JPH09134723A - Non-aqueous electrolyte secondary battery - Google Patents
Non-aqueous electrolyte secondary batteryInfo
- Publication number
- JPH09134723A JPH09134723A JP7311688A JP31168895A JPH09134723A JP H09134723 A JPH09134723 A JP H09134723A JP 7311688 A JP7311688 A JP 7311688A JP 31168895 A JP31168895 A JP 31168895A JP H09134723 A JPH09134723 A JP H09134723A
- Authority
- JP
- Japan
- Prior art keywords
- alkali metal
- active material
- electrode active
- metal
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は非水電解質電池、更
に詳細には充放電可能な非水電解質二次電池に関し、特
に正極活物質の改良に関わり、電池の充放電容量の増加
を目指すものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery, and more particularly to a chargeable / dischargeable non-aqueous electrolyte secondary battery, and particularly to the improvement of the positive electrode active material, aiming to increase the charge / discharge capacity of the battery. Is.
【0002】[0002]
【従来の技術】リチウムなどのアルカリ金属及びその合
金や化合物を負極活物質とする非水電解質電池は、負極
金属イオンの正極活物質へのインサーション若しくはイ
ンターカレーション反応によって、その大放電容量と充
電可逆性を両立させている。従来から、リチウムを負極
活物質として用いる二次電池としては、リチウムに対し
インターカレーションホストとなりうる五酸化バナジウ
ムや二酸化マンガンなどの層状若しくはトンネル状酸化
物を正極に用いた電池が提案されているが、電圧平坦性
が乏しく、その充放電エネルギー密度は充分とは言えな
かった。近年、スピネル構造をした立方晶のLiMn2
O4 にて、一旦4.5V付近まで初期充電してから放電
すると、4Vで放電できることが報告され、高電圧正極
として有望視されている〔ジャーナル オブ エレクト
ロケミカル ソサエティ(J.Electrochem.Soc.)、第1
37巻、第3号、第769頁(1990)〕。しかし、
この4V領域は放電の進行によりLi/Mn2 O4 >1
以上の組成域に達すると、リチウムの挿入サイトが四面
体8aサイトから、八面体16cサイトへ移ることに対
応して放電電圧が3V以下まで急低下してしまう。Li
Mn2O4 は4V高電圧領域と3V低電圧領域、2つの
領域を合せると1V終止放電容量にして都合300mA
h/g近い大きな放電容量を有するが、4V高電圧領域
と3V低電圧領域間の放電電圧の不連続性が1V以上と
大きく、両者をまたがる電圧範囲でのサイクル性に難が
あるため、実用上、双方の領域を利用することは難しい
という欠点があった。2. Description of the Related Art A non-aqueous electrolyte battery using an alkali metal such as lithium or an alloy or compound thereof as a negative electrode active material has a large discharge capacity due to an insertion or intercalation reaction of a negative electrode metal ion into the positive electrode active material. Charge reversibility is compatible. Conventionally, as a secondary battery using lithium as a negative electrode active material, a battery using a layered or tunnel oxide such as vanadium pentoxide or manganese dioxide, which can be an intercalation host for lithium, has been proposed. However, the voltage flatness was poor and the charge / discharge energy density was not sufficient. In recent years, cubic LiMn 2 having a spinel structure
It has been reported that the battery can be discharged at 4V if it is initially charged to about 4.5V with O 4 , and then discharged, and it is promising as a high-voltage positive electrode [J. , First
37, No. 3, p. 769 (1990)]. But,
In this 4V region, Li / Mn 2 O 4 > 1 due to the progress of discharge.
When the above composition range is reached, the discharge voltage drops sharply to 3 V or less in response to the lithium insertion site shifting from the tetrahedron 8a site to the octahedron 16c site. Li
Mn 2 O 4 has a high-voltage region of 4 V, a low-voltage region of 3 V, and a total discharge capacity of 1 V when the two regions are combined, which is about 300 mA.
It has a large discharge capacity close to h / g, but the discharge voltage between the 4V high voltage region and the 3V low voltage region has a large discontinuity of 1V or more, which makes it difficult to cycle in a voltage range that crosses both regions. In addition, it is difficult to use both areas.
【0003】[0003]
【発明が解決しようとする課題】本発明は、LiMn2
O4 の4V領域の放電電圧をMn以外の金属元素による
置換添加によって、あえて低下させ、2つの放電領域間
の電圧の不連続性を解消し、実用的な大放電容量非水電
解質二次電池を提供することにある。SUMMARY OF THE INVENTION The present invention is directed to LiMn 2
The discharge voltage in the 4 V region of O 4 is intentionally lowered by substitution and addition of a metal element other than Mn to eliminate the voltage discontinuity between the two discharge regions, and a practical large discharge capacity non-aqueous electrolyte secondary battery To provide.
【0004】[0004]
【課題を解決するための手段】本発明を概説すれば、本
発明の第1の発明は非水電解質二次電池に関する発明で
あって、組成式、Ay Mn2-x Mx O4 (Aはアルカリ
金属、MはA及びMn以外の金属、0.5<x<1.
