JPH04104934A - Sintered material for machine tool - Google Patents
Sintered material for machine toolInfo
- Publication number
- JPH04104934A JPH04104934A JP2219967A JP21996790A JPH04104934A JP H04104934 A JPH04104934 A JP H04104934A JP 2219967 A JP2219967 A JP 2219967A JP 21996790 A JP21996790 A JP 21996790A JP H04104934 A JPH04104934 A JP H04104934A
- Authority
- JP
- Japan
- Prior art keywords
- grains
- sintered
- tool
- cbn
- binder phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 46
- 239000013078 crystal Substances 0.000 claims abstract description 28
- 238000000034 method Methods 0.000 claims abstract description 25
- 239000000919 ceramic Substances 0.000 claims abstract description 19
- 229910021332 silicide Inorganic materials 0.000 claims abstract description 7
- 150000004767 nitrides Chemical class 0.000 claims abstract description 6
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 5
- 150000003624 transition metals Chemical class 0.000 claims abstract description 5
- 238000000975 co-precipitation Methods 0.000 claims abstract description 4
- 230000000737 periodic effect Effects 0.000 claims abstract description 4
- 150000001247 metal acetylides Chemical class 0.000 claims description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 12
- -1 TiN) Chemical class 0.000 abstract description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 abstract description 4
- 238000007731 hot pressing Methods 0.000 abstract description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052593 corundum Inorganic materials 0.000 abstract description 2
- 238000002156 mixing Methods 0.000 abstract description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract description 2
- 238000005299 abrasion Methods 0.000 abstract 1
- 239000011369 resultant mixture Substances 0.000 abstract 1
- 238000000926 separation method Methods 0.000 abstract 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 abstract 1
- 239000011230 binding agent Substances 0.000 description 47
- 239000002245 particle Substances 0.000 description 41
- 238000005520 cutting process Methods 0.000 description 39
- 239000000843 powder Substances 0.000 description 18
- 238000005245 sintering Methods 0.000 description 18
- 239000010432 diamond Substances 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- 229910003460 diamond Inorganic materials 0.000 description 11
- 230000003746 surface roughness Effects 0.000 description 10
- 239000000203 mixture Substances 0.000 description 9
- 229910000760 Hardened steel Inorganic materials 0.000 description 8
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000009257 reactivity Effects 0.000 description 4
- 229910052726 zirconium Inorganic materials 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229910000765 intermetallic Inorganic materials 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 235000002639 sodium chloride Nutrition 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Ceramic Products (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用公費〉
本発明は、焼入鋼や超硬合金等の高硬度材料あるいは耐
熱合金等の切削加工や塑性加工の際に用いられる工具用
焼結材料に関する。[Detailed description of the invention] <Industrial use public funds> The present invention is a sintered material for tools used in cutting and plastic working of high hardness materials such as hardened steel and cemented carbide, or heat resistant alloys. Regarding.
〈従来の技術〉
焼入鋼あるいはニッケル基耐熱合金やコバルト基耐熱合
金等の高硬度材料を加工する場合、一般にはタングステ
ン等の高融点金属の炭化物粉末を鉄やコバルトやニッケ
ル等の鉄系金属で焼結結合させた超硬合金が利用されて
来た。<Conventional technology> When processing high-hardness materials such as hardened steel, nickel-based heat-resistant alloys, and cobalt-based heat-resistant alloys, carbide powder of high-melting point metals such as tungsten is generally processed using iron, cobalt, nickel, and other ferrous metals. Cemented carbide bonded by sintering has been used.
近年、上述した超硬合金が工具としてではなく、加工対
象物として採用されつつあることに加え、加工条件に対
する厳しい要求に対応するため、より高性能な工具とし
て、硬質粒をセラミックスで結合した焼結ダイヤモンド
や立方晶窒化硼素(以下、CBNと記述する)焼結体等
を用いたものが開発されている。In recent years, in addition to the fact that the above-mentioned cemented carbide is being used not only as a tool but also as a workpiece, in order to meet the strict requirements for machining conditions, sintered carbide, which is made by bonding hard grains with ceramics, has been developed as a higher-performance tool. Products using crystalline diamond, cubic boron nitride (hereinafter referred to as CBN) sintered bodies, etc. have been developed.
焼結ダイヤモンドは、ダイヤモンドの粉粒を超硬合金を
結合材として高温高圧下で焼結したものであるが、炭素
との親和力が強い鋼等の加工には根本的に不向きである
。この点、ダイヤモンドに次ぐ硬度のCBNを硬質粒と
して添加したCBN焼結体は鉄系金属との反応が少ない
ことから、ダイヤモンド息外のあらゆる加工対象物、特
に焼入鋼や超硬合金等の高硬度材料の他にニッケル基耐
熱合金やコバルト基耐熱合金等の加工に有効である。Sintered diamond is made by sintering diamond powder at high temperature and pressure using cemented carbide as a binder, but it is fundamentally unsuitable for processing materials such as steel, which has a strong affinity with carbon. In this regard, CBN sintered bodies containing CBN as hard particles, which has a hardness second only to diamond, have little reaction with ferrous metals, so they can be used for all workpieces other than diamonds, especially hardened steel and cemented carbide. In addition to high-hardness materials, it is effective for processing nickel-based heat-resistant alloys, cobalt-based heat-resistant alloys, etc.
従来のCBN焼結体は、CBNの粉粒に結合相となる炭
化チタンや窒化チタン等のセラミックスを単独あるいは
被合して混ぜ、焼結性の改善のために金属成分を添加し
、これらを高温(1300〜1800℃)、高圧(30
〜80Kb(キロバール))下で焼結して製造されてい
る。なお、結合相の材料としては、上記の他に硅素やジ
ルコニウムの炭化物或いは硅素やジルコニウムの窒化物
、更にはアルミニウムとチタンとの金属間化合物やアル
ミニウムとジルコニウムとの金属間化合物等が知られて
いる。Conventional CBN sintered bodies are made by mixing CBN powder with ceramics such as titanium carbide or titanium nitride, which serve as a binder phase, either alone or in combination, and by adding metal components to improve sinterability. High temperature (1300~1800℃), high pressure (30
It is manufactured by sintering at ~80 Kb (kilobars). In addition to the above materials, known binder phase materials include carbides of silicon and zirconium, nitrides of silicon and zirconium, and intermetallic compounds of aluminum and titanium and intermetallic compounds of aluminum and zirconium. There is.
