JPH04318207A - Steam turbine exhaust heat power generation equipment - Google Patents

Steam turbine exhaust heat power generation equipment

Info

Publication number
JPH04318207A
JPH04318207A JP8665791A JP8665791A JPH04318207A JP H04318207 A JPH04318207 A JP H04318207A JP 8665791 A JP8665791 A JP 8665791A JP 8665791 A JP8665791 A JP 8665791A JP H04318207 A JPH04318207 A JP H04318207A
Authority
JP
Japan
Prior art keywords
refrigerant
condenser
steam turbine
power generation
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8665791A
Other languages
Japanese (ja)
Inventor
Tsutomu Sakagami
阪上 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8665791A priority Critical patent/JPH04318207A/en
Publication of JPH04318207A publication Critical patent/JPH04318207A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To recover heat taken away by a condenser in a steam turbine plant. CONSTITUTION:The exhaust of a steam turbine 21 is cooled with refrigerant such as ammonia, methyl chloride, propane by a condenser 22 for condensing. The refrigerant is vaporized by the condenser 22, and power generation is executed by a generator 26 by turning an expansion turbine 25 for energy recovery. The refrigerant which leaves the expansion turbine 25 is cooled and condensed by sea water with a heat exchanger 27 to be fed to the condenser again.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、蒸気タービン発電プラ
ントの排気熱による発電システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power generation system using exhaust heat from a steam turbine power generation plant.

【0002】0002

【従来の技術】図2は火力発電蒸気タービンプラントの
熱流線図である。ボイラ1の過熱器2で発生した高温高
圧蒸気は、主蒸気止め弁3、蒸気加減弁4を経て高圧タ
ービン5で膨張した後、再熱器6で再熱され、再熱蒸気
止め弁7、インターセプト弁8を経て中圧タービン9に
流入する。中圧タービン9の排気は、低圧タービン10
で膨張した後、復水器11に流入して復水となる。タン
デムに結合されたタービン5,9,10は発電機Gを駆
動する。
2. Description of the Related Art FIG. 2 is a heat flow diagram of a thermal power generation steam turbine plant. High-temperature, high-pressure steam generated in the superheater 2 of the boiler 1 passes through the main steam stop valve 3 and the steam control valve 4, expands in the high-pressure turbine 5, and is then reheated in the reheater 6. It flows into the intermediate pressure turbine 9 via the intercept valve 8. The exhaust gas of the intermediate pressure turbine 9 is transferred to the low pressure turbine 10.
After being expanded, it flows into the condenser 11 and becomes condensate. Turbines 5, 9, 10 coupled in tandem drive a generator G.

【0003】復水は、復水ポンプ12で昇圧され、複数
段の低圧給水加熱器13で低圧タービンの抽気により加
熱された後、脱気器14で水中の溶解ガスが加熱除去さ
れる。その後、復水式蒸気タービンで駆動される給水ポ
ンプ15で昇圧され、複数段の高圧給水加熱器16で高
・中圧タービンの抽気により加熱されて、ボイラ1へ給
水される。点線は給水加熱器のドレン系統を示す。
[0003] The condensate is pressurized by a condensate pump 12, heated by extraction air from a low-pressure turbine in a multi-stage low-pressure feed water heater 13, and then dissolved gas in the water is removed by heating in a deaerator 14. Thereafter, the pressure of the water is increased by a feedwater pump 15 driven by a condensing steam turbine, heated by a multi-stage high-pressure feedwater heater 16 by extraction air from a high- and intermediate-pressure turbine, and then supplied to the boiler 1 . The dotted line indicates the drain system of the feed water heater.