5、0<y<2)で表されるアルカリ金属(A)含有マ
ンガン複酸化物を主体とする物質を正極活物質として含
み、アルカリ金属、アルカリ土類金属、又はアルカリ金
属若しくはアルカリ土類金属イオンを吸蔵、放出可能な
物質を負極活物質とし、前記アルカリ金属のイオンが前
記正極活物質又は前記負極活物質と電気化学反応をする
ための移動を行い得る物質を電解質物質としたことを特
徴とする。また、本発明の第2の発明は、上記第1の発
明におけるアルカリ金属(A)含有マンガン複酸化物、
Ay Mn2-x Mx O4 の製造方法に関する発明であっ
て、アルカリ金属化合物、マンガン化合物、及び置換添
加金属(M)の化合物を混合の上、熱処理後、ランダム
スピネル型若しくは逆スピネル型構造を急冷することに
よって合成することを特徴とする。The present invention will be outlined. The first invention of the present invention relates to a non-aqueous electrolyte secondary battery, which has a composition formula: A y Mn 2-x M x O 4 ( A is an alkali metal, M is a metal other than A and Mn, 0.5 <x <1.
5, 0 <y <2) containing as a positive electrode active material a substance mainly composed of an alkali metal (A) -containing manganese mixed oxide, an alkali metal, an alkaline earth metal, or an alkali metal or an alkaline earth metal A substance capable of occluding and releasing ions is used as a negative electrode active material, and a substance capable of moving ions of the alkali metal to cause an electrochemical reaction with the positive electrode active material or the negative electrode active material is used as an electrolyte substance. And A second invention of the present invention is the alkali metal (A) -containing manganese mixed oxide according to the first invention,
An invention relates to a method for producing a A y Mn 2-x M x O 4, alkali metal compound, manganese compound, and the compound substituted additive metal (M) onto the mixed, after heat treatment, the random spinel or inverse spinel It is characterized in that the structure is synthesized by quenching.
【0005】[0005]
【発明の実施の形態】以下、本発明を更に詳しく説明す
る。一般にスピネル化合物はAB2 O4 の組成式を持
つ。スピネル構造か逆スピネル構造か両者の違いはAイ
オンが八面体サイトを占有するか否かである。本発明の
正極活物質、Liy Mn2-x Mx O4 は、マンガンスピ
ネル酸化物、LiMn2 O4 中の八面体サイトに位置す
るMnの約半数(25〜75%)を他元素Mで置換添加
した三元系酸化物であり、より好ましくは、Liy Mn
2-x Mx O4 を形成すべく用いられるドーパントMは、
Li+ より八面体サイトプレファレンスエネルギーの小
さなイオンである。このようなイオンは八面体サイトよ
り四面体サイトを占有した方がエネルギー的に安定なの
で、この置換添加によって、Liの占有サイトは、ドー
パントMと入れ替りに四面体サイトから八面体サイトに
変わることになる。Liの占有サイトが四面体サイトで
なくなることに対応して、LiMn2-x Mx O4 の4V
放電領域が減少するが、その代り、低電圧領域は増加す
ることになり、放電電圧差の小さな実用性の高い、大放
電容量の非水電解質電池を得ることができる。上述のよ
うに本発明における正極活物質は、あえてサイトまで表
記すると|Li1-x Mx |〔Lix Mn2-x 〕O4 と示
される(ここで||内は四面体サイト、〔 〕内は八面
体サイトを示す)が、このようなドーパントMとして
は、例えば、Fe、Ru、Os、Ti、Zr、Hf、N
b、Ta、Cr、Mo、W、Co、Rh、Ir、Ni、
Sb、Si、Ge、Sn、Pb等の中の一種以上を挙げ
ることができる。更にxは、0.25<x<0.75の
範囲であるのがよい。ドープ量が少ないと四面体サイト
のLiとの置換が不充分であり、多すぎると他の相が多
く形成される恐れがあるからである。特に好ましくは、
x=1前後である。正極活物質の高温準安定相であるラ
ンダムスピネル相を得るための急冷は焼成後、直ちに炉
外に取り出し、試料に水がかからないように白金ルツボ
の外側から水冷して行ったが、急冷方法はこの方法に限
定されるものではなく、強制空冷やスプレードライ法、
ロール急冷法等も可能である。この正極活物質を用いて
正極を形成するには、前記化合物粉末とポリテトラフル
オロエチレンのごとき結着剤粉末との混合物をステンレ
ス等の支持体上に圧着成形する、あるいはかかる混合物
粉末に導電性を付与するためアセチレンブラックのよう
な導電性粉末を混合し、これに更にポリテトラフルオロ
エチレンのような結着剤粉末を所要に応じて加え、この
混合物を金属容器に入れる、あるいは前述の混合物をス
テンレスなどの支持体に圧着成形する、あるいは前述の
混合物を有機溶剤等の溶媒中に分散してスラリー状にし
て金属基板上に塗布する、等の手段によって形成され
る。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. Generally, spinel compounds have a composition formula of AB 2 O 4 . The difference between the spinel structure and the reverse spinel structure is whether or not the A ion occupies the octahedral site. The positive electrode active material of the present invention, Li y Mn 2-x M x O 4, contains about half (25 to 75%) of Mn located at the octahedral site in the manganese spinel oxide, LiMn 2 O 4 , as another element M. Is a ternary oxide substituted and added, and more preferably Li y Mn
2-x M x O 4 is used to form the dopant M is
It is an ion having a smaller octahedral site preference energy than Li + . Since such ions are more energetically stable in occupying the tetrahedral site than in the octahedral site, this substitution addition changes the occupied site of Li from the tetrahedral site to the octahedral site in exchange for the dopant M. Become. Corresponding to the fact that the occupied site of Li is no longer a tetrahedral site, 4M of LiMn 2-x M x O 4
Although the discharge area is reduced, the low voltage area is increased instead, and a highly practical non-aqueous electrolyte battery with a small discharge voltage difference and high practicality can be obtained. As described above, the positive electrode active material in the present invention is expressed as | Li 1-x M x | [Li x Mn 2-x ] O 4 (where || is a tetrahedral site, [ ] Indicates an octahedral site), but examples of such a dopant M include Fe, Ru, Os, Ti, Zr, Hf, and N.