〈発明が解決しようとする課題〉
CBN焼結工具は、焼入鋼の精密切削加工用として従来
の砥石(研削加工)にかえて使用されるようになってき
ている。切削工具としてのCBN焼結工具の特長は、耐
摩耗性が高く、仕上面精度(粗さ)が高いことにあるが
、この特長はダイヤモンドに次ぐ硬さを有するCBN粒
が40〜60体積%の割合で工具に含まれているために
発現している。<Problems to be Solved by the Invention> CBN sintered tools have come to be used in place of conventional grindstones (grinding) for precision cutting of hardened steel. The features of CBN sintered tools as cutting tools are high wear resistance and high finished surface accuracy (roughness). It is expressed because it is contained in tools at a rate of .
このように硬質のCBN粒をセラミックスの結合相に分
散したCBN焼結工具は切削工具として優れた特長を有
するが、一方で次のような種々の問題がある。なお、ダ
イ丁モンド焼結工具とCBN焼結工具とは、製造方法が
類似しており、そのために生ずる問題も同様であるので
、ダイヤモンド焼結工具も次に述べるような問題を有し
ている。Although such a CBN sintered tool in which hard CBN grains are dispersed in a ceramic binder phase has excellent features as a cutting tool, it has various problems as described below. It should be noted that diamond sintered tools and CBN sintered tools have similar manufacturing methods, and the problems that arise from this are also similar, so diamond sintered tools also have the following problems. .
まず第一には、CBN粒が高価なことである。通常添加
するCBN粒の粒径は0.5〜6μmであり、ダイヤモ
ンドの合成と同様に超高圧合成により製造される。この
方法は圧力50〜70Kb、温度1500〜1700℃
にて結晶を成長させるもので、専用の超高圧合成設備を
使い、合成に長い時間を要するものであるため、製品で
あるCBN粒が高価なものとなっている。First of all, CBN grains are expensive. The particle size of the CBN grains that are usually added is 0.5 to 6 μm, and they are manufactured by ultra-high pressure synthesis similar to the synthesis of diamond. This method uses a pressure of 50-70Kb and a temperature of 1500-1700℃.
The process involves growing crystals using specialized ultra-high pressure synthesis equipment, and the synthesis process takes a long time, making the product CBN grains expensive.
また第二には、上述したCBN粒の製造方法にも関係す
るが、CBN粒とセラミックス結合相との焼結を超高圧
下で行わなければならないことである。すなわち、CB
N粒を大気圧下で加熱すると1200℃近辺から相変態
を起こして立方晶から大方晶に変わり(CBNがhBN
に相変態する)、この結果生成するhBNはグラファイ
ト構造の窒化硼素(BN)であって硬度が低く、工具材
料としては使用できないからである。一方、CBN粒と
セラミックス結合相とを一体に焼結するためには、CB
N粒の相変態が起こる1200℃z上に加熱する必要が
あるからである。このため、上述した超高圧合成設備を
使って超高圧下で加熱して焼結することが必要となる。The second problem is that the CBN grains and the ceramic binder phase must be sintered under ultra-high pressure, which is also related to the method for manufacturing the CBN grains described above. That is, C.B.
When N grains are heated under atmospheric pressure, a phase transformation occurs from around 1200℃, changing from cubic to macrogonal (CBN changes to hBN).
This is because the resulting hBN is boron nitride (BN) with a graphite structure and has low hardness and cannot be used as a tool material. On the other hand, in order to integrally sinter the CBN grains and the ceramic binder phase, it is necessary to
This is because it is necessary to heat above 1200° C. where phase transformation of N grains occurs. Therefore, it is necessary to heat and sinter under ultra-high pressure using the ultra-high pressure synthesis equipment described above.
一般にCBN焼結工具材料を焼結する条件は、圧力40
〜60 Kb、温度1400〜1800℃であるが、超
高圧合成では1回の運転で製造できる焼結体のサイズが
小さく且つ焼結に長い時間を要するため、工具が高価な
ものとなり、適用光が限定されてしまうのが現状である
。Generally, the conditions for sintering CBN sintered tool material are pressure 40
~60 Kb, and the temperature is 1400 to 1800°C. However, in ultra-high pressure synthesis, the size of the sintered body that can be produced in one operation is small and sintering takes a long time, making the tools expensive and the applied light. The current situation is that these are limited.
このように、硬質粒分散型焼結工具の代表例であるCB
N焼結工具は工具として優れた特長を有するが今後さら
にその適用分野を拡げてゆくためには、糎々の問題があ
る。そこで、CBN焼結工具と同様な優れた特長を有す
るCBN粒に代わる硬質粒を用いて、新たな硬質粒分散
型焼結工具を開発することが要望されている。In this way, CB, which is a typical example of a hard particle dispersion type sintered tool,
N sintered tools have excellent features as tools, but there are still problems to be solved in order to further expand the field of application in the future. Therefore, it is desired to develop a new hard grain dispersed sintered tool using hard grains instead of CBN grains, which have the same excellent features as CBN sintered tools.
本発明はこのような事情に艦み、耐摩耗性が高く、靭性
に優れ、しかも安価な工具用焼結材料を提供することを
目的とする〇
く課題を解決するための手段〉
前記目的を達成する本発明に係る工具用焼結材料は、結
晶粒界の占める体積比率が0.01%以下で且つ純度が
99.99%以上の結晶粒を20〜80体積%含み、残
部がセラミックスの連続した結合相からなることを特徴
とする。In view of these circumstances, the present invention aims to provide a sintered material for tools that has high wear resistance, excellent toughness, and is inexpensive. The sintered material for tools according to the present invention to be achieved contains 20 to 80 volume % of crystal grains in which the volume ratio occupied by grain boundaries is 0.01% or less and the purity is 99.99% or more, and the remainder is ceramic. It is characterized by consisting of a continuous bonded phase.
