JPS644989B2 - - Google Patents

Info

Publication number
JPS644989B2
JPS644989B2 JP59265860A JP26586084A JPS644989B2 JP S644989 B2 JPS644989 B2 JP S644989B2 JP 59265860 A JP59265860 A JP 59265860A JP 26586084 A JP26586084 A JP 26586084A JP S644989 B2 JPS644989 B2 JP S644989B2
Authority
JP
Japan
Prior art keywords
cbn
cutting
hardness
sintered
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59265860A
Other languages
Japanese (ja)
Other versions
JPS61146763A (en
Inventor
Itsuro Tajima
Fumihiro Ueda
Kaoru Kawada
Kisho Miwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP59265860A priority Critical patent/JPS61146763A/en
Publication of JPS61146763A publication Critical patent/JPS61146763A/en
Publication of JPS644989B2 publication Critical patent/JPS644989B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、きわめて優れた靭性と耐摩耗性の
両特性を有し、高硬度鋳鉄や、ダイス鋼、高速度
鋼等の高硬度鋼の切削工具(なかでも、高硬度鋼
の高速切削等の特に熱的摩耗が少ない特性(耐
熱・耐摩耗性)が要求される分野の切削工具)に
使用するのに適した切削工具用焼結体の製造法に
関するものである。 〔従来の技術〕 最近、金属加工の分野において、鋳鉄切削の高
速化、ダイス鋼や高速度鋼などの高硬度鋼の研削
加工から切削加工への切り換えが急速に進み、そ
れに伴なつて、立方晶窒化硼素(以下、CBNで
示す)が鉄との反応を起こさず、ダイヤモンドに
次ぐ高硬度を有し、かつ熱伝導度も高いことか
ら、CBN含有焼結体がこれらの材料の切削工具
として注目されるようになつてきた。そして、チ
タンの炭化物(以下、TiCで示す)、炭窒化物
(以下、TiCNで示す)及び窒化物(以下、TiN
で示す)は硬度も高く、耐溶着性もあることか
ら、CBNと、結合成分と言えるTiC、TiCN及び
TiNのうちの1種以上からなる配合組成物の圧
粉体を単独で、又は他の圧粉体若しくは焼結体と
重ね合わせた状態で、超高圧焼結したCBN含有
焼結体が鋳鉄や高硬度鋼の切削工具として提案さ
れている。 〔発明が解決しようとする問題点〕 しかしながら、一般に、ダイス鋼や高速度鋼な
どの高硬度鋼は、熱処理状態において、多くの場
合ロツクウエルC硬さが50以上の高硬度を有し、
高硬度鋳鉄のチルド鋳鉄においてはシヨア硬さが
80程度の高硬度を持つのであつて、一方、前記の
従来のCBN含有焼結体は充分な靭性と耐摩耗性
の両特性を有したものはないので、前記の高硬度
材料を前記の従来のCBN含有焼結体製の切削工
具で切削する場合、切削速度の高速化、切り込み
量の増大、送り速度の高速化に従つて、旋盤加工
時に刃先に対して加わる負荷が極めて大きくな
り、刃先の欠損や顕著になり、使用不可能となつ
てしまう。例えば、ダイス鋼(ロツクウエルC硬
さ:62以上)を旋削する場合、前記従来のCBN
含有焼結体製切削工具は耐熱・耐摩耗性が不足す
るために、切削速度が100m/分以下の条件で使
用されており、これよりも高速の使用に耐えない
のが現状である。 したがつて、この発明の目的は、きわめて優れ
た靭性と耐摩耗性の両特性を有し、高硬度鋳鉄や
ダイス鋼、高速度鋼等の高硬度鋼の切削工具(な
かでも、高硬度鋼の高速切削等の特に耐熱・耐摩
耗性が要求される分野の切削工具)に使用するの
に適した切削工具用焼結体の製造法を提供するこ
とである。 〔問題を解決するための手段〕 本発明者らは、種々研究や検討を重ねた結果、
以下に述べる知見を得たのである。 (イ) CBNとTiN単独とを超高圧下で焼結した場
合、CBNに比較してTiNは柔らかいために塑
性変形してCBN界面に廻り込むものの両者の
間に反応を生じないので、界面強度ひいては靭
性が充分に向上せず、しかも切削工具としての
使用時にCBN粒子の脱落により耐摩耗性も劣
つたものとなること、 (ロ) CBNとTiC単独あるいはTiCN単独とを超高
圧下で焼結した場合も(イ)とほぼ同様であるこ
と、 (ハ) 液相を形成させ、ひいては反応を生じさせる
ために、CBNの焼結助剤として従来交知のAl
化合物であるAlの金属間化合物、例えばTiAl3
やTiAlを用いると、超高圧焼結時に反応を生
じるものの、TiB2の他に多量のAlNをも生じ、
そのために充分な焼結促進効果が得られないと
同時に、焼結体特性に対しても靭性及び耐摩耗
性低下の悪影響を及ぼすこと、 (ニ) Al化合物の1種である二チタンアルミニウ
ム炭化物(以下、Ti2AlCで示す)あるいは二
チタンアルミニウム炭窒化物(以下、
Ti2AlCNで示す)は単独では1300℃以上の温
度で徐々に分解反応を生じ、それぞれTiCある
いはTiCNを生成する。このような特徴を有す
るTi2AlCあるいはTi2AlCNを焼結助剤とし
て、CBNと共に超高圧下で焼結すると、廻り
込みも起こるし、CBNと分解生成TiCあるい
はTiCNとの界面に層状の反応領域が形成し
(第1図参照)、これらの焼結助剤もAl化合物
の1種であるのにもかかわらず、この反応領域
内にはAl分が存在せず、Al分は反応領域外の
TiCあるいはTiCN内に均一に分布し、AlNの
形成は認められないために、充分な焼結促進効
果が得られ、しかも焼結体特性(具体的には靭
性及び耐摩耗性)も向上すること、 (ホ) 上記のTi2AlCあるいはTi2AlCNは、それぞ
れTiC、TiCNあるいはTiNの焼結助剤として
も有効で、上記各材料を焼結する際にTi2AlC
あるいはTi2AlCNを添加すると、著しく焼結
性が向上し、又、焼結体中で分解生成TiCある
いはTiCNが均一な微細分散構造を呈するこ
と、 (ヘ) CBNとTiC、TiCN及びTiN(以下、これら
を総称してチタンの炭・窒化物とも言う)のう
ちの1種以上と共に、焼結助剤として上記の
Ti2AlCあるいはTi2AlCNを用いると、Ti2AlC
あるいはTi2AlCNが分解して生成したTiCあ
るいはTiCNは粒子および配合されたチタンの
炭・窒化物のうちの1種以上の粒子間に廻り込
んで、CBN粒子と配合されたチタンの炭・窒
化物粒子との直接の接触を妨げ、分解生成TiC
あるいはTiCNとCBN粒子との界面にAl分の
存在しない反応領域を形成させ、かつ、配合さ
れたチタンの炭・窒化物の焼結性をも向上さ
せ、もつてCBN粒子と結合相及びチタンの
炭・窒化物粒子と結合相の結合を強固なものと
し、得られる焼結体の靭性及び耐摩耗性を向上
させること。 この発明は上記知見に基いて発明されたもので
あり、 TiC、TiN及びTiCNからなる群より選ばれた
1種以上の粉末:18〜69%、 Ti2AlC及びTi2AlCNからなる群より選ばれた
1種又は2種の粉末:4〜30%、 CBN粉末:残り(但し、23〜63未満%)から