【0004】0004

【発明が解決しようとする課題】超臨界圧蒸気を使用す
る新鋭火力プラントでも、その送電端の熱効率は40%
程度であり、復水損失は約45%にも達する。これは、
燃料の燃焼熱の約45%が、タービン排気を冷却復水さ
せた冷却水によって系外に放出されているからである。
[Problem to be solved by the invention] Even in a cutting-edge thermal power plant that uses supercritical pressure steam, the thermal efficiency at the transmission end is 40%.
The condensate loss reaches approximately 45%. this is,
This is because approximately 45% of the combustion heat of the fuel is released to the outside of the system by cooling water obtained by cooling and condensing the turbine exhaust gas.

【0005】我国の火力発電所、原子力発電所の殆んど
は、海岸にあるから、上記の冷却水は海水であって、冷
却に使用された後、海洋に放出されている。その水量は
、火力発電所では100万kW当り毎時約15万トン、
原子力発電所では100万kW当り毎時25万トンにも
達する。このような大流量の取排水設備には多額の建設
費と保守費が必要とされ、また高温排水は、海洋環境の
破壊にもつながるため、その対策にも巨額の投資が必要
となっている。ごく稀には、河川から取水したり、空冷
式復水器を使用したりするプラントもあるが、いずれも
復水器損失は変らず、かつ建設費、保守費ともに高い。
[0005] Since most of Japan's thermal power plants and nuclear power plants are located on the coast, the above-mentioned cooling water is seawater, and after being used for cooling, it is discharged into the ocean. The amount of water is approximately 150,000 tons per hour per 1 million kW at a thermal power plant.
At nuclear power plants, the amount reaches 250,000 tons per hour per million kW. Large amounts of construction and maintenance costs are required for such large-flow intake and drainage facilities, and high-temperature wastewater can also lead to destruction of the marine environment, so a huge amount of investment is required to take countermeasures. . In very rare cases, there are plants that take water from rivers or use air-cooled condensers, but in either case the condenser loss remains the same, and both construction and maintenance costs are high.

【0006】[0006]

【課題を解決するための手段】本発明は、前記従来の課
題を解決するために、冷媒の蒸発により蒸気タービン排
気から熱を奪って復水させる復水器と、同復水器で蒸発
した冷媒ガスによって駆動される膨張タービンと、同膨
張タービンによって駆動される発電機と、上記膨張ター
ビンを出た冷媒ガスから熱を奪って凝縮させる冷媒−海
水熱交換器と、同冷媒−海水熱交換器で凝縮した冷媒液
を貯える貯槽と、上記冷媒を循環させるポンプとを備え
たことを特徴とする蒸気タービン排気熱発電設備を提案
するものである。
[Means for Solving the Problems] In order to solve the above-mentioned conventional problems, the present invention provides a condenser that removes heat from the steam turbine exhaust gas by evaporating the refrigerant and condenses it; An expansion turbine driven by refrigerant gas, a generator driven by the expansion turbine, a refrigerant-seawater heat exchanger that removes heat from the refrigerant gas exiting the expansion turbine and condenses it, and a refrigerant-seawater heat exchanger. This invention proposes a steam turbine exhaust heat power generation facility characterized by comprising a storage tank for storing refrigerant liquid condensed in a container, and a pump for circulating the refrigerant.

【0007】[0007]

【作用】復水器に流入した蒸気タービンの排気は、冷媒
液の蒸発潜熱によって熱を奪われ、更に冷却水(海水)
により冷却されて復水する。この復水は復水ポンプで昇
圧されてタービン給水系へ供給される。
[Operation] The steam turbine exhaust gas that flows into the condenser is deprived of heat by the latent heat of vaporization of the refrigerant liquid, and is further converted into cooling water (seawater).
The water is cooled and condensed. This condensate is pressurized by a condensate pump and supplied to the turbine water supply system.