ここで、本発明を、従来の硬質粒分散型焼結工具の代表
であるCBN焼結工具と比較しつつ説明する。The present invention will now be described in comparison with a CBN sintered tool, which is a typical example of a conventional hard grain dispersed sintered tool.
まず、従来のCBN焼結工具の摩耗状況を図面を参照し
ながら説明する。第5図fat、(b)は焼入鋼を切削
したときのCBN焼結工具の逃げ面及びすくい面の摩耗
状況を模式的に示すものである。両図に示すように、切
削過程において、工具刃先部10のCBN粒11が粒内
で折損あるいは結合相12から脱落し、この折損片ある
いは脱落したCBN粒11が被削材13と逃げ面10m
との境界を通過する際に、逃げ面10aに条痕aが残こ
され、この条痕aが逃げ面摩耗幅(v、)、すなわち耐
摩耗性を決めていると考えられる。なお、図中、10b
はすくい面を示す。そして、とのCBN粒11の折損あ
るいは脱落が生ずる過程では、該CBN粒11を担持す
る機能を有する刃先部の結合相12の被削材13に接し
ている部位が摩耗により後退し、外力(切削力、熱応力
等)がCBN粒11を割る力あるいは担持する力を越え
た段階で、CBN粒11の折損、CBN粒11と結合相
12との粒界での剥離、あるいは結合相12の切損によ
1)CBN粒が刃先部10から脱落すると考えられる。First, the wear condition of a conventional CBN sintered tool will be explained with reference to the drawings. FIG. 5 (b) schematically shows the state of wear on the flank and rake surfaces of a CBN sintered tool when cutting hardened steel. As shown in both figures, during the cutting process, the CBN grains 11 on the tool cutting edge 10 are broken within the grains or fallen off from the binder phase 12, and these broken pieces or fallen CBN grains 11 are connected to the workpiece 13 and the flank surface 10m.
When passing through the boundary with the flank surface 10a, a streak a is left on the flank surface 10a, and it is thought that this streak a determines the flank wear width (v,), that is, the wear resistance. In addition, in the figure, 10b
indicates the rake face. In the process of breakage or falling off of the CBN grains 11, the part of the bonding phase 12 at the cutting edge that has the function of supporting the CBN grains 11, which is in contact with the work material 13, retreats due to wear, and the external force ( When the cutting force, thermal stress, etc.) exceeds the force that breaks or supports the CBN grains 11, the CBN grains 11 break, the CBN grains 11 and the binder phase 12 separate at the grain boundary, or the binder phase 12 breaks. It is thought that due to the cutting damage, 1) CBN grains fall off from the cutting edge portion 10;
このことから、結合相に対して硬質粒の耐摩耗性が数倍
高い工具では、結合相のみが選択的に摩耗して硬質粒が
結合相から突き出た状態になり、これが外力に耐えられ
ずに硬質粒の折損、脱落に至ると考えられ、むしろ折損
、脱落が生じ易くなることから上述した通り逃げ面が早
く摩耗することになると考えられる。From this, in tools where the wear resistance of the hard grains is several times higher than that of the binder phase, only the binder phase wears out selectively, causing the hard grains to protrude from the binder phase, making it difficult to withstand external forces. This is thought to lead to breakage and falling off of the hard grains, and it is thought that breakage and falling off become more likely to occur, causing the flank surface to wear out faster as described above.
すなわち、主に工具の耐摩耗性に着目した場合には、硬
質粒の耐摩耗性が結合相に対して高い程良いとは言えず
、硬質粒の引張強度、靭性などの性質が優れていること
が重要である。In other words, when focusing mainly on the wear resistance of tools, it cannot be said that the higher the wear resistance of the hard grains relative to the binder phase, the better; the properties of hard grains such as tensile strength and toughness are superior. This is very important.
さらに、CBN焼結工具を用いた切削試験から、硬質粒
を分散させた工具では、CBN粒が被削材の面粗さを高
精度に維持すること、及び工具の硬度を高めて刃先部の
変形を少なくすることに役立っていることがわかった。Furthermore, cutting tests using CBN sintered tools have shown that in tools with dispersed hard particles, the CBN particles maintain the surface roughness of the workpiece with high accuracy, and increase the hardness of the tool to improve the cutting edge. It was found that this helps reduce deformation.
特に、前者は耐摩耗性と同じ程度に重要な特長である。In particular, the former is a feature as important as wear resistance.
したがって、硬質粒としては、結合相より大幅にw4摩
耗性の高くないもの、っまや硬度が大幅には高い必要は
ないが、切削時の刃先温度(800〜1000℃)にお
いて結合相よ抄高い硬度を有するものであり、且つ折損
を起こしにり<、引張強度、靭性が高い材料が適してお
や、このような硬質粒を使った硬質粒分散型工具であれ
ば、高い耐摩耗性と高精度の面粗さが得られるものと考
えられる。Therefore, the hard particles should not have significantly higher abrasiveness than the binder phase, and although they do not need to have significantly higher hardness, they will have a higher hardness than the binder phase at the cutting edge temperature (800 to 1000°C). Materials that have hardness, high tensile strength, and toughness are suitable because they do not cause breakage.A hard grain dispersion type tool using such hard grains has high wear resistance and It is thought that highly accurate surface roughness can be obtained.
本発明で用いる硬質粒はこのような条件に適合するもの
である。なお、硬質粒は、被削材と反応するものであっ
てはならないので、両者の標準生成自由エネルギ変化(
ΔGT″cat/ma1)が正値である必要がある。The hard particles used in the present invention meet these conditions. In addition, since the hard particles must not react with the work material, the standard free energy of formation of both (
ΔGT″cat/ma1) needs to be a positive value.
本発明で結晶粒界の占める体積比率が0.01%以下で
且つ純度が99.99%以上の結晶粒とは、単結晶粒あ
るいはこれに準する多結晶粒などをいう。また、ここで
単結晶粒に準する多結晶粒とは、例えば共沈法などで製
造される多結晶粒をいう。In the present invention, crystal grains in which the volume ratio occupied by grain boundaries is 0.01% or less and the purity is 99.99% or more refer to single crystal grains or similar polycrystalline grains. Moreover, here, the polycrystalline grains similar to single crystal grains refer to polycrystalline grains manufactured by, for example, a coprecipitation method.