なる配合組成(以上、重量%)を有する組成物を
混合し、プレス成形して圧粉体とし、次いでこの
圧粉体を単独で、又は他の圧粉体若しくは焼結体
と重ね合わせた状態で、超高圧下において焼結す
ることを特徴とする切削工具用焼結体の製造法で
ある。 以下、この発明の構成を説明する。 () 原料 チタンの炭・窒化物粉末、Ti2AlC粉末、
Ti2AlCN粉末及びCBN粉末ともに、その平均
粒径は10μm以下が好ましい。 そして、原料粉末であるTi2AlCNのC/N
(原子比)はどのような数値のものでもよいが、
得られる焼結体の硬度を高くするために、3/7
よりも大きいことが好ましい。 () 配合組成 (i) チタンの炭・窒化物 これら各成分は、得られる焼結体に耐溶着
性ひいては熱的摩耗を防止する作用(耐熱・
耐摩耗性)を付与する効果を生じさせるが、
その配合量が18重量%未満では、所望の耐溶
着性が得られず、切削工具時に刃先に溶着
(被削材との高温における化学反応)が生じ
易く、その結果として刃先のチツピングや摩
耗が生じ易くなつてしまう。一方、69重量%
を超えると、CBN基焼結体あるいはCBN含
有焼結体の特徴の一つである高硬度が得られ
ず、又、焼結助剤の相対的割合も低下してし
まうので、結果的に耐摩耗性、靭性ともに不
足してしまうことから、その配合量を18〜69
重量%と定めた。 (ii) Ti2AlC、Ti2AlCN 知見事項(ヘ)の所でも述べたように、これら
の成分は焼結助剤であつて、超高圧焼結時に
分解反応を生じ、TiC又はTiCNを生成する
という特徴があり(CBNと共に用いると一
部TiB2をも形成する)、これらの成分を
CBN、チタンの炭・窒化物と共に用いると、
分解生成されたTiCあるいはTiCNがCBN粒
子および配合されたチタンの炭・窒化物粒子
間に廻り込み、CBN粒子と配合されたチタ
ンの炭・窒化物粒子の直接の接触を防ぎ、分
解生成TiCあるいはTiCNとCBN粒子との界
面にAl分の存在しない反応領域を形成させ、
かつ配合されたチタンの炭・窒化物の焼結性
をも向上させ、もつてCBN粒子と結合相と
配合されたチタンの炭・窒化物粒子の間の結
合を強固なものとし、得られる焼結体の靭性
を向上させ、粒子の脱落防止によつて耐摩耗
性も向上させる作用を有する。しかし、その
配合量が4重量%未満では、界面強度の向上
効果、ひいては靭性向上及び耐摩耗性向上効
果は認められず、一方、30重量%を超える
と、硬度や切削工具としての耐摩耗性が著し
く低下することから、その配合量を4〜30重
量%と定めた。 (iii) CBN CBNは極めて優れた耐摩耗性、耐欠損性
を得るために不可欠の成分である。しかしな
がら、その配合量が23重量%未満では、靭性
と耐摩耗性が不充分となり、一方、63重量%
以上では、チタンの炭・窒化物の相対的配合
量が減少し、所望の耐溶着性を得ることがで
きなくなり、特に切削工具の刃先が高温にな
り易い高硬度鋼の高速切削における耐摩耗性
を低下させることから、その配合量を23〜63
未満%と定めた。因に得られる焼結体中の
CBN含量は約30〜70容量%位である。 () 混合・成形・焼結工程 次いで、前記の配合組成を有する組成物を、
例えばボールミルにより混合し、混合粉末とし
た後、この混合粉末を0.5〜5.0t/cm2の圧力でプ
レス成形して圧粉体とし、この圧粉体をそのま
ま、あるいは超高圧焼結の前処理として10-2
10-4torrの真空中又は不活性ガス中で800〜
1200℃の温度で仮焼結し、その強度を高めた後
に、前記圧粉体若しくは仮焼結体を単独で、又
は他の圧粉体若しくは焼結体(例えば、超硬合
金、サーメツト、アルミナ基セラミツクス、窒
化珪素基セラミツクス等の焼結前の圧粉体若し
くは焼結体)と重ね合わせた状態で、圧力:1
〜7GPa、温度:1000〜1800℃、保持時間:5
〜120分の条件で焼結することにより、この発
明の焼結体を製造する。 超高圧焼結時の圧力および温度は、CBNの
安定領域内の圧力および温度である必要は必ず
しもなく、必ずしもそれ程の超高圧、高温は必
要でない。なぜならば、Ti2AlC又はTi2AlCN
をCBNと共に用いた場合、前記したように、
CBN粒との界面でAl分の存在しない反応領域
を形成するという特徴がある。この現象は他の
Al化合物では見られない現象であり、このこ
とがCBNから六方晶窒化硼素への逆変態を生
じにくくするため、比較的低い圧力下において
も六方晶窒化硼素を殆んど含まずに満足できる
特性を有するCBN基あるいはCBN含有焼結体
が得られるのである。 〔実施例〕 実施例 1 原料粉末として、平均粒経2μmのCBN粉末、
同1μmのTiC、TiC0.5N0.5及びTi2AlC粉末、同
0.1μmのTiN粉末並びに同3μmのTi2AlC0.6N0.4
末を用意し、第1表の配合組成に配合後、ボール
ミルにて20時間混合し、次いで2t/cm2の圧力でプ
レス成形して圧粉体(厚み:1.5mm)とし、超硬
合金(WC−10%Co)の焼結体(厚み:2.0mm)
上に前記圧粉体を重ね合わせた状態で、公知のベ
ルト型超高圧装置内で第1表記載の焼結条件にお
いて10分間保持後、冷却・除圧することにより、
本発明焼結体1〜17を製造した。 比較のため、Ti2AlCやTi2AlC0.6N0.4を用いな
いで、CBNとTiCのみ配合組成物、CBNと
TiC0.5N0.5のみの配合組成物あるいはCBNとTiN
のみの配合組成物を用いて従来焼結体1〜3を、
Ti2AlCやTi2AlC0.6N0.4の代りに焼結助剤として
従来公知のTiAl3あるいはAlを用いて従来焼結体
4〜5を、及び配合組成がこの発明の配合組成範
囲から外れる比較焼結体1〜12を同様に製造し
た。 これらの本発明焼結体、比較焼結体及び従来焼
結体をそれぞれ研摩後、それぞれについて積層体
内のCBN基あるいはCBN含有焼結体部分のCBN
含量、マイクロビツカース硬さ、及び破壊靭性値
を測定し、その結果を第1表に示した。 更に、研削・研摩加工後、SPP432の形状を有
する切削工具刃先に加工し、下記のような高速切
削速度条件で切削試験を行ない、切削寿命
[Industrial Application Field] This invention has both extremely excellent toughness and wear resistance, and is suitable for cutting tools made of high-hardness steel such as high-hardness cast iron, die steel, and high-speed steel (especially high-hardness steel). This invention relates to a method for manufacturing a sintered body for cutting tools that is suitable for use in fields that require particularly low thermal wear properties (heat resistance and wear resistance), such as high-speed cutting of hardened steel. . [Prior Art] Recently, in the field of metal processing, there has been rapid progress in increasing the speed of cutting cast iron