JPH0521067A - Nonaqueous electrolytic battery - Google Patents
Nonaqueous electrolytic batteryInfo
- Publication number
- JPH0521067A JPH0521067A JP3198829A JP19882991A JPH0521067A JP H0521067 A JPH0521067 A JP H0521067A JP 3198829 A JP3198829 A JP 3198829A JP 19882991 A JP19882991 A JP 19882991A JP H0521067 A JPH0521067 A JP H0521067A
- Authority
- JP
- Japan
- Prior art keywords
- active material
- electrode active
- limn
- positive electrode
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、非水電解質電池、
さらに詳細には充放電可能な非水電解質二次電池に関
し、特に正極活物質の改良に関わり、電池の充放電容量
の増加を目指すものである。TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte battery,
More specifically, the present invention relates to a chargeable / dischargeable non-aqueous electrolyte secondary battery, and particularly to the improvement of the positive electrode active material, with the aim of increasing the charge / discharge capacity of the battery.
【0002】[0002]
【従来技術および問題点】リチウムなどのアルカリ金属
およびその合金や化合物を負極活物質とする非水電解液
電池は、負極金属イオンの正極活物質へのインサーショ
ンもしくはインターカレーション反応によって、その大
放電容量と充電可逆性を両立させている。従来から、リ
チウムを負極活物質として用いる二次電池としては、リ
チウムに対しインターカレーションホストとなりうる五
酸化バナジウムや二酸化マンガンなどの層状もしくはト
ンネル状酸化物を正極に用いた電池が提案されている
が、電圧が低くその充放電エネルギ密度は充分とは言え
なかった。最近、スピネル構造をした立方晶のLiMn
2O4にて、一旦4.5V付近まで初期充電してから放電
すると、4Vで放電できることが報告され、高電圧正極
として有望視されている(ジャーナル オブ エレクト
ロケミカル ソサエティ 1990年 137巻3号
769頁)。2. Description of the Related Art Non-aqueous electrolyte batteries using an alkali metal such as lithium or an alloy or compound thereof as a negative electrode active material have a large capacity due to the insertion or intercalation reaction of negative electrode metal ions into the positive electrode active material. It has both discharge capacity and reversibility of charge. Conventionally, as a secondary battery using lithium as a negative electrode active material, a battery using a layered or tunnel oxide such as vanadium pentoxide or manganese dioxide that can be an intercalation host for lithium has been proposed. However, the voltage was low and the charge / discharge energy density was not sufficient. Recently, cubic LiMn with spinel structure
It has been reported that it can be discharged at 4 V when it is initially charged to about 4.5 V with 2 O 4 and then discharged (Journal of Electrochemical Society, 1990, Vol. 137, No. 3).
769).
【0003】しかし、この4V領域は放電の進行により
Li/Mn2O4>1.1以上の組成域に達すると、立方
晶から正方晶に構造相転移を起こし、これに対応して放
電電圧が2.8Vまで急低下してしまう。またこの立方
晶は、4V領域での放電特性が悪く、わずか50サイク
ル足らずでそのサイクル容量は半減した。However, in this 4V region, when the composition region of Li / Mn 2 O 4 > 1.1 or more is reached due to the progress of discharge, a structural phase transition from cubic to tetragonal occurs, and the discharge voltage corresponding to this occurs. Suddenly drops to 2.8V. Further, this cubic crystal had poor discharge characteristics in the 4V region, and its cycle capacity was halved in less than 50 cycles.
【0004】[0004]
【発明の目的】そこで本発明の目的は上記現状の問題点
を改良して、小型で充放電特性に優れた電池特性を持つ
非水電解液電池を提供することにある。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a non-aqueous electrolyte battery which is small in size and has battery characteristics which are excellent in charge and discharge characteristics by improving the above problems.
【0005】[0005]
【課題を解決するための手段】かかる目的を達成するた
めに、本発明非水電解質電池では組成式、LiMn2- x
M’xO4(0<x≦0.7)で表される物質を正極活物
質として含み、アルカリ金属またはその化合物を負極活
物質とし、前記正極活物質および前記負極活物質に対し
て化学的に安定であり、かつアルカリ金属イオンが前記
正極活物質あるいは前記負極活物質に電気化学反応をす
るための移動を行ないうる物質を電解質物質としたこと
を特徴としている。In order to achieve such an object, in the non-aqueous electrolyte battery of the present invention, the composition formula: LiMn 2- x
A material represented by M ′ x O 4 (0 <x ≦ 0.7) is included as a positive electrode active material, an alkali metal or a compound thereof is used as a negative electrode active material, and the positive electrode active material and the negative electrode active material are chemically reacted. It is characterized in that the electrolyte material is a material which is stable and is capable of moving alkali metal ions to cause an electrochemical reaction with the positive electrode active material or the negative electrode active material.
【0006】一般にスピネルは、AB2O4の組成を持
つ。ここでAは、酸素の四面体に囲まれた金属元素、B
は、酸素の八面体に囲まれた金属元素である。Generally, spinel has a composition of AB 2 O 4 . Where A is a metal element surrounded by an oxygen tetrahedron, B
Is a metal element surrounded by octahedra of oxygen.
【0007】本発明の正極活物質、LiMn2-xM’xO
4は、マンガンスピネル酸化物、LiMn2O4中の八面
体サイトに位置するMnを低酸化数の他元素イオンM’
で置換添加した三元系酸化物であり、より好ましくはL
iMn2-xM’xO4を形成すべく用いられるドーパント
M’は1価から3価の金属元素イオンである。Mn3+の
他元素イオンによる置換添加の結果、ヤンテラー不安定
性を持つMn3+イオンの存在比が減少し、立方晶スピネ
ル構造がより広い組成範囲で安定化し、これにより充放
電特性が向上したと考えられる。[0007] Positive electrode active material of the present invention, LiMn 2-x M 'x O
4 is a manganese spinel oxide, Mn located at an octahedral site in LiMn 2 O 4 , which is another element ion M'of low oxidation number.
Is a ternary oxide substituted and added, more preferably L
iMn 2-x M 'x O 4 is used to form the dopant M' is a trivalent metal element ions from monovalent. Result of replacement additive by other element ions of Mn 3+, reduces the abundance ratio of Mn 3+ ions with Jahn-Teller instability, stabilized with a wider composition range cubic spinel structure, the charge-discharge characteristics were improved by this it is conceivable that.
【0008】上述のように本発明における正極活物質
は、LiMn2-xM’xO4で示されるが、このような低
酸化数の元素M’としては、たとえばAl、Sc、F
e、Ni、Co、Mg、V、Y、Zn、Ti、Sb、C
u、等の一種以上を挙げることができる。[0008] Positive electrode active material in the present invention as described above, 'is shown by x O 4, such a low oxidation number of the element M' LiMn 2-x M as, for example Al, Sc, F
e, Ni, Co, Mg, V, Y, Zn, Ti, Sb, C
One or more of u and the like can be mentioned.
【0009】さらにxは0<x≦0.7の範囲であるの
がよい。ドープ量xが0.7を越えると、他の相が多く
形成される恐れがあるからである。特に好ましくは0<
x≦0.5、さらに好ましくは0<x≦0.2である。Further, x is preferably in the range of 0 <x ≦ 0.7. This is because if the doping amount x exceeds 0.7, many other phases may be formed. Particularly preferably 0 <
x ≦ 0.5, and more preferably 0 <x ≦ 0.2.