硬質粒の具体的な材料としては、周期率表第4a、5J
l、6a族遷移金属の炭化物、窒化物、礪化物、硅化物
、炭化物及び酸化物、又はアルミニウムの酸化物等を挙
げることができる。Specific materials for the hard particles include periodic table Nos. 4a and 5J.
Examples include carbides, nitrides, silicides, silicides, carbides, and oxides of group 1 and 6a transition metals, and oxides of aluminum.
なお、ダイヤモンド及びこれに次ぐ硬度を有するCBN
は前述のように高価である点、焼結時に高圧(30〜7
0Kb)にしなければならない点、および硬度が他のセ
ラミックス1金属間化合物に比べて大幅に高い点などか
ら、本発明における硬質粒には含まれない。In addition, diamond and CBN, which has the second highest hardness,
As mentioned above, it is expensive and requires high pressure (30 to 7
0 Kb) and its hardness is significantly higher than that of other ceramic intermetallic compounds, so it is not included in the hard grains in the present invention.
一方、組金相としてはセラミックスを用いるが、上述し
た摩耗機構から考えると、次の4つの特性を有する必要
があると考えられる。On the other hand, although ceramics are used as the composite metal phase, considering the above-mentioned wear mechanism, it is considered necessary to have the following four characteristics.
すなわち、結合相の耐摩耗性を高くして摩耗による刃先
の結合相の後退速度を低く抑えるために、
■ 切削時切刃温度における硬度が高いこと、
■ 切削時切刃温度における被削材(錆。In other words, in order to increase the wear resistance of the binder phase and suppress the receding speed of the binder phase at the cutting edge due to wear, it is necessary to: ■ have high hardness at the cutting edge temperature during cutting; rust.
鉄族金属など)との反応性が低いこと、が要求される。low reactivity with iron group metals, etc.).
また、硬質粒と結合相との粒界で剥離による脱落が起こ
りにくくするために、
■ 硬質粒との間で相互に拡散2反応し、強固に接着す
ること、
さらに、結合相が焼結体として健全であるために、
■ 焼結性が良好で(低い焼結温度で緻密化する)、強
度、靭性が高いこと、
が要求される。In addition, in order to prevent the hard particles from falling off due to peeling at the grain boundaries between the hard grains and the binder phase, it is necessary to: ■ Mutual diffusion 2 reaction between the hard grains and strong adhesion; In order to be sound as a material, it is required to have good sinterability (densification occurs at low sintering temperatures) and high strength and toughness.
したがって、このような各特性を有するセラミックスを
結合相とするのが好ましい。以下に具体的に考察してみ
る。Therefore, it is preferable to use ceramics having these characteristics as the binder phase. Let's consider this in detail below.
第1図はCBN焼結工具の各種結合相の硬度を示すもの
であるが、一般に周期率表第4a。FIG. 1 shows the hardness of various binder phases of CBN sintered tools, and generally shows the hardness of the periodicity table 4a.
5m、6a族遷移金属の炭化物、礪化物、窒化物の硬度
が高い。特に窒化チタン(以下、TiNと表記する)は
これらに含まれて硬度が高く、また、酸化アルミニウム
(以下、アルミナ又はAI!203と表記する)は、切
削時刃先温度(800〜1000℃)における硬度が高
い値を示して−)る。5m, carbides, silicides, and nitrides of group 6a transition metals have high hardness. In particular, titanium nitride (hereinafter referred to as TiN) is included and has high hardness, and aluminum oxide (hereinafter referred to as alumina or AI!203) is The hardness shows a high value.
第2図は、各種結合相の切削時刃先温度(800〜10
00℃)における鉄に対する生成自由エネルギ(ΔGT
’ c a 1 /mo l )を示す。Figure 2 shows the cutting edge temperature (800 to 10
Free energy of formation (ΔGT
' ca 1 /mol).
かかる生成自由エネルギを、鉄等との反応性の指標とす
ると、周期率表第4a、5a。If such free energy of formation is used as an index of reactivity with iron etc., it will be 4a and 5a of the periodic table.
6a族遷移金属の炭化物、窒化物、一部の礪化物及びア
ルミナ、酸化ジルコニウム(以下、Z r O,又はジ
ルコニアと表記する)などの酸化物は反応性が低いもの
と推測され、これらは結合相の材料として使用できる。It is assumed that oxides such as carbides, nitrides, some silicides, alumina, and zirconium oxide (hereinafter referred to as ZrO or zirconia) of Group 6a transition metals have low reactivity, and these are difficult to bond with. Can be used as phase material.
また、■については硬質粒と結合相との反応性の指標と
して■と同様に標準生成自由エネルギ(ΔGT。caj
/moj)により評価すればよく、■については結合相
の主成分に対して焼結を促進する助剤を添加することに
より健全な結合相を得ることができる。Regarding ■, the standard free energy of formation (ΔGT.caj
/moj), and for (2), a healthy binder phase can be obtained by adding an auxiliary agent that promotes sintering to the main component of the binder phase.
このようにして選択された結合相材料と上述した硬質粒
とから、本発明に係る硬質粒分散型焼結工具を製造する
には、ホットプレス法あるいは超高圧焼結法などを適用
する。In order to manufacture the hard grain dispersed sintered tool according to the present invention from the binder phase material selected in this manner and the hard grains described above, a hot pressing method, an ultra-high pressure sintering method, or the like is applied.
ホットプレス法による場合には、まず、結合相材料と硬
質粒とをボールミル等で混合し、これを金型を用いて粉
末成形プレスで圧粉成形して所定の形状にする。次に、
この圧縮成形体をホットプレスの黒鉛型に装填し、真空
あるいは不活性雰囲気中で温度800〜2400℃、圧
力〜IKbをかけ、数分〜数時間保持して焼結体を製造
する。In the case of the hot press method, first, the binder phase material and hard particles are mixed in a ball mill or the like, and the mixture is compacted into a predetermined shape using a powder molding press using a mold. next,
This compression molded body is loaded into a graphite mold of a hot press, and a temperature of 800 to 2400° C. and a pressure of ~IKb are applied in a vacuum or an inert atmosphere, and held for several minutes to several hours to produce a sintered body.
