JPH02267028A - Driving power distribution controller of four-wheel drive vehicle - Google Patents
Driving power distribution controller of four-wheel drive vehicleInfo
- Publication number
- JPH02267028A JPH02267028A JP8649389A JP8649389A JPH02267028A JP H02267028 A JPH02267028 A JP H02267028A JP 8649389 A JP8649389 A JP 8649389A JP 8649389 A JP8649389 A JP 8649389A JP H02267028 A JPH02267028 A JP H02267028A
- Authority
- JP
- Japan
- Prior art keywords
- rotational speed
- speed difference
- output value
- rear wheels
- wheel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000002159 abnormal effect Effects 0.000 claims abstract description 13
- 230000005856 abnormality Effects 0.000 claims description 43
- 230000001133 acceleration Effects 0.000 claims description 33
- 238000001514 detection method Methods 0.000 claims description 27
- 230000004913 activation Effects 0.000 claims description 2
- 230000003247 decreasing effect Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 18
- 238000000034 method Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 239000003921 oil Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 239000010720 hydraulic oil Substances 0.000 description 1
- 238000000291 inelastic electron tunnelling spectroscopy Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Landscapes
- Arrangement And Driving Of Transmission Devices (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、前後輪駆動力配分か変更可能な四輪駆動車の
駆動力配分制御装置、特に、そのフェイルセーフ技術に
関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a drive force distribution control device for a four-wheel drive vehicle that is capable of changing drive force distribution between front and rear wheels, and particularly to fail-safe technology thereof.
(従来の技術)
従来、四輪駆動車の駆動力配分制御装置としては、例え
ば、特開昭63−13331号公報に記載されているよ
うに、前後輪回転速度差検出手段からの回転速度差出力
値に基づきクラッチ締結力を増減させ、エンジン駆動力
の前後輪配分を可変とする装置が知られていて、後輪駆
動車の長所である操縦性を生かしながら駆動輪スリップ
を抑制して駆動性能を高める為、前後輪回転速度差(後
輪−前輪)とクラッチ締結力(前輪駆動トルク)との関
係を、前後輪回転速度差か小さい時には前輪駆動トルク
を小さく、前後輪回転速度差が大きくなるに従って前輪
駆動トルクが大きくなる特性が得られる設定とし、常に
前後輪回転速度差を零に収束させる方向の制御としてい
る。(Prior Art) Conventionally, as a driving force distribution control device for a four-wheel drive vehicle, for example, as described in Japanese Patent Laid-Open No. 13331/1980, a rotational speed difference detected by front and rear wheel rotational speed difference detection means is used. A device is known that increases or decreases the clutch engagement force based on the output value and varies the distribution of engine drive power between the front and rear wheels.This device suppresses drive wheel slip while taking advantage of the maneuverability that is the advantage of rear-wheel drive vehicles. In order to improve performance, the relationship between the front and rear wheel rotational speed difference (rear wheel - front wheel) and the clutch engagement force (front wheel drive torque) is determined.When the front and rear wheel rotational speed difference is small, the front wheel drive torque is reduced, The setting is such that the front wheel drive torque increases as the torque increases, and the control is such that the difference in rotational speed between the front and rear wheels always converges to zero.
(発明が解決しようとする課題)
しかしながら、このような従来の駆動力配分制御装置に
あっては、前後輪回転速度差検出手段からの前後輪回転
速度差出力値に基づきトルク配分用クラッチのクラッチ
締結力を制御する装置である為、制御入力情報である前
後輪回転速度差出力値が何らかの原因で異常である場合
、特に、実際に前後輪回転速度差が発生していないにも
かかわらす所定値以上の前後輪回転速度差出力値となる
場合には、常にクラッチ締結力が付与されることになる
し、しかも、実際に前後輪回転速度差が発生している時
には必要以上の過大なりラッチ締結力が付与されること
になり、その結果、駆動系の耐久性低下や走行抵抗の増
大やタイトコーナフレキの発生等の問題が生じてしまう
。(Problem to be Solved by the Invention) However, in such a conventional driving force distribution control device, the clutch of the torque distribution clutch is Since this is a device that controls the fastening force, if the output value of the front and rear wheel rotational speed difference, which is control input information, is abnormal for some reason, the predetermined If the output value is the difference in rotational speed between the front and rear wheels, the clutch engagement force will always be applied, and when the difference in rotational speed between the front and rear wheels actually occurs, the latch will be latched if the difference in rotational speed between the front and rear wheels is greater than the required value. A fastening force is applied, resulting in problems such as a decrease in the durability of the drive system, an increase in running resistance, and occurrence of tight corner flex.
