JPH05129184A - Projection aligner - Google Patents
Projection alignerInfo
- Publication number
- JPH05129184A JPH05129184A JP3311651A JP31165191A JPH05129184A JP H05129184 A JPH05129184 A JP H05129184A JP 3311651 A JP3311651 A JP 3311651A JP 31165191 A JP31165191 A JP 31165191A JP H05129184 A JPH05129184 A JP H05129184A
- Authority
- JP
- Japan
- Prior art keywords
- stage
- wafer stage
- grating
- linear motor
- interferometer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70691—Handling of masks or workpieces
- G03F7/70775—Position control, e.g. interferometers or encoders for determining the stage position
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は半導体製造に用いられる
投影露光装置に関するもので、特に該装置に用いられる
ステ−ジの位置計測に、格子干渉測長器を利用したもの
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection exposure apparatus used in semiconductor manufacturing, and more particularly to a projection exposure apparatus using a grating interferometer for measuring the position of a stage used in the apparatus.
【0002】[0002]
【従来の技術】近年半導体集積回路(LSI)の集積度
の向上にともない、LSIの製造に用いられる縮小投影
型露光装置、所謂ステッパにはますます高解像度、高精
度位置合わせ、高スル−プット等の性能が要求されるよ
うになっている。このようなステッパの高性能化に対す
る要求のうち、ステ−ジ部分は位置合わせ精度、スル−
プット等に関連のある重要な構成部である。2. Description of the Related Art With the recent increase in the degree of integration of semiconductor integrated circuits (LSIs), reduction projection type exposure apparatuses used in the manufacture of LSIs, so-called steppers, have increasingly higher resolution, higher precision alignment, and higher throughput. Performances such as are required. Among the demands for higher performance of such steppers, the stage part is required for alignment accuracy and
It is an important component related to puts.
【0003】ステ−ジ部分の構成としては例えば「機械
設計」1990年8月号「最近の位置決め技術とセンサ
−」等に記載されているものが知られている。ステ−ジ
はベ−ス上にXYステ−ジ、Zステ−ジが構成され、該
Zステ−ジの上にレ−ザ干渉計用の移動鏡が配置されて
いる。更に傾斜の補正機構、位置合わせ用の回転補正に
用いられるθステ−ジが配置され、その上にウェハホル
ダがのって、ウェハを真空吸着する機構となっている。As a configuration of the stage portion, for example, one described in "Mechanical Design" August 1990, "Recent Positioning Technology and Sensors" and the like is known. The stage has an XY stage and a Z stage formed on a base, and a movable mirror for a laser interferometer is arranged on the Z stage. Further, an inclination correction mechanism and a θ stage used for rotation correction for position adjustment are arranged, and a wafer holder is mounted on the θ stage to vacuum suction the wafer.
【0004】ステッパの場合にはレチクルとウェハの位
置合わせが重要視されるため、通常レ−ザ干渉計が使用
される。干渉計の参照位置は固定鏡を投影レンズの鏡筒
から下ろした部材で支持して固定することで形成され
る。ステ−ジの位置はこの固定鏡と、Zステ−ジ上の移
動鏡から反射されてくるレ−ザ光の干渉による公知のレ
−ザ干渉計によって位置座標として計測される。In the case of a stepper, since alignment between the reticle and the wafer is important, a laser interferometer is usually used. The reference position of the interferometer is formed by supporting and fixing a fixed mirror with a member lowered from the lens barrel of the projection lens. The position of the stage is measured as a position coordinate by a known laser interferometer by the interference of the laser light reflected from the fixed mirror and the moving mirror on the Z stage.
【0005】XYステ−ジは駆動機構にDCモ−タによ
るボ−ルネジ駆動、案内機構はV−F型ガイドで褶動面
にニ−ドルベアリングを用いるなどの方式が知られてい
る。また「OMRON TECHNICS」No.76
(1985)などに見られるように駆動機構にリニアモ
−タを用い、案内機構に静圧空気軸受けを用いる構成を
とるXYステ−ジの発表も最近目立つようになってきて
いる。For the XY stage, a system is known in which a ball screw drive by a DC motor is used as a drive mechanism, and a VF guide is used as a guide mechanism and a needle bearing is used as a sliding surface. In addition, “OMRON TECHNICS” No. 76
(1985), a linear motor is used for a drive mechanism and a static pressure air bearing is used for a guide mechanism, and an XY stage has recently become conspicuous.
【0006】図7は静圧型のXYステ−ジの構成例であ
る。71a〜71dはリニアモ−タコイルとヨ−ガイド
で、このガイドに静圧空気軸受けが用いられている。7
0a〜70dはリニアモ−タヨ−クで、それぞれのヨ−
クは中央のウェハステ−ジ74をXY方向に移動させる
ためのガイドと連結している。70a,70cのリニア
モ−タヨ−クはY方向移動のガイド72に、リニアモ−
タヨ−ク70bと70dはX方向移動のガイド73に連
結している。72,73のガイドにも静圧空気軸受けが
使用されている。FIG. 7 shows an example of the structure of a static pressure type XY stage. Reference numerals 71a to 71d are linear motor coils and a yaw guide, and a static pressure air bearing is used for this guide. 7
0a to 70d are linear motor yokes, each of which
The square is connected to a guide for moving the central wafer stage 74 in the XY directions. The 70a and 70c linear motor yokes are connected to the guide 72 for moving in the Y direction, and
The yokes 70b and 70d are connected to a guide 73 which moves in the X direction. Hydrostatic air bearings are also used for the 72 and 73 guides.
【0007】74はウェハステ−ジで、75はウェハを
保持するウェハホルダである。ウェハステ−ジ74上に
はウェハステ−ジ74の位置のXY座標を前述のレ−ザ
干渉計を用いて計測するためのミラ−76、77が取り
付けられている。78、79は前述の投影レンズから下
ろした部材で支持された固定鏡である。ウェハステ−ジ
74の位置のX座標は移動ミラ−76と固定鏡79から
反射される2つのレ−ザ光によりヘテロダイン等の方式
により計測され、Y座標についてもミラ−77、固定鏡
78からのレ−ザ光を用い、同様の計測が行われる。Reference numeral 74 is a wafer stage, and 75 is a wafer holder for holding a wafer. On the wafer stage 74, mirrors 76 and 77 for measuring the XY coordinates of the position of the wafer stage 74 using the above-mentioned laser interferometer are attached. Reference numerals 78 and 79 denote fixed mirrors which are supported by a member lowered from the above-mentioned projection lens. The X coordinate of the position of the wafer stage 74 is measured by a method such as heterodyne by two laser beams reflected from the moving mirror 76 and the fixed mirror 79, and the Y coordinate is also measured from the mirror 77 and the fixed mirror 78. Similar measurements are performed using laser light.