b, Ta, Cr, Mo, W, Co, Rh, Ir, Ni,
One or more of Sb, Si, Ge, Sn, Pb and the like can be mentioned. Further, x is preferably in the range of 0.25 <x <0.75. This is because if the doping amount is small, the substitution of Li on the tetrahedral site is insufficient, and if it is too large, many other phases may be formed. Particularly preferably,
It is around x = 1. The rapid cooling for obtaining the random spinel phase, which is a high temperature metastable phase of the positive electrode active material, was taken out of the furnace immediately after firing and water-cooled from the outside of the platinum crucible so as not to splash water on the sample. Not limited to this method, forced air cooling or spray dry method,
A roll quenching method or the like is also possible. In order to form a positive electrode using this positive electrode active material, a mixture of the compound powder and a binder powder such as polytetrafluoroethylene is pressure-molded on a support such as stainless steel, or the mixture powder is electrically conductive. To provide a conductive powder such as acetylene black, to which is added a binder powder such as polytetrafluoroethylene, if necessary, and this mixture is placed in a metal container, or the above mixture is added. It is formed by means such as press-molding on a support such as stainless steel, or by dispersing the above mixture in a solvent such as an organic solvent to form a slurry and coating it on a metal substrate.
【0006】負極活物質であるリチウムは、一般のリチ
ウム電池のそれと同様にシート状にして、またそのシー
トをニッケル、ステンレス等の導電体網に圧着して負極
として形成される。また、負極活物質としては、リチウ
ム以外にリチウム合金やリチウム化合物、その他ナトリ
ウム、カリウム、マグネシウム等従来公知のアルカリ金
属、アルカリ土類金属、又はアルカリ金属若しくはアル
カリ土類金属イオンを吸蔵、放出可能な物質、例えば前
記金属の合金、炭素材料等が使用できる。電解液として
は、例えばジメトキシエタン、2−メチルテトラヒドロ
フラン、エチレンカーボネート、メチルホルメート、ジ
メチルスルホキシド、プロピレンカーボネート、アセト
ニトリル、ブチロラクトン、ジメチルホルムアミド、ジ
メチルカーボネート、ジエチルカーボネート、スルホラ
ン、エチルメチルカーボネート等に、アルカリ金属イオ
ンを含むルイス酸を溶解した非水電解質溶媒、あるいは
固体電解質等が使用できる。更にセパレータ、電池ケー
ス等の構造材料等の他の要素についても従来公知の各種
材料が使用でき、特に制限はない。Lithium, which is the negative electrode active material, is formed into a sheet in the same manner as that of a general lithium battery, and the sheet is pressure-bonded to a conductor network of nickel, stainless steel or the like to form a negative electrode. Further, as the negative electrode active material, in addition to lithium, lithium alloys and lithium compounds, other conventionally known alkali metals such as sodium, potassium and magnesium, alkaline earth metals, or alkali metals or alkaline earth metal ions can be occluded and released. Materials such as alloys of the above metals, carbon materials and the like can be used. Examples of the electrolytic solution include dimethoxyethane, 2-methyltetrahydrofuran, ethylene carbonate, methyl formate, dimethylsulfoxide, propylene carbonate, acetonitrile, butyrolactone, dimethylformamide, dimethyl carbonate, diethyl carbonate, sulfolane, ethyl methyl carbonate, and alkali metal. A non-aqueous electrolyte solvent in which a Lewis acid containing ions is dissolved, a solid electrolyte or the like can be used. Furthermore, various conventionally known materials can be used for other elements such as structural materials such as a separator and a battery case, and there is no particular limitation.
【0007】[0007]
【実施例】以下、実施例によって本発明の方法を更に具
体的に説明するが、本発明はこれらになんら制限される
ものではない。なお、実施例において電池の作成及び測
定はアルゴン雰囲気下のドライボックス内で行った。EXAMPLES The method of the present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto. In the examples, preparation and measurement of the battery were performed in a dry box under an argon atmosphere.
【0008】実施例1 図1は本発明による電池の一具体例であるコイン型電池
の断面図であり、図中1は封口板、2はガスケット、3
は正極ケース、4は負極、5はセパレータ、6は正極合
剤ペレットを示す。正極活物質には、無置換のLiMn
2 O4 に対し、FeをMnに対する置換添加のドーパン
トとして、ドープ量をx=1とし、次式の反応式(化
1)にのっとって、秤量混合の上、650℃で6時間程
度、大気中加熱後、更に1100℃で1日焼成後、急冷
して得た三元系複酸化物結晶粉末を用いた。Example 1 FIG. 1 is a cross-sectional view of a coin type battery which is one specific example of the battery according to the present invention, in which 1 is a sealing plate, 2 is a gasket, and 3 is a gasket.