【0010】この正極活物質を用いて正極を形成するに
は、LiMn2-xM’xO4化合物粉末とポリテトラフル
オロエチレンごとき結着剤粉末との混合物をニッケル、
ステンレスなどの支持体上に圧着成形する。あるいは、
かかる混合物質粉末に導電性を付与するため熱分解黒鉛
やアセチレンブラックのような導電性粉末を混合し、こ
れにさらにポリテトラフルオロエチレンのような結着剤
粉末を所要に応じて加え、この混合物を金属容器に入
れ、あるいは前述の混合物をニッケル、ステンレスなど
の支持体に圧着成形するなどの手段によって形成され
る。[0010] This forms a positive electrode using the positive electrode active material, nickel LiMn 2-x M 'x O 4 compound powder and a mixture of polytetrafluoroethylene Gotoki binder powder,
Press-mold on a support such as stainless steel. Alternatively,
In order to impart conductivity to the mixed substance powder, a conductive powder such as pyrolytic graphite or acetylene black is mixed, and a binder powder such as polytetrafluoroethylene is further added thereto, if necessary, and the mixture is mixed. Is placed in a metal container, or the mixture is pressure-molded on a support such as nickel or stainless steel.
【0011】負極活物質であるリチウムは一般のリチウ
ム電池のそれと同様にシート状として、またはそのシー
トをニッケル、ステンレスなどの導電体網に圧着して負
極として形成される。また負極活物質としては、リチウ
ム以外にリチウム合金やリチウム化合物、その他マグネ
シウム、カルシウム、ナトリウムなど、従来公知のもの
が使用できる。Lithium, which is the negative electrode active material, is formed into a sheet shape like that of a general lithium battery, or the sheet is pressure-bonded to a conductor network of nickel, stainless steel or the like to form a negative electrode. As the negative electrode active material, in addition to lithium, conventionally known materials such as lithium alloys and lithium compounds, magnesium, calcium, and sodium can be used.
【0012】電解質としては、例えばジメトキシエタ
ン、2−メチルテトラヒドロフラン、エチレンカーボネ
ート、メチルホルメート、ジメチルスルホキシド、プロ
ピレンカーボネート、アセトニトリル、ブチロラクト
ン、ジメチルフォルムアミドなどの有機溶媒に、LiA
sF6、LiBF4、LiPF6、LiAlCl4、LiC
lO4などのルイス酸を溶解した非水電解質溶液が使用
できる。As the electrolyte, for example, an organic solvent such as dimethoxyethane, 2-methyltetrahydrofuran, ethylene carbonate, methyl formate, dimethylsulfoxide, propylene carbonate, acetonitrile, butyrolactone, dimethylformamide and LiA can be used.
sF 6 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiC
A non-aqueous electrolyte solution in which a Lewis acid such as 10 4 is dissolved can be used.
【0013】さらに、セパレータ、構造材料(電池ケー
ス等)などの他の要素についても従来公知の各材料が使
用でき、特に制限はない。Further, conventionally known materials can be used for other elements such as a separator and a structural material (battery case, etc.), and there is no particular limitation.
【0014】[0014]
【実施例】以下実施例によって本発明の方法をさらに具
体的に説明するが、本発明はこれらにより何ら制限され
るものではない。なお、実施例において電池の作製およ
び測定はアルゴン雰囲気下のドライボックス中で行なっ
た。EXAMPLES The method of the present invention will be described in more detail with reference to the following examples, which should not be construed as limiting the invention thereto. In the examples, the production and measurement of batteries were performed in a dry box under an argon atmosphere.
【0015】[0015]
【実施例1】図1は本発明による電池の一具体例である
コイン型電池の断面図であり、図中1はステンレス製封
口板、2はポリプロピレン製ガスケット、3はステンレ
ス製正極ケース、4はリチウム負極、5はポリプロピレ
ン製微孔製セパレータ、6は正極合剤ペレット示す。EXAMPLE 1 FIG. 1 is a cross-sectional view of a coin-type battery which is one specific example of the battery according to the present invention, in which 1 is a stainless steel sealing plate, 2 is a polypropylene gasket, 3 is a positive electrode case made of stainless steel, 4 Is a lithium negative electrode, 5 is a polypropylene microporous separator, and 6 is a positive electrode material mixture pellet.
【0016】正極活物質は、無置換のLiMn2O4に対
し、表1に記した各種の金属元素をMnに対する置換添
加のドーパントとして、ドープ量をx=0.5に固定
し、秤量混合のうえ、650℃で6時間程度、大気中加
熱後、さらに850℃で24時間焼成して得た三元系複
酸化物結晶粉末を用いた。The positive electrode active material was prepared by substituting various metal elements shown in Table 1 as dopants for substitution and addition of Mn with respect to unsubstituted LiMn 2 O 4 , fixing the dope amount to x = 0.5 and weighing and mixing. In addition, a ternary compound oxide crystal powder obtained by heating at 650 ° C. for about 6 hours in the air and further firing at 850 ° C. for 24 hours was used.
【0017】得られた粉末試料のうち、例として、Li
Mn1.5Mg0.5O4、LiMn1.5Zn0.5O4、LiMn
1.5Ni0.5O4のX線回折図形を図2a〜図4bに示
す。いずれのピークもASTMの各プロファイルとよく
一致しており、LiMn2O4のメインピークが残存して
いることから少なくともこの組成までは無置換のLiM
n2O4スピネル構造を維持したまま、Mnが添加金属元
素と固溶状態で置換されているのがわかる。Among the obtained powder samples, as an example, Li
Mn 1.5 Mg 0.5 O 4 , LiMn 1.5 Zn 0.5 O 4 , LiMn
The X-ray diffraction patterns of 1.5 Ni 0.5 O 4 are shown in FIGS. 2a-4b. All the peaks are in good agreement with each profile of ASTM, and the main peak of LiMn 2 O 4 remains, so that at least up to this composition, there is no substitution of LiM.
It can be seen that Mn is replaced with the added metal element in a solid solution state while maintaining the n 2 O 4 spinel structure.
【0018】得られたLiMn1.5M’0.5O4結晶を導
電剤(アセチレンブラック粉末)、結着剤(ポリテトラ
フルオロエチレン)と共に、70:25:5の重量比で
混合の上、ロール成形し、正極合剤ペレット6(厚さ
0.5mm、直径17mm、200mg/ce11)と
した。まず、封口板1上に金属リチウム負極4を加圧配
置したものをガスケット2の凹部に挿入し、金属リチウ
ム負極4の上にセパレータ5、正極合剤ペレット6をこ
の順序に配置し、電解液としてプロピレンカーボネート
(PC)と2−ジメトキシエタン(DME)の等容積混
合溶媒にLiClO4を溶解させた1規定溶液をそれぞ
れ適量注入して含浸させた後に、正極ケース3を被せて
かしめることにより、厚さ2mm、直径23mmのコイ
ン型電池を作製した。The obtained LiMn 1.5 M '0.5 O 4 crystals a conductive agent (acetylene black powder) with a binder (polytetrafluoroethylene), 70: 25: on the mixed in a weight ratio of 5, and roll forming The positive electrode material mixture pellet 6 (thickness 0.5 mm, diameter 17 mm, 200 mg / ce 11) was used. First, the metallic lithium negative electrode 4 placed under pressure on the sealing plate 1 is inserted into the concave portion of the gasket 2, and the separator 5 and the positive electrode material mixture pellet 6 are arranged in this order on the metallic lithium negative electrode 4 to form the electrolyte solution. As an appropriate amount of 1N solution of LiClO 4 dissolved in an equal volume mixed solvent of propylene carbonate (PC) and 2-dimethoxyethane (DME), respectively, is injected and impregnated, the positive electrode case 3 is covered and caulked. A coin-type battery having a thickness of 2 mm and a diameter of 23 mm was produced.