【0008】[0008]
【発明が解決しようとしている課題】しかしながら上記
従来例ではステ−ジの位置計測にレ−ザ干渉計を用いて
いるため、ステ−ジを含む装置全体を格納しているサ−
マルチャンバ内の環境変動により計測誤差が生じる。However, since the laser interferometer is used to measure the position of the stage in the above-mentioned conventional example, a server that stores the entire device including the stage is stored.
Measurement errors occur due to environmental changes in the round chamber.
【0009】一般に温度、湿度、気圧、炭酸ガス濃度な
どの環境変動は空気の屈折率を引き起こし、レ−ザの空
気中の波長に変化を与える。従ってチャンバ内の干渉計
の光路で発生した温度のむらや空気の揺らぎは、空気の
屈折率を変化させるが、一様な変化でないためモニタが
難しく、レ−ザ干渉計の計測結果に悪影響を与える。In general, environmental fluctuations such as temperature, humidity, atmospheric pressure and carbon dioxide gas concentration cause the refractive index of air to change the wavelength in the air of the laser. Therefore, temperature unevenness and air fluctuations generated in the optical path of the interferometer in the chamber change the refractive index of the air, but it is difficult to monitor because it is not a uniform change, which adversely affects the measurement results of the laser interferometer. ..
【0010】特にステ−ジ周辺はステ−ジ自身が露光が
終了する度に次の位置に移動するため空気をかき回すの
で、揺らぎを発生しやすい。またステ−ジの駆動に用い
られる駆動機構の発熱も温度分布にむらを与える可能性
があるなどの厳しい条件下にある。Particularly around the stage, since the stage itself moves to the next position each time the exposure is completed and the air is stirred, fluctuations are likely to occur. Further, the heat generated by the driving mechanism used for driving the stage is also under severe conditions such that the temperature distribution may be uneven.
【0011】例えばチャンバ内を±0.1。Cにコント
ロ−ルし、温度むらや空気揺らぎをかなり抑えたとして
も計測には0.01〜0.04μm程度の誤差が発生す
る。悪影響を与える要因は一方では機械を動かすために
必須のものであるため、完全に除去することは不可能で
ある。For example, the inside of the chamber is ± 0.1. Even if the temperature is controlled to C and the temperature fluctuation and the air fluctuation are considerably suppressed, an error of about 0.01 to 0.04 μm occurs in the measurement. The detrimental factors are, on the one hand, essential to the operation of the machine and cannot be completely eliminated.
【0012】これらの誤差要因に対しては干渉計の光路
を真空にするとか、空気より屈折率変動の少ないHeガ
スの雰囲気にするなどの改善方法が考えられるが、装置
が大がかりになり実際には採用が難しい。ここで問題と
したようなロ−カルな屈折率変動の影響を受けにくい干
渉計も開発されているが、装置が複雑化するといった問
題がある。For these error factors, improvement methods such as making the optical path of the interferometer a vacuum or setting an atmosphere of He gas whose refractive index fluctuation is smaller than that of air can be considered. Is difficult to hire. Although an interferometer that is not easily affected by the local refractive index fluctuation as described above has been developed, there is a problem that the device becomes complicated.
【0013】一方、従来のレ−ザ干渉計を用いた装置で
は、ステ−ジ位置の絶対基準は投影レンズの鏡筒から下
ろした部材に固定されている固定鏡である。鏡筒とステ
−ジの関係は従って間接的なものとなっており、振動、
熱などの外的要因に対して固定されているはずの固定鏡
の位置がわずかに変動する可能性がある。この結果鏡筒
とステ−ジとの位置の整合がとれなくなるといった問題
も生じている。On the other hand, in the conventional apparatus using the laser interferometer, the absolute reference of the stage position is the fixed mirror fixed to the member lowered from the lens barrel of the projection lens. Therefore, the relationship between the lens barrel and the stage is indirect, and vibration,
The position of the fixed mirror, which should have been fixed against external factors such as heat, may fluctuate slightly. As a result, there is a problem that the positions of the lens barrel and the stage cannot be matched.
【0014】[0014]
【課題を解決するための手段】本発明は上記従来例のよ
うに駆動機構としてリニアモ−タを用い、案内機構に静
圧空気軸受けを用いるXYステ−ジにおいて、ウェハス
テ−ジの位置計測に格子干渉測長器を用いることによ
り、ステ−ジ周辺の空気揺らぎ、温度むら等に全く影響
を受けないようにしたものである。このため本発明では
1個または複数個の格子干渉測長器のヘッドをXYそれ
ぞれのガイド両端部に設けるとともに、これと対向する
位置に格子干渉測長器の回折格子を鏡筒と一体構造の部
材に取り付けてウェハステ−ジの位置座標を計測するこ
とを特徴としている。位置座標はX方向、Y方向に取り
つけられた格子干渉測長器によって、対応する1次元座
標に変換される。またこの格子干渉測長器のヘッドと回
折格子は、関係を逆にしてそれぞれ鏡筒と一体構造の部
材とリニアモ−タ可動部に取りつけても良い。このよう
にすれば鏡筒及び鏡筒周辺の振動、温度分布変動などの
要因に対しても常に鏡筒との位置が厳密にモニタ−でき
るため、より精密な計測が可能となる。SUMMARY OF THE INVENTION The present invention uses a linear motor as a driving mechanism as in the above-mentioned conventional example and a grid for measuring the position of a wafer stage in an XY stage using a static pressure air bearing as a guide mechanism. By using an interferometer, it is possible to prevent the fluctuation of air around the stage and temperature unevenness from being affected at all. Therefore, in the present invention, the heads of one or a plurality of grating interferometers are provided at both ends of each of the XY guides, and the diffraction grating of the grating interferometers is formed in a structure integrated with the lens barrel at a position facing each other. It is characterized by being attached to a member and measuring the position coordinates of the wafer stage. The position coordinates are converted into corresponding one-dimensional coordinates by the grating interference length measuring device attached in the X and Y directions. Further, the head and the diffraction grating of this grating interferometer may be mounted on the member integrally formed with the lens barrel and the movable part of the linear motor in reverse relationship. In this way, the position with respect to the lens barrel can always be strictly monitored even with respect to factors such as the lens barrel and vibrations around the lens barrel, temperature distribution fluctuations, and the like, so that more precise measurement can be performed.