Is a positive electrode case, 4 is a negative electrode, 5 is a separator, and 6 is a positive electrode material mixture pellet. For the positive electrode active material, unsubstituted LiMn
As a dopant for substitution addition of Fe with respect to 2 O 4 with respect to 2 O 4 , the doping amount was set to x = 1, and according to the following reaction formula (Formula 1), after weighing and mixing, at 650 ° C. for about 6 hours, the atmosphere A ternary compound oxide crystal powder obtained by medium heating, calcination at 1100 ° C. for 1 day, and rapid cooling was used.
【0009】[0009]
【化1】化学反応式:Li2 CO3 +Mn2 O3 +Fe
2 O3→2LiMnFeO4 +CO↑Chemical formula: Li 2 CO 3 + Mn 2 O 3 + Fe
2 O 3 → 2LiMnFeO 4 + CO ↑
【0010】得られた粉末試料のX線回折図形を図2に
示す。すなわち、図2は本発明の一実施例であるLiM
nFeO4 のX線回折図形を示す図である。図2におい
て縦軸はX線回折強度(任意目盛)、横軸はX線回折角
(2θ)を示す。得られたX線回折パターンは、基本的
にはスピネル構造のLiMn2 O4 (JCPDS#35
−782)やLiMnTiO4 (JCPDS#40−9
75)とよく一致しており、LiMnTiO4 のように
スピネル構造を維持したまま、MnがFeにより固溶状
態で置換されていることがわかる。2θ=30°付近に
認められる(220)ピークは、四面体位置のLiがF
eによって部分的に置換されたランダム若しくは逆スピ
ネル的構造になっていることを示すものである。この試
料をaとする。この試料aを粉砕して粉末とし、導電剤
(アセチレンブラック)、結着剤(ポリテトラフルオロ
エチレン)と共に混合の上、ロール成形し、正極合剤ペ
レット6(厚さ0.5mm、直径15mm)とした。次
にステンレス製の封口板1上に金属リチウムの負極4を
加圧配置したものをポリプロピレン製ガスケット2の凹
部に挿入し、負極4の上にポリプロピレン製で微孔性の
セパレータ5、正極合剤ペレット6をこの順序に配置
し、電解液として、プロピレンカーボネートの単独溶媒
にLiPF6 を溶解させた1規定溶液を適量注入して含
浸させた後に、ステンレス製の正極ケース3を被せてか
しめることにより、厚さ2mm、直径23mmのコイン
型リチウム電池を作製した。The X-ray diffraction pattern of the obtained powder sample is shown in FIG. That is, FIG. 2 shows the LiM which is an embodiment of the present invention.
is a diagram showing an X-ray diffraction pattern of nFeO 4. In FIG. 2, the vertical axis represents the X-ray diffraction intensity (arbitrary scale), and the horizontal axis represents the X-ray diffraction angle (2θ). The obtained X-ray diffraction pattern is basically the spinel structure of LiMn 2 O 4 (JCPDS # 35
-782) and LiMnTiO 4 (JCPDS # 40-9
75), and it is clear that Mn is replaced by Fe in a solid solution state while maintaining the spinel structure like LiMnTiO 4 . The (220) peak observed in the vicinity of 2θ = 30 ° shows that Li at the tetrahedral position is F
It shows that the structure is a random or reverse spinel structure partially substituted by e. This sample is designated as a. This sample a is crushed into powder, mixed with a conductive agent (acetylene black) and a binder (polytetrafluoroethylene), and roll-formed, and positive electrode mixture pellets 6 (thickness 0.5 mm, diameter 15 mm). And Next, a metallic lithium negative electrode 4 placed under pressure on a stainless steel sealing plate 1 was inserted into a recess of a polypropylene gasket 2, and a polypropylene microporous separator 5 and a positive electrode mixture were placed on the negative electrode 4. After arranging the pellets 6 in this order and injecting an appropriate amount of 1N solution of LiPF 6 dissolved in a single solvent of propylene carbonate as an electrolytic solution for impregnation, the positive electrode case 3 made of stainless steel is covered and caulked. Thus, a coin-type lithium battery having a thickness of 2 mm and a diameter of 23 mm was produced.
【0011】比較例1 本発明の効果を確認するために、代表的な従来の方法で
正極活物質とするLiMn2 O4 を合成し、この試料を
bとして、実施例1と同様のコイン型リチウム電池を作
製した。Comparative Example 1 In order to confirm the effect of the present invention, LiMn 2 O 4 as a positive electrode active material was synthesized by a typical conventional method, and this sample was designated as b, and was coin-shaped as in Example 1. A lithium battery was produced.
【0012】実施例2 正極活物質には、無置換のLiMn2 O4 に対し、Ti
をMnに対する置換添加のドーパントとして、ドープ量
をx=1に固定し、次式の反応式(化2)にのっとっ
て、秤量混合の上、650℃で6時間程度、大気中加熱
後、急冷して得た三元系複酸化物結晶粉末を用いた。Example 2 As a positive electrode active material, TiMn 2 O 4 was substituted with Ti
As a dopant for substitution addition with respect to Mn, the doping amount is fixed at x = 1, and according to the following reaction formula (Chemical formula 2), after weighing and mixing, after heating at 650 ° C. for about 6 hours in the atmosphere, quenching is performed. The ternary compound oxide crystal powder obtained in this way was used.