【0008】一方冷媒側では、最初に液状態で復水器の
下層部に入った冷媒は、ガス化して復水器を出る。次に
復水器上層部の排気の温度の高い気相部に再び入り、加
熱および加圧されて膨張タービンに流入する。膨張ター
ビン内で膨張した冷媒ガスは、発電機を駆動して電力を
回収し、凝縮し易いガス状態となって膨張タービンから
流出し、次に冷媒−海水熱交換器に入り、ここで冷却さ
れて液化し、冷媒液貯槽に溜まる。その後、冷媒ポンプ
により昇圧されて、再び復水器下層部に流入し、冷凍サ
イクルを繰返す。
On the other hand, on the refrigerant side, the refrigerant that first enters the lower part of the condenser in a liquid state is gasified and exits the condenser. Next, it reenters the high-temperature gas phase of the exhaust gas from the upper part of the condenser, where it is heated and pressurized and flows into the expansion turbine. The refrigerant gas expanded in the expansion turbine drives a generator to recover electricity, becomes a gas that easily condenses, flows out of the expansion turbine, and then enters the refrigerant-seawater heat exchanger where it is cooled. It liquefies and accumulates in the refrigerant liquid storage tank. Thereafter, the pressure is increased by the refrigerant pump, and the refrigerant flows into the lower part of the condenser again, repeating the refrigeration cycle.

【0009】このように本発明では、蒸気タービンの排
気熱源を膨張タービンの動力に変え、最終エネルギーと
して電力を生み出す。そして、従来の復水器のように系
外へ放出される熱量がなくなり、必要な外部動力は冷媒
ポンプ駆動動力のみとなって、蒸気タービンプラントの
熱効率は著しく向上する。
As described above, in the present invention, the exhaust heat source of the steam turbine is converted into the power of the expansion turbine, and electric power is generated as the final energy. Unlike conventional condensers, no amount of heat is released outside the system, and the only external power required is the refrigerant pump driving power, significantly improving the thermal efficiency of the steam turbine plant.

【0010】0010

【実施例】図1は本発明の一実施例を示す系統図である
Embodiment FIG. 1 is a system diagram showing an embodiment of the present invention.

【0011】蒸気タービン21の排気は、復水器22へ
流入し、管内を流れる冷媒液の蒸発の潜熱で冷却されて
復水し、復水溜り23(ホットウェル)に溜る。この復
水は復水ポンプ24で昇圧され、ボイラまたは原子炉蒸
発器へ給水される。
The exhaust gas from the steam turbine 21 flows into the condenser 22, where it is cooled by the latent heat of evaporation of the refrigerant flowing through the pipes, condenses, and collects in a condensate reservoir 23 (hot well). This condensate is pressurized by a condensate pump 24 and supplied to a boiler or reactor evaporator.

【0012】一方復水器22内の、復水と排気の混在部
で復水リッチな下層部に最初に入った冷媒液は、加熱さ
れてガス化し、一旦は復水器を出て、今度は復水器の上
層部の排気のリッチな気相部に入り、過熱および加圧さ
れ高温高圧ガスとなって、膨張タービン25に流入する
。膨張タービン25で発電機26を駆動し膨張した冷媒
ガスは、液化し易い状態になって冷媒−海水熱交換器2
7に入る。そしてそこで冷却されて液化し、冷媒液貯槽
28に溜る。その後更に冷媒ポンプ29で昇圧され、復
水器22内に入り、冷凍サイクルを繰返す。
On the other hand, the refrigerant liquid that first enters the condensate-rich lower layer of the condenser 22 where condensate and exhaust gas coexist is heated and gasified, exits the condenser, and then enters the condensate-rich lower layer. The gas enters the rich gas phase of the exhaust gas in the upper part of the condenser, is superheated and pressurized, becomes high-temperature, high-pressure gas, and flows into the expansion turbine 25. The expansion turbine 25 drives the generator 26 and expands the refrigerant gas, which becomes easily liquefied and flows into the refrigerant-seawater heat exchanger 2.
Enter 7. There, it is cooled and liquefied, and is stored in the refrigerant liquid storage tank 28. Thereafter, the pressure is further increased by the refrigerant pump 29, and the refrigerant enters the condenser 22, where the refrigeration cycle is repeated.