【0015】[0015]
【実施例】図1及び図2は本発明の実施例1を示すもの
である。図1はステッパのステ−ジを投影レンズの方向
から観察したもので、駆動機構に可動ヨ−ク型リニアモ
−タ、案内機構に静圧空気軸受けを用いる公知の構成の
ステ−ジが示されている。図中20は中央のウェハステ
−ジ25が静圧空気軸受けを介して移動する際の基準面
となるベ−ス、即ちステ−ジベ−スである。21a〜2
1dはリニアモ−タコイルとヨ−ガイドで、21aと2
1cはX方向、21bと21dはY方向に対応してい
る。27a〜27dはリニアモ−タヨ−クで、リニアモ
−タコイルとの間で推力を得てウェハステ−ジ25を移
動させる役目を行う。27a、27cはX方向、27
b、27dはY方向のリニアモ−タヨ−クで、中央のウ
ェハステ−ジ25をX及びY方向に移動させるためのガ
イド22、23と連結している。図に示されているよう
にXガイド23は27bと27dのリニアモ−タヨ−ク
に、Yガイド22は27aと27cのリニアモ−タヨ−
クに連結している。ウェハステ−ジ25上にはウェハホ
ルダ−26が搭載されている。1 and 2 show Embodiment 1 of the present invention. FIG. 1 is an observation of the stage of a stepper from the direction of the projection lens, and shows a stage of a known structure using a movable yoke type linear motor as a drive mechanism and a static pressure air bearing as a guide mechanism. ing. Reference numeral 20 in the drawing denotes a base, ie, a stage base, which serves as a reference surface when the central wafer stage 25 moves via the static pressure air bearing. 21a-2
1d is a linear motor coil and a yaw guide, and 21a and 2
1c corresponds to the X direction, and 21b and 21d correspond to the Y direction. Reference numerals 27a to 27d denote linear motor yokes, which serve to move the wafer stage 25 by obtaining thrust with the linear motor coil. 27a and 27c are in the X direction, 27
Reference numerals b and 27d denote linear motor yokes in the Y direction, which are connected to guides 22 and 23 for moving the central wafer stage 25 in the X and Y directions. As shown in the figure, the X guide 23 is a linear motor yoke of 27b and 27d, and the Y guide 22 is a linear motor yoke of 27a and 27c.
It is connected to the network. A wafer holder 26 is mounted on the wafer stage 25.
【0016】24a〜24dは各リニアモ−タヨ−クに
装着された格子干渉測長器のヘッドで、本発明の根幹を
形成するところである。ウェハステ−ジ25の位置座標
は各リニアモ−タヨ−ク27a〜27dの1次元座標に
置き換えられ、それぞれの格子干渉測長器で測定した値
がX及びY座標に対応する。ヘッド24a、24cはX
方向の位置座標計測、ヘッド24b、24dはY方向の
位置座標計測を行う。Reference numerals 24a to 24d are the heads of the grating interferometers mounted on the respective linear motor yokes, which form the basis of the present invention. The position coordinates of the wafer stage 25 are replaced with the one-dimensional coordinates of the linear motor yokes 27a to 27d, and the values measured by the respective grating interference length measuring devices correspond to the X and Y coordinates. Heads 24a and 24c are X
Directional position coordinate measurement, and the heads 24b and 24d perform Y-direction position coordinate measurement.
【0017】図2は図1のウェハステ−ジと対向する投
影レンズ部の構成をステ−ジの方向から観察した図であ
る。図中33は投影レンズの最終面、32は投影レンズ
が納められている鏡筒である。31は鏡筒32と一体で
形成された部材で、鏡筒側の基準となるもので、ここで
は鏡筒ベ−スと呼ぶ事にする。30a〜30dはこの鏡
筒ベ−ス31に取り付けられた格子干渉測長器の回折格
子である。30a、30cには回折格子がY方向に形成
されており、30aは前述の格子干渉測長器のヘッド2
4aと、回折格子30cはヘッド24cと対向し、両者
の測定値よりウェハステ−ジ25のX方向の座標が計測
される。同様に30b、30dには回折格子がX方向に
形成されており、回折格子30bがヘッド24bと、回
折格子30dがヘッド24dと対向し、両者の測定値よ
りウェハステ−ジ25のY座標が計測される。FIG. 2 is a view of the configuration of the projection lens unit facing the wafer stage of FIG. 1 as observed from the stage direction. In the figure, 33 is the final surface of the projection lens, and 32 is the lens barrel in which the projection lens is housed. Reference numeral 31 is a member formed integrally with the lens barrel 32, which serves as a reference on the lens barrel side, and will be referred to as a lens barrel base here. Reference numerals 30a to 30d denote diffraction gratings of the grating interferometer, which are attached to the lens barrel base 31. Diffraction gratings are formed in the Y direction on 30a and 30c. Reference numeral 30a indicates the head 2 of the above-mentioned grating interferometer.
4a and the diffraction grating 30c face the head 24c, and the coordinates of the wafer stage 25 in the X direction are measured from the measured values of both. Similarly, diffraction gratings are formed in the X direction on 30b and 30d. The diffraction grating 30b faces the head 24b and the diffraction grating 30d faces the head 24d, and the Y coordinate of the wafer stage 25 is measured from the measured values of both. To be done.
【0018】本実施例におけるウェハステ−ジ25の位
置の計測動作について図3を用いて説明する。図3はウ
ェハステ−ジの可動範囲を表す座標系を示しており、図
中丸で示した箇所がウェハステ−ジの中心位置である。
ここでウェハステ−ジが座標(X1,Y1)から(X
2,Y2)へ移動する場合を考える。まず(X1,Y
1)にステ−ジがある場合、各々の格子干渉測長器から
産出される座標値は(X1,0)、(X1,L)、
(0,Y1)、(L,Y1)となる。ここで座標原点は
図示されているように左下で、Lはウェハステ−ジ25
の最大可動位置の値である。座標(X1,Y1)から
(X2,Y2)への移動では、まず(X2,Y1)への
移動が行われる。この際ウェハステ−ジはYガイドの中
心に位置しているとは限らない。このため、X1からX
2へと移動を行わせるX方向リニアモ−タ21a、27
aとリニアモータ21c、27cの推力は格子干渉測長
器24b、30b及び24d、30dによる読みからモ
−メントを考えて比例配分される。比例配分された推力
によりウェハステ−ジ25は余分な回転成分の力を受け
ずに移動を開始し、X方向の位置を測る格子干渉測長器
のペアであるヘッド24a、回折格子30aとヘッド2
4c、回折格子30cから算出される座標値が所定値で
あるX2に達するまで移動が行われる。2つのリニアモ
−タ21a、27a及び21c、27cは別々のフィ−
ドバックル−プにより独立に制御が行われる。The operation of measuring the position of the wafer stage 25 in this embodiment will be described with reference to FIG. FIG. 3 shows a coordinate system showing the movable range of the wafer stage, and the circled portion in the drawing is the center position of the wafer stage.
Here, the wafer stage changes from coordinates (X1, Y1) to (X
2, Y2). First (X1, Y
When there is a stage in 1), the coordinate values produced from each grating interferometer are (X1,0), (X1, L),
(0, Y1) and (L, Y1). Here, the coordinate origin is at the lower left as shown, and L is the wafer stage 25.