【0019】このようにして作製した電池の0.5mA
/cm2の放電電流密度での各終止電圧までのセル放電
容量を表1に示す。0.5 mA of the battery thus produced
Table 1 shows the cell discharge capacities up to each cutoff voltage at a discharge current density of / cm 2 .
【0020】[0020]
【表1】 [Table 1]
【0021】LiMn1.5M’0.5O4の中ではLiMn
1.5Al0.5O4、LiMn1.5Sc0.5O4、LiMn1.5
Fe0.5O4、LiMn1.5Ni0.5O4、LiMn1.5Co
0.5O4が比較的4V高電圧部の放電容量が大きい系であ
る。[0021] LiMn is in LiMn 1.5 M '0.5 O 4
1.5 Al 0.5 O 4 , LiMn 1.5 Sc 0.5 O 4 , LiMn 1.5
Fe 0.5 O 4 , LiMn 1.5 Ni 0.5 O 4 , LiMn 1.5 Co
0.5 O 4 is a system having a relatively large discharge capacity in the high voltage portion of 4V.
【0022】[0022]
【実施例2】正極活物質は、無置換のLiMn2O4に対
し、Fe3+をドーパントとして、x=0.05〜0.7
のドープ量で下式のように秤量混合のうえ、650℃で
6時間程度、大気中加熱後、さらに850℃で24時間
焼成して得た三元系複酸化物結晶粉末を用いた。Example 2 As for the positive electrode active material, x = 0.05 to 0.7 with respect to unsubstituted LiMn 2 O 4 with Fe 3+ as a dopant.
The ternary compound oxide crystal powder obtained by weighing and mixing the dope amount as shown in the following formula, heating at 650 ° C. for about 6 hours in the air, and then firing at 850 ° C. for 24 hours was used.
【0023】Li2CO3+(2−x)Mn2O3+xFe
2O3+0.5O2→2LiMn2-xFexO4スピネルに対
する優位性は、3mA/cm2の大電流放電時に特に顕
著である。Li 2 CO 3 + (2-x) Mn 2 O 3 + xFe
Advantages over 2 O 3 + 0.5O 2 → 2LiMn 2-x Fe x O 4 spinel is particularly pronounced when a large current discharge 3mA / cm 2.
【0024】[0024]
【実施例3】正極活物質は、無置換のLiMn2O4に対
しドープ量をx=0.01に固定し、各種の低酸化数金
属元素をドーパントとして、秤量混合のうえ、650℃
で6時間程度、大気中加熱後、さらに850℃で24時
間焼成して得た三元系複酸化物結晶粉末を用いた。[Example 3] The positive electrode active material was prepared by fixing the dope amount to unsubstituted LiMn 2 O 4 at x = 0.01, weighing and mixing various low oxidation number metal elements as dopants, and then mixing at 650 ° C.
After heating in the air for about 6 hours and further firing at 850 ° C. for 24 hours, a ternary compound oxide crystal powder was used.
【0025】正極活物質に、以上のようにして合成した
LiMn2-xM’xO4を用いる以外は、実施例1と同様
にしてリチウム電池を作製した。The positive electrode active material, except using LiMn 2-x M 'x O 4 was synthesized as described above, to produce a lithium battery in the same manner as in Example 1.
【0026】一例として、このようにして作製した電池
の3mA/cm2放電電流密度での3.5V終止電圧ま
での放電曲線を図8a〜図8dに示す。図8aは比較例
のLiMn2O4の放電曲線であり、図8b〜図8dはそ
れぞれNi、Co、Feのx=0.1における放電曲線
である。As an example, FIGS. 8a to 8d show discharge curves of the battery thus manufactured up to a final voltage of 3.5 V at a discharge current density of 3 mA / cm 2 . FIG. 8a is a discharge curve of LiMn 2 O 4 of a comparative example, and FIGS. 8b to 8d are discharge curves of Ni, Co, and Fe at x = 0.1.
【0027】LiMn1.9Fe0.1O4と同様、Co、N
i、Al、Mg、Sc添加の場合は特に放電容量、過電
圧の点で無置換のLiMn2O4スピネルに対し優位性が
顕著であった。いずれの場合もこれらの低酸化数イオン
の添加によりヤンテラー不安定性のあるMn3+の存在比
が減少したことが特性向上につながったと考えられ、そ
の他の低酸化数イオンの添加でも同様の効果が期待でき
る。またドープ量はFeの場合と同様、0<x≦0.
5、中でも0<x≦0.2の場合が特に好適である。Similar to LiMn 1.9 Fe 0.1 O 4 , Co, N
When i, Al, Mg, and Sc were added, the superiority was remarkable over the unsubstituted LiMn 2 O 4 spinel in terms of discharge capacity and overvoltage. In any case, it is considered that the addition of these low oxidation number ions reduced the abundance ratio of Mn 3+ having Yanteller instability, which led to the improvement of the characteristics, and the addition of other low oxidation number ions had the same effect. Can be expected. The doping amount is 0 <x ≦ 0.
5, especially, the case of 0 <x ≦ 0.2 is particularly preferable.
【0028】[0028]
【発明の効果】以上説明したように、本発明によれば、
可逆容量の大きな小型高エネルギ密度のリチウム電池を
構成することができ、本発明電池はコイン型電池など種
々の分野に利用できるという利点を有する。As described above, according to the present invention,
It is possible to construct a small-sized and high-energy-density lithium battery having a large reversible capacity, and the battery of the present invention has an advantage that it can be used in various fields such as a coin battery.
【図1】本発明の一実施例であるコイン電池の構成例を
示す断面図。FIG. 1 is a cross-sectional view showing a configuration example of a coin battery which is an embodiment of the present invention.
【図2a】本発明の一実施例であるLiMn1.5Mg0.5
O4のX線回折図形。FIG. 2a is an embodiment of the present invention LiMn 1.5 Mg 0.5
X-ray diffraction pattern of O 4 .
【図2b】本発明の一実施例であるLiMn1.5Mg0.5
O4のX線回折図形。FIG. 2b is an embodiment of the present invention LiMn 1.5 Mg 0.5
X-ray diffraction pattern of O 4 .
【図3a】本発明の一実施例であるLiMn1.5Zn0.5
O4のX線回折図形。FIG. 3a is an embodiment of the present invention LiMn 1.5 Zn 0.5.
X-ray diffraction pattern of O 4 .
【図3b】本発明の一実施例であるLiMn1.5Zn0.5
O4のX線回折図形。FIG. 3b is an embodiment of the present invention LiMn 1.5 Zn 0.5.
X-ray diffraction pattern of O 4 .
【図4a】本発明の一実施例であるLiMn1.5Ni0.5
O4のX線回折図形。FIG. 4a is an embodiment of the present invention LiMn 1.5 Ni 0.5
X-ray diffraction pattern of O 4 .