尚、前後輪回転速度差出力値が異常となる原因としては
、例えば、車輪速センサの異常(センサロータの歯数違
い、センサ及びハーネスの一時的断線等)や前後輪のタ
イヤが異径(テンパータイヤ装着、纒摩耗、空気圧等)
等がある。In addition, causes for abnormal front and rear wheel rotational speed difference output values include, for example, an abnormality in the wheel speed sensor (different number of teeth on the sensor rotor, temporary disconnection of the sensor and harness, etc.) and tires of the front and rear wheels with different diameters ( Temper tire installation, tire wear, air pressure, etc.)
etc.
本発明は、上述のような問題に着目してなされたもので
、前後輪のうち一方にはエンジン駆動力を直接伝達し、
他方にはトルク配分用クラッチを介して伝達するトルク
スプリット式の四輪駆動車において、前後輪回転速度差
出力値の異常を放置した場合に発生する問題を速やかに
解消することを課題とする。The present invention was made with attention to the above-mentioned problems, and the present invention directly transmits engine driving force to one of the front and rear wheels.
On the other hand, it is an object of the present invention to promptly solve the problem that occurs when an abnormality in the output value of the difference in rotational speed between front and rear wheels is left unaddressed in a four-wheel drive vehicle of a torque split type in which torque is transmitted via a torque distribution clutch.
(課題を解決するための手段)
上記課題を解決するため本発明の四輪駆動車の駆動力配
分制御装置にあっては、前後輪回転速度差出力値の異常
を車両の連続加減速可能時間に基づいて検出し、異常検
出時には直ちに所定のフェイルセーフ作動を行なう手段
と・した。(Means for Solving the Problems) In order to solve the above problems, in the driving force distribution control device for a four-wheel drive vehicle of the present invention, an abnormality in the output value of the front and rear wheel rotational speed difference is detected during a continuous acceleration/deceleration period of the vehicle. Detection is based on the system, and when an abnormality is detected, a predetermined fail-safe operation is immediately performed.
即ち、第1図のクレーム対応図に示すように、前後輪の
一方へのエンジン直結駆動系に対し前後輪の他方への駆
動系の途中に設けられ、伝達されるエンジン駆動力を外
部からの締結力制御で変更可能とするトルク配分用クラ
ッチaと、前後輪回転速度差検出手段すからの出力値に
応じた締結力指令値を前記トルク配分用クラッチ日へ出
力する駆動力配分制御手段Cと、前後輪回転速度差出力
値が所定値を超える状態の継続時間か車両の連続加減速
可能時間に基づく設定時間を上回った時に出力値が異常
であると検出する回転速度差出力値異常検出手段dと、
前記回転速度差出力値異常検出手段dから異常信号が出
力された時、所定のフェイルセーフ作動を行なうフェイ
ルセーフ作動手段eと、を備えている事を特徴とする。In other words, as shown in the complaint response diagram in Figure 1, a drive system that connects the engine directly to one of the front and rear wheels is installed midway through the drive system to the other of the front and rear wheels, and the engine driving force to be transmitted is transferred from the outside. A torque distribution clutch a that can be changed by engagement force control, and a driving force distribution control means C that outputs an engagement force command value to the torque distribution clutch according to the output value from the front and rear wheel rotational speed difference detection means. and rotational speed difference output value abnormality detection, which detects that the output value is abnormal when the output value of the front and rear wheel rotational speed difference exceeds a set time based on the duration of the state exceeding a predetermined value or the continuous acceleration/deceleration time of the vehicle. means d;
The present invention is characterized by comprising fail-safe operation means e that performs a predetermined fail-safe operation when an abnormality signal is output from the rotational speed difference output value abnormality detection means d.
(作 用)
回転速度差出力値が正常の時には、駆動力配分制御手段
dにおいて、前後輪回転速度差検出手段Cからの出力値
に応じた締結力指令値がトルク配分用クラッチaへ出力
される。(Function) When the rotational speed difference output value is normal, the driving force distribution control means d outputs a fastening force command value according to the output value from the front and rear wheel rotational speed difference detection means C to the torque distribution clutch a. Ru.
従って、前後輪への駆動力配分が駆動輪スリップを抑制
するべく最適に制御される。Therefore, the distribution of driving force to the front and rear wheels is optimally controlled to suppress drive wheel slip.
回転速度差出力値が異常の時には、回転速度差出力値異
常検出手段eにおいて、前後輪回転速度差出力値が所定
値を超える状態の継続時間が車両の連続加減速可能時間
に基づく設定時間を上回ることで回転速度差出力値が異
常であると検出され、フェイルセーフ作動手段fにより
クラッチ締結力を弱めたり警報を発する等の所定のフェ
イルセーフ作動が行なわれる。When the rotational speed difference output value is abnormal, the rotational speed difference output value abnormality detection means e determines the duration of the state in which the front and rear wheel rotational speed difference output value exceeds a predetermined value for a set time based on the continuous acceleration/deceleration time of the vehicle. When it exceeds the rotational speed difference output value, it is detected that the rotation speed difference output value is abnormal, and the fail-safe operation means f performs a predetermined fail-safe operation such as weakening the clutch engagement force or issuing an alarm.