また、超高圧焼結法は、CBN焼結工具材料を製造する
のと同様な方法である。この方法では、ホットプレス法
と同様にして得た圧粉成形体をジルコニウムなどの金属
箔で包み、さらに圧力媒体となる食塩の圧粉成形体で包
み、これを黒鉛製のと−タリングに組込み、ダイヤモン
ド合成に使用されるベルト型装置にパイロフェライト等
の圧力媒体を介して装填し、温度800〜1800℃、
圧力40〜60Kbをかけ、数分〜数時間保持して焼結
体を製造する。Also, the ultra-high pressure sintering method is a similar method for manufacturing CBN sintered tool materials. In this method, a powder compact obtained in the same manner as the hot press method is wrapped in metal foil such as zirconium, and then wrapped in a powder compact of salt that serves as a pressure medium, and this is assembled into a graphite fitting. , loaded into a belt-type device used for diamond synthesis via a pressure medium such as pyroferrite, and heated to a temperature of 800 to 1800°C.
A pressure of 40 to 60 Kb is applied and maintained for several minutes to several hours to produce a sintered body.
このようにして得られる本発明の焼結体は、特に超高圧
焼結法で製造したものの方がよ^高密度に焼結するが、
これを切削工具として使用した場合には5〜10%耐摩
耗性が向上する。The sintered body of the present invention thus obtained is sintered to a higher density, especially when produced by ultra-high pressure sintering method.
When this is used as a cutting tool, the wear resistance is improved by 5 to 10%.
上述したようにホットプレス法あるいは超高圧焼結法で
製造される本発明の工具用焼結材料は、硬質粒を結合相
に分散して配置した焼結体とすることで、焼入鋼等の高
硬度材料の切削加工において高い耐摩耗性と高精度の面
粗さを連成しようとするものであるので、その機能から
考えて結合相は焼結体組織上で連続した相をなすことが
要求される。つまり、結合相が連続した相となすことに
より、該結合相が硬質粒を充分に強固に把持し、且つ焼
結体として高い靭性を具備することが可能となり、工具
として所期の性能を持つに至る。As mentioned above, the sintered material for tools of the present invention manufactured by the hot press method or the ultra-high pressure sintering method is a sintered body in which hard particles are dispersed and arranged in the binder phase, so that it can be used to harden steel, etc. The aim is to combine high wear resistance and high precision surface roughness in cutting of high hardness materials, so considering its function, the binder phase should form a continuous phase on the sintered body structure. is required. In other words, by making the binder phase a continuous phase, it is possible for the binder phase to grip the hard particles sufficiently firmly and to have high toughness as a sintered body, so that it has the desired performance as a tool. leading to.
そして、このように結合相を連続した相となるためには
、硬質粒の含有量を体積で80%す下とする必要がある
。一方、硬質粒を分散した効果は含有量が体積で20%
を割ると発揮されない乙とから、硬質粒の含有量は体積
で20〜80%の範囲である必要がある。In order to make the binder phase a continuous phase in this way, it is necessary to reduce the content of hard particles to 80% by volume. On the other hand, the effect of dispersing hard particles is that the content is 20% by volume.
The content of hard particles needs to be in the range of 20 to 80% by volume, since the hard particles are not exhibited when divided.
また同様に結合相を連続した相となすためには、結合相
の材料を、硬質粒のまわりに配位する必要があり、この
ためには硬質粒と結合相材料の粉末を混合した際に、硬
質粒の表面を結合相材料の粉末が含むようになる条件を
満たすようにすることが必要であり、例えば結合相材料
の粉末の粒径を硬質粒の粒径より小さな粒径とすること
で達成される。Similarly, in order to make the binder phase a continuous phase, it is necessary to coordinate the binder phase material around the hard particles. , it is necessary to satisfy the condition that the surface of the hard particles is contained in the powder of the binder phase material, for example, the particle size of the powder of the binder phase material is made smaller than the particle size of the hard particles. is achieved.
一方、結合相材料の粉末として、工業的に生産されてい
るのは、粒径0−2μm〜1μmであるので、上記条件
より硬質粒の粒径を、結合相材料の粉末粒径の2倍とす
ると、0.4μmより大きな粒径が必要となる。また被
削材の仕上面粗さをR6,。3.2μm以下とすると、
硬質粒の粒径は10μm9J、下となるものと考えられ
るので、硬質粒の粒径の範囲は好適には0.4μm〜1
0μmとなる。On the other hand, the powder of the binder phase material that is industrially produced has a particle size of 0-2 μm to 1 μm, so based on the above conditions, the particle size of the hard particles should be twice the particle size of the powder of the binder phase material. If so, a particle size larger than 0.4 μm is required. Also, the finished surface roughness of the work material is R6. If it is 3.2 μm or less,
Since the particle size of the hard particles is considered to be 10 μm or less, the range of the particle size of the hard particles is preferably 0.4 μm to 1 μm.
It becomes 0 μm.
第3図は、硬質粒として体積40%の単結晶アルミナ粒
を用い、残部を結合相として窒化チタン(TiN)50
体積%及びアルミナ(AZ203) 10体積%とし
、これを超高圧焼結法で焼結体とした場合の組織を示し
たものである。同図に示すように、灰色に見える単結晶
アルミナ粒の間隙に白く見える相のT i Nが配位し
て完全に緻密な焼結体となっており、TiNは連続して
単結晶アルミナ粒の結合相となっている。In Figure 3, single-crystal alumina grains with a volume of 40% are used as hard grains, and the remainder is titanium nitride (TiN) 50% as a binder phase.