【図4b】本発明の一実施例であるLiMn1.5Ni0.5
O4のX線回折図形。FIG. 4b is an embodiment of the present invention LiMn 1.5 Ni 0.5.
X-ray diffraction pattern of O 4 .
【図5a】本発明の一実施例であるLiMn1.95Fe
0.05O4のX線回折図形。FIG. 5a: LiMn 1.95 Fe, an embodiment of the present invention.
X-ray diffraction pattern of 0.05 O 4 .
【図5b】本発明の一実施例であるLiMn1.9Fe0.1
O4のX線回折図形。FIG. 5b is an example of the present invention, LiMn 1.9 Fe 0.1
X-ray diffraction pattern of O 4 .
【図5c】本発明の一実施例であるLiMn1.8Fe0.2
O4のX線回折図形。FIG. 5c is an embodiment of the present invention LiMn 1.8 Fe 0.2
X-ray diffraction pattern of O 4 .
【図5d】本発明の一実施例であるLiMn1.7Fe0.3
O4のX線回折図形。FIG. 5d is an embodiment of the present invention LiMn 1.7 Fe 0.3
X-ray diffraction pattern of O 4 .
【図5e】本発明の一実施例であるLiMn1.5Fe0.5
O4のX線回折図形。FIG. 5e is an embodiment of the present invention LiMn 1.5 Fe 0.5
X-ray diffraction pattern of O 4 .
【図5f】本発明の一実施例であるLiMn1.3Fe0.7
O4のX線回折図形。FIG. 5f: LiMn 1.3 Fe 0.7 which is an example of the present invention.
X-ray diffraction pattern of O 4 .
【図6a】本発明の比較例であるLiMn2O4の0.5
mA/cm2放電電流時の充放電特性を示す特性図。FIG. 6a: 0.5 of LiMn 2 O 4 which is a comparative example of the present invention.
FIG. 6 is a characteristic diagram showing charge / discharge characteristics at mA / cm 2 discharge current.
【図6b】本発明の一実施例であるLiMn1.9Fe0.1
O4の0.5mA/cm2放電電流時の充放電特性を示す
特性図。FIG. 6b is an embodiment of the present invention LiMn 1.9 Fe 0.1
Characteristic diagram showing charge-discharge characteristics at 0.5 mA / cm 2 discharge current O 4.
【図6c】本発明の一実施例であるLiMn1.8Fe0.2
O4の0.5mA/cm2放電電流時の充放電特性を示す
特性図。FIG. 6c is an embodiment of the present invention LiMn 1.8 Fe 0.2
The characteristic view which shows the charging / discharging characteristic at the time of 0.5 mA / cm 2 discharge current of O 4 .
【図6d】本発明の一実施例であるLiMn1.7Fe0.3
O4の0.5mA/cm2放電電流時の充放電特性を示す
特性図。FIG. 6d is an example of the present invention LiMn 1.7 Fe 0.3
Characteristic diagram showing charge-discharge characteristics at 0.5 mA / cm 2 discharge current O 4.
【図7a】本発明の比較例であるLiMn2O4の3mA
/cm2放電電流時の充放電特性を示す特性図。FIG. 7a: 3 mA of LiMn 2 O 4 which is a comparative example of the present invention
6 is a characteristic diagram showing charge / discharge characteristics at a discharge current of / cm 2 ;
【図7b】本発明の一実施例であるLiMn1.9Fe0.1
O4の3mA/cm2放電電流時の充放電特性を示す特性
図。FIG. 7b is an example of the present invention, LiMn 1.9 Fe 0.1
FIG. 6 is a characteristic diagram showing charge / discharge characteristics of O 4 at a discharge current of 3 mA / cm 2;
【図7c】本発明の一実施例であるLiMn1.8Fe0.2
O4の3mA/cm2放電電流時の充放電特性を示す特性
図。FIG. 7c is an example of the present invention, LiMn 1.8 Fe 0.2
FIG. 3 is a characteristic diagram showing charge / discharge characteristics of O 4 at 3 mA / cm 2 discharge current.
【図7d】本発明の一実施例であるLiMn1.7Fe0.3
O4の3mA/cm2放電電流時の充放電特性を示す特性
図。FIG. 7d is an embodiment of the present invention LiMn 1.7 Fe 0.3
FIG. 3 is a characteristic diagram showing charge / discharge characteristics of O 4 at 3 mA / cm 2 discharge current.
【図8a】本発明の比較例であるLiMn2O4の3mA
/cm2放電電流時の充放電特性を示す特性図。FIG. 8a: 3 mA of LiMn 2 O 4 which is a comparative example of the present invention
6 is a characteristic diagram showing charge / discharge characteristics at a discharge current of / cm 2 ;
【図8b】本発明の一実施例であるLiMn1.9Ni0.1
O4の3mA/cm2放電電流時の放電特性を示す特性
図。FIG. 8b is an embodiment of the present invention LiMn 1.9 Ni 0.1
FIG. 6 is a characteristic diagram showing discharge characteristics of O 4 at a discharge current of 3 mA / cm 2 ;
【図8c】本発明の一実施例であるLiMn1.9Co0.1
O4の3mA/cm2放電電流時の放電特性を示す特性
図。FIG. 8c is an example of the present invention, LiMn 1.9 Co 0.1.
FIG. 6 is a characteristic diagram showing discharge characteristics of O 4 at a discharge current of 3 mA / cm 2 ;
【図8d】本発明の一実施例であるLiMn1.9Fe0.1
O4の3mA/cm2放電電流時の放電特性を示す特性
図。FIG. 8d is an embodiment of the present invention LiMn 1.9 Fe 0.1
FIG. 6 is a characteristic diagram showing discharge characteristics of O 4 at a discharge current of 3 mA / cm 2 ;
1 ステンレス製封口板 2 ポリプロピレン製ガスケット 3 ステンレス製正極ケース 4 リチウム負極 5 ポリプロピレン製セパレータ 6 正極合剤ペレット 1 Stainless steel sealing plate 2 Polypropylene gasket 3 Stainless steel positive electrode case 4 Lithium negative electrode 5 Polypropylene separator 6 Positive electrode mixture pellet
【表2】 [Table 2]
【手続補正書】[Procedure amendment]
【提出日】平成3年8月23日[Submission date] August 23, 1991
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】発明の詳細な説明[Name of item to be amended] Detailed explanation of the invention
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【発明の属する技術分野】本発明は、非水電解質電池、
さらに詳細には充放電可能な非水電解質二次電池に関
し、特に正極活物質の改良に関わり、電池の充放電容量
の増加を目指すものである。TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte battery,
More specifically, the present invention relates to a chargeable / dischargeable non-aqueous electrolyte secondary battery, and particularly to the improvement of the positive electrode active material, with the aim of increasing the charge / discharge capacity of the battery.