【0013】[0013]
【化2】化学反応式:Li2 CO3 +Mn2 O3 +2T
iO2→2LiMnTiO4 +CO2 ↑Chemical formula: Li 2 CO 3 + Mn 2 O 3 + 2T
iO 2 → 2LiMnTiO 4 + CO 2 ↑
【0014】得られた粉末試料のX線回折図形を図3に
示す。すなわち、図3は本発明の一実施例であるLiM
nTiO4 のX線回折図形を示す図である。図3におい
て、縦軸及び横軸は図2と同義である。得られたX線回
折パターンは、スピネル構造のLiMnTiO4 (JC
PDS#40−975)と同定された。2θ=30°付
近に認められる(220)ピークは、四面体位置のLi
がTiによって部分的に置換されたランダム若しくは逆
スピネル的構造になっていることを示すものである。こ
の試料をcとする。正極活物質に、以上のようにして作
成したLiMnTiO4 を用いる以外は、実施例1と同
様にしてコイン型リチウム電池を作製した。The X-ray diffraction pattern of the obtained powder sample is shown in FIG. That is, FIG. 3 shows LiM which is an embodiment of the present invention.
is a diagram showing an X-ray diffraction pattern of nTiO 4. 3, the vertical axis and the horizontal axis have the same meaning as in FIG. The obtained X-ray diffraction pattern shows the spinel structure of LiMnTiO 4 (JC
PDS # 40-975). The (220) peak observed near 2θ = 30 ° is Li at the tetrahedral position.
Shows that it has a random or reverse spinel structure partially substituted by Ti. This sample is designated as c. A coin type lithium battery was produced in the same manner as in Example 1 except that LiMnTiO 4 produced as described above was used as the positive electrode active material.
【0015】実施例3 正極活物質には、無置換のLiMn2 O4 に対し、Co
をMnに対する置換添加のドーパントとして、ドープ量
をx=1に固定し、次式の反応式(化3)にのっとっ
て、秤量混合の上、650℃で6時間程度、大気中加熱
後、更に950℃で1日焼成後、急冷して得た三元系複
酸化物結晶粉末を用いた。Example 3 As the positive electrode active material, CoMn 2 O 4 which was not substituted was used.
As a dopant for substitution addition with respect to Mn, the doping amount is fixed at x = 1, and according to the following reaction formula (Formula 3), after weighing and mixing, after heating at 650 ° C. for about 6 hours in the atmosphere, A ternary compound oxide crystal powder obtained by firing at 950 ° C. for 1 day and then rapidly cooling was used.
【0016】[0016]
【化3】化学反応式:Li2 CO3 +Mn2 O3 +Co
2 O3→2LiMnCoO4 +CO↑Chemical formula: Li 2 CO 3 + Mn 2 O 3 + Co
2 O 3 → 2LiMnCoO 4 + CO ↑
【0017】得られた粉末試料のX線回折図形を図4に
示す。すなわち、図4は本発明の一実施例であるLiM
nCoO4 のX線回折図形を示す図である。図4におい
て、縦軸及び横軸は図2と同義である。得られたX線回
折パターンは、基本的にはスピネル構造のLiMn2 O
4 (JCPDS#35−782)やLiMnTiO
4 (JCPDS#40−975)とよく一致しており、
LiMnTiO4 のようにスピネル構造を維持したま
ま、MnがCoにより固溶状態で置換されていることが
わかる。2θ=30°付近に認められる(220)ピー
クは、微弱ながら部分的に四面体位置のLiがCoによ
って置換されたランダムスピネル的構造になっているこ
とを示すものである。この試料をdとする。正極活物質
に、以上のようにして作成したLiMnCoO4 を用い
る以外は、実施例1と同様にしてコイン型リチウム電池
を作製した。An X-ray diffraction pattern of the obtained powder sample is shown in FIG. That is, FIG. 4 shows an example of LiM which is an embodiment of the present invention.
is a diagram showing an X-ray diffraction pattern of nCoO 4. 4, the vertical axis and the horizontal axis have the same meaning as in FIG. The obtained X-ray diffraction pattern is basically LiMn 2 O having a spinel structure.
4 (JCPDS # 35-782) and LiMnTiO
4 (JCPDS # 40-975),
It can be seen that Mn is replaced by Co in a solid solution state while maintaining the spinel structure like LiMnTiO 4 . The (220) peak observed in the vicinity of 2θ = 30 ° indicates that it has a random spinel structure in which Li in the tetrahedral position is partially replaced by Co although it is weak. This sample is referred to as d. A coin-type lithium battery was produced in the same manner as in Example 1 except that LiMnCoO 4 produced as described above was used as the positive electrode active material.