Is the value of the maximum movable position of. In the movement from the coordinates (X1, Y1) to (X2, Y2), the movement to (X2, Y1) is first performed. At this time, the wafer stage is not always located at the center of the Y guide. Therefore, from X1 to X
X-direction linear motors 21a, 27 for moving to 2
The thrusts of a and the linear motors 21c and 27c are proportionally distributed in consideration of the moment from the readings by the grating interferometers 24b, 30b and 24d, 30d. The wafer stage 25 starts to move without receiving the force of an extra rotational component due to the proportionally distributed thrust, and the head 24a, the diffraction grating 30a and the head 2 which are a pair of grating interferometers for measuring the position in the X direction.
4c, the movement is performed until the coordinate value calculated from the diffraction grating 30c reaches a predetermined value X2. The two linear motors 21a, 27a and 21c, 27c are separate filters.
Independent control is performed by the buckle loop.
【0019】次いでウェハステ−ジ25は(X2,Y
1)から(X2,Y2)への移動動作に移行する。この
際もY方向のリニアモ−タ21b、27bとリニアモー
タ21d、27dの推力は格子干渉測長器24a、30
a及び24c、30cの読みからモ−メントを考慮した
比例配分が行われる。比例配分された推力によりウェハ
ステ−ジ25は余分な回転成分の力を受けずに移動を開
始し、Y方向の位置を測る格子干渉測長器のペアである
ヘッド24b、回折格子30bとヘッド24d、回折格
子30dから算出される座標値が所定値であるY2に達
するまで移動を行う。2つのリニアモ−タ21b、27
b及び21d、27dは別々のフィ−ドバックル−プに
より独立に制御が行われる。この様に独立にXYの制御
を行うことにより、ウェハステ−ジは容易な制御で座標
(X1,Y1)から(X2,Y2)に移動することがで
きる。Next, the wafer stage 25 is set to (X2, Y
The operation moves from 1) to (X2, Y2). Also in this case, the thrusts of the linear motors 21b and 27b and the linear motors 21d and 27d in the Y direction are determined by the grating interferometers 24a and 30.
From the readings of a, 24c, and 30c, proportional distribution is performed considering the moment. The wafer stage 25 starts to move by the proportionally distributed thrust without receiving the force of an excessive rotation component, and is a pair of grating interferometers for measuring the position in the Y direction. The head 24b, the diffraction grating 30b and the head 24d. , Until the coordinate value calculated from the diffraction grating 30d reaches a predetermined value Y2. Two linear motors 21b and 27
b and 21d and 27d are independently controlled by separate feedback loops. By independently controlling XY in this way, the wafer stage can be moved from coordinates (X1, Y1) to (X2, Y2) with easy control.
【0020】本実施例では格子干渉測長器が密接して置
かれているため従来例のような空気の揺らぎや温度むら
から来る空気の屈折率変化の影響を受けず、また基準位
置が鏡筒ベ−スに直接取り付けられているため誤差要因
を極めて小さくすることができる。またウェハステ−ジ
の移動をXY独立に行えば、簡単な計算により余分な回
転成分の影響を受けずに安定した制御を行うことができ
る。In this embodiment, since the grating interferometer is closely placed, it is not affected by the fluctuation of the air and the change of the refractive index of the air due to the temperature unevenness as in the prior art, and the reference position is the mirror. Since it is attached directly to the cylinder base, the error factor can be made extremely small. Also, if the wafer stage is moved independently of XY, stable control can be performed without being affected by an extra rotation component by a simple calculation.
【0021】図4、図5に示したのは本発明の実施例2
の説明図で実施例1の格子干渉測長器を小型化した例で
ある。図中、前実施例と同じ部材については同一の番号
が付されている。実施例1の場合、測長範囲が大きいと
回折格子が長くなるということが一つの問題点としてあ
げられるが、本実施例ではヘッドを複数個設けてコンパ
クト化を図っている。FIG. 4 and FIG. 5 show the second embodiment of the present invention.
2 is an example in which the grating interferometer length measuring device according to the first embodiment is downsized. In the figure, the same members as those in the previous embodiment are designated by the same reference numerals. In the case of the first embodiment, one problem is that the diffraction grating becomes long when the length measuring range is large, but in the present embodiment, a plurality of heads are provided to achieve compactness.
【0022】図4はXYステ−ジの構成で、図5は図4
のステ−ジと対向する投影レンズをステ−ジ側から見た
図である。ステ−ジ側で実施例1と異なるのはリニアモ
−タヨ−ク27a〜27dについている格子干渉測長器
のヘッド40a〜40hが各々ペア構成となっているこ
とである。また投影レンズ側で30a’〜30d’は格
子干渉測長器の回折格子を表わしている。FIG. 4 shows an XY stage configuration, and FIG. 5 shows FIG.
3 is a view of the projection lens facing the stage of FIG. 1 viewed from the stage side. The difference from the first embodiment on the stage side is that the heads 40a to 40h of the grating interferometers attached to the linear motor yokes 27a to 27d have a pair configuration. Further, 30a 'to 30d' on the side of the projection lens represent diffraction gratings of the grating interferometer.
【0023】ウェハステ−ジ25が移動する際、40
a、40b及び40e、40fのヘッドが対向する回折
格子30a’、30c’と共同してX方向の座標を計測
し、同様にヘッド40c、40d及びヘッド40g、4
0hがY方向の座標を計測する。回折格子とヘッドの対
応関係は30a’が40aと40b、30b’が40c
と40d、30c’が40eと40f、30d’が40
gと40hとなっている。ここで回折格子30a’〜3
0d’が図2の回折格子30a〜30dより短くなって
いるのが本実施例の特徴で、これは各回折格子と対向す
るヘッドが2か所に設けてある結果である。When the wafer stage 25 moves, 40
The heads of a, 40b, 40e, and 40f cooperate with the opposing diffraction gratings 30a 'and 30c' to measure the coordinates in the X direction, and similarly, the heads 40c, 40d, and heads 40g, 4g.
0h measures the coordinate in the Y direction. The correspondence between the diffraction grating and the head is 40a and 40b for 30a 'and 40c for 30b'.
And 40d, 30c 'is 40e and 40f, 30d' is 40
g and 40h. Here, the diffraction gratings 30a'-3
The feature of this embodiment is that 0d 'is shorter than the diffraction gratings 30a to 30d in FIG. 2, which is a result of the heads facing the diffraction gratings being provided at two places.
【0024】図6は本実施例における回折格子とヘッド
の相対関係を表わす説明図で、代表として回折格子30
a’、ヘッド40a、40b、リニアモ−タヨ−ク27
aを−Y方向から観察した状態を示している。今ウェハ
ステ−ジ25がある位置にあり、そのときのリニアモ−
タヨ−ク27aと回折格子30a’の位置が図6(A)
のようになっているとする。この状態でウェハステ−ジ
25の位置を計測するのはヘッド40aである。FIG. 6 is an explanatory view showing the relative relationship between the diffraction grating and the head in the present embodiment. As a representative, the diffraction grating 30 is shown.
a ', heads 40a, 40b, linear motor yoke 27
The state which observed a from the -Y direction is shown. The wafer stage 25 is now at the position where the linear mode at that time is.
