formed to produce a radiation image storage panel composed of a support, a phosphor layer, and a transparent protective film.

実斜䟋  実斜䟋においお、茝尜性蛍光䜓ずしお実斜䟋
で埗られたセリりム賊掻塩化臭化ガドリニりム
垌土類耇合ハロゲン化物蛍光䜓GdCl3・
GdBr30.001Ce3+を甚いるこず以倖は実斜䟋
の方法ず同様の凊理を行なうこずにより、支持
䜓、蛍光䜓局および透明保護膜から構成された攟
射線像倉換パネルを補造した。
Example 5 In Example 4, the cerium-activated gadolinium chloride bromide rare earth composite halide phosphor ( GdCl3 .
A radiation image conversion panel consisting of a support, a phosphor layer and a transparent protective film was produced by carrying out the same treatment as in Example 4 except for using GdBr 3 :0.001Ce 3+ ).

次に、実斜䟋およびで埗られた各攟射線像
倉換パネルに、管電圧80KVpの線を照射した
のちHe−Neレヌザヌ光波長632.8nで励
起しお、パネルの感床茝尜発光茝床を枬定し
た。その結果を第衚に瀺す。なお第衚におい
お、各パネルの感床は、䞊蚘LnOBrCe3+蛍光
䜓を甚いるこず以倖は実斜䟋ず同様の凊理を行
なうこずにより埗られた攟射線像倉換パネルの、
同䞀条件䞋で枬定した感床を100ずする盞察感床
で瀺しおある。
Next, each radiation image conversion panel obtained in Examples 4 and 5 was irradiated with X-rays with a tube voltage of 80 KVp, and then excited with He-Ne laser light (wavelength: 632.8 nm) to determine the panel's sensitivity (brightness). The total luminescence brightness) was measured. The results are shown in Table 1. In Table 1, the sensitivity of each panel is that of the radiation image conversion panel obtained by performing the same treatment as in Example 4 except for using the above-mentioned LnOBr:Ce 3+ phosphor.
The relative sensitivity is shown with the sensitivity measured under the same conditions set as 100.

第衚 盞察感床 実斜䟋 25 実斜䟋 10 Table 1 Relative sensitivity Example 4 25 Example 5 10

【図面の簡単な説明】[Brief explanation of the drawing]

第図は、本発明に甚いられるセリりム賊掻垌
土類耇合ハロゲン化物蛍光䜓の具䜓䟋である
LaCl3・LaBr30.001Ce3+蛍光䜓の茝尜励起スペ
クトルを瀺す図である。第図は、本発明に甚い
られるセリりム賊掻垌土類耇合ハロゲン化物蛍光
䜓の具䜓䟋であるLaCl3・LaBr30.001Ce3+蛍光
䜓およびGdCl3・GdBr30.001Ce3+蛍光䜓の茝尜
発光スペクトルそれぞれ曲線を瀺す図
である。第図は、本発明に甚いられるセリりム
賊掻垌土類耇合ハロゲン化物蛍光䜓の具䜓䟋であ
るLaCl3・aLaBr30.001Ce3+蛍光䜓における
倀ず茝尜発光匷床ずの関係を瀺すグラフである。
第図は、本発明の攟射線像倉換方法を説明する
抂略図である。 攟射線発生装眮、被写䜓、
攟射線像倉換パネル、光源、光電倉
換装眮、画像再生装眮、画像衚瀺装
眮、フむルタヌ。
Figure 1 is a specific example of the cerium-activated rare earth composite halide phosphor used in the present invention.
It is a figure showing the photostimulation excitation spectrum of LaCl 3 .LaBr 3 :0.001Ce 3+ phosphor. Figure 2 shows the brightness of LaCl 3 .LaBr 3 :0.001Ce 3+ phosphor and GdCl 3 .GdBr 3 :0.001Ce 3+ phosphor, which are specific examples of the cerium-activated rare earth composite halide phosphor used in the present invention. FIG. 2 is a diagram showing exhaust emission spectra (curves 1 and 2, respectively). Figure 3 shows the a of LaCl 3・aLaBr 3 :0.001Ce 3+ phosphor, which is a specific example of the cerium-activated rare earth composite halide phosphor used in the present invention.
It is a graph showing the relationship between the value and the stimulated luminescence intensity.
FIG. 4 is a schematic diagram illustrating the radiation image conversion method of the present invention. 11: Radiation generator, 12: Subject, 13:
Radiation image conversion panel, 14: light source, 15: photoelectric conversion device, 16: image reproduction device, 17: image display device, 18: filter.