Volume % and alumina (AZ203) are set to 10 volume %, and the structure is shown when this is made into a sintered body using an ultra-high pressure sintering method. As shown in the figure, TiN, which appears as a white phase, coordinates between the gaps between the gray single crystal alumina grains, forming a completely dense sintered body, and the TiN continuously forms the single crystal alumina grains. It is the bonded phase of
第4図(alは第3図に示す焼結体を工具形状に加工し
て切削試験に供した結果を示すものである。ここで、被
削材は焼入鋼(SUJ2、硬度H,o62 ) 、切削
条件は切削速度100m/5in1送り0.1 wa
/ rev1切り込み0.1+mの同一条件で切削した
後の刃先部の顕微鏡写真である。Figure 4 (al indicates the result of machining the sintered body shown in Figure 3 into a tool shape and subjecting it to a cutting test. Here, the workpiece material is hardened steel (SUJ2, hardness H, O62 ), cutting conditions are cutting speed 100m/5in1 feed 0.1wa
/rev1 This is a microscopic photograph of the cutting edge after cutting under the same conditions with a depth of cut of 0.1+m.
また、比較のため、従来のCBN焼結工具及び結合相組
成のみで焼結した工具について同様に切削試験に供した
ときの刃先部の顕微鏡写真を第4図(b)、(e)に示
す。なお、CBN焼結工具の結合相は上記実施例((a
)のもの)と同一組成とし、また、CBNの含有比率は
40体積%とした。For comparison, Figures 4(b) and 4(e) show micrographs of the cutting edge of a conventional CBN sintered tool and a tool sintered with only a binder phase composition, which were subjected to cutting tests in the same manner. . Note that the binder phase of the CBN sintered tool is the same as that of the above example ((a
), and the CBN content was 40% by volume.
これらの結果を見ると、(b)は切刃部がシャープな線
状となろCBN焼結工具の刃先摩耗形態を示しており、
一方(clは切刃部が丸味をおび、切刃の中央部は塑性
変形を生じて形態が興っている。Looking at these results, (b) shows the edge wear pattern of the Naro CBN sintered tool with a sharp linear cutting edge.
On the other hand, (cl) has a rounded cutting edge, and the central part of the cutting edge undergoes plastic deformation and takes on a new shape.
これに対し、単結晶アルミナを用いた本発明の工具(a
lでは、CBN焼結工具に酷似した刃先摩耗形態を示し
ており、硬質粒として結合相に分散した単結晶アルミナ
がCBN粒と同し機能を持つことが11認された。In contrast, the tool of the present invention (a
1 showed a cutting edge wear pattern very similar to that of a CBN sintered tool, and it was confirmed that single-crystal alumina dispersed in the binder phase as hard grains had the same function as CBN grains.
く実 施 例〉 以下、本発明を実施例に基づいて説明する。Example of implementation Hereinafter, the present invention will be explained based on examples.
(実施例1)
硬質粒として平均粒径3μmの単結晶Aj 0粒と、平
均粒径1μmのT i N粉末と、平均粒径0.2μm
のAl2O3粉末を体積でそれぞれ40%、50%、1
0%の割合に調合して乳鉢で混合した。この粉末に滑剤
を1%加え、粉末成形プレスで外径4■、厚み1.5■
の圧粉成形体とした。(Example 1) As hard particles, single crystal Aj 0 grains with an average particle size of 3 μm, T i N powder with an average particle size of 1 μm, and average particle size of 0.2 μm
of Al2O3 powder at 40%, 50%, and 1 by volume, respectively.
The mixture was mixed in a mortar at a ratio of 0%. Add 1% lubricant to this powder, and use a powder molding press to obtain an outer diameter of 4 cm and a thickness of 1.5 cm.
A green compact was obtained.
これをまず真空炉中で10−QTorrの真空度で80
0℃で2時間加熱し、脱ロウした。この圧粉体を厚さ2
0μmのジルコニウム箔で包み、ベルト型超高圧装置に
て超高圧焼結した。この際、圧力シール用ガスケットと
してはパイロフヱライトを、と−ターは黒船円筒を用い
た。黒鉛ヒータと上記試料圧粉体の間は食塩を加圧して
成形した圧粉成形体を充填した。超高圧焼結は圧力をま
ず55Kbに上げたのち温度を1650℃に上げて30
分間保持し、その後温度を下げ、圧力を徐々におろした
。得られた焼結体は外径約4wm、厚さ約1腫の緻密な
ものであった。これをダイヤモンド砥石で平面に加工し
た後、アルミナ製のスローアウェイチップのコーナにロ
ウ付けで接着して工具を作成した。This was first heated in a vacuum furnace at a vacuum level of 10-Q Torr at 80°C.
It was heated at 0° C. for 2 hours to remove wax. This green compact has a thickness of 2
It was wrapped in 0 μm zirconium foil and sintered at ultra-high pressure using a belt-type ultra-high pressure device. At this time, Pyrofluorite was used as the pressure sealing gasket, and Kurofune Cylindrical was used as the gasket. The space between the graphite heater and the sample compact was filled with a compact formed by pressurizing common salt. Ultra-high pressure sintering involves first increasing the pressure to 55 Kb, then increasing the temperature to 1650°C and
It was held for a minute, then the temperature was lowered and the pressure was gradually released. The obtained sintered body was dense with an outer diameter of about 4 wm and a thickness of about 1 mm. After processing this into a flat surface using a diamond grindstone, the tool was created by adhering it to the corner of an alumina indexable tip using brazing.
比較のために、硬質粒として3μmのCBN粒を添加し
たものと硬質粒を含まず、結合相組成のみからなるセラ
ミックス工具を作成した。なお、セラミックス工具につ
いては、原料粉末は前述のTiNとアルミナを体積で8
3%と17%の割合にし、これに滑剤を1%加え上述と
同様な方法で工具とした。For comparison, a ceramic tool with 3 μm CBN grains added as hard grains and a ceramic tool with only a binder phase composition without hard grains were created. In addition, for ceramic tools, the raw material powder is the aforementioned TiN and alumina in a volume of 8
The ratios were 3% and 17%, and 1% of lubricant was added to the ratios, and a tool was prepared in the same manner as described above.