従って、前後輪回転速度差出力値の異常が的確に検出さ
れ、この出力値異常を放置した場合に発生する問題、例
えば、駆動系の耐久性低下や走行抵抗の増大やタイトコ
ーナフレキの発生等を速やかに解消することができる。Therefore, an abnormality in the front and rear wheel rotational speed difference output value is accurately detected, and problems that may occur if this output value abnormality is left untreated, such as decreased durability of the drive system, increased running resistance, and occurrence of tight corner flex, etc. can be quickly resolved.
(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.
第2図は四輪駆動車のトルクスプリット制御システム(
駆動力配分制御装置)が適用された駆動系及び4輪アン
チロックブレーキ制御システムが適用された制動系を含
む全体システム図であり、まず、トルクスプリット制御
システムの構成を説明する。Figure 2 shows the torque split control system of a four-wheel drive vehicle (
1 is an overall system diagram including a drive system to which a driving force distribution control device (driving force distribution control device) is applied and a braking system to which a four-wheel anti-lock brake control system is applied. First, the configuration of the torque split control system will be described.
実施例のトルクスプリット制御システムが適応される車
両は後輪ベースの四輪駆動車で、その駆動系には、エン
ジン1.トランスミッション2゜トランスファ入力軸3
.リヤプロペラシャフト4.リヤディファレンシャル5
.後輪6.トランスファ出力軸Y、フロントプロペラシ
ャフト8゜フロントディファレンシャル9.前輪10を
備えていて、後輪6へはトランスミッション2を経過し
てきたエンジン駆動力が直接伝達され、前輪10へは前
輪駆動系である前記トランスファ入出力軸3,7間に設
けであるトランスファクラッチ装置11を介して伝達さ
れる。The vehicle to which the torque split control system of the embodiment is applied is a rear wheel-based four-wheel drive vehicle, and its drive system includes an engine 1. Transmission 2゜Transfer input shaft 3
.. Rear propeller shaft 4. rear differential 5
.. Rear wheel 6. Transfer output shaft Y, front propeller shaft 8°, front differential 9. The engine driving force passing through the transmission 2 is directly transmitted to the rear wheels 6, and the front wheels 10 are provided with a transfer clutch provided between the transfer input and output shafts 3 and 7 of the front wheel drive system. transmitted via device 11.
そして、駆動性能と操舵性能の両立を図りながら前後輪
の駆動力配分を最適に制御するトルクスプリット制御シ
ステムは、湿式多様摩擦クラッチを内蔵した前記トラン
スファクラッチ装置11 (例えば、先願の特願昭6:
3−325379号の明細書及び図面を参照)と、クラ
ッチ締結力となる制御油圧Pcを発生する制御油圧発生
装置20と、制御油圧発生装置20に設けられたソレノ
イドバルフ28へ各種人力センサ30からの情報に基づ
いて所定のソ1ツノイド駆動電流工、工、を出力するコ
ントロールユニットC/Uのトルクスプリット制御部4
0と、各種の異常時に点灯する警報ランプ50とにより
構成される。The torque split control system that optimally controls the distribution of driving force between the front and rear wheels while achieving both driving performance and steering performance is based on the transfer clutch device 11 that incorporates a wet type multi-friction clutch (for example, 6:
3-325379), a control oil pressure generator 20 that generates the control oil pressure Pc that becomes the clutch engagement force, and a solenoid valve 28 provided in the control oil pressure generator 20 from various human power sensors 30. The torque split control section 4 of the control unit C/U outputs a predetermined solenoid drive current control based on the information of
0 and an alarm lamp 50 that lights up in the event of various abnormalities.
前記油圧制御装置20は、リリーフスイッチ21により
駆動または停止するモータ22と、該モタ22により作
動してリザーバタンク23から吸い上げる油圧ポンプ2
4と、該油圧ポンプ24からのポンプ吐出圧(−沈圧)
をチェックバルフ25を介して蓄えるアキュムレータ2
6と、該アキュムレータ26からのライン圧(二次圧)
をトルクスプリット制御部40からのソレノイド駆動電
流IETSにより所定の制御油圧Pcに調整するソレノ
イドバルフ28とを備え、制御油圧Pcの作動油は制御
油圧バイブ29を経過してクラッチポートに供給される
。The hydraulic control device 20 includes a motor 22 that is driven or stopped by a relief switch 21, and a hydraulic pump 2 that is operated by the motor 22 to draw water from a reservoir tank 23.