and switching from grinding to cutting of high-hardness steels such as die steel and high-speed steel. Crystalline boron nitride (hereinafter referred to as CBN) does not react with iron, has a hardness second only to diamond, and has high thermal conductivity, so CBN-containing sintered bodies are suitable as cutting tools for these materials. It has started to attract attention. Titanium carbide (hereinafter referred to as TiC), carbonitride (hereinafter referred to as TiCN) and nitride (hereinafter referred to as TiN)
) has high hardness and welding resistance, so CBN and the bonding components TiC, TiCN and
A CBN-containing sintered body is produced by ultra-high pressure sintering of a green compact of a blended composition consisting of one or more types of TiN alone or in a stacked state with other green compacts or sintered bodies. It has been proposed as a cutting tool for high-hardness steel. [Problems to be solved by the invention] However, in general, high-hardness steels such as die steel and high-speed steel often have a high hardness with a Rockwell C hardness of 50 or more in a heat-treated state.
In chilled cast iron, which is a high-hardness cast iron, the shore hardness is
80, and on the other hand, none of the conventional CBN-containing sintered bodies described above has both sufficient toughness and wear resistance. When cutting with a cutting tool made of a CBN-containing sintered body, as the cutting speed increases, the depth of cut increases, and the feed rate increases, the load applied to the cutting edge during lathe machining becomes extremely large, causing the cutting edge to deteriorate. The defects become noticeable and become unusable. For example, when turning die steel (Rockwell C hardness: 62 or higher), the conventional CBN
Cutting tools made of sintered compacts lack heat resistance and wear resistance, so they are used at cutting speeds of 100 m/min or less, and currently cannot withstand use at higher speeds. Therefore, an object of the present invention is to use cutting tools made of high-hardness steels such as high-hardness cast iron, die steel, and high-speed steel (especially high-hardness steels) that have both extremely excellent toughness and wear resistance properties. It is an object of the present invention to provide a method for manufacturing a sintered body for a cutting tool, which is suitable for use in fields where heat resistance and wear resistance are particularly required, such as high-speed cutting. [Means for solving the problem] As a result of various studies and considerations, the present inventors have found that
We obtained the knowledge described below. (b) When CBN and TiN alone are sintered under ultra-high pressure, TiN is softer than CBN, so it deforms plastically and wraps around the CBN interface, but no reaction occurs between the two, so the interface is strong. As a result, the toughness will not be sufficiently improved, and the wear resistance will be poor due to CBN particles falling off when used as a cutting tool. (b) Sintering CBN and TiC alone or TiCN alone under ultra-high pressure. (c) In order to form a liquid phase and cause a reaction, Al, which is conventionally known as a sintering aid for CBN, is used.
Intermetallic compounds of Al, such as TiAl 3
If TiB or TiAl is used, a reaction occurs during ultra-high pressure sintering, but a large amount of AlN is also produced in addition to TiB 2 .
Therefore, a sufficient sintering promotion effect cannot be obtained, and at the same time, it has an adverse effect on the properties of the sintered body, such as a decrease in toughness and wear resistance. (d) Dititanium aluminum carbide, which is a type of Al compound Ti 2 AlC) or titanium aluminum carbonitride (hereinafter referred to as Ti 2 AlC) or titanium aluminum carbonitride (hereinafter referred to as Ti 2 AlC)
When used alone, Ti 2 AlCN) gradually decomposes at temperatures above 1300°C, producing TiC or TiCN, respectively. When Ti 2 AlC or Ti 2 AlCN, which has these characteristics, is used as a sintering aid and sintered with CBN under ultra-high pressure, wrap-around occurs, and a layered reaction occurs at the interface between CBN and TiC or TiCN produced by decomposition. Although these sintering aids are also a type of Al compound, there is no Al content within this reaction area, and the Al content is outside the reaction area. of
Because it is uniformly distributed within TiC or TiCN and no AlN formation is observed, a sufficient sintering promotion effect can be obtained, and the properties of the sintered body (specifically, toughness and wear resistance) are also improved. (e) The above Ti 2 AlC or Ti 2 AlCN is also effective as a sintering aid for TiC, TiCN or TiN, respectively, and when sintering each of the above materials, Ti 2 AlC
Alternatively, when Ti 2 AlCN is added, the sinterability is significantly improved, and the decomposed TiC or TiCN exhibits a uniform finely dispersed structure in the sintered body. , these are also collectively referred to as titanium carbon/nitride), and the above-mentioned sintering aids.
When Ti 2 AlC or Ti 2 AlCN is used, Ti 2 AlC
Alternatively, TiC or TiCN produced by the decomposition of Ti 2 AlCN gets between the particles and one or more particles of the titanium carbon/nitride blended with the CBN particles. Prevents direct contact with particles and decomposes TiC
Alternatively, it is possible to form a reaction region where no Al content exists at the interface between TiCN and CBN particles, and also improve the sinterability of the blended titanium carbon/nitride. To strengthen the bond between carbon/nitride particles and a binder phase, and improve the toughness and wear resistance of the obtained sintered body. This invention was invented based on the above knowledge, and includes one or more powders selected from the group consisting of TiC, TiN and TiCN: 18 to 69%, selected from the group consisting of Ti 2 AlC and Ti 2 AlCN. A composition having a composition (by weight) consisting of one or two types of powder: 4 to 30% and CBN powder: the remainder (however, less than 23 to 63%) is mixed and press-molded. A sintered body for a cutting tool, which is made into a green compact and then sintered under ultra-high pressure either alone or in a state where it is stacked with another green compact or a sintered body. It is a manufacturing method. The configuration of this invention will be explained below. () Raw materials Titanium carbon/nitride powder, Ti 2 AlC powder,
The average particle size of both the Ti 2 AlCN powder and the CBN powder is preferably 10 μm or less. And the C/N of Ti 2 AlCN which is the raw material powder
(atomic ratio) can be any numerical value, but
In order to increase the hardness of the obtained sintered body, 3/7
It is preferable that it is larger than . () Blend composition (i) Titanium carbon/nitride These components provide the resulting sintered body with welding resistance and thermal abrasion prevention effects (heat resistance and
It produces the effect of imparting wear resistance), but
If the blending amount is less than 18% by weight, the desired welding resistance cannot be obtained, and welding (chemical reaction at high temperatures with the workpiece material) tends to occur on the cutting edge during cutting tools, resulting in chipping and wear of the cutting tool. It becomes more likely to occur. On the other hand, 69% by weight
If it exceeds this, the high hardness that is one of the characteristics of CBN-based sintered bodies or CBN-containing sintered bodies cannot be obtained, and the relative proportion of the sintering aid will also decrease, resulting in poor durability. Since both abrasion resistance and toughness are insufficient, the blending amount is increased from 18 to 69.
It was determined as weight%. (ii) Ti 2 AlC, Ti 2 AlCN As mentioned in the findings (f), these components are sintering aids and cause a decomposition reaction during ultra-high pressure sintering to produce TiC or TiCN. (When used with CBN, some TiB 2 is also formed), and these components are
When used with CBN and titanium carbon/nitride,
The TiC or TiCN produced by decomposition wraps around between the CBN particles and the blended titanium carbon/nitride particles, preventing direct contact between the CBN particles and the blended titanium carbon/nitride particles. Forming a reaction region with no Al content at the interface between TiCN and CBN particles,
It also improves the sinterability of the blended titanium carbon/nitride, which strengthens the bond between the CBN particles, the binder phase, and the blended titanium carbon/nitride particles, and the resulting sintered It has the effect of improving the toughness of the compact and also improving the wear resistance by preventing particles from falling off. However, if the amount is less than 4% by weight, no improvement in interfacial strength, toughness or wear resistance will be observed, while if it exceeds 30% by weight, the hardness and wear resistance of cutting tools will be reduced. Since this results in a significant decrease in the amount of carbon dioxide, the blending amount was determined to be 4 to 30% by weight. (iii) CBN CBN is an essential component for obtaining extremely excellent wear resistance and chipping resistance. However, if the content is less than 23% by weight, the toughness and wear resistance will be insufficient;
In this case, the relative content of carbon and nitride in titanium decreases, making it impossible to obtain the desired adhesion resistance, and especially wear resistance during high-speed cutting of high-hardness steel where the cutting tool edge tends to become hot. Since it reduces the amount of 23 to 63
It was set as less than %. In the sintered body obtained by
CBN content is about 30-70% by volume. () Mixing/molding/sintering process Next, the composition having the above-mentioned composition is
For example, after mixing in a ball mill to form a mixed powder, this mixed powder is press-molded at a pressure of 0.5 to 5.0 t/cm 2 to form a compact, and this compact can be used as it is or pre-treated for ultra-high pressure sintering. As 10 -2 ~
800 to 10 -4 torr in vacuum or inert gas
After pre-sintering at a temperature of 1200°C to increase its strength, the green compact or pre-sintered compact may be used alone or with other compacts or sintered compacts (for example, cemented carbide, cermet, alumina). Pressure: 1 when stacked with powder body or sintered body before sintering such as base ceramics, silicon nitride base ceramics, etc.
~7GPa, temperature: 1000~1800℃, holding time: 5
The sintered body of the present invention is produced by sintering under conditions of ~120 minutes. The pressure and temperature during ultra-high pressure sintering do not necessarily have to be within the stable range of CBN, and such ultra-high pressure and high temperature are not necessarily required. Because Ti 2 AlC or Ti 2 AlCN
When used with CBN, as mentioned above,
It is characterized by forming a reaction region where no Al content exists at the interface with CBN grains. This phenomenon is similar to other
This phenomenon is not observed in Al compounds, and this makes it difficult for reverse transformation from CBN to hexagonal boron nitride to occur, so even under relatively low pressure, the property can be satisfied with almost no hexagonal boron nitride. A CBN group or a CBN-containing sintered body having the following properties can be obtained. [Example] Example 1 As raw material powder, CBN powder with an average particle size of 2 μm,
1 μm TiC, TiC 0.5 N 0.5 and Ti 2 AlC powder,
A 0.1 μm TiN powder and a 3 μm Ti 2 AlC 0.6 N 0.4 powder were prepared, mixed to the composition shown in Table 1, mixed in a ball mill for 20 hours, and then press-molded at a pressure of 2 t/cm 2 . A compacted powder body (thickness: 1.5 mm) and a sintered body of cemented carbide (WC-10%Co) (thickness: 2.0 mm)
With the powder compact superimposed on top, the powder is held in a known belt-type ultra-high pressure device under the sintering conditions listed in Table 1 for 10 minutes, and then cooled and depressurized.
Sintered bodies 1 to 17 of the present invention were manufactured. For comparison, a composition containing only CBN and TiC was prepared without using Ti 2 AlC or Ti 2 AlC 0.6 N 0.4 .
Blend composition of TiC 0.5 N 0.5 only or CBN and TiN
Conventional sintered bodies 1 to 3 using a blended composition of
Comparison of conventional sintered bodies 4 to 5 using conventionally known TiAl 3 or Al as a sintering aid instead of Ti 2 AlC or Ti 2 AlC 0.6 N 0.4 , and whose blending composition is outside the blending composition range of the present invention. Sintered bodies 1 to 12 were produced in the same manner. After polishing these sintered bodies of the present invention, comparative sintered bodies, and conventional sintered bodies, CBN in the CBN group in the laminate or in the CBN-containing sintered body part was removed.
The content, microvitkers hardness, and fracture toughness values were measured and the results are shown in Table 1. Furthermore, after grinding and polishing, we processed the cutting tool into a cutting tool tip with the shape of SPP432, and conducted cutting tests under the following high cutting speed conditions to determine the cutting life.

【表】【table】

【表】 (*は、この発明の配合組成成分あるいは配合組成成
分あるいは配合組成範囲から外れているこ
とを示す。)
(逃げ面の摩耗幅が0.15mmに達するまでの時間)
を測定し、その結果を第1表に示した。 <切削試験条件> 被削材:SKD11(ロツクウエルC硬さ:62) 切削速度:180m/分 切り込み:0.2mm 送り:0.1mm/rev なお、SKD11は合金工具鋼の一種であるが、
高硬度鋼である。 実施例 2 実施例1の本発明焼結体No.1〜17において、圧
粉体の厚みが3mmとし、単独で(即ち、超硬合金
焼結体を重ね合わせないで)超高圧焼結すること
を除いて同様に製造し、それぞれ実施例1の形状
と同じ切削工具刃先に加工し、同様な切削試験を
行ない、それぞれほぼ同様な切削寿命の値を得
た。 <発明の効果> 第1表及び実施例2からわかるように、この発
明の製造法で得られたCBN基あるいはCBN含有
焼結体は、従来焼結体に比べて硬度、破壊靭性値
及び切削工具として用いたときの切削寿命の全て
の点で優れており、又、比較焼結体に比べても切
削寿命の点で優れている。つけ加えるならば、こ
れに対して、比較焼結体は、硬度及び破壊靭性値
の少なくとも1つの点で劣つている。 したがつて、この発明の製造法で得られた焼結
体は、靭性に優れ、又、硬度ひいては耐摩耗性に
も優れ、特に、刃先の温度が高温になる高硬度鋼
等の高速切削等の耐熱・耐摩耗性が要求される分
野の切削工具として好適に用いられる。
[Table] (* indicates that it is out of the blended composition component or blended composition range of this invention.)
(Time until flank wear width reaches 0.15mm)
was measured and the results are shown in Table 1. <Cutting test conditions> Work material: SKD11 (Rockwell C hardness: 62) Cutting speed: 180 m/min Depth of cut: 0.2 mm Feed: 0.1 mm/rev Note that SKD11 is a type of alloy tool steel,
It is high hardness steel. Example 2 In the sintered bodies No. 1 to 17 of the present invention in Example 1, the thickness of the green compact was 3 mm, and the green compacts were sintered at ultra-high pressure alone (i.e., without stacking the cemented carbide sintered bodies). Except for the above, they were manufactured in the same manner, each was processed into a cutting tool edge having the same shape as in Example 1, and the same cutting test was conducted, and almost the same cutting life values were obtained for each. <Effects of the Invention> As can be seen from Table 1 and Example 2, the CBN-based or CBN-containing sintered body obtained by the production method of the present invention has better hardness, fracture toughness, and cutting resistance than conventional sintered bodies. It is excellent in all aspects of cutting life when used as a tool, and is also superior in terms of cutting life compared to the comparative sintered body. In addition, in contrast, the comparative sintered body is inferior in at least one of the hardness and fracture toughness values. Therefore, the sintered body obtained by the production method of the present invention has excellent toughness, hardness, and wear resistance, and is particularly suitable for high-speed cutting of high-hardness steel, etc., where the temperature of the cutting edge is high. Suitable for use as cutting tools in fields that require heat and wear resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の製造法で用いられる焼結
助材のTi2AlCN(この場合、C/N=6/4)の
作用を示すための焼結体の一部(Ti2AlCNの分
解により得られた結合相とCBNとの界面近傍)
における金属顕微鏡による組織写真図である。
Figure 1 shows a part of a sintered body (Ti 2 AlCN) to show the effect of Ti 2 AlCN (in this case, C/N = 6/4), which is a sintering aid used in the manufacturing method of the present invention. Near the interface between the bonded phase obtained by decomposition and CBN)
It is a microstructure photograph taken by a metallurgical microscope.

Claims (1)

【特許請求の範囲】 1 チタンの炭化物、窒化物及び炭窒化物からな
る群より選ばれた1種以上の粉末:18〜69%、 二チタンアルミニウム炭化物及び二チタンアル
ミニウム炭窒化物からなる群より選ばれた1種又
は2種の粉末:4〜30%、 立方晶窒化硼素粉末:残り(但し、23〜63未満
%)からなる配合組成(以上、重量%)を有する
組成物を混合し、プレス成形して圧粉体とし、次
いでこの圧粉体を単独で、又は他の圧粉体若しく
は焼結体と重ね合わせた状態で、超高圧下におい
て焼結することを特徴とする切削工具用焼結体の
製造法。
[Scope of Claims] 1. One or more powders selected from the group consisting of titanium carbides, nitrides and carbonitrides: 18 to 69%, from the group consisting of dititanium aluminum carbides and dititanium aluminum carbonitrides. Mixing a composition having a composition (wt%) consisting of one or two selected powders: 4 to 30%, cubic boron nitride powder: the remainder (however, less than 23 to 63%), For use in a cutting tool, which is formed by press forming into a green compact, and then sintered under ultra-high pressure, either alone or in a stacked state with other green compacts or sintered bodies. Manufacturing method of sintered body.
JP59265860A 1984-12-17 1984-12-17 Manufacture of sintered body for cutting tool Granted JPS61146763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59265860A JPS61146763A (en) 1984-12-17 1984-12-17 Manufacture of sintered body for cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59265860A JPS61146763A (en) 1984-12-17 1984-12-17 Manufacture of sintered body for cutting tool

Publications (2)

Publication Number Publication Date
JPS61146763A JPS61146763A (en) 1986-07-04
JPS644989B2 true JPS644989B2 (en) 1989-01-27

Family

ID=17423086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59265860A Granted JPS61146763A (en) 1984-12-17 1984-12-17 Manufacture of sintered body for cutting tool

Country Status (1)

Country Link
JP (1) JPS61146763A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0776130B2 (en) * 1987-02-13 1995-08-16 三菱マテリアル株式会社 Manufacturing method of cubic boron nitride based ultra high pressure sintered body for cutting tool
DE102008053778B4 (en) 2008-10-23 2020-08-06 Institut Dr. Foerster Gmbh & Co. Kg Test method and test device for testing elongated objects by means of a through coil
CN115279715A (en) * 2020-03-13 2022-11-01 三菱综合材料株式会社 Hard composite material
WO2022163572A1 (en) * 2021-01-30 2022-08-04 三菱マテリアル株式会社 Cbn sintered compact
EP4289987A1 (en) * 2021-02-02 2023-12-13 Mitsubishi Materials Corporation Sintered cbn
EP4296246A1 (en) * 2021-02-20 2023-12-27 Mitsubishi Materials Corporation Cbn sintered body

Also Published As

Publication number Publication date
JPS61146763A (en) 1986-07-04

Similar Documents

Publication Publication Date Title
EP2297371B1 (en) Cubic boron nitride compact
JP2020514235A (en) Sintered polycrystalline cubic boron nitride material
JP2007523043A (en) Sintered body
JPS601390B2 (en) Cubic boron nitride-based ultra-high pressure sintered material for cutting tools
JP5157056B2 (en) Cubic boron nitride sintered body, coated cubic boron nitride sintered body, and cutting tool for hardened steel comprising the same
JPS644988B2 (en)
JPS644989B2 (en)
EP0605755B1 (en) Hard sintered body cutting tool
JP2004223666A (en) Cutting tool for rough machining
JPH0271906A (en) Surface coated tungsten carbide base sintered hard alloy made cutting tool excellent in plastic deformation resistance
JPS6246510B2 (en)
JP2003236710A (en) Cutting tip made of cubic crystal boron nitride group ultrahigh pressure sintered material having excellent resistance to chipping
JPS61197469A (en) Manufacture of cubic boron nitride base sintering material for cutting tool
JP2002292507A (en) Cutting tool made of cermet and its manufacturing method
JPS6335591B2 (en)
JP2910293B2 (en) Manufacturing method of tungsten carbide based cemented carbide cutting tool coated with hard layer
JPS60187659A (en) Cubic boron nitride-base ultrahigh-pressure sintered material for cutting tool
JPH01122971A (en) Cubic boron nitride sintered product
JP2805339B2 (en) High density phase boron nitride based sintered body and composite sintered body
JP3092887B2 (en) Surface-finished sintered alloy and method for producing the same
JPS6330983B2 (en)
JP2001114562A (en) Sintered ceramic part and coated sintered ceramic part
JPH01115873A (en) Sintered form containing boron nitride of cubic system
JP4244108B2 (en) CUTTING TOOL CUTTING PART OF Cubic Boron Nitride-Based Sintered Material with Excellent Chipping Resistance
JPS644986B2 (en)