The positions of the yoke 27a and the diffraction grating 30a 'are shown in FIG. 6 (A).
It looks like this. It is the head 40a that measures the position of the wafer stage 25 in this state.
【0025】図6(A)の状態からウェハステ−ジ25
が−X方向に移動した状態を表わしているのが図6
(B)である。ウェハステ−ジ25の移動に伴いリニア
モ−タヨ−ク27aが移動し、ヘッド40aと40bの
両方に回折格子30a’がかかっている。この状態での
座標計測はヘッド40aで行われている。更にウェハス
テ−ジ25が−X方向に移動し、リニアモ−タヨ−ク2
7aが移動した状態を示したのが図6(C)である。回
折格子30a’に対向して計測を行うのは今度はヘッド
40bである。From the state of FIG. 6A, the wafer stage 25
6 shows the state of moving in the −X direction.
(B). As the wafer stage 25 moves, the linear motor yoke 27a moves, and both the heads 40a and 40b are covered with the diffraction grating 30a '. The coordinate measurement in this state is performed by the head 40a. Further, the wafer stage 25 moves in the -X direction, and the linear motor yoke 2
FIG. 6C shows a state in which 7a has moved. It is the head 40b, which in turn faces the diffraction grating 30a 'for measurement.
【0026】ヘッド40aからヘッド40bへの計測ヘ
ッドの切り換えは、自動的に行われる。切り換えはヘッ
ド40aからの信号パルスが所定のカウント数に達した
とき、前もって短期間だけ信号パルスを計測していた不
活性なヘッド40bを自動的に活性化して、座標計測ヘ
ッドにするなどという構成で容易に実現できる。The measurement head is switched from the head 40a to the head 40b automatically. The switching is such that when the signal pulse from the head 40a reaches a predetermined count number, the inactive head 40b, which previously measured the signal pulse for a short period of time, is automatically activated to become a coordinate measuring head. Can be easily achieved with.
【0027】実施例2のような格子干渉測長器の構成で
ヘッドを2つ設けた場合、回折格子の長さは実施例1の
約1/2にすることができ、コンパクトな測長系が実現
される。When two heads are provided in the structure of the grating interferometer as in the second embodiment, the length of the diffraction grating can be reduced to about 1/2 of that in the first embodiment, and a compact length measuring system is provided. Is realized.
【0028】また本実施例とは逆にヘッドを固定し回折
格子を可動としたとき、即ちリニアモ−タヨ−ク27a
〜dに回折格子を、鏡筒ベ−ス31にヘッドを付けた場
合も同様である。回折格子はヘッド位置に常に対向して
存在しなければならないので、ヘッドが一つの場合、両
端の可動範囲が大きなって長い回折格子が必要となる。
実施例2のようにヘッドを複数とすればコンパクト化の
効果は大きい。また本実施例では一つの回折格子に対し
て2つのヘッドを設けたが、更に多数のヘッドを設け、
それらを連動させても良い。Contrary to this embodiment, when the head is fixed and the diffraction grating is movable, that is, the linear motor yoke 27a.
The same applies to the case where a diffraction grating is attached to d and a head is attached to the lens barrel base 31. Since the diffraction grating must always be present facing the head position, when there is only one head, the movable range at both ends is large and a long diffraction grating is required.
If a plurality of heads are used as in the second embodiment, the effect of downsizing is great. Further, although two heads are provided for one diffraction grating in this embodiment, a larger number of heads are provided,
You may interlock them.
【0029】本実施例の場合にも格子干渉測長器が密接
して置かれているため、従来例のような空気の揺らぎや
温度むらから来る空気の屈折率変化の影響を受けない。
また基準位置が鏡筒ベ−スに直接取り付けられているた
め、誤差要因を小さくすることができる。Also in the case of this embodiment, since the grating interferometer is closely placed, it is not affected by the fluctuation of the air and the change of the refractive index of the air caused by the temperature unevenness as in the conventional example.
Further, since the reference position is directly attached to the lens barrel base, the error factor can be reduced.
【0030】[0030]
【発明の効果】以上説明したように、本発明の投影露光
装置では格子干渉測長器を構成するペアである回折格子
と、一個または複数個のヘッドをリニアモ−タのような
ステ−ジ駆動機構の可動部と、装置本体の基準位置であ
る鏡筒と一体構造となっている部材のそれぞれ互いに対
応する部分に取り付けることで、該ステ−ジの位置をス
テ−ジ周辺の空気の揺らぎや温度むら等の環境条件の影
響を受けることなく正確に計測することを可能とした。
また鏡筒及び鏡筒付近の振動温度分布などの要因に対し
ても、測長器の基準が鏡筒と一体で付いているため位置
関係が明確で、従来例に比べて精度の高い計測を行うこ
とが可能となった。As described above, in the projection exposure apparatus of the present invention, a pair of diffraction gratings constituting a grating interferometer and one or a plurality of heads are driven by a stage like a linear motor. By attaching the movable part of the mechanism and the member integrally formed with the lens barrel, which is the reference position of the apparatus main body, corresponding to each other, the position of the stage can be adjusted to prevent fluctuations of air around the stage. This enables accurate measurement without being affected by environmental conditions such as temperature unevenness.
In addition, with respect to factors such as the temperature distribution of the lens barrel and the vicinity of the lens barrel, the reference of the length measuring device is integrated with the lens barrel, so the positional relationship is clear, and more accurate measurement than the conventional example is possible. It became possible to do it.
【図1】 本発明の実施例1のXYステ−ジの構成を示
す図FIG. 1 is a diagram showing a configuration of an XY stage according to a first embodiment of the present invention.
【図2】 本発明の実施例1の鏡筒部の構成を示す図FIG. 2 is a diagram showing a configuration of a lens barrel portion according to the first embodiment of the present invention.
【図3】 本発明のウェハステ−ジの位置座標の説明図FIG. 3 is an explanatory view of position coordinates of a wafer stage according to the present invention.
【図4】 本発明の実施例2のXYステ−ジの構成を示
す図FIG. 4 is a diagram showing a configuration of an XY stage according to a second embodiment of the present invention.
【図5】 本発明の実施例2の鏡筒部の構成を示す図FIG. 5 is a diagram showing a configuration of a lens barrel portion according to a second embodiment of the present invention.
【図6】 複数の格子干渉測長器ヘッドの動作原理を示
す図FIG. 6 is a diagram showing the operation principle of a plurality of grating interferometer length measuring heads.
【図7】 従来例のXYステ−ジの構成を示す図FIG. 7 is a diagram showing a configuration of an XY stage of a conventional example.