【0002】[0002]
【従来技術および問題点】リチウムなどのアルカリ金属
およびその合金や化合物を負極活物質とする非水電解液
電池は、負極金属イオンの正極活物質へのインサーショ
ンもしくはインターカレーション反応によって、その大
放電容量と充電可逆性を両立させている。従来から、リ
チウムを負極活物質として用いる二次電池としては、リ
チウムに対しインターカレーションホストとなりうる五
酸化バナジウムや二酸化マンガンなどの層状もしくはト
ンネル状酸化物を正極に用いた電池が提案されている
が、電圧が低くその充放電エネルギ密度は充分とは言え
なかった。最近、スピネル構造をした立方晶のLiMn
2O4にて、一旦4.5V付近まで初期充電してから放電
すると、4Vで放電できることが報告され、高電圧正極
として有望視されている(ジャーナル オブ エレクト
ロケミカル ソサエティ 1990年 137巻3号
769頁)。2. Description of the Related Art Non-aqueous electrolyte batteries using an alkali metal such as lithium or an alloy or compound thereof as a negative electrode active material have a large capacity due to the insertion or intercalation reaction of negative electrode metal ions into the positive electrode active material. It has both discharge capacity and reversibility of charge. Conventionally, as a secondary battery using lithium as a negative electrode active material, a battery using a layered or tunnel oxide such as vanadium pentoxide or manganese dioxide that can be an intercalation host for lithium has been proposed. However, the voltage was low and the charge / discharge energy density was not sufficient. Recently, cubic LiMn with spinel structure
It has been reported that it can be discharged at 4 V when it is initially charged to about 4.5 V with 2 O 4 and then discharged (Journal of Electrochemical Society, 1990, Vol. 137, No. 3).
769).
【0003】しかし、この4V領域は放電の進行により
Li/Mn2O4>1.1以上の組成域に達すると、立方
晶から正方晶に構造相転移を起こし、これに対応して放
電電圧が2.8Vまで急低下してしまう。またこの立方
晶は、4V領域での放電特性が悪く、わずか50サイク
ル足らずでそのサイクル容量は半減した。However, in this 4V region, when the composition region of Li / Mn 2 O 4 > 1.1 or more is reached due to the progress of discharge, a structural phase transition from cubic to tetragonal occurs, and the discharge voltage corresponding to this occurs. Suddenly drops to 2.8V. Further, this cubic crystal had poor discharge characteristics in the 4V region, and its cycle capacity was halved in less than 50 cycles.
【0004】[0004]
【発明の目的】そこで本発明の目的は上記現状の問題点
を改良して、小型で充放電特性に優れた電池特性を持つ
非水電解液電池を提供することにある。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a non-aqueous electrolyte battery which is small in size and has battery characteristics which are excellent in charge and discharge characteristics by improving the above problems.
【0005】[0005]
【課題を解決するための手段】かかる目的を達成するた
めに、本発明非水電解質電池では組成式、LiMn2- x
M’xO4(0<x≦0.7)で表される物質を正極活物
質として含み、アルカリ金属またはその化合物を負極活
物質とし、前記正極活物質および前記負極活物質に対し
て化学的に安定であり、かつアルカリ金属イオンが前記
正極活物質あるいは前記負極活物質に電気化学反応をす
るための移動を行ないうる物質を電解質物質としたこと
を特徴としている。In order to achieve such an object, in the non-aqueous electrolyte battery of the present invention, the composition formula: LiMn 2- x
A material represented by M ′ x O 4 (0 <x ≦ 0.7) is included as a positive electrode active material, an alkali metal or a compound thereof is used as a negative electrode active material, and the positive electrode active material and the negative electrode active material are chemically reacted. It is characterized in that the electrolyte material is a material which is stable and is capable of moving alkali metal ions to cause an electrochemical reaction with the positive electrode active material or the negative electrode active material.
【0006】一般にスピネルは、AB2O4の組成を持
つ。ここでAは、酸素の四面体に囲まれた金属元素、B
は、酸素の八面体に囲まれた金属元素である。Generally, spinel has a composition of AB 2 O 4 . Where A is a metal element surrounded by an oxygen tetrahedron, B
Is a metal element surrounded by octahedra of oxygen.
【0007】本発明の正極活物質、LiMn2-xM’xO
4は、マンガンスピネル酸化物、LiMn2O4中の八面
体サイトに位置するMnを低酸化数の他元素イオンM’
で置換添加した三元系酸化物であり、より好ましくはL
iMn2-xM’xO4を形成すべく用いられるドーパント
M’は1価から3価の金属元素イオンである。Mn3+の
他元素イオンによる置換添加の結果、ヤンテラー不安定
性を持つMn3+イオンの存在比が減少し、立方晶スピネ
ル構造がより広い組成範囲で安定化し、これにより充放
電特性が向上したと考えられる。[0007] Positive electrode active material of the present invention, LiMn 2-x M 'x O
4 is a manganese spinel oxide, Mn located at an octahedral site in LiMn 2 O 4 , which is another element ion M'of low oxidation number.
Is a ternary oxide substituted and added, more preferably L
iMn 2-x M 'x O 4 is used to form the dopant M' is a trivalent metal element ions from monovalent. Result of replacement additive by other element ions of Mn 3+, reduces the abundance ratio of Mn 3+ ions with Jahn-Teller instability, stabilized with a wider composition range cubic spinel structure, the charge-discharge characteristics were improved by this it is conceivable that.
【0008】上述のように本発明における正極活物質
は、LiMn2-xM’xO4で示されるが、このような低
酸化数の元素M’としては、たとえばAl、Sc、F
e、Ni、Co、Mg、V、Y、Zn、Ti、Sb、C
u、等の一種以上を挙げることができる。[0008] Positive electrode active material in the present invention as described above, 'is shown by x O 4, such a low oxidation number of the element M' LiMn 2-x M as, for example Al, Sc, F
e, Ni, Co, Mg, V, Y, Zn, Ti, Sb, C
One or more of u and the like can be mentioned.
【0009】さらにxは0<x≦0.7の範囲であるの
がよい。ドープ量xが0.7を越えると、他の相が多く
形成される恐れがあるからである。特に好ましくは0<
x≦0.5、さらに好ましくは0<x≦0.2である。Further, x is preferably in the range of 0 <x ≦ 0.7. This is because if the doping amount x exceeds 0.7, many other phases may be formed. Particularly preferably 0 <
x ≦ 0.5, and more preferably 0 <x ≦ 0.2.
【0010】この正極活物質を用いて正極を形成するに
は、LiMn2-xM’xO4化合物粉末とポリテトラフル
オロエチレンごとき結着剤粉末との混合物をニッケル、
ステンレスなどの支持体上に圧着成形する。あるいは、
かかる混合物質粉末に導電性を付与するため熱分解黒鉛
やアセチレンブラックのような導電性粉末を混合し、こ
れにさらにポリテトラフルオロエチレンのような結着剤
粉末を所要に応じて加え、この混合物を金属容器に入
れ、あるいは前述の混合物をニッケル、ステンレスなど
の支持体に圧着成形するなどの手段によって形成され
る。[0010] This forms a positive electrode using the positive electrode active material, nickel LiMn 2-x M 'x O 4 compound powder and a mixture of polytetrafluoroethylene Gotoki binder powder,
Press-mold on a support such as stainless steel. Alternatively,
In order to impart conductivity to the mixed substance powder, a conductive powder such as pyrolytic graphite or acetylene black is mixed, and a binder powder such as polytetrafluoroethylene is further added thereto, if necessary, and the mixture is mixed. Is placed in a metal container, or the mixture is pressure-molded on a support such as nickel or stainless steel.
【0011】負極活物質であるリチウムは一般のリチウ
ム電池のそれと同様にシート状として、またはそのシー
トをニッケル、ステンレスなどの導電体網に圧着して負
極として形成される。また負極活物質としては、リチウ
ム以外にリチウム合金やリチウム化合物、その他マグネ
シウム、カルシウム、ナトリウムなど、従来公知のもの
が使用できる。Lithium, which is the negative electrode active material, is formed into a sheet shape like that of a general lithium battery, or the sheet is pressure-bonded to a conductor network of nickel, stainless steel or the like to form a negative electrode. As the negative electrode active material, in addition to lithium, conventionally known materials such as lithium alloys and lithium compounds, magnesium, calcium, and sodium can be used.