切削試験は上記本実施例の硬質粒分散型工具とセラミッ
クス工具で同一の条件で実施した。条件は切削速度10
0 m/win、送1)0.1111111 / r
e V %切り込み0.1m、被削材は焼入鋼(SUJ
2、硬度H,。6.2 )とした。The cutting test was conducted under the same conditions using the hard particle dispersion type tool and the ceramic tool of this example. The conditions are cutting speed 10
0 m/win, feed 1) 0.1111111/r
e V % Depth of cut 0.1m, workpiece material is hardened steel (SUJ
2. Hardness H. 6.2).
この結果、本実施例の工具は、切削距離4に+mで逃げ
面摩耗幅が0.17m、被削材の表面粗さが1.6〜2
.0μmとなったのに対し、結合相組成のセラミックス
工具では逃げ面摩耗幅が0.22〜0.26m、被削材
の表面粗さが2.6〜3.6μmとなった。すなわち、
硬質粒の添加により耐摩耗性及び被削材の表面粗さ精度
が向上した。As a result, the tool of this example had a flank wear width of 0.17 m at a cutting distance of +4 m, and a surface roughness of the workpiece of 1.6 to 2 m.
.. In contrast, the flank wear width of the ceramic tool with the binder phase composition was 0.22 to 0.26 m, and the surface roughness of the workpiece was 2.6 to 3.6 m. That is,
Addition of hard particles improved wear resistance and surface roughness accuracy of the workpiece.
一方、CBN焼結工具は逃げ面摩耗幅が0、2〜0.2
4 wan 、被削材の表面粗さが2.0〜2.5μm
であり、本実施例の工具はCBN焼結工具と比較しても
、これを上まわる特性を示した。On the other hand, CBN sintered tools have a flank wear width of 0.2 to 0.2.
4 wan, the surface roughness of the workpiece is 2.0 to 2.5 μm
Even when compared with the CBN sintered tool, the tool of this example showed superior characteristics.
(実施例2)
実施例1と同一の組成である平均粒径3μmの単結晶A
j、0340体積%、平均粒径1μmのTiN粉末粉末
5穫
AIIto3粉末lO体積%の混合粉末を超高圧焼結に
かえてホットプレス法で焼結して工具を作成した。(Example 2) Single crystal A with the same composition as Example 1 and an average grain size of 3 μm
A tool was produced by sintering a mixed powder of TiN powder, 0340% by volume, 5% by volume of AIIto3 powder, and 10% by volume of AIIto3 powder with an average particle diameter of 1 μm using a hot press method instead of ultra-high pressure sintering.
ホットプレスの条件は真空( 1 0−2Torr)中
湿度1650℃、圧力1 0 0 0kgf/cjとし
、1時間保持して焼結した。得られた焼結体からダイヤ
モンドカッタでスロウアウェイ工具を切り出し、切削試
験に供した。実施例1と同一の切削条件7試験を実施し
たところ、切削距離4に■で逃げ面摩耗幅が0.18m
、被削材の表面粗さが1.8〜2.4μmであり、超高
圧焼結により作成した本発明の工具よりは劣るが、実施
例1に記載の同一結合相組成のCBN焼結工具に比べて
、同等もしくはそれ以上の特性を示した。The hot pressing conditions were vacuum (10-2 Torr), humidity 1650°C, pressure 1000 kgf/cj, and sintering was performed by holding for 1 hour. A throw-away tool was cut out from the obtained sintered body using a diamond cutter and subjected to a cutting test. When 7 tests were conducted under the same cutting conditions as in Example 1, the flank wear width was 0.18 m at cutting distance 4.
, the surface roughness of the work material is 1.8 to 2.4 μm, which is inferior to the tool of the present invention made by ultra-high pressure sintering, but the CBN sintered tool has the same binder phase composition as described in Example 1. It showed the same or better characteristics compared to .
(実施例3) 第1表の硬質粒と結合相組成の粉末を各別に混合した。(Example 3) The hard grains and powders having the binder phase composition shown in Table 1 were mixed separately.
使用した硬質粒の平均粒径は、0.4μm〜10μmで
、ブリッジマン法、ベルヌーイ法等により作成した単結
晶を粉砕して単結晶粒として使用した。またAr1へは
単結晶粒の他、共沈法により作成した高純度多結晶粒も
使用した。The average particle size of the hard particles used was 0.4 μm to 10 μm, and single crystals prepared by the Bridgman method, the Bernoulli method, etc. were crushed and used as single crystal grains. In addition to single crystal grains, high purity polycrystal grains prepared by a coprecipitation method were also used for Ar1.
焼結は実施例2と同様にホットプレス法で行なったが、
得られた焼結体はいずれの場合も緻密質であった。Sintering was performed using the hot press method as in Example 2, but
The obtained sintered bodies were dense in all cases.
また、第2表にアルミナについて、純度99、5〜9
9. 9 5%の多結晶粒と単結晶粒添加との比較を示
す。木表にもあるように、単結晶粒に比べ、多結晶粒を
添加した場合には耐摩耗性が20〜30%悪いことがわ
かる。この理由は、多結晶粒は含まれる不純物が粒界に
あり、これが低融点であるため、高温での硬度が低いた
めと推測される。したがって、本発明では、結晶粒界の
占める体積比率が0、01%以下で且つ純度が9 9.
9 9%以上の結晶粒を用いる必要がある。Table 2 also shows purity of alumina: 99, 5-9.
9. A comparison between 95% polycrystalline grain and single grain addition is shown. As shown in the wood table, it can be seen that the wear resistance is 20 to 30% worse when polycrystalline grains are added compared to single crystal grains. The reason for this is presumed to be that the impurities contained in polycrystalline grains are located at grain boundaries, which have a low melting point and therefore have low hardness at high temperatures. Therefore, in the present invention, the volume ratio occupied by grain boundaries is 0.01% or less, and the purity is 9.9%.
It is necessary to use crystal grains of 99% or more.
第 1
表
〈発明の効果〉
以上説明したように、本発明の工具用焼結材料は、結晶
粒界へ占める体積比率が0.01%以下で且つ純度が9
9.99%以上の結晶粒を硬質粒として20〜80体積
%含むものなので、結合相組成のみからなるセラミック
ス工具に比べて耐摩耗性及び被削材の表面粗さ精度が向
上し、CBN焼結工具と同等の性能を有するものであり
、しかもCBN焼結工具と比べて安価に製造できるもの
である。Table 1 <Effects of the Invention> As explained above, the sintered material for tools of the present invention has a volume ratio of 0.01% or less to grain boundaries and a purity of 9.