【0013】冷媒ガスの膨張タービン入口にはガス加減
弁30、冷媒−海水熱交換器の冷却水入口には冷却水加
減弁31が、それぞれ設けられていて蒸気タービンの部
分負荷時に対応する。また、符号32は海水冷却配管で
あって、海水は場合により復水器22を通して放出され
る。
A gas regulating valve 30 is provided at the inlet of the refrigerant gas expansion turbine, and a cooling water regulating valve 31 is provided at the cooling water inlet of the refrigerant-seawater heat exchanger, respectively, to correspond to a partial load of the steam turbine. Further, reference numeral 32 is a seawater cooling pipe, and seawater is discharged through the condenser 22 as the case requires.

【0014】なお冷媒には、蒸発圧力と温度の関係、凝
縮圧力と温度の関係および冷凍能力が蒸気タービンの復
水条件に適した、アンモニア、メチルクロライド、プロ
パン等が使用される。
[0014] As the refrigerant, ammonia, methyl chloride, propane, etc., whose relationship between evaporation pressure and temperature, relationship between condensation pressure and temperature, and refrigerating capacity are suitable for the condensing conditions of the steam turbine, are used.

【0015】[0015]

【発明の効果】本発明においては、火力・原子力発電プ
ラントの蒸気タービン復水器で冷却水によって持ち去ら
れる熱損失がなくなり、プラントの熱効率が大幅に向上
する。また、冷却水の取排水設備や温排水への環境汚染
対策が不要となり、建設費、保守費が節減される。
According to the present invention, heat loss carried away by cooling water in a steam turbine condenser of a thermal or nuclear power plant is eliminated, and the thermal efficiency of the plant is greatly improved. Additionally, there is no need for cooling water intake/drainage equipment or measures to prevent environmental pollution from hot water, resulting in savings in construction and maintenance costs.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】図1は本発明の一実施例に係る排気熱発電設備
の系統図である。
FIG. 1 is a system diagram of an exhaust heat power generation facility according to an embodiment of the present invention.

【図2】図2は従来の火力発電用蒸気タービンプラント
の一例の熱流線図である。
FIG. 2 is a heat flow diagram of an example of a conventional steam turbine plant for thermal power generation.

【符号の説明】[Explanation of symbols]

21  蒸気タービン 22  復水器 24  復水ポンプ 25  膨張タービン 26  発電機 27  冷媒−海水熱交換器 28  冷媒液貯槽 29  冷媒液ポンプ 21 Steam turbine 22 Condenser 24 Condensate pump 25 Expansion turbine 26 Generator 27 Refrigerant-seawater heat exchanger 28 Refrigerant liquid storage tank 29 Refrigerant liquid pump

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  冷媒の蒸発により蒸気タービン排気か
ら熱を奪って復水させる復水器と、同復水器で蒸発した
冷媒ガスによって駆動される膨張タービンと、同膨張タ
ービンによって駆動される発電機と、上記膨張タービン
を出た冷媒ガスから熱を奪って凝縮させる冷媒−海水熱
交換器と、同冷媒−海水熱交換器で凝縮した冷媒液を貯
える貯槽と、上記冷媒を循環させるポンプとを備えたこ
とを特徴とする蒸気タービン排気熱発電設備。
Claim 1: A condenser that removes heat from steam turbine exhaust gas by evaporating refrigerant and condensing it; an expansion turbine driven by the refrigerant gas evaporated in the condenser; and power generation driven by the expansion turbine. a refrigerant-seawater heat exchanger that removes heat from the refrigerant gas exiting the expansion turbine and condenses it; a storage tank that stores the refrigerant liquid condensed in the refrigerant-seawater heat exchanger; and a pump that circulates the refrigerant. Steam turbine exhaust heat power generation equipment characterized by being equipped with.
JP8665791A 1991-04-18 1991-04-18 Steam turbine exhaust heat power generation equipment Withdrawn JPH04318207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8665791A JPH04318207A (en) 1991-04-18 1991-04-18 Steam turbine exhaust heat power generation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8665791A JPH04318207A (en) 1991-04-18 1991-04-18 Steam turbine exhaust heat power generation equipment