【0012】電解質としては、例えばジメトキシエタ
ン、2−メチルテトラヒドロフラン、エチレンカーボネ
ート、メチルホルメート、ジメチルスルホキシド、プロ
ピレンカーボネート、アセトニトリル、ブチロラクト
ン、ジメチルフォルムアミドなどの有機溶媒に、LiA
sF6、LiBF4、LiPF6、LiAlCl4、LiC
lO4などのルイス酸を溶解した非水電解質溶液が使用
できる。As the electrolyte, for example, an organic solvent such as dimethoxyethane, 2-methyltetrahydrofuran, ethylene carbonate, methyl formate, dimethylsulfoxide, propylene carbonate, acetonitrile, butyrolactone, dimethylformamide and LiA can be used.
sF 6 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiC
A non-aqueous electrolyte solution in which a Lewis acid such as 10 4 is dissolved can be used.
【0013】さらに、セパレータ、構造材料(電池ケー
ス等)などの他の要素についても従来公知の各材料が使
用でき、特に制限はない。Further, conventionally known materials can be used for other elements such as a separator and a structural material (battery case, etc.), and there is no particular limitation.
【0014】[0014]
【実施例】以下実施例によって本発明の方法をさらに具
体的に説明するが、本発明はこれらにより何ら制限され
るものではない。なお、実施例において電池の作製およ
び測定はアルゴン雰囲気下のドライボックス中で行なっ
た。EXAMPLES The method of the present invention will be described in more detail with reference to the following examples, which should not be construed as limiting the invention thereto. In the examples, the production and measurement of batteries were performed in a dry box under an argon atmosphere.
【0015】[0015]
【実施例1】図1は本発明による電池の一具体例である
コイン型電池の断面図であり、図中1はステンレス製封
口板、2はポリプロピレン製ガスケット、3はステンレ
ス製正極ケース、4はリチウム負極、5はポリプロピレ
ン製微孔製セパレータ、6は正極合剤ペレット示す。EXAMPLE 1 FIG. 1 is a cross-sectional view of a coin-type battery which is one specific example of the battery according to the present invention, in which 1 is a stainless steel sealing plate, 2 is a polypropylene gasket, 3 is a positive electrode case made of stainless steel, 4 Is a lithium negative electrode, 5 is a polypropylene microporous separator, and 6 is a positive electrode material mixture pellet.
【0016】正極活物質は、無置換のLiMn2O4に対
し、表1に記した各種の金属元素をMnに対する置換添
加のドーパントとして、ドープ量をx=0.5に固定
し、秤量混合のうえ、650℃で6時間程度、大気中加
熱後、さらに850℃で24時間焼成して得た三元系複
酸化物結晶粉末を用いた。The positive electrode active material was prepared by substituting various metal elements shown in Table 1 as dopants for substitution and addition of Mn with respect to unsubstituted LiMn 2 O 4 , fixing the dope amount to x = 0.5 and weighing and mixing. In addition, a ternary compound oxide crystal powder obtained by heating at 650 ° C. for about 6 hours in the air and further firing at 850 ° C. for 24 hours was used.
【0017】得られた粉末試料のうち、例として、Li
Mn1.5Mg0.5O4、LiMn1.5Zn0.5O4、LiMn
1.5Ni0.5O4のX線回折図形を図2a〜図4bに示
す。いずれのピークもASTMの各プロファイルとよく
一致しており、LiMn2O4のメインピークが残存して
いることから少なくともこの組成までは無置換のLiM
n2O4スピネル構造を維持したまま、Mnが添加金属元
素と固溶状態で置換されているのがわかる。Among the obtained powder samples, as an example, Li
Mn 1.5 Mg 0.5 O 4 , LiMn 1.5 Zn 0.5 O 4 , LiMn
The X-ray diffraction patterns of 1.5 Ni 0.5 O 4 are shown in FIGS. 2a-4b. All the peaks are in good agreement with each profile of ASTM, and the main peak of LiMn 2 O 4 remains, so that at least up to this composition, there is no substitution of LiM.
It can be seen that Mn is replaced with the added metal element in a solid solution state while maintaining the n 2 O 4 spinel structure.
【0018】得られたLiMn1.5M’0.5O4結晶を導
電剤(アセチレンブラック粉末)、結着剤(ポリテトラ
フルオロエチレン)と共に、70:25:5の重量比で
混合の上、ロール成形し、正極合剤ペレット6(厚さ
0.5mm、直径17mm、200mg/ce11)と
した。まず、封口板1上に金属リチウム負極4を加圧配
置したものをガスケット2の凹部に挿入し、金属リチウ
ム負極4の上にセパレータ5、正極合剤ペレット6をこ
の順序に配置し、電解液としてプロピレンカーボネート
(PC)と2−ジメトキシエタン(DME)の等容積混
合溶媒にLiClO4を溶解させた1規定溶液をそれぞ
れ適量注入して含浸させた後に、正極ケース3を被せて
かしめることにより、厚さ2mm、直径23mmのコイ
ン型電池を作製した。The obtained LiMn 1.5 M '0.5 O 4 crystals a conductive agent (acetylene black powder) with a binder (polytetrafluoroethylene), 70: 25: on the mixed in a weight ratio of 5, and roll forming The positive electrode material mixture pellet 6 (thickness 0.5 mm, diameter 17 mm, 200 mg / ce 11) was used. First, the metallic lithium negative electrode 4 placed under pressure on the sealing plate 1 is inserted into the concave portion of the gasket 2, and the separator 5 and the positive electrode material mixture pellet 6 are arranged in this order on the metallic lithium negative electrode 4 to form the electrolyte solution. As an appropriate amount of 1N solution of LiClO 4 dissolved in an equal volume mixed solvent of propylene carbonate (PC) and 2-dimethoxyethane (DME), respectively, is injected and impregnated, the positive electrode case 3 is covered and caulked. A coin-type battery having a thickness of 2 mm and a diameter of 23 mm was produced.
【0019】このようにして作製した電池の0.5mA
/cm2の放電電流密度での各終止電圧までのセル放電
容量を表1に示す。0.5 mA of the battery thus produced
Table 1 shows the cell discharge capacities up to each cutoff voltage at a discharge current density of / cm 2 .
【0020】[0020]
【表1】[Table 1]
【0021】LiMn1.5M’0.5O4の中ではLiMn
1.5Al0.5O4、LiMn1.5Sc0.5O4、LiMn1.5
Fe0.5O4、LiMn1.5Ni0.5O4、LiMn1.5Co
0.5O4が比較的4V高電圧部の放電容量が大きい系であ
る。[0021] LiMn is in LiMn 1.5 M '0.5 O 4
1.5 Al 0.5 O 4 , LiMn 1.5 Sc 0.5 O 4 , LiMn 1.5
Fe 0.5 O 4 , LiMn 1.5 Ni 0.5 O 4 , LiMn 1.5 Co
0.5 O 4 is a system having a relatively large discharge capacity in the high voltage portion of 4V.
【0022】[0022]
【実施例2】正極活物質は、無置換のLiMn2O4に対
し、Fe3+をドーパントとして、x=0.05〜0.7
のドープ量で下式のように秤量混合のうえ、650℃で
6時間程度、大気中加熱後、さらに850℃で24時間
焼成して得た三元系複酸化物結晶粉末を用いた。Example 2 As for the positive electrode active material, x = 0.05 to 0.7 with respect to unsubstituted LiMn 2 O 4 with Fe 3+ as a dopant.