Claims (1)

【特蚱請求の範囲】  被写䜓を透過した、あるいは被怜䜓から発せ
られた攟射線を、䞋蚘組成匏で衚わされる
セリりム賊掻垌土類耇合ハロゲン化物蛍光䜓に吞
収させた埌、この蛍光䜓に450〜850nの波長領
域の電磁波を照射するこずにより、該蛍光䜓に蓄
積されおいる攟射線゚ネルギヌを蛍光ずしお攟出
させ、そしおこの蛍光を怜出するこずを特城ずす
る攟射線像倉換方法。 組成匏 LnX3・aLn′X′3xCe3+  ただし、LnおよびLn′はそれぞれLaおよびGd
からなる矀より遞ばれる少なくずも䞀皮の垌土類
元玠でありおよびX′はそれぞれClおよびBr
からなる矀より遞ばれる少なくずも䞀皮のハロゲ
ンであ぀お、か぀≠X′でありそしおは0.1
≊≊10.0の範囲の数倀であり、は≊
0.2の範囲の数倀である  組成匏におけるが0.25≊≊5.0の
範囲の数倀である特蚱請求の範囲第項蚘茉の攟
射線像倉換方法。  組成匏におけるがである特蚱請求
の範囲第項蚘茉の攟射線像倉換方法。  組成匏におけるが10-5≊≊10-2の
範囲の数倀である特蚱請求の範囲第項蚘茉の攟
射線像倉換方法。  䞊蚘電磁波が450〜700nの波長領域の電磁
波である特蚱請求の範囲第項蚘茉の攟射線像倉
換方法。  䞊蚘電磁波がレヌザヌ光である特蚱請求の範
囲第項蚘茉の攟射線像倉換方法。  支持䜓ず、この支持䜓䞊に蚭けられた茝尜性
蛍光䜓を分散状態で含有支持する結合剀からなる
蛍光䜓局ずから実質的に構成されおおり、該蛍光
䜓局が、䞋蚘組成匏で衚わされるセリりム
賊掻垌土類耇合ハロゲン化物蛍光䜓を含有するこ
ずを特城ずする攟射線像倉換パネル。 組成匏 LnX3・aLn′X′3xCe3+  ただし、LnおよびLn′はそれぞれLaおよびGd
からなる矀より遞ばれる少なくずも䞀皮の垌土類
元玠でありおよびX′はそれぞれClおよびBr
からなる矀より遞ばれる少なくずも䞀皮のハロゲ
ンであ぀お、か぀≠X′でありそしおは0.1
≊≊10.0の範囲の数倀であり、は≊
0.2の範囲の数倀である  組成匏におけるが0.25≊≊5.0の
範囲の数倀である特蚱請求の範囲第項蚘茉の攟
射線像倉換パネル。  組成匏におけるがである特蚱請求
の範囲第項蚘茉の攟射線像倉換パネル。  組成匏におけるが10-5≊≊10-2
の範囲の数倀である特蚱請求の範囲第項蚘茉の
攟射線像倉換パネル。
[Claims] 1. After the radiation transmitted through the subject or emitted from the subject is absorbed into a cerium-activated rare earth composite halide phosphor represented by the following compositional formula (), this phosphor is 1. A radiation image conversion method, comprising: emitting radiation energy stored in the phosphor as fluorescence by irradiating electromagnetic waves in a wavelength range of 850 nm, and detecting this fluorescence. Compositional formula (): LnX 3・aLn′X′ 3 :xCe 3+ () (However, Ln and Ln′ are La and Gd, respectively.
at least one rare earth element selected from the group consisting of; X and X' are Cl and Br, respectively;
at least one halogen selected from the group consisting of, and X≠X′; and a is 0.1
A numerical value in the range of ≩a≩10.0, and x is 0<x≩
2. The radiation image conversion method according to claim 1, wherein a in the compositional formula () is a numerical value in the range of 0.25≩a≩5.0. 3. The radiation image conversion method according to claim 1, wherein a in the compositional formula () is 1. 4. The radiation image conversion method according to claim 1, wherein x in the compositional formula () is a numerical value in the range of 10 -5 ≩x≩10 -2 . 5. The radiation image conversion method according to claim 1, wherein the electromagnetic wave is an electromagnetic wave in a wavelength range of 450 to 700 nm. 6. The radiation image conversion method according to claim 1, wherein the electromagnetic wave is a laser beam. 7 Substantially composed of a support and a phosphor layer provided on the support and made of a binder containing and supporting the stimulable phosphor in a dispersed state, and the phosphor layer has the following composition: A radiation image conversion panel characterized by containing a cerium-activated rare earth composite halide phosphor represented by the formula (). Compositional formula (): LnX 3・aLn′X′ 3 :xCe 3+ () (However, Ln and Ln′ are La and Gd, respectively.
at least one rare earth element selected from the group consisting of; X and X' are Cl and Br, respectively;
at least one halogen selected from the group consisting of, and X≠X′; and a is 0.1
It is a numerical value in the range of ≩a≩10.0, and x is 0<x≩
8. The radiation image conversion panel according to claim 7, wherein a in the compositional formula () is a numerical value in the range of 0.25≩a≩5.0. 9. The radiation image conversion panel according to claim 7, wherein a in the compositional formula () is 1. 10 x in composition formula () is 10 -5 ≩x≩10 -2
The radiation image conversion panel according to claim 7, wherein the radiation image conversion panel has a numerical value in the range of .
JP14201184A 1984-07-09 1984-07-09 Method of converting radiation image and panel for converting radiation image to be used therefor Granted JPS6121180A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP14201184A JPS6121180A (en) 1984-07-09 1984-07-09 Method of converting radiation image and panel for converting radiation image to be used therefor
US07/029,382 US4761347A (en) 1984-07-09 1987-03-23 Phosphor and radiation image storage panel containing the same
US07/154,288 US4780611A (en) 1984-07-09 1988-02-10 Radiation image recording and reproducing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14201184A JPS6121180A (en) 1984-07-09 1984-07-09 Method of converting radiation image and panel for converting radiation image to be used therefor