4, and pump discharge pressure (-sinking pressure) from the hydraulic pump 24
Accumulator 2 that stores via check valve 25
6 and the line pressure (secondary pressure) from the accumulator 26
and a solenoid valve 28 that adjusts the hydraulic pressure Pc to a predetermined control hydraulic pressure Pc using a solenoid drive current IETS from the torque split control section 40, and the hydraulic oil of the control hydraulic pressure Pc is supplied to the clutch port via a control hydraulic vibrator 29.
前記各種人力センサ30としては、第3図のシステム電
子制御系のフロック図に示すよつに、左前輪回転センサ
30a、右前輪回転センサ30b、左後輪回転センサ3
0C1右後輪回転センサ30d、アクセル開度センサ3
0e、横加速度センサ30f、駆動電流センサ309.
制御油圧センサ30h、前輪軸トルクセンサ301を有
する。The various human power sensors 30 include a left front wheel rotation sensor 30a, a right front wheel rotation sensor 30b, and a left rear wheel rotation sensor 3, as shown in the block diagram of the system electronic control system in FIG.
0C1 Right rear wheel rotation sensor 30d, accelerator opening sensor 3
0e, lateral acceleration sensor 30f, drive current sensor 309.
It has a control oil pressure sensor 30h and a front wheel axle torque sensor 301.
前記トルクスプリット制御部40は、第3図のシステム
電子制御系のフロック図に示すように、左前輪速演算回
路40a、右前輪速演算回路40b、左後輪速演算回路
40c7右後輪速演算回路40d、前輪速演算回路40
e、後輪速演算回路40f1回転速度差演算回路409
.横加速度出力値補正回路40h、ゲイン演算回路40
1締結力演算回路40j、デイザ信号発生回路40に、
ソレノイド駆動回路40!1回転速度差出力値異常検出
回路40m、横加速度センサ異常検出回路40n、クラ
ッチ異常検出回路40o、異常判断しきい値回路40p
、 フェイルセーフ回路40qを有する。As shown in the block diagram of the system electronic control system in FIG. 3, the torque split control section 40 includes a left front wheel speed calculation circuit 40a, a right front wheel speed calculation circuit 40b, a left rear wheel speed calculation circuit 40c7, and a right rear wheel speed calculation circuit. Circuit 40d, front wheel speed calculation circuit 40
e, Rear wheel speed calculation circuit 40f1 Rotational speed difference calculation circuit 409
.. Lateral acceleration output value correction circuit 40h, gain calculation circuit 40
1 fastening force calculation circuit 40j, dither signal generation circuit 40,
Solenoid drive circuit 40!1 Rotational speed difference output value abnormality detection circuit 40m, lateral acceleration sensor abnormality detection circuit 40n, clutch abnormality detection circuit 40o, abnormality judgment threshold circuit 40p
, has a fail-safe circuit 40q.
前記警報ランプ50としては、第3図のシステム電子制
御系のブロック図に示すように、回転速度差異常警報ラ
ンプ50a、横加速度センサ異常警報ランプ50b、ク
ラッチ異常警報ランプ50Cを有する。As shown in the block diagram of the system electronic control system in FIG. 3, the warning lamps 50 include a rotational speed difference abnormality warning lamp 50a, a lateral acceleration sensor abnormality warning lamp 50b, and a clutch abnormality warning lamp 50C.
ここで、本発明の特徴的な構成である回転速度差出力値
異常検出装置の構成を、第4図の機能フロック図により
説明する。Here, the configuration of the rotational speed difference output value abnormality detection device, which is a characteristic configuration of the present invention, will be explained with reference to the functional block diagram shown in FIG.
前接輪回転速度差検出手段は、各車輪速の演算回路40
a〜40fと、平均値により前輪速VWFと後輪速VW
11とを求める演算回路40e、40fと、後輪速VW
Rから前輪速VWFを差し引いた減算値により前後輪回
転速度差△vWを演算する回転速度差演算回路409に
より構成される。The front wheel rotational speed difference detection means includes a calculation circuit 40 for each wheel speed.
a to 40f, and the front wheel speed VWF and rear wheel speed VW based on the average value.
Arithmetic circuits 40e and 40f for calculating 11 and rear wheel speed VW
It is constituted by a rotational speed difference calculation circuit 409 that calculates a rotational speed difference ΔvW between the front and rear wheels based on a subtracted value obtained by subtracting the front wheel speed VWF from R.