【0018】このようにして作製した双方の試料a(実
施例1)、b(比較例1)、c(実施例2)、d(実施
例3)を正極活物質とする電池を、0.25mA/cm
2 の電流密度にて、5.3V終止の初期充電後、1.0
V〜5.0V間の電圧規制でサイクルさせた際の初回の
放電曲線を図5〜図8に示す。すなわち、図5は本発明
の一実施例であるLiMnFeO4 の5.3V初期充電
後の初回放電曲線を示す特性図であり、図6は本発明の
比較例であるLiMn2 O4 の5.3V初期充電後の初
回放電曲線を示す特性図であり、図7は本発明の一実施
例であるLiMnTiO4 の5.3V初期充電後の初回
放電曲線を示す特性図であり、図8は本発明の一実施例
であるLiMnCoO4 の5.3V初期充電後の初回放
電曲線を示す特性図である。そして、図5〜図8におい
て、縦軸は電池電圧(V)、横軸は放電時間(hr)を
示す。また各正極試料の5.0V終止初期充電後の4V
領域容量(3.5V終止)、低電圧領域容量(1.5V
終止)を各々表1に示す。Batteries using the samples a (Example 1), b (Comparative Example 1), c (Example 2), and d (Example 3) as the positive electrode active materials prepared as described above were tested as 0. 25 mA / cm
1.0 at the current density of 2 after the initial charge of 5.3V termination
5 to 8 show the initial discharge curves when the cycle is performed under the voltage regulation between V and 5.0V. That is, FIG. 5 is a characteristic diagram showing an initial discharge curve of LiMnFeO 4 which is an example of the present invention after initial charging of 5.3 V, and FIG. 6 shows 5.5 of LiMn 2 O 4 which is a comparative example of the present invention. FIG. 8 is a characteristic diagram showing an initial discharge curve after a 3 V initial charge, FIG. 7 is a characteristic diagram showing an initial discharge curve after a 5.3 V initial charge of LiMnTiO 4 which is one example of the present invention, and FIG. FIG. 5 is a characteristic diagram showing an initial discharge curve after initial charging of 5.3 V of LiMnCoO 4 which is an example of the invention. 5 to 8, the vertical axis represents the battery voltage (V) and the horizontal axis represents the discharge time (hr). In addition, each positive electrode sample has 4V after the initial charge of 5.0V.
Area capacity (termination of 3.5V), low voltage area capacity (1.5V)
Termination) is shown in Table 1.
【0019】[0019]
【表1】 [Table 1]
【0020】また、一例として試料aの0.25mA/
cm2 の電流密度での1.0V〜5.0V間電圧規制充
放電サイクル試験中の充放電曲線を図9に示す。すなわ
ち、図9は本発明の一実施例であるLiMnFeO4 の
1.0V〜5.0V間電圧規制試験時の充放電曲線を示
す特性図であり、図9において、縦軸は電池電圧
(V)、横軸は充放電サイクル時間(hr)を示す。図
5〜図8、及び表1より明らかなように、無添加LiM
n2 O4 が持つ4V放電領域の低減と引き替えに、本発
明品正極活物質の場合、低電圧領域を最大1.8倍まで
拡大できることがわかる。また、図9より、1.0V〜
5.0V間電圧規制充放電サイクルでも容量劣化が極め
て小さい良好なサイクル性を有していることがわかる。As an example, 0.25 mA / of the sample a
FIG. 9 shows a charge / discharge curve during the voltage regulated charge / discharge cycle test between 1.0 V and 5.0 V at a current density of cm 2 . That is, FIG. 9 is a characteristic diagram showing a charge / discharge curve during a voltage regulation test between 1.0 V and 5.0 V of LiMnFeO 4 which is an example of the present invention, and in FIG. 9, the vertical axis represents the battery voltage (V ), The horizontal axis represents charge / discharge cycle time (hr). As is clear from FIGS. 5 to 8 and Table 1, undoped LiM
It can be seen that in the case of the positive electrode active material of the present invention, the low voltage region can be expanded up to 1.8 times at the maximum in exchange for the reduction of the 4 V discharge region of n 2 O 4 . Moreover, from FIG.
It can be seen that even with a 5.0 V voltage regulation charge / discharge cycle, it has good cycleability with extremely small capacity deterioration.
【0021】[0021]
【発明の効果】以上説明したように、本発明によれば、
放電電圧差の小さな実用性の高い大容量非水電解質二次
電池を構成することができ、様々な分野に利用できると
いう利点を有する。As described above, according to the present invention,
It is possible to construct a large-capacity non-aqueous electrolyte secondary battery with a small discharge voltage difference and high practicality, and it has an advantage that it can be used in various fields.
【図1】本発明の一実施例であるコイン型電池の構成例
を示す断面図である。FIG. 1 is a cross-sectional view showing a configuration example of a coin-type battery that is an embodiment of the present invention.
【図2】本発明の一実施例であるLiMnFeO4 のX
線回折図形を示す図である。FIG. 2 shows X of LiMnFeO 4 which is an embodiment of the present invention.
It is a figure which shows a line diffraction pattern.
【図3】本発明の一実施例であるLiMnTiO4 のX
線回折図形を示す図である。FIG. 3 is an X of LiMnTiO 4 which is an embodiment of the present invention.
It is a figure which shows a line diffraction pattern.
【図4】本発明の一実施例であるLiMnCoO4 のX
線回折図形を示す図である。FIG. 4 is an X of LiMnCoO 4 which is an example of the present invention.
It is a figure which shows a line diffraction pattern.
【図5】本発明の一実施例であるLiMnFeO4 の
5.3V初期充電後の初回放電曲線を示す特性図であ
る。FIG. 5 is a characteristic diagram showing an initial discharge curve of LiMnFeO 4 according to one example of the present invention after 5.3 V initial charging.
【図6】本発明の比較例であるLiMn2 O4 の5.3
V初期充電後の初回放電曲線を示す特性図である。6 is a comparative example of the present invention, 5.3 of LiMn 2 O 4
It is a characteristic view which shows the initial discharge curve after V initial charge.