21,71 リニアモ−タコイルとヨ−ガイド 22,72 Yガイド 23,73 Xガイド 24,40 格子干渉測長器のヘッド 25,74 ウェハステ−ジ 26,75 ウェハホルダ 27,70 リニアモ−タヨ−ク 30 格子干渉測長器の回折格子 31 鏡筒ベ−ス 32 投影レンズ最終面 33 投影レンズの鏡筒 76,77 レ−ザ干渉計ミラ− 78,79 固定ミラ− 21,71 Linear motor coil and yaw guide 22,72 Y guide 23,73 X guide 24,40 Lattice interferometer length head 25,74 Wafer stage 26,75 Wafer holder 27,70 Linear motor yoke 30 Lattice Diffraction grating of interferometer length 31 lens barrel base 32 final surface of projection lens 33 lens barrel of projection lens 76,77 laser interferometer mirror 78,79 fixed mirror
Claims (1)
影露光装置において、該ステ−ジの駆動機構部と、該投
影露光装置本体の基準となる部材と一体構造となってい
る固定部の一方に格子干渉測長器を構成する回折格子を
取り付けるとともに、他方の対向する部分に一個または
複数個の格子干渉測長器のヘッドを取り付け、該ステ−
ジの位置を計測することを特徴とする投影露光装置。1. A projection exposure apparatus equipped with a stage movable in the XY directions, wherein a drive mechanism section for the stage and a fixed section integrally formed with a reference member of the main body of the projection exposure apparatus. The diffraction grating constituting the grating interferometer is attached to one of the two, and one or a plurality of heads of the grating interferometer are attached to the opposing portions of the other, and
A projection exposure apparatus characterized by measuring the position of the edge.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3311651A JPH05129184A (en) | 1991-10-30 | 1991-10-30 | Projection aligner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3311651A JPH05129184A (en) | 1991-10-30 | 1991-10-30 | Projection aligner |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05129184A true JPH05129184A (en) | 1993-05-25 |
Family
ID=18019851
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3311651A Pending JPH05129184A (en) | 1991-10-30 | 1991-10-30 | Projection aligner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05129184A (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1826615A2 (en) * | 2006-02-22 | 2007-08-29 | ASML Netherlands BV | Lithographic apparatus and device manufacturing method |
JP2007318119A (en) * | 2006-05-09 | 2007-12-06 | Asml Netherlands Bv | Displacement measuring system, lithography equipment, displacement measuring method, and device fabrication method |
WO2008026742A1 (en) * | 2006-08-31 | 2008-03-06 | Nikon Corporation | Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method |
WO2008029757A1 (en) * | 2006-09-01 | 2008-03-13 | Nikon Corporation | Mobile object driving method, mobile object driving system, pattern forming method and apparatus, exposure method and apparatus, device manufacturing method and calibration method |
JP2009004737A (en) * | 2007-03-29 | 2009-01-08 | Asml Netherlands Bv | Measurement system for measuring position dependent signal of movable object, and lithographic apparatus and method |
WO2009011356A1 (en) * | 2007-07-18 | 2009-01-22 | Nikon Corporation | Measurement method, stage apparatus, and exposure apparatus |
WO2009013903A1 (en) * | 2007-07-24 | 2009-01-29 | Nikon Corporation | Mobile object driving method, mobile object driving system, pattern forming method and apparatus, exposure method and apparatus and device manufacturing method |
JP2009033166A (en) * | 2007-07-24 | 2009-02-12 | Nikon Corp | Method and system for driving movable body, patterning method and device, exposure method and device, position control method and system, and method for manufacturing device |
JP2009032751A (en) * | 2007-07-24 | 2009-02-12 | Nikon Corp | Exposure device and method for manufacturing device |
JP2009055031A (en) * | 2007-08-24 | 2009-03-12 | Nikon Corp | Method and system of driving movable body, method and device of forming pattern, device manufacturing method, and processing system |
JP2009055032A (en) * | 2007-08-24 | 2009-03-12 | Nikon Corp | Method and system of driving movable body, method and device of forming pattern, exposure method and apparatus, and device manufacturing method |
JP2009055033A (en) * | 2007-08-24 | 2009-03-12 | Nikon Corp | Method and system of driving movable body, method and device of forming pattern, exposure method and apparatus, and device manufacturing method |
US7839485B2 (en) | 2006-01-19 | 2010-11-23 | Nikon Corporation | Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method |
US8027021B2 (en) | 2006-02-21 | 2011-09-27 | Nikon Corporation | Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method |
US20130271945A1 (en) | 2004-02-06 | 2013-10-17 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
JP2014220505A (en) * | 2006-02-21 | 2014-11-20 | 株式会社ニコン | Exposure device and exposure method, and device manufacturing method |
US8937710B2 (en) | 2006-08-31 | 2015-01-20 | Nikon Corporation | Exposure method and apparatus compensating measuring error of encoder due to grating section and displacement of movable body in Z direction |
US9341954B2 (en) | 2007-10-24 | 2016-05-17 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9423698B2 (en) | 2003-10-28 | 2016-08-23 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US9678332B2 (en) | 2007-11-06 | 2017-06-13 | Nikon Corporation | Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method |
US9678437B2 (en) | 2003-04-09 | 2017-06-13 | Nikon Corporation | Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction |
US9690214B2 (en) | 2006-02-21 | 2017-06-27 | Nikon Corporation | Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method |
US9874822B2 (en) | 2006-09-01 | 2018-01-23 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method |
US9885872B2 (en) | 2003-11-20 | 2018-02-06 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light |
US10067428B2 (en) | 2006-08-31 | 2018-09-04 | Nikon Corporation | Movable body drive system and movable body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision-making method |
US10101666B2 (en) | 2007-10-12 | 2018-10-16 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and device manufacturing method |
-
1991
- 1991-10-30 JP JP3311651A patent/JPH05129184A/en active Pending
Cited By (97)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9678437B2 (en) | 2003-04-09 | 2017-06-13 | Nikon Corporation | Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction |
US9885959B2 (en) | 2003-04-09 | 2018-02-06 | Nikon Corporation | Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator |
US9760014B2 (en) | 2003-10-28 | 2017-09-12 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US9423698B2 (en) | 2003-10-28 | 2016-08-23 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US9885872B2 (en) | 2003-11-20 | 2018-02-06 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light |
US10281632B2 (en) | 2003-11-20 | 2019-05-07 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction |
US20130271945A1 (en) | 2004-02-06 | 2013-10-17 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US10007194B2 (en) | 2004-02-06 | 2018-06-26 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US10241417B2 (en) | 2004-02-06 | 2019-03-26 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US10234770B2 (en) | 2004-02-06 | 2019-03-19 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US10133195B2 (en) | 2006-01-19 | 2018-11-20 | Nikon Corporation | Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method |
US10185228B2 (en) | 2006-01-19 | 2019-01-22 | Nikon Corporation | Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method |