Publications (1)

Publication Number Publication Date
JPH04318207A true JPH04318207A (en) 1992-11-09

Family

ID=13893111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8665791A Withdrawn JPH04318207A (en) 1991-04-18 1991-04-18 Steam turbine exhaust heat power generation equipment

Country Status (1)

Country Link
JP (1) JPH04318207A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007020707A1 (en) * 2005-08-19 2007-02-22 Saga University Thermal energy conversion generator
JP2012057923A (en) * 2010-09-08 2012-03-22 Shoji Ueda Hot water supply system
JP2013011272A (en) * 2011-06-03 2013-01-17 Toda Kogyo Corp Power generation system
JP2013217342A (en) * 2012-04-11 2013-10-24 Toshiba Corp Steam turbine plant and operation method thereof
JP2013231393A (en) * 2012-04-27 2013-11-14 Toshiba Corp Steam turbine plant

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007020707A1 (en) * 2005-08-19 2007-02-22 Saga University Thermal energy conversion generator
JPWO2007020707A1 (en) * 2005-08-19 2009-02-19 国立大学法人佐賀大学 Temperature difference generator
JP4734658B2 (en) * 2005-08-19 2011-07-27 国立大学法人佐賀大学 Temperature difference generator for teaching materials
JP2012057923A (en) * 2010-09-08 2012-03-22 Shoji Ueda Hot water supply system
JP2013011272A (en) * 2011-06-03 2013-01-17 Toda Kogyo Corp Power generation system
JP2013217342A (en) * 2012-04-11 2013-10-24 Toshiba Corp Steam turbine plant and operation method thereof
JP2013231393A (en) * 2012-04-27 2013-11-14 Toshiba Corp Steam turbine plant

Similar Documents

Publication Publication Date Title
KR100628597B1 (en) Modified bottoming cycle for cooling inlet air to a gas turbine combined cycle plant
FI102405B (en) Method for improving the total useful energy production of a thermal power plant i and a power plant with a liquid-cooled thermal power plant
CA2713799C (en) Method for operating a thermodynamic circuit, as well as a thermodynamic circuit
US9816400B1 (en) Process and method using low temperature sources to produce electric power and desalinate water
KR101431133B1 (en) OTEC cycle device that contains the ejector
NZ248729A (en) High pressure geothermal power plant with secondary low pressure turbogenerator
US4292809A (en) Procedure for converting low-grade thermal energy into mechanical energy in a turbine for further utilization and plant for implementing the procedure
EP2694812A2 (en) Organic rankine cycle for concentrated solar power system with saturated liquid storage and method
EP0419839A2 (en) Deaerator heat exchanger for combined cycle power plant
US6052997A (en) Reheat cycle for a sub-ambient turbine system
RU2152521C1 (en) Condensate degassing method and device
KR20140085001A (en) Energy saving system for using waste heat of ship
US7827792B2 (en) Refrigerant cooled main steam condenser binary cycle
KR101499810B1 (en) Hybrid type condenser system
JP3905967B2 (en) Power generation / hot water system
KR101528935B1 (en) The generating system using the waste heat of condenser
JP2593197B2 (en) Thermal energy recovery method and thermal energy recovery device
WO2004067918A2 (en) Steam ammonia power cycle
JPH04318207A (en) Steam turbine exhaust heat power generation equipment
JP2001248409A (en) Exhaust heat recovery system
JPH0490496A (en) Condensing device of steam turbine plant
KR20110115196A (en) Power plant system of ocean thermal energy conversion with reheating process
JP2010096414A (en) Ammonia absorption refrigeration type power generating device
JPS5922043B2 (en) Cold energy power generation plant
RU2771618C1 (en) Hybrid two-block nuclear power plant according to zaryankin's thermal scheme

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711