【図7】本発明の一実施例であるLiMnTiO4 の
5.3V初期充電後の初回放電曲線を示す特性図であ
る。FIG. 7 is a characteristic diagram showing an initial discharge curve after initial charging of 5.3 V of LiMnTiO 4 , which is an example of the present invention.
【図8】本発明の一実施例であるLiMnCoO4 の
5.3V初期充電後の初回放電曲線を示す特性図であ
る。FIG. 8 is a characteristic diagram showing an initial discharge curve of LiMnCoO 4 , which is an example of the present invention, after 5.3 V initial charging.
【図9】本発明の一実施例であるLiMnFeO4 の
1.0V〜5.0V間電圧規制試験時の充放電曲線を示
す特性図である。FIG. 9 is a characteristic diagram showing a charge / discharge curve of LiMnFeO 4 according to one example of the present invention during a voltage regulation test between 1.0 V and 5.0 V.
1:封口板、2:ガスケット、3:正極ケース、4:負
極、5:セパレータ、6:正極合剤ペレット1: Sealing plate, 2: Gasket, 3: Positive electrode case, 4: Negative electrode, 5: Separator, 6: Positive electrode mixture pellet
───────────────────────────────────────────────────── フロントページの続き (72)発明者 大塚 秀昭 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 (72)発明者 桜井 庸司 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 (72)発明者 山木 準一 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideaki Otsuka 3-19-2 Nishishinjuku, Shinjuku-ku, Tokyo Inside Nippon Telegraph and Telephone Corporation (72) Instructor Youji Sakurai 3-19-2 Nishishinjuku, Shinjuku-ku, Tokyo No. Nippon Telegraph and Telephone Corporation (72) Inventor Junichi Yamaki 3-19-2 Nishishinjuku, Shinjuku-ku, Tokyo Inside Nippon Telegraph and Telephone Corporation
Claims (4)
ルカリ金属、MはA及びMn以外の金属、0.5<x<
1.5、0<y<2)で表されるアルカリ金属(A)含
有マンガン複酸化物を主体とする物質を正極活物質とし
て含み、アルカリ金属、アルカリ土類金属、又はアルカ
リ金属若しくはアルカリ土類金属イオンを吸蔵、放出可
能な物質を負極活物質とし、前記アルカリ金属のイオン
が前記正極活物質又は前記負極活物質と電気化学反応を
するための移動を行い得る物質を電解質物質としたこと
を特徴とする非水電解質二次電池。1. A composition formula, A y Mn 2-x M x O 4 (A is an alkali metal, M is a metal other than A and Mn, 0.5 <x <
1.5, 0 <y <2), which contains as a positive electrode active material a substance mainly containing an alkali metal (A) -containing manganese mixed oxide, an alkali metal, an alkaline earth metal, or an alkali metal or an alkaline earth A substance capable of occluding and releasing a metal ion is used as the negative electrode active material, and a substance capable of moving to cause an electrochemical reaction of the alkali metal ions with the positive electrode active material or the negative electrode active material is used as the electrolyte substance. A non-aqueous electrolyte secondary battery characterized by:
酸化物、Ay Mn2-x Mx O4 が、Mn以外の金属
(M)としてFe、Ru、Os、Ti、Zr、Hf、N
b、Ta、Cr、Mo、W、Co、Rh、Ir、Ni、
Sb、Si、Ge、Sn、Pbの中の少なくとも一種類
を含んで構成される物質であることを特徴とする請求項
1に記載の非水電解質二次電池。2. The alkali metal (A) -containing manganese composite oxide, A y Mn 2-x M x O 4 is used as a metal (M) other than Mn such as Fe, Ru, Os, Ti, Zr, Hf, N.
b, Ta, Cr, Mo, W, Co, Rh, Ir, Ni,
The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery is a substance containing at least one of Sb, Si, Ge, Sn, and Pb.
酸化物、Ay Mn2-x Mx O4 が、酸素の四面体サイト
にアルカリ金属(A)以外の金属(M)を含むランダム
スピネル型若しくは逆スピネル型構造であることを特徴
とする請求項1に記載の非水電解質二次電池。3. A random spinel in which the alkali metal (A) -containing manganese complex oxide, A y Mn 2-x M x O 4 , contains a metal (M) other than the alkali metal (A) at the tetrahedral site of oxygen. The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery has a negative or spinel structure.
及び置換添加金属(M)の化合物を混合の上、熱処理
後、ランダムスピネル型若しくは逆スピネル型構造を急
冷することによって合成することを特徴とする請求項1
〜3のいずれか1項に記載のアルカリ金属(A)含有マ
ンガン複酸化物、Ay Mn2-x Mx O4の製造方法。4. An alkali metal compound, a manganese compound,
And a compound of the substitutional addition metal (M) are mixed, heat-treated, and then rapidly cooled to form a random spinel type structure or an inverse spinel type structure.