US10185227B2 (en) | 2006-01-19 | 2019-01-22 | Nikon Corporation | Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method |
JP2016105189A (en) * | 2006-01-19 | 2016-06-09 | 株式会社ニコン | Exposure device and exposure method, and device production method |
US10203613B2 (en) | 2006-01-19 | 2019-02-12 | Nikon Corporation | Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method |
US7839485B2 (en) | 2006-01-19 | 2010-11-23 | Nikon Corporation | Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method |
US10345121B2 (en) | 2006-02-21 | 2019-07-09 | Nikon Corporation | Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method |
US9329060B2 (en) | 2006-02-21 | 2016-05-03 | Nikon Corporation | Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method |
US10234773B2 (en) | 2006-02-21 | 2019-03-19 | Nikon Corporation | Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method |
US9989859B2 (en) | 2006-02-21 | 2018-06-05 | Nikon Corporation | Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method |
US10088759B2 (en) | 2006-02-21 | 2018-10-02 | Nikon Corporation | Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method |
US8027021B2 (en) | 2006-02-21 | 2011-09-27 | Nikon Corporation | Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method |
US10139738B2 (en) | 2006-02-21 | 2018-11-27 | Nikon Corporation | Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method |
US10132658B2 (en) | 2006-02-21 | 2018-11-20 | Nikon Corporation | Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method |
US10409173B2 (en) | 2006-02-21 | 2019-09-10 | Nikon Corporation | Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method |
US10012913B2 (en) | 2006-02-21 | 2018-07-03 | Nikon Corporation | Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method |
US9857697B2 (en) | 2006-02-21 | 2018-01-02 | Nikon Corporation | Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method |
US9690214B2 (en) | 2006-02-21 | 2017-06-27 | Nikon Corporation | Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method |
JP2014220505A (en) * | 2006-02-21 | 2014-11-20 | 株式会社ニコン | Exposure device and exposure method, and device manufacturing method |
US10088343B2 (en) | 2006-02-21 | 2018-10-02 | Nikon Corporation | Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method |
EP1826615A2 (en) * | 2006-02-22 | 2007-08-29 | ASML Netherlands BV | Lithographic apparatus and device manufacturing method |
JP2007266581A (en) * | 2006-02-22 | 2007-10-11 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
JP4486976B2 (en) * | 2006-02-22 | 2010-06-23 | エーエスエムエル ネザーランズ ビー.ブイ. | Lithographic apparatus and device manufacturing method |
JP4660503B2 (en) * | 2006-05-09 | 2011-03-30 | エーエスエムエル ネザーランズ ビー.ブイ. | Lithographic apparatus |
JP2007318119A (en) * | 2006-05-09 | 2007-12-06 | Asml Netherlands Bv | Displacement measuring system, lithography equipment, displacement measuring method, and device fabrication method |
US10073359B2 (en) | 2006-08-31 | 2018-09-11 | Nikon Corporation | Movable body drive system and movable body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision-making method |
US9958792B2 (en) | 2006-08-31 | 2018-05-01 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method |
JP5035245B2 (en) * | 2006-08-31 | 2012-09-26 | 株式会社ニコン | Moving body driving method and moving body driving system, pattern forming method and apparatus, exposure method and apparatus, and device manufacturing method |
US10162274B2 (en) | 2006-08-31 | 2018-12-25 | Nikon Corporation | Movable body drive method and system, pattern formation method and apparatus, exposure method and apparatus for driving movable body based on measurement value of encoder and information on flatness of scale, and device manufacturing method |
US10101673B2 (en) | 2006-08-31 | 2018-10-16 | Nikon Corporation | Movable body drive method and system, pattern formation method and apparatus, exposure method and apparatus for driving movable body based on measurement value of encoder and information on flatness of scale, and device manufacturing method |
US9983486B2 (en) | 2006-08-31 | 2018-05-29 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method |
US8947639B2 (en) | 2006-08-31 | 2015-02-03 | Nikon Corporation | Exposure method and apparatus measuring position of movable body based on information on flatness of encoder grating section |
US10067428B2 (en) | 2006-08-31 | 2018-09-04 | Nikon Corporation | Movable body drive system and movable body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision-making method |
JPWO2008026742A1 (en) * | 2006-08-31 | 2010-01-21 | 株式会社ニコン | Moving body driving method and moving body driving system, pattern forming method and apparatus, exposure method and apparatus, and device manufacturing method |
US10338482B2 (en) | 2006-08-31 | 2019-07-02 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method |
US10353302B2 (en) | 2006-08-31 | 2019-07-16 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method |
US10353301B2 (en) | 2006-08-31 | 2019-07-16 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method |
WO2008026742A1 (en) * | 2006-08-31 | 2008-03-06 | Nikon Corporation | Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method |
US8937710B2 (en) | 2006-08-31 | 2015-01-20 | Nikon Corporation | Exposure method and apparatus compensating measuring error of encoder due to grating section and displacement of movable body in Z direction |
TWI416269B (en) * | 2006-08-31 | 2013-11-21 | 尼康股份有限公司 | Mobile body driving method and moving body driving system, pattern forming method and apparatus, exposure method and apparatus, and component manufacturing method |
JP5035247B2 (en) * | 2006-09-01 | 2012-09-26 | 株式会社ニコン | Moving body driving method and moving body driving system, pattern forming method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method |
US10197924B2 (en) | 2006-09-01 | 2019-02-05 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method |
WO2008029757A1 (en) * | 2006-09-01 | 2008-03-13 | Nikon Corporation | Mobile object driving method, mobile object driving system, pattern forming method and apparatus, exposure method and apparatus, device manufacturing method and calibration method |
US9625834B2 (en) | 2006-09-01 | 2017-04-18 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method |
US9740114B2 (en) | 2006-09-01 | 2017-08-22 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method |
US10289010B2 (en) | 2006-09-01 | 2019-05-14 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method |
US9760021B2 (en) | 2006-09-01 | 2017-09-12 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method |
US10289012B2 (en) | 2006-09-01 | 2019-05-14 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method |
US9846374B2 (en) | 2006-09-01 | 2017-12-19 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method |
JPWO2008029757A1 (en) * | 2006-09-01 | 2010-01-21 | 株式会社ニコン | Moving body driving method and moving body driving system, pattern forming method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method |
JP2016191923A (en) * | 2006-09-01 | 2016-11-10 | 株式会社ニコン | Exposure apparatus, exposure method and device production method |
JP2012169655A (en) * | 2006-09-01 | 2012-09-06 | Nikon Corp | Mobile body driving method |
US9874822B2 (en) | 2006-09-01 | 2018-01-23 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method |