The ternary compound oxide crystal powder obtained by weighing and mixing the dope amount as shown in the following formula, heating at 650 ° C. for about 6 hours in the air, and then firing at 850 ° C. for 24 hours was used.
【0023】Li2CO3+(2−x)Mn2O3+xFe
2O3+0.5O2→2LiMn2-xFexO4+CO2↑Li 2 CO 3 + (2-x) Mn 2 O 3 + xFe
2 O 3 + 0.5O 2 → 2LiMn 2-x Fe x O 4 + CO 2 ↑
【0024】得られた粉末試料のうち、例として、Li
Mn1.95Fe0.05O4、LiMn1.9Fe0.1O4、LiM
n1.8Fe0.2O4、LiMn1.7Fe0.3O4、LiMn
1.6Fe0.4O4、LiMn1.5Fe0.5O4、LiMn1.3
Fe0.7O4のX線回折図形を図5a〜図5fに示す。い
ずれのピークもLiMn2O4のメインピークが残存して
いることから少なくともx=0.7の組成までは無置換
のLiMn2O4スピネル構造を維持したまま、Mnが添
加金属元素と固溶状態で置換されているのがわかる。Among the obtained powder samples, as an example, Li
Mn 1.95 Fe 0.05 O 4 , LiMn 1.9 Fe 0.1 O 4 , LiM
n 1.8 Fe 0.2 O 4 , LiMn 1.7 Fe 0.3 O 4 , LiMn
1.6 Fe 0.4 O 4 , LiMn 1.5 Fe 0.5 O 4 , LiMn 1.3
The X-ray diffraction patterns of Fe 0.7 O 4 are shown in Figures 5a to 5f. Since the main peak of LiMn 2 O 4 remains in all the peaks, Mn forms a solid solution with the additive metal element while maintaining the unsubstituted LiMn 2 O 4 spinel structure at least up to the composition of x = 0.7. You can see that it has been replaced by the state.
【0025】正極活物質に、以上のようにして合成した
LiMn2-xFexO4を用いる以外は、実施例1と同様
にしてリチウム電池を作成した。The positive electrode active material, except using LiMn 2-x Fe x O 4 was synthesized as described above to prepare a lithium battery in the same manner as in Example 1.
【0026】このようにして作製した電池の0.5mA
/cm2および、3mA/cm2の放電電流密度での3.
5V終止電圧までのセル放電容量を表2に、また、その
充放電サイクル特性をそれぞれ図6a〜図6d、図7a
〜図7dに示す。なお、xを0、0.1、0.2、0.
3とした。図6aおよび図7aおよび表2の最初の試料
はx=0、すなわち比較例である。0.5 mA of the battery thus produced
/ Cm 2 and 3. at discharge current densities of 3 mA / cm 2 .
Table 2 shows the cell discharge capacities up to 5 V final voltage, and FIG. 6a to FIG. 6d and FIG.
~ Shown in Figure 7d. Note that x is 0, 0.1, 0.2, 0.
It was set to 3. The first sample in Figures 6a and 7a and Table 2 is x = 0, ie the comparative example.
【0027】[0027]
【表2】[Table 2]
【0028】図6aから図6d、図7aから図7dおよ
び、表2の結果からLiMn2-xFexO4の中では、ド
ープ量は0<x≦0.2のものが特に放電容量、サイク
ル寿命の点で好適であることがわかる。また、無置換の
LiMn2O4スピネルに対する優位性は、3mA/cm
2の大電流放電時に特に顕著である。[0028] Figures 6a 6d, Figure 7d and Figures 7a, in Table 2 Results LiMn 2-x Fe x O 4 , doped amount 0 <particularly discharge capacity ones x ≦ 0.2, It can be seen that it is suitable in terms of cycle life. Further, the superiority to unsubstituted LiMn 2 O 4 spinel is 3 mA / cm 2.
It is especially noticeable during the high current discharge of 2 .
【0029】[0029]
【実施例3】正極活物質は、無置換のLiMn2O4に対
しドープ量をx=0.01に固定し、各種の低酸化数金
属元素をドーパントとして、秤量混合のうえ、650℃
で6時間程度、大気中加熱後、さらに850℃で24時
間焼成して得た三元系複酸化物結晶粉末を用いた。[Example 3] The positive electrode active material was prepared by fixing the dope amount to unsubstituted LiMn 2 O 4 at x = 0.01, weighing and mixing various low oxidation number metal elements as dopants, and then mixing at 650 ° C.
After heating in the air for about 6 hours and further firing at 850 ° C. for 24 hours, a ternary compound oxide crystal powder was used.
【0030】正極活物質に、以上のようにして合成した
LiMn2-xM’xO4を用いる以外は、実施例1と同様
にしてリチウム電池を作製した。The positive electrode active material, except using LiMn 2-x M 'x O 4 was synthesized as described above, to produce a lithium battery in the same manner as in Example 1.
【0031】一例として、このようにして作製した電池
の3mA/cm2放電電流密度での3.5V終止電圧ま
での放電曲線を図8a〜図8dに示す。図8aは比較例
のLiMn2O4の放電曲線であり、図8b〜図8dはそ
れぞれNi、Co、Feのx=0.1における放電曲線
である。As an example, FIGS. 8a to 8d show discharge curves up to a final voltage of 3.5 V at a discharge current density of 3 mA / cm 2 of the battery thus manufactured. FIG. 8a is a discharge curve of LiMn 2 O 4 of a comparative example, and FIGS. 8b to 8d are discharge curves of Ni, Co, and Fe at x = 0.1.
【0032】LiMn1.9Fe0.1O4と同様、Co、N
i、Al、Mg、Sc添加の場合は特に放電容量、過電
圧の点で無置換のLiMn2O4スピネルに対し優位性が
顕著であった。いずれの場合もこれらの低酸化数イオン
の添加によりヤンテラー不安定性のあるMn3+の存在比
が減少したことが特性向上につながったと考えられ、そ
の他の低酸化数イオンの添加でも同様の効果が期待でき
る。またドープ量はFeの場合と同様、0<x≦0.
5、中でも0<x≦0.2の場合が特に好適である。Similar to LiMn 1.9 Fe 0.1 O 4 , Co, N
When i, Al, Mg, and Sc were added, the superiority was remarkable over the unsubstituted LiMn 2 O 4 spinel in terms of discharge capacity and overvoltage. In any case, it is considered that the addition of these low oxidation number ions reduced the abundance ratio of Mn 3+ having Yanteller instability, which led to the improvement of the characteristics, and the addition of other low oxidation number ions had the same effect. Can be expected. The doping amount is 0 <x ≦ 0.
5, especially, the case of 0 <x ≦ 0.2 is particularly preferable.