回転速度差出力値異常検出手段及びフェイルセーフ作動
手段は、回転速度゛差演算回路409からの前後輪回転
速度差△vWの絶対値1△vwlと加減速しきい値α。The rotational speed difference output value abnormality detection means and the fail-safe operation means detect the absolute value 1Δvwl of the front and rear wheel rotational speed difference ΔvW from the rotational speed difference calculation circuit 409 and the acceleration/deceleration threshold value α.
(例えば、2 km/h)との比較器とこの比較器から
パ1”が継続して出力される時間T(タイマー値)を検
出するタイマーとを有する回転速度差出力値異常検出回
路40mと、タイマ値Tが設定タイマー値T。(例えば
、5m1n)を上回った時に警報ランプ50aへの点灯
指令とクラッチ締結力丁。の低減指令を出力するフェイ
ルセーフ回路40qにより構成される。(for example, 2 km/h) and a timer for detecting the time T (timer value) during which Pa1'' is continuously output from the comparator. , a fail-safe circuit 40q that outputs a command to turn on the warning lamp 50a and a command to reduce the clutch engagement force when the timer value T exceeds the set timer value T (for example, 5m1n).
また、入力センサ、電子制御系、油圧制御系。Also, input sensors, electronic control systems, and hydraulic control systems.
トランスファクラッチ装置11の故障や異径タイヤ状態
゛等を原因とし、過大なりラッチ締結力のままとなって
いるクラッチ異常を検出するクラッチ異常検出装置の構
成を、第5図の機能ブロック図により説明する。The configuration of a clutch abnormality detection device that detects a clutch abnormality in which excessive latch engagement force remains due to a failure of the transfer clutch device 11 or the condition of tires with different diameters will be explained with reference to the functional block diagram in FIG. do.
このクラッチ異常検出装置は、駆動電流センサ309、
制御油圧センサ30h、前輪軸トルクセンサ30iと、
異常判断しきい値回路40pと、クラッチ異常検出回路
40oと、フェイルセーフ回路40qとによって構成さ
れ、ソレノイド駆動電流工、□8と制御油圧Pcと前輪
軸トルク■、との3通りのデータを監視し、これらのデ
ータのうち1つでも各異常判断しきい値を超える時間が
設定時間継続した場合にクラッチ異常と検出し、所定の
フェイルセーフ作動を行なうようにしている。This clutch abnormality detection device includes a drive current sensor 309,
A control oil pressure sensor 30h, a front wheel shaft torque sensor 30i,
It is composed of an abnormality judgment threshold circuit 40p, a clutch abnormality detection circuit 40o, and a fail-safe circuit 40q, and monitors three types of data: solenoid drive current, □8, control oil pressure Pc, and front wheel axle torque ■. However, if even one of these data exceeds each abnormality determination threshold value for a set period of time, a clutch abnormality is detected and a predetermined fail-safe operation is performed.
従って、このクラッチ異常検出装置を適応することで、
過大なりラッチ締結力の継続による駆動系の耐久性劣化
や走行抵抗の増大やタイトコーナブレーキの発生等を防
止することができる。Therefore, by applying this clutch abnormality detection device,
It is possible to prevent deterioration of the durability of the drive system, increase in running resistance, occurrence of tight corner braking, etc. due to the continuation of excessive latch fastening force.
次に、第2図及び第3図により4輪アンチロックブレー
キ制御システムの構成を説明する。Next, the configuration of the four-wheel anti-lock brake control system will be explained with reference to FIGS. 2 and 3.
実施例の4輪アンチロックブレーキ制御システムが適応
される制動系は、第2図に示すように、ブレーキペダル
60.ブースタ61.マスクシリンダ62.アクチュエ
ータ63.ホイールシリンダ64a、64b、64c、
64d、ブレーキ配管65,66a、66b、66c、
66dを備えている。The braking system to which the four-wheel anti-lock brake control system of the embodiment is applied is, as shown in FIG. 2, a brake pedal 60. Booster 61. Mask cylinder 62. Actuator 63. Wheel cylinders 64a, 64b, 64c,
64d, brake piping 65, 66a, 66b, 66c,
It is equipped with 66d.
そして、車体速と各車輪速とから求められる各輪のスリ
ップ率を0.15〜0,3付近に収束する様に制動力制
御を行なうことで急制動時や低μ路制動時において車輪
ロックを防止する4輪アンチロックブレーキ制御システ
ムは、3位置切換ソレノイドバルブや油圧ポンプモータ
を有する前記アクチュエータ63と、該アクチュエータ
63に対し各種人力センサ30からの情報に基づいてブ
レーキ液圧の増圧、減圧、保持の駆動指令を出力するコ
ントロールユニットC/υのアンチロックブレーキ制御
部70と、各種の異常時に点灯する警報ランプ50とに
より構成される。By controlling the braking force so that the slip ratio of each wheel, which is calculated from the vehicle speed and each wheel speed, converges to around 0.15 to 0.3, the wheels are locked during sudden braking or braking on low μ roads. The four-wheel anti-lock brake control system that prevents this includes the actuator 63 having a three-position switching solenoid valve and a hydraulic pump motor, and increases brake fluid pressure based on information from various human power sensors 30 for the actuator 63. It is composed of an anti-lock brake control section 70 of a control unit C/υ that outputs drive commands for pressure reduction and holding, and a warning lamp 50 that lights up in the event of various abnormalities.
前記各種人力センサ30としては、第3図のシステム電
子制御系のフロック図に示すように、前後加速度センサ
30jを有し、必要情報をもたらす左前輪回転センサ3
0a、右前輪回転センサ30b、左後輪回転センサ30
C1右後輪回転センサ30d等はトルクスプリット制御
システムと共用している。As shown in the block diagram of the system electronic control system in FIG. 3, the various human power sensors 30 include a front left wheel rotation sensor 3 that has a longitudinal acceleration sensor 30j and provides necessary information.
0a, right front wheel rotation sensor 30b, left rear wheel rotation sensor 30
The C1 right rear wheel rotation sensor 30d and the like are shared with the torque split control system.
前記アンチロックブレーキ制御部70は、第3図のシス
テム電子制御系のブロック図に示すように、車体速演算
回路708.アンチロック制御回路70b、アクチュエ
ータ駆動回路70C1前後加速度センサ異常検出回路7
0C,フェイルセフ回路70dを有する。As shown in the block diagram of the system electronic control system in FIG. 3, the anti-lock brake control section 70 includes a vehicle speed calculation circuit 708. Anti-lock control circuit 70b, actuator drive circuit 70C1 longitudinal acceleration sensor abnormality detection circuit 7
0C, and has a fail-safe circuit 70d.
前記警報ランプ50としては、前後加速度センサ異常警
報ランプ50dを有する。The warning lamp 50 includes a longitudinal acceleration sensor abnormality warning lamp 50d.
次に、作用を説明する。Next, the effect will be explained.
(イ)回転速度差出力値が正常の時
回転速度差演算回路409から出力される前後輪回転速
度差△vwが正常の時には、実施例のトルクスプリット
制御部40で正常時の前後輪駆動力配分制御が行なわれ
る。(B) When the rotational speed difference output value is normal When the rotational speed difference △vw of the front and rear wheels output from the rotational speed difference calculation circuit 409 is normal, the torque split control unit 40 of the embodiment uses the normal front and rear wheel driving force. Distribution control is performed.
そこで、基本的な前後輪駆動力配分制御作動の流れを第
6図のフローチャートにより説明する。Therefore, the flow of the basic front and rear wheel drive force distribution control operation will be explained with reference to the flowchart shown in FIG.
ステップ80では、各車輪回転センサ30a。In step 80, each wheel rotation sensor 30a.
30b、30c、30dと横加速度センサ30fから左
前輪回転数NFL+右前輪回転数NFR+左後輪回転数
NRL+右後輪回転数NRR+横加速度Y9のセンサ信
号が読み込まれる。Sensor signals of left front wheel rotation speed NFL+right front wheel rotation speed NFR+left rear wheel rotation speed NRL+right rear wheel rotation speed NRR+lateral acceleration Y9 are read from 30b, 30c, 30d and the lateral acceleration sensor 30f.
ステップ81では、ステ・ンプ80で読み込まれた左前
輪回転数NFL+右前輪回転数NFR+左後輪回転数N
RL+右後輪回転数NRRのそれぞれから左前輪速VW
Fい右前輪速VW F R+左後輪速VWRL+右後輪
速VWRRが演算される。In step 81, the left front wheel rotation speed NFL read in the step 80 + the right front wheel rotation speed NFR + the left rear wheel rotation speed N
Left front wheel speed VW from each of RL + right rear wheel rotation speed NRR
Front right wheel speed VWFR+rear left wheel speed VWRL+rear right wheel speed VWRR is calculated.
ステップ82では、上記左前輪速VWFLと右前輪速V
WFRとから前輪速νWFが演算される。In step 82, the left front wheel speed VWFL and the right front wheel speed V
Front wheel speed νWF is calculated from WFR.
ステップ83では、上記左後輪速VWRLと右後輪速V
WRRとから後輪速VWRが演算される。In step 83, the left rear wheel speed VWRL and the right rear wheel speed V
Rear wheel speed VWR is calculated from WRR.
ステップ84では、前輪速VWFと後輪速VWRとから
前後輪回転速度差△VW (−VwRVwF )が演算
される。In step 84, a front and rear wheel rotational speed difference ΔVW (-VwRVwF) is calculated from the front wheel speed VWF and the rear wheel speed VWR.
ステップ85では、横加速度Y9の逆数によりゲインK
が演算される。In step 85, the gain K is determined by the reciprocal of the lateral acceleration Y9.
is calculated.
ステップ86では、前後輪回転速度差△Vwとゲインに
と締結力演算式(マツプにあられすと第7図こ示す関係
を持つ)からクラッチ締結力TMが演算される。At step 86, the clutch engagement force TM is calculated from the front and rear wheel rotational speed difference ΔVw, the gain, and the engagement force calculation formula (which has the relationship shown in FIG. 7 if shown on the map).
ステップ87では、前記ステップ86で求められたクラ
ッチ締結力■2が得られるソレノイド駆動電流■、□6
かソレノイドバルフ28へ出力される。In step 87, the solenoid drive current ■, □6 that provides the clutch engagement force ■2 determined in step 86 is determined.
or is output to the solenoid valve 28.
従って、前後輪回転速度差△vwが大きくなればなるほ
どクラッチ締結力T1.Iか増大し、前輪側への駆動力
配分が増すことから、駆動輪である後輪への駆動力が過
大になることによる駆動輪スリップが抑制される。Therefore, the larger the front and rear wheel rotational speed difference Δvw, the greater the clutch engagement force T1. Since I increases and the distribution of driving force to the front wheels increases, driving wheel slip caused by excessive driving force to the rear wheels, which are driving wheels, is suppressed.
さらに、横加速度Ygに応じてゲインKを決めることで
横加速度Y9の発生が大きい高路面摩擦係数路での走行
時にはゲインにを小さくしてタイトコナブレーキ等を有
効に防止し、また、横加速度Y9の発生が小さくタイト
コ−デフ1ノーキがほとんど問題とならない低摩擦係数
路での走行時にはゲインにを大きくし、4輪等配分方向
の駆動力配分とすることで駆動輪スリップの発生か最小
に抑えられる。Furthermore, by determining the gain K according to the lateral acceleration Yg, when driving on a road with a high road surface friction coefficient where the lateral acceleration Y9 is large, the gain is made small to effectively prevent tight Kona braking, etc. When driving on a low friction coefficient road where Y9 is small and tight co-def 1 noki is hardly a problem, increase the gain and distribute the driving force equally to the four wheels to minimize the occurrence of drive wheel slip. It can be suppressed.
(ロ)回転速度差出力値が異常の時
回転速度差演算回路409から出力される前後輪回転速
度差△vWか異常である時には、第4図に示す回転速度
差出力値異常検出装置が作動する。(b) When the rotational speed difference output value is abnormal When the front and rear wheel rotational speed difference △vW output from the rotational speed difference calculation circuit 409 is abnormal, the rotational speed difference output value abnormality detection device shown in FIG. 4 is activated. do.
そこで、割り込み処理による回転速度差出力値異常検出
作動の流れを第8図のフローチャートにより説明する。Therefore, the flow of the rotational speed difference output value abnormality detection operation by interrupt processing will be explained with reference to the flowchart of FIG.
ステップ90では、前後輪回転速度差△VWの絶対値1
△vwlが読み込まれる。In step 90, the absolute value of the front and rear wheel rotational speed difference △VW is 1.
Δvwl is read.
ステップ91では、加減速フラグα・FLGにより加減
速時かα・FLG= 1かそうでないかα・FLG=
0が判断される。In step 91, the acceleration/deceleration flag α・FLG determines whether it is acceleration/deceleration, α・FLG=1, or not α・FLG=
0 is determined.
そして、α・FLG= 1の時にはステップ94へ進み
、また、α・FLG= Oの時にはステップ92へ進む
。Then, when α·FLG=1, the process proceeds to step 94, and when α·FLG=O, the process proceeds to step 92.
ステップ92では、前後輪回転速度差ΔVWの絶対価1
△Vw]が加減速しきい値α。を上回っているかどうか
が判断される。In step 92, the absolute value of the front and rear wheel rotational speed difference ΔVW is 1.
△Vw] is the acceleration/deceleration threshold α. It is determined whether the
そして、1Δvw1〉α。の時にはステップ93へ進み
、1△V=l≦α0の時にはステップ90へ戻る。And 1Δvw1>α. When 1ΔV=l≦α0, the process proceeds to step 93, and when 1ΔV=l≦α0, the process returns to step 90.
ステップ93では、加減速フラグがα・FLG”0から
α・FLG= 4に書き替えられる。In step 93, the acceleration/deceleration flag is rewritten from α·FLG”0 to α·FLG=4.