JP2014007411A (en) * | 2006-09-01 | 2014-01-16 | Nikon Corp | Exposure device, exposure method and device manufacturing method |
US9377698B2 (en) | 2006-09-01 | 2016-06-28 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method |
JP2014197703A (en) * | 2006-09-01 | 2014-10-16 | 株式会社ニコン | Exposing method and exposing apparatus, and method for manufacturing device |
US9971253B2 (en) | 2006-09-01 | 2018-05-15 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method |
US8457385B2 (en) | 2007-03-29 | 2013-06-04 | Asml Netherlands B.V. | Measurement system and lithographic apparatus for measuring a position dependent signal of a movable object |
JP2009004737A (en) * | 2007-03-29 | 2009-01-08 | Asml Netherlands Bv | Measurement system for measuring position dependent signal of movable object, and lithographic apparatus and method |
US7903866B2 (en) | 2007-03-29 | 2011-03-08 | Asml Netherlands B.V. | Measurement system, lithographic apparatus and method for measuring a position dependent signal of a movable object |
JP4686563B2 (en) * | 2007-03-29 | 2011-05-25 | エーエスエムエル ネザーランズ ビー.ブイ. | Measurement system, lithographic apparatus and method for measuring position-dependent signals of movable objects |
JP2018063446A (en) * | 2007-07-18 | 2018-04-19 | 株式会社ニコン | Exposure device, exposure method and device manufacturing method |
US9804506B2 (en) | 2007-07-18 | 2017-10-31 | Nikon Corporation | Measuring method, stage apparatus, and exposure apparatus |
EP2818927A3 (en) * | 2007-07-18 | 2015-03-11 | Nikon Corporation | Measurement method, stage apparatus, and exposure apparatus |
TWI579655B (en) * | 2007-07-18 | 2017-04-21 | 尼康股份有限公司 | An exposure apparatus, an exposure method, and an element manufacturing method |
JP2014195093A (en) * | 2007-07-18 | 2014-10-09 | Nikon Corp | Exposure device, exposure method, and device manufacturing method |
EP3056945A1 (en) * | 2007-07-18 | 2016-08-17 | Nikon Corporation | Measuring method, stage apparatus, and exposure apparatus |
JP2016014881A (en) * | 2007-07-18 | 2016-01-28 | 株式会社ニコン | Exposure apparatus, exposure method, and device manufacturing method |
JP2015119187A (en) * | 2007-07-18 | 2015-06-25 | 株式会社ニコン | Exposure device, exposure method, and device manufacturing method |
WO2009011356A1 (en) * | 2007-07-18 | 2009-01-22 | Nikon Corporation | Measurement method, stage apparatus, and exposure apparatus |
EP2177867A4 (en) * | 2007-07-18 | 2015-03-18 | Nikon Corp | Measurement method, stage apparatus, and exposure apparatus |
EP2933683A1 (en) * | 2007-07-18 | 2015-10-21 | Nikon Corporation | Measuring method, stage apparatus, and exposure apparatus |
KR20150121256A (en) * | 2007-07-18 | 2015-10-28 | 가부시키가이샤 니콘 | Measurement method, stage apparatus, and exposure apparatus |
JPWO2009011356A1 (en) * | 2007-07-18 | 2010-09-24 | 株式会社ニコン | Measuring method, stage apparatus, and exposure apparatus |
TWI610148B (en) * | 2007-07-18 | 2018-01-01 | Nikon Corp | Exposure apparatus, exposure method, and component manufacturing method |
JP2009032751A (en) * | 2007-07-24 | 2009-02-12 | Nikon Corp | Exposure device and method for manufacturing device |
US9612539B2 (en) | 2007-07-24 | 2017-04-04 | Nikon Corporation | Movable body drive method, pattern formation method, exposure method, and device manufacturing method for maintaining position coordinate before and after switching encoder head |
JP2009033166A (en) * | 2007-07-24 | 2009-02-12 | Nikon Corp | Method and system for driving movable body, patterning method and device, exposure method and device, position control method and system, and method for manufacturing device |
WO2009013903A1 (en) * | 2007-07-24 | 2009-01-29 | Nikon Corporation | Mobile object driving method, mobile object driving system, pattern forming method and apparatus, exposure method and apparatus and device manufacturing method |
US8264669B2 (en) | 2007-07-24 | 2012-09-11 | Nikon Corporation | Movable body drive method, pattern formation method, exposure method, and device manufacturing method for maintaining position coordinate before and after switching encoder head |
JP2009055033A (en) * | 2007-08-24 | 2009-03-12 | Nikon Corp | Method and system of driving movable body, method and device of forming pattern, exposure method and apparatus, and device manufacturing method |
JP2009055032A (en) * | 2007-08-24 | 2009-03-12 | Nikon Corp | Method and system of driving movable body, method and device of forming pattern, exposure method and apparatus, and device manufacturing method |
JP2009055031A (en) * | 2007-08-24 | 2009-03-12 | Nikon Corp | Method and system of driving movable body, method and device of forming pattern, device manufacturing method, and processing system |
US10101666B2 (en) | 2007-10-12 | 2018-10-16 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9857599B2 (en) | 2007-10-24 | 2018-01-02 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9341954B2 (en) | 2007-10-24 | 2016-05-17 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9678332B2 (en) | 2007-11-06 | 2017-06-13 | Nikon Corporation | Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH05129184A (en) | Projection aligner | |
KR100636755B1 (en) | Lithographic tool with dual isolation system and method for configuring the same | |
US5839324A (en) | Stage apparatus and exposure apparatus provided with the stage apparatus | |
US7225048B2 (en) | Gap adjustment apparatus and gap adjustment method for adjusting gap between two objects | |
JP5817873B2 (en) | Stage apparatus, exposure apparatus, and device manufacturing method | |
EP0342639B2 (en) | Microlithographic apparatus | |
KR102072076B1 (en) | Movable body apparatus, object processing device, exposure apparatus, flat-panel display manufacturing method, and device manufacturing method | |
KR101275416B1 (en) | Pattern formation method pattern formation device and device fabrication method | |
US7221463B2 (en) | Positioning apparatus, exposure apparatus, and method for producing device | |
KR100383699B1 (en) | Stage apparatus, exposure apparatus, and device production method | |
US20020080339A1 (en) | Stage apparatus, vibration control method and exposure apparatus | |
JP2016136268A (en) | Exposure device, exposure method and device manufacturing method | |
JP2003249443A (en) | Stage apparatus, stage position-controlling method, exposure method and projection aligner, and device- manufacturing method | |
JP3825921B2 (en) | Scanning exposure apparatus and device manufacturing method | |
US6686991B1 (en) | Wafer stage assembly, servo control system, and method for operating the same | |
US6133982A (en) | Exposure apparatus | |
US6549268B1 (en) | Exposure method and apparatus | |
US7589911B2 (en) | Technique for positioning optical system element | |
US6472777B1 (en) | Capacitive sensor calibration method and apparatus for opposing electro-magnetic actuators | |
US20070188732A1 (en) | Stage apparatus and exposure apparatus | |
JP2011199317A (en) | Stage equipment and exposure device, and method of manufacturing device | |
JPH11142556A (en) | Controlling method for stage, stage device and exposing device thereof | |
JPH07226354A (en) | Positioning device and manufacture of semiconductor device using this positioning device | |
JP2004228383A (en) | Exposure apparatus | |
US6980279B2 (en) | Interferometer system for measuring a height of wafer stage |