【0033】[0033]
【発明の効果】以上説明したように、本発明によれば、
可逆容量の大きな小型高エネルギ密度のリチウム電池を
構成することができ、本発明電池はコイン型電池など種
々の分野に利用できるという利点を有する。As described above, according to the present invention,
It is possible to construct a small-sized and high-energy-density lithium battery having a large reversible capacity, and the battery of the present invention has an advantage that it can be used in various fields such as a coin battery.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 荒井 創 東京都千代田区内幸町一丁目1番6号 日 本電信電話株式会社内 (72)発明者 市村 雅弘 東京都千代田区内幸町一丁目1番6号 日 本電信電話株式会社内 (72)発明者 山木 準一 東京都千代田区内幸町一丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── --- Continuation of the front page (72) Inventor Hajime Arai 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Inside Nippon Telegraph and Telephone Corporation (72) Inventor Masahiro Ichimura 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo No. Japan Nippon Telegraph and Telephone Corp. (72) Inventor Junichi Yamaki 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corp.
Claims (1)
のMn以外の元素(M’)イオンで置換添加し固溶させ
た組成式、LiMn2-xM’xO4で与えられるスピネル
型複酸化物を正極活物質とし、アルカリ金属またはその
化合物を負極活物質とし、前記正極活物質および、前記
負極活物質に対して化学的に安定であり、かつアルカリ
金属イオンが前記正極活物質あるいは前記負極活物質と
電気化学反応をするための移動を行ない得る物質を電解
質物質としたことを特徴とする非水電解質電池。Claims: 1. A composition formula, LiMn 2-x M, in which Mn ions of LiMn 2 O 4 are substituted and added with elemental (M ') ions other than monovalent to hexavalent Mn to form a solid solution. ' x O 4 as the spinel-type mixed oxide as a positive electrode active material, an alkali metal or a compound thereof as a negative electrode active material, and chemically stable with respect to the positive electrode active material and the negative electrode active material, and A non-aqueous electrolyte battery, characterized in that an electrolyte substance is used as a substance capable of moving an alkali metal ion to cause an electrochemical reaction with the positive electrode active material or the negative electrode active material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3198829A JPH0521067A (en) | 1991-07-12 | 1991-07-12 | Nonaqueous electrolytic battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3198829A JPH0521067A (en) | 1991-07-12 | 1991-07-12 | Nonaqueous electrolytic battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0521067A true JPH0521067A (en) | 1993-01-29 |
Family
ID=16397613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3198829A Pending JPH0521067A (en) | 1991-07-12 | 1991-07-12 | Nonaqueous electrolytic battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0521067A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09134723A (en) * | 1995-11-07 | 1997-05-20 | Nippon Telegr & Teleph Corp <Ntt> | Non-aqueous electrolyte secondary battery |
JP2000067861A (en) * | 1998-08-26 | 2000-03-03 | Ngk Insulators Ltd | Lithium secondary battery |
JP2001273899A (en) * | 1999-08-27 | 2001-10-05 | Mitsubishi Chemicals Corp | Positive electrode material for lithium secondary battery |
JP2001283846A (en) * | 2000-03-29 | 2001-10-12 | Mitsubishi Chemicals Corp | Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery |
JP2002033103A (en) * | 2000-07-17 | 2002-01-31 | Yuasa Corp | Lithium secondary battery |
JP2005149985A (en) * | 2003-11-18 | 2005-06-09 | Japan Storage Battery Co Ltd | Manufacturing method of non-aqueous electrolytic solution secondary battery |
JP2008050259A (en) * | 2007-09-25 | 2008-03-06 | Nippon Chem Ind Co Ltd | Lithium-manganese composite oxide and lithium secondary battery |
JP2012252962A (en) * | 2011-06-06 | 2012-12-20 | Tokyo Univ Of Science | Sodium secondary battery |
-
1991
- 1991-07-12 JP JP3198829A patent/JPH0521067A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09134723A (en) * | 1995-11-07 | 1997-05-20 | Nippon Telegr & Teleph Corp <Ntt> | Non-aqueous electrolyte secondary battery |
JP2000067861A (en) * | 1998-08-26 | 2000-03-03 | Ngk Insulators Ltd | Lithium secondary battery |
JP2001273899A (en) * | 1999-08-27 | 2001-10-05 | Mitsubishi Chemicals Corp | Positive electrode material for lithium secondary battery |
JP2001283846A (en) * | 2000-03-29 | 2001-10-12 | Mitsubishi Chemicals Corp | Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery |
JP2002033103A (en) * | 2000-07-17 | 2002-01-31 | Yuasa Corp | Lithium secondary battery |
JP4632005B2 (en) * | 2000-07-17 | 2011-02-16 | 株式会社Gsユアサ | Lithium secondary battery |
JP2005149985A (en) * | 2003-11-18 | 2005-06-09 | Japan Storage Battery Co Ltd | Manufacturing method of non-aqueous electrolytic solution secondary battery |
JP2008050259A (en) * | 2007-09-25 | 2008-03-06 | Nippon Chem Ind Co Ltd | Lithium-manganese composite oxide and lithium secondary battery |
JP2012252962A (en) * | 2011-06-06 | 2012-12-20 | Tokyo Univ Of Science | Sodium secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3162437B2 (en) | Non-aqueous electrolyte secondary battery | |
US8026003B2 (en) | Negative active material for a non-aqueous electrolyte battery, and a non-aqueous electrolyte battery comprising the same | |
US6582854B1 (en) | Lithium ion secondary battery, cathode active material therefor and production thereof | |
KR100389052B1 (en) | Positive electrode active material, preparation method thereof and nonaqueous solvent secondary battery using the same | |
US5370949A (en) | Materials for use as cathodes in lithium electrochemical cells | |
KR101309150B1 (en) | Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same | |
KR20010025116A (en) | Method for manufacturing active material of positive plate and method for manufacturing nonaqueous electrolyte secondary cell | |
JPH11345615A (en) | Lithium ion nonaqueous electrolyte secondary battery | |
JPH09330720A (en) | Lithium battery | |
KR20150010556A (en) | Positive active material for rechargeable lithium battery, method of preparing the same, and positive electrode and rechargeable lithium battery including the same | |
JP3260282B2 (en) | Non-aqueous electrolyte lithium secondary battery | |
JP4235702B2 (en) | Positive electrode active material, manufacturing method thereof, and nonaqueous electrolyte secondary battery using the same | |
US20140065477A1 (en) | Positive active material composition for rechargeable lithium battery, and positive electrode and rechargeable lithium battery including same | |
JP5026629B2 (en) | Positive electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery | |
JPH08298121A (en) | Nonaqueous secondary battery | |
KR20190076774A (en) | Positive electrode active material precursor for rechargable lithium battery and manufacturing method of the same, positive electrode active material for rechargable lithium battery and manufacturing method of the same, rechargable lithium battery | |
JP2000348722A (en) | Nonaqueous electrolyte battery | |
JPH0521067A (en) | Nonaqueous electrolytic battery | |
US20240258527A1 (en) | Cathode Additives for Lithium Secondary Battery, Manufacturing Method of the Same, Cathode Including the Same, and Lithium Secondary Battery Including the Same | |
JPH1079250A (en) | Positive electrode active material, its manufacture, and nonaqueous solvent secondary battery using it | |
JP4170733B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery | |
KR101602419B1 (en) | Cathode active material cathode comprising the same and lithium battery using the cathode | |
JPH08287914A (en) | Lithium battery | |
KR20150089389A (en) | Positive active material, lithium battery containing the positive material, and method for manufacturing the positive active material | |
JPH06111822A (en) | Lithium battery |