Since it contains 9.99% or more of crystal grains as hard grains, 20 to 80% by volume, the wear resistance and surface roughness accuracy of the workpiece material are improved compared to ceramic tools consisting only of binder phase composition, and CBN sintered It has the same performance as a bonded tool, and can be manufactured at a lower cost than a CBN sintered tool.
第1図はCBN焼結工具の結合相材料の硬度を示す説明
図、第2図はCBN焼結工具の結合相材料の被削材との
反応性を示す説明図、第3図及び第4図(al 、 (
b) 、 (clは焼結体表面の粒子構造を示す顕微鏡
写真、第5図(alはCBN焼結工具の摩耗を説明する
模式図、第5図(b)はそのA部拡大図である。
図面中、
10は工具刃先部、
第 2
表
以上実施例で示したように、本発明による焼結体は高硬
度で耐摩耗性が高いので、焼入鋼等の高硬度材料の切前
用工具以外にも、例えば塑性加工用の型材(引抜きダイ
ス、プレス型等)にも適したものである。
0aは逃げ面、
Obはすくい面、
1はCBN粒、
2は結合相、
3は被削材である。Figure 1 is an explanatory diagram showing the hardness of the binder phase material of the CBN sintered tool, Figure 2 is an explanatory diagram showing the reactivity of the binder phase material of the CBN sintered tool with the work material, and Figures 3 and 4 are Figure (al, (
b), (cl is a micrograph showing the particle structure on the surface of the sintered body, Fig. 5 (al is a schematic diagram explaining the wear of a CBN sintered tool, and Fig. 5 (b) is an enlarged view of part A) In the drawings, reference numeral 10 indicates the cutting edge of the tool, and as shown in the examples in Table 2, the sintered body according to the present invention has high hardness and high wear resistance, so it is suitable for cutting of high-hardness materials such as hardened steel. In addition to tools, it is also suitable for mold materials for plastic working (drawing dies, press dies, etc.). 0a is the flank surface, Ob is the rake surface, 1 is the CBN grain, 2 is the binder phase, 3 is the It is the work material.
Claims (3)
っ純度が99.99%以上の結晶粒を20〜80体積%
含み、残部がセラミックスの連続した結合相からなるこ
とを特徴とする工具用焼結材料。(1) 20 to 80% by volume of crystal grains in which the volume ratio occupied by grain boundaries is 0.01% or less and the purity is 99.99% or more
1. A sintered material for tools, characterized in that the remaining part consists of a continuous bonding phase of ceramics.
であることを特徴とする請求項1記載の工具用焼結材料
。(2) The sintered material for tools according to claim 1, wherein the crystal grains are single crystal grains or crystal grains produced by a coprecipitation method.
金属の炭化物、窒化物、礪化物、硅化物又は炭化物であ
ることを特徴とする請求項1記載の工具用焼結材料。(3) The sintered material for tools according to claim 1, wherein the crystal grains are carbides, nitrides, silicides, silicides, or carbides of transition metals of Groups 4a, 5a, and 6a of the periodic table. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2219967A JP2954996B2 (en) | 1990-08-23 | 1990-08-23 | Sintered materials for tools |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2219967A JP2954996B2 (en) | 1990-08-23 | 1990-08-23 | Sintered materials for tools |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04104934A true JPH04104934A (en) | 1992-04-07 |
JP2954996B2 JP2954996B2 (en) | 1999-09-27 |
Family
ID=16743838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2219967A Expired - Fee Related JP2954996B2 (en) | 1990-08-23 | 1990-08-23 | Sintered materials for tools |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2954996B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6452668A (en) * | 1987-06-09 | 1989-02-28 | Sandvik Ab | Single crystal disk reinforced ceramic cutting tool material |
JPH02501209A (en) * | 1987-09-14 | 1990-04-26 | ノートン カンパニー | Combined polishing tool |
-
1990
- 1990-08-23 JP JP2219967A patent/JP2954996B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6452668A (en) * | 1987-06-09 | 1989-02-28 | Sandvik Ab | Single crystal disk reinforced ceramic cutting tool material |
JPH02501209A (en) * | 1987-09-14 | 1990-04-26 | ノートン カンパニー | Combined polishing tool |
Also Published As
Publication number | Publication date |
---|---|
JP2954996B2 (en) | 1999-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR960008726B1 (en) | Method for production of high-pressure phase sintered article of boron nitride for use in cutting tool and sintered article produced thereby | |
KR100227879B1 (en) | Group ivb boride based cutting tools | |
JP6293669B2 (en) | Sintered cubic boron nitride cutting tool | |
KR100567279B1 (en) | Cubic system boron nitride sintered body cutting tool | |
JPS61201751A (en) | High hardness sintered body and its manufacture | |
JPH10182234A (en) | Cubic boron nitride-base sintered material and its production | |
JP2523452B2 (en) | High strength cubic boron nitride sintered body | |
JP4560604B2 (en) | Cubic boron nitride based sintered material and method for producing the same | |
JPS6246510B2 (en) | ||
JP2858600B2 (en) | Sintered materials for tools | |
JPH04104934A (en) | Sintered material for machine tool | |
JPS644989B2 (en) | ||
JP3146803B2 (en) | Method for producing cubic boron nitride based ultra-high pressure sintered material with excellent wear resistance | |
JPH0551261A (en) | Sintering material for tool | |
GB2065715A (en) | Hot pressed silicon nitride | |
JPH08336705A (en) | Cutting tool made of cubic boron nitride sintered body with cutting face of cutter showing excellent wearing resistance | |
JP4636574B2 (en) | Ceramic-based sintered material for tool and manufacturing method thereof | |
EP1116703B1 (en) | Nanocomposite dense sintered alumina based ceramic cutting tool | |
JP2019512455A (en) | Polycrystalline cubic boron nitride | |
JPS61197469A (en) | Manufacture of cubic boron nitride base sintering material for cutting tool | |
JP2000202705A (en) | Throwaway cutting tip making its cutting edge piece display excellent cutting edge chipping resistance | |
JPS638072B2 (en) | ||
JP2691049B2 (en) | Sintered materials for tools | |
JP3560629B2 (en) | Manufacturing method of high toughness hard sintered body for tools | |
JPH07172906A (en) | Ceramic sintered compact |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |