【発明の詳細な説明】[Detailed description of the invention]
装飾目的,MPコンデンサーあるいは蒸着薄膜
テープ等の製造手段として真空蒸着による有機化
合物表面への薄膜の形成が行われているが、金属
又は、その酸化物と有機化合物との接着力は弱
く、この薄膜に外部からの力が加わるような使用
にさいしては、特に問題となる。
これを改善するためには、通常基体の加熱が行
われるが、基体が有機化合物であるために、十分
に効果が出る温度まで加熱することが出来ず、接
着力は不十分である。また、コロナ放電,イオン
ボンバード等の方法も行われているが、これら
は、放電を利用するために低真空中で行われるた
め、金属を蒸着する場合真空室を別にするか、コ
ロナ放電,イオンボンバードの処理と蒸着との間
に、真空度を向上するための排気時間をとる必要
がある。このため作業時間が長くなつたり、薄膜
の特性が悪くなる等の不都合が生じると共に、コ
ロナ放電とイオンボンバードで真空容器内のゴ
ミ,ホコリがたたき出されピンホール形成の原因
となる。これ等は、薄膜形成にあたり、いずれも
好ましくない要素を内在している。
そこで発明者らは、これらの点を改善すべく研
究を重ねた結果、高真空室内においてポリエチレ
ンテレフタレート基体に電子線を照射し、その
後、この基体に金属又はその酸化物を蒸着するこ
とにより接着力のよいピンホールの少い薄膜を得
ることに成功した。
以下実施例により、その方法を説明する。
実施例 1
使用ベース 20μm厚ポリエチレンテレフタレ
ート
照射線量 5Mradの電子線照射機を2m/分
で通過
蒸着金属 Co/Ni=80/20wt%
蒸発電線 EB.9KV 0.6A
蒸着膜厚 1000Å(斜蒸着)
真空度 2.0×10-5Torr〜1×10-5Torr
蒸着の主な条件は、上記である。
この実験では、先ず2.5MeV電子線照射装置に
て、電流を2mAにセツトし、照射線量を5Mrad
とし、この下を1分間に2mのスピードで、ポリ
エチレンテレフタレートのベースを通過させた。
またこのとき外部からベース上にホコリがつくこ
とをきらつてポリエチレンテレフタレートは、別
のポリエチレンテレフタレートの筒の中にセツト
した状態で電子線の照射を行つた。
この処理をポリエチレンテレフタレートにほど
こした後、これを真空蒸着装置にセツトし、前記
条件にて、Co/Ni80/20の金属をこの表面に蒸着
した。
実施例 2
蒸着条件は、実施例1と同一であるが、ポリエ
チレンテレフタレートへの電子線の照射量を、
10Mradとしこの中を2m/分のスピードで、ポ
リエチレンテレフタレートを通過させて処理を行
つた。なお、防じん用の袋はやはりポリエチレン
テレフタレートである。
Co/Ni薄膜の厚さは1100Å
真空度は1〜2×10-5Torr
EBの電力は5.4kVAであつた。
実施例 3
蒸着条件は、実施例1と同じで、電子線の照射
量を20Mradに変えた、ポリエチレンテレフタレ
ートを用いた。
電子線の照射量を、この程度にまで増加すると
ポリエチレンテレフタレートが少し変化し、少々
黄褐色に着色した。
Co/Ni=80/20wt%の蒸着膜厚は約1000Å真
空度は1〜2×10-5Torr,EB電力は5.4kVA
(9kV0.6A)であつた。
比較例
使用ベース 20μm厚ポリエチレンテレフタレ
ート
照射線量 なし
蒸着金属 Co/Ni=80/20wt%
蒸発電線 EB 9KV 0.6A
蒸着膜厚 1000Å(斜蒸着)
真空度 2.0×10-5Torr
比較のため上記蒸着条件にて、未処理のポリエ
チレンテレフタレートを用いてCo/Ni=80/20の
組成の金属を蒸着した。
これと、先の実施例1.2.3にて作成した蒸着薄
膜との接着力評価(ポリエチレンテレフタレート
のベースとの)を、粘着テープによるハクリテス
トと、鉛筆硬度によるひつかきテストにより実施
したところ次のような結果を得た。
Vacuum deposition is used to form a thin film on the surface of an organic compound for decorative purposes, as a means of manufacturing MP capacitors or vapor-deposited thin film tapes, etc. However, the adhesive strength between metals or their oxides and organic compounds is weak, and this thin film This becomes a particular problem when the device is used in a manner where external forces are applied to the device. In order to improve this problem, the substrate is usually heated, but since the substrate is an organic compound, it cannot be heated to a temperature that is sufficiently effective, resulting in insufficient adhesive strength. In addition, methods such as corona discharge and ion bombardment are also used, but these methods are performed in a low vacuum to utilize electrical discharge. It is necessary to allow evacuation time to improve the degree of vacuum between bombardment processing and vapor deposition. This causes inconveniences such as increased working time and deterioration of the properties of the thin film, and the corona discharge and ion bombardment knock out dirt and dust within the vacuum container, causing the formation of pinholes. All of these have inherent elements that are undesirable when forming a thin film. Therefore, as a result of repeated research to improve these points, the inventors irradiated a polyethylene terephthalate base with an electron beam in a high vacuum chamber, and then deposited metal or its oxide on this base to improve adhesive strength. We succeeded in obtaining a thin film with good properties and few pinholes. The method will be explained below using examples. Example 1 Use base: 20μm thick polyethylene terephthalate Irradiation dose: Passing through a 5Mrad electron beam irradiation machine at 2m/min Evaporated metal: Co/Ni=80/20wt% Evaporation wire: EB.9KV 0.6A Evaporation film thickness: 1000Å (oblique evaporation) Degree of vacuum 2.0×10 −5 Torr to 1×10 −5 Torr The main conditions for vapor deposition are as described above. In this experiment, first, the current was set to 2 mA using a 2.5 MeV electron beam irradiation device, and the irradiation dose was 5 Mrad.
A base of polyethylene terephthalate was passed under this at a speed of 2 m per minute.
At this time, in order to prevent dust from accumulating on the base from the outside, the polyethylene terephthalate was set in another polyethylene terephthalate tube and irradiated with the electron beam. After this treatment was applied to polyethylene terephthalate, it was set in a vacuum evaporation apparatus, and Co/Ni 80/20 metal was evaporated onto the surface under the above conditions. Example 2 The vapor deposition conditions were the same as in Example 1, but the amount of electron beam irradiation on polyethylene terephthalate was
The treatment was carried out by passing polyethylene terephthalate through it at a speed of 2 m/min at a pressure of 10 Mrad. The dustproof bag is also made of polyethylene terephthalate. The thickness of the Co/Ni thin film was 1100 Å, the degree of vacuum was 1 to 2 × 10 -5 Torr, and the power of the EB was 5.4 kVA. Example 3 The vapor deposition conditions were the same as in Example 1, except that the electron beam irradiation dose was changed to 20 Mrad, and polyethylene terephthalate was used. When the amount of electron beam irradiation was increased to this extent, the polyethylene terephthalate changed slightly and became slightly yellowish brown in color. The deposited film thickness of Co/Ni=80/20wt% is approximately 1000Å, the degree of vacuum is 1 to 2×10 -5 Torr, and the EB power is 5.4kVA.
(9kV0.6A). Comparison example Use base: 20 μm thick polyethylene terephthalate Irradiation dose: None Deposited metal Co/Ni=80/20wt% Evaporation wire: EB 9KV 0.6A Deposited film thickness: 1000Å (oblique deposition) Degree of vacuum: 2.0×10 -5 Torr For comparison, the above deposition conditions were used Then, a metal with a composition of Co/Ni = 80/20 was deposited using untreated polyethylene terephthalate. We evaluated the adhesion between this and the vapor-deposited thin film prepared in Example 1.2.3 (to the polyethylene terephthalate base) using a peel test using adhesive tape and a scratch test using pencil hardness. I got similar results.
【表】
粘着ハクリテストに用いた粘着テープは、日東
電気工業製のセロハンテープNo.29を用い長さ5cm
を1.5Kgの加重で膜面上に接着し手で急激にひき
はがす動ハクリテストにより行つた。また鉛筆硬
度テスト(バーコール硬度)に用いた鉛筆は三菱
鉛筆製のユニB〜7Hまでを用い、芯は0.3mmにみ
がきケント紙にて角をなめらかにして用いた。測
定時に鉛筆にかけて加重は1.5Kgである。上記テ
スト結果の表中に示した鉛筆の硬度は、蒸着金属
膜が鉛筆により、けずり取られて光が透過するよ
うになつた時の鉛筆の硬度である。
この結果からポリエチレンテレフタレートに電
子線照射を行つたものは行わなかつた比較例にく
らべ、粘着テープによるハクリテストでは差はわ
からないが、鉛筆硬度法によるひつかきテストで
は、明らかに差が認められ接着力が向上している
ことがわかる。
これは、金属蒸着による磁気テープが、粘着テ
ープハクリテストでは、ハクリしないにもかかわ
らず、デツキによる走行を行うと数回〜数十回
で、マモウし、ハクリして磁気テープとしての用
をなさないという不都合点の改善方法として、き
わめて有効である。実際にこのようにして作つた
蒸着テープをカセツト巾に切断し、デツキにて走
行させるところ、比較例と実施例1.2.3でははつ
きり差が現れ比較例のものでは、3〜4回の走行
で出力がほとんど0になつたのに対し、実施例の
ものは50回走行で、5%程度の出力低下であつ
た。この点から、ポリエチレンテレフタレートに
蒸着等により薄膜を形成する場合、あらかじめ電
子線をポリエチレンテレフタレートに照射してか
ら蒸着を行うことは、蒸着薄膜の接着力を向上す
るためにきわめて有効である。なお、蒸着薄膜作
成の一般的知識から、ポリエチレンテレフタレー
トへの電子線照射を、真空槽内にて行い連続して
この表面に蒸着を行えば、さらに接着力は向上す
ると思われる。
また、電子線の照射量を1Mrad以下にした場
合でも接着力は、3H以上あることがわかつた。
実施例 4
使用ベース 20μm厚ポリエチレンテレフタレ
ート
照射線量 2Mradの電子線照射中を2m/min
でベースを通過
蒸着金属 Co/Ni=80/20wt%
蒸発電源 EB.9KV 0.6A,RF150W.イオンプ
レーテイング
蒸着膜厚 1000Å
真空度 1×10-5Torrに真空度を下げた後、
酸素ガスを2×10-4まで導入し、この
中で13.75MHzの放電を行いながらR.
F.パワーを150Wかけてイオンプレー
テイングを行つた。
このときの蒸着薄膜を前記接着力のテスト方法
にて測定したところ、粘着テープハクリテストは
OKであつた。また、鉛筆硬度法により、薄膜に
キズが入り、光が透過する硬度は5Hであつた。
これと比較するために、電子線照射を行わないポ
リエステルベースに実施例4と同一の条件でイオ
ンプレーテイングを行つたところ、粘着テープハ
クリテストはOKであつたが、鉛筆硬度法による
光透過が起る硬度は、2Hであつた。
このことにより、イオンプレーテイングを行つ
た酸化薄膜に於ても、ポリエチレンテレフタレー
トに電子線を照射したものは、照射しないものよ
り、蒸着薄膜とポリエチレンテレフタレートとの
ひつかき力,摩擦力に対すり接着力は良いことが
わかつた。
また、この場合もポリエチレンテレフタレート
に対する電子線照射は、真空槽内にて行いその直
後にイオンプレーテイングにより、金属膜又は金
属酸化膜を、その表面に形成することがより好ま
しいことは、イオンプレーテイングにおいても真
空蒸着同様、ポリエチレンテレフタレート表面へ
の空中水分やホコリが、付着する機会がないこと
から容易に推測できる。[Table] The adhesive tape used for the adhesive peeling test was cellophane tape No. 29 manufactured by Nitto Electric Industries, and was 5 cm long.
The test was conducted using a dynamic peel test in which the film was adhered to the membrane surface under a load of 1.5 kg and then rapidly peeled off by hand. The pencils used for the pencil hardness test (Barcol hardness) were Mitsubishi Pencil's Uni B to 7H, and the leads were polished to 0.3 mm and the corners were smoothed with Kent paper. The weight applied to the pencil during measurement was 1.5 kg. The hardness of the pencil shown in the above table of test results is the hardness of the pencil when the vapor-deposited metal film is scratched off by the pencil to allow light to pass through. From this result, compared to the comparative example in which electron beam irradiation was not performed on polyethylene terephthalate, there was no discernible difference in the peeling test using adhesive tape, but a clear difference was observed in the peeling test using the pencil hardness method. It can be seen that the results have improved. This is because magnetic tape made of metal vapor deposition does not peel off in the adhesive tape peeling test, but when it is run on a deck, it peels off after several to dozens of times and becomes useless as a magnetic tape. It is extremely effective as a method to improve the disadvantage that there is no such thing. Actually, when the vapor-deposited tape made in this way was cut to the width of a cassette and run on a deck, there was a difference in sharpness between the comparative example and Example 1.2.3, and the comparative example had 3 to 4 times. While the output decreased to almost 0 after running, the output of the example was reduced by about 5% after 50 runs. From this point of view, when forming a thin film on polyethylene terephthalate by vapor deposition or the like, it is extremely effective to irradiate the polyethylene terephthalate with an electron beam in advance and then perform vapor deposition in order to improve the adhesive strength of the vapor-deposited thin film. In addition, from the general knowledge of vapor-deposited thin film production, it is thought that the adhesion strength will be further improved if polyethylene terephthalate is irradiated with an electron beam in a vacuum chamber and vapor-deposited on this surface continuously. Furthermore, it was found that even when the electron beam irradiation dose was 1 Mrad or less, the adhesive strength was 3H or more. Example 4 Base used: 20μm thick polyethylene terephthalate Irradiation dose: 2m/min during 2Mrad electron beam irradiation
Deposited metal Co/Ni=80/20wt% Evaporation power source EB.9KV 0.6A, RF150W. Ion plating Deposited film thickness 1000Å Degree of vacuum After lowering the degree of vacuum to 1×10 -5 Torr,
Oxygen gas was introduced up to 2×10 -4 and R.
F. Ion plating was performed with a power of 150W. The thin film deposited at this time was measured using the adhesion test method described above, and the adhesive tape peeling test was
It was OK. In addition, by the pencil hardness method, the thin film was scratched and the hardness at which light was transmitted was 5H.
For comparison, when ion plating was performed on a polyester base without electron beam irradiation under the same conditions as in Example 4, the adhesive tape peeling test was OK, but the light transmission by the pencil hardness method was The resulting hardness was 2H. As a result, even with ion-plated oxide thin films, polyethylene terephthalate irradiated with electron beams has better adhesion than non-irradiated films against the pulling and frictional forces between the vapor-deposited thin film and polyethylene terephthalate. It turns out that power is good. In this case as well, it is more preferable to irradiate polyethylene terephthalate with an electron beam in a vacuum chamber and immediately thereafter form a metal film or metal oxide film on its surface by ion plating. This can be easily inferred from the fact that, similarly to vacuum evaporation, there is no chance for airborne moisture or dust to adhere to the polyethylene terephthalate surface.