Alkali metal (A) containing manganese complex oxide according to any one of to 3, the manufacturing method of the A y Mn 2-x M x O 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7311688A JPH09134723A (en) | 1995-11-07 | 1995-11-07 | Non-aqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7311688A JPH09134723A (en) | 1995-11-07 | 1995-11-07 | Non-aqueous electrolyte secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09134723A true JPH09134723A (en) | 1997-05-20 |
Family
ID=18020274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7311688A Pending JPH09134723A (en) | 1995-11-07 | 1995-11-07 | Non-aqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09134723A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997050136A1 (en) * | 1996-06-25 | 1997-12-31 | Valence Technology, Inc. | Lithium manganese oxide cathodes with high capacity and stability |
US6489060B1 (en) | 1999-05-26 | 2002-12-03 | E-One Moli Energy (Canada) Limited | Rechargeable spinel lithium batteries with greatly improved elevated temperature cycle life |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63218156A (en) * | 1987-03-05 | 1988-09-12 | Sanyo Electric Co Ltd | Nonaqueous secondary battery |
JPH02278661A (en) * | 1989-04-20 | 1990-11-14 | Fuji Elelctrochem Co Ltd | Nonaqueous electrolyte secondary battery |
JPH03283356A (en) * | 1990-03-30 | 1991-12-13 | Shin Kobe Electric Mach Co Ltd | Positive electrode active material for secondary battery |
JPH0521067A (en) * | 1991-07-12 | 1993-01-29 | Nippon Telegr & Teleph Corp <Ntt> | Nonaqueous electrolytic battery |
JPH05166510A (en) * | 1991-12-13 | 1993-07-02 | Asahi Glass Co Ltd | Secondary lithium battery |
JPH07122299A (en) * | 1993-10-21 | 1995-05-12 | Fuji Photo Film Co Ltd | Non-aqueous secondary battery |
JPH08180875A (en) * | 1994-12-24 | 1996-07-12 | Aichi Steel Works Ltd | Lithium secondary battery |
JPH08298115A (en) * | 1995-04-26 | 1996-11-12 | Japan Storage Battery Co Ltd | Positive electrode active material for lithium battery and manufacture thereof |
-
1995
- 1995-11-07 JP JP7311688A patent/JPH09134723A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63218156A (en) * | 1987-03-05 | 1988-09-12 | Sanyo Electric Co Ltd | Nonaqueous secondary battery |
JPH02278661A (en) * | 1989-04-20 | 1990-11-14 | Fuji Elelctrochem Co Ltd | Nonaqueous electrolyte secondary battery |
JPH03283356A (en) * | 1990-03-30 | 1991-12-13 | Shin Kobe Electric Mach Co Ltd | Positive electrode active material for secondary battery |
JPH0521067A (en) * | 1991-07-12 | 1993-01-29 | Nippon Telegr & Teleph Corp <Ntt> | Nonaqueous electrolytic battery |
JPH05166510A (en) * | 1991-12-13 | 1993-07-02 | Asahi Glass Co Ltd | Secondary lithium battery |
JPH07122299A (en) * | 1993-10-21 | 1995-05-12 | Fuji Photo Film Co Ltd | Non-aqueous secondary battery |
JPH08180875A (en) * | 1994-12-24 | 1996-07-12 | Aichi Steel Works Ltd | Lithium secondary battery |
JPH08298115A (en) * | 1995-04-26 | 1996-11-12 | Japan Storage Battery Co Ltd | Positive electrode active material for lithium battery and manufacture thereof |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997050136A1 (en) * | 1996-06-25 | 1997-12-31 | Valence Technology, Inc. | Lithium manganese oxide cathodes with high capacity and stability |
US6489060B1 (en) | 1999-05-26 | 2002-12-03 | E-One Moli Energy (Canada) Limited | Rechargeable spinel lithium batteries with greatly improved elevated temperature cycle life |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3047827B2 (en) | Lithium secondary battery | |
JP4061668B2 (en) | Lithium ion non-aqueous electrolyte secondary battery | |
JP4431064B2 (en) | Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same | |
JP3141858B2 (en) | Lithium transition metal halide oxide, method for producing the same and use thereof | |
JPH09134724A (en) | Non-aqueous electrolyte secondary battery | |
KR20020070495A (en) | Nonaqueous electrolyte secondary cell and positive electrode active material | |
JPH10302768A (en) | Lithium ion nonaqueous electrolytic secondary battery | |
KR20030008704A (en) | An active material for a battery and a method of preparing the same | |
JPH09134725A (en) | Non-aqueous electrolyte secondary battery | |
US6270926B1 (en) | Lithium secondary battery | |
JP3260282B2 (en) | Non-aqueous electrolyte lithium secondary battery | |
JPH08217452A (en) | Needle manganese complex oxide, production and use thereof | |
EP0734085B1 (en) | Spinel-type lithium manganese oxide as a cathode active material for nonaqueous electrolyte lithium secondary batteries | |
JP2000058059A (en) | Positive-electrode active material for lithium secondary battery and its manufacture | |
JP2002313337A (en) | Positive electrode active material for use in nonaqueous electrolyte secondary battery and method for manufacturing it | |
US20030138696A1 (en) | High voltage lithium insertion compound usable as cathode active material for a rechargeable lithium electrochemical cell | |
JP2002279987A (en) | Material of positive electrode for lithium secondary battery, and the lithium secondary battery using the material | |
JP3296204B2 (en) | Lithium secondary battery | |
JPH10255804A (en) | Lithium secondary battery | |
JP3296203B2 (en) | Lithium secondary battery | |
JP2000182616A (en) | Manufacture of positive electrode active material for nonaqueous electrolyte secondary battery | |
JP3487941B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte battery | |
JPH10233212A (en) | Electrode active material for nonaqueous battery | |
JPH09134723A (en) | Non-aqueous electrolyte secondary battery | |
JP2963452B1 (en) | Positive electrode active material and non-aqueous electrolyte secondary battery using the same |