Publications (2)

Publication Number Publication Date
JPS6121180A JPS6121180A (en) 1986-01-29
JPH0526838B2 true JPH0526838B2 (en) 1993-04-19

Family

ID=15305297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14201184A Granted JPS6121180A (en) 1984-07-09 1984-07-09 Method of converting radiation image and panel for converting radiation image to be used therefor

Country Status (1)

Country Link
JP (1) JPS6121180A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1014401C2 (en) * 2000-02-17 2001-09-04 Stichting Tech Wetenschapp Cerium-containing inorganic scintillator material.
US7084403B2 (en) * 2003-10-17 2006-08-01 General Electric Company Scintillator compositions, and related processes and articles of manufacture
FR2869115B1 (en) * 2004-04-14 2006-05-26 Saint Gobain Cristaux Detecteu RARE EARTH-BASED SCINTILLATOR MATERIAL WITH REDUCED NUCLEAR BACKGROUND NOISE
EP2091883B1 (en) 2006-12-14 2011-02-16 DSM IP Assets B.V. D1364 bt secondary coating on optical fiber
US8426020B2 (en) 2006-12-14 2013-04-23 Dsm Ip Assets B.V. D1381 supercoatings for optical fiber

Also Published As

Publication number Publication date
JPS6121180A (en) 1986-01-29

Similar Documents

Publication Publication Date Title
US5198679A (en) Phosphor and image storage panel
JPS5975200A (en) Radiation image conversion and radiation image conversion panel used therefor
US4835398A (en) Phosphor, Radiation image recording and reproducing method and radiation image storage panel
JPH0214394B2 (en)
US4780611A (en) Radiation image recording and reproducing method
JPH089716B2 (en) Phosphor, radiation image conversion method and radiation image conversion panel
JPH0475951B2 (en)
US4999515A (en) Radiation image recording and reproducing method
JPH0526838B2 (en)
JPH0475949B2 (en)
JPS60139781A (en) Phosphor and radiation image converting panel using the same
JPH0214393B2 (en)
JPH0460515B2 (en)
JPH0554639B2 (en)
US4891277A (en) Phosphor, and radiation image storage panel
JPS60217354A (en) Process for converting image of radiation
JPH0248596B2 (en)
JPH0548276B2 (en)
JPH0195183A (en) Technique for radiation image transformation
JPH0527675B2 (en)
JPH0526836B2 (en)
JPH0662948B2 (en) Radiation image conversion method and radiation image conversion panel used in the method
JPS60141781A (en) Conversion of radiation image
JPH0625348B2 (en) Radiation image conversion method and radiation image conversion panel used in the method
JPH0460151B2 (en)