ステップ94では、ステップ91でα・FLG= 1で
あり車両が所定の加減速状態の時に、ステップ92と同
様に、前後輪回転速度差△Vwの絶対値△V9,1か加
減速しきい値α。を上回っているかどうかか判断される
。In step 94, when α・FLG=1 in step 91 and the vehicle is in a predetermined acceleration/deceleration state, similarly to step 92, the absolute value ΔV9,1 of the front and rear wheel rotational speed difference ΔVw or the acceleration/deceleration threshold is determined. α. It will be judged whether it exceeds the
そして、I△vwl≦α0どなった場合には、ステップ
97へ進み、タイマ値がクリアされ、ステップ9Bへ進
みα・「1−Gが1から0に書き替えられる。If IΔvwl≦α0, the process proceeds to step 97, where the timer value is cleared, and the process proceeds to step 9B, where α・'1-G is rewritten from 1 to 0.
ステップ95では、α・FLG= 1の継続時間である
タイマー値下として1回のステップ経過毎に制御起動時
間tだけ加算される。In step 95, the timer value, which is the duration of α·FLG=1, is added by the control activation time t every time one step passes.
ステップ96では、α・FLG=1の継続タイマ値下が
車両の連続加減速可能時間に基づき設定された設定タイ
マー値下。(例えば、5m1n)を上回っているかどう
かが判断される。In step 96, the lower continuation timer value of α·FLG=1 is lower than the set timer value set based on the possible continuous acceleration/deceleration time of the vehicle. (for example, 5m1n).
そして、T<T oの時にはステップ90へ戻り、T≧
Toとなった時にはステップ99へ進む。Then, when T<T o, the process returns to step 90, and T≧
When the result is To, the process advances to step 99.
ステップ99では、警報ランプ50sへの点灯指令とク
ラッチ締結力T、Jを1例えば、0.001kgm/
tonsecの割合で低減し、徐々に2輪駆動方向とす
る指令が出力される。In step 99, a lighting command is given to the alarm lamp 50s and the clutch engagement forces T and J are set to 1, for example, 0.001 kgm/
It is reduced at a rate of tonsec, and a command to gradually shift to the two-wheel drive direction is output.
ここで、加減速しきい値α。と設定タイマー値T、どの
決め方について説明する。Here, acceleration/deceleration threshold α. How to determine the set timer value T and the set timer value T will be explained.
例えば、加速度が3.5km/h/sea (0,I
9)でOkm/h→250km/hに達するのに約70
secを要する。For example, the acceleration is 3.5km/h/sea (0,I
9) Okm/h → Approximately 70 km/h to reach 250 km/h
It takes sec.
つまり、加速度か3.5km/h/secの場合は約7
0secというのが車両の連続加速可能時間ということ
ができる。そこで、加減速しきい値α。に合わせた車両
の連続加速可能時間とシステムに実害をもたらす時間と
を考慮して設定タイマー値下。を決めるもので、その結
果、第9図に示すように、加減速しきい値α。と設定タ
イマー値下。とは反比例 Y
の関係とすることで適切な値が設定される。In other words, if the acceleration is 3.5 km/h/sec, it is about 7
It can be said that 0 sec is the time during which the vehicle can continuously accelerate. Therefore, the acceleration/deceleration threshold α. The timer value is set in consideration of the continuous acceleration time of the vehicle and the time that would cause actual damage to the system. As a result, as shown in FIG. 9, the acceleration/deceleration threshold α. and set the timer value below. An appropriate value can be set by setting the relationship to be inversely proportional to Y.
以上説明してきたように、車輪速センサの異常(センサ
ロータの歯数違い、センサ及びハーネスの一時的断線等
)や前後輪のタイヤが異径(テンパータイヤ装着1編摩
耗、空気圧等)等を原因として前後輪回転速度差ΔVW
の絶対値1Δvwlが加減速しきい値α。を超える状態
が設定タイマー値Toを上回る時間継続した場合には1
前後輪回転速度差ΔVwが異常であると検出されると同
時にクラッチ締結力T、を弱めたり警報ランプ50aを
点灯するというフェイルセーフ作動か行なわれる。As explained above, abnormalities in the wheel speed sensor (wrong number of teeth on the sensor rotor, temporary disconnection of the sensor and harness, etc.), tires of the front and rear wheels of different diameters (wear of one tempered tire, air pressure, etc.), etc. The cause is the difference in rotational speed between the front and rear wheels ΔVW
The absolute value 1Δvwl is the acceleration/deceleration threshold α. If the condition exceeds the set timer value To for a period of time exceeding the set timer value To,
As soon as it is detected that the front and rear wheel rotational speed difference ΔVw is abnormal, a fail-safe operation is performed in which the clutch engagement force T is weakened or the warning lamp 50a is turned on.
従って、前後輪回転速度差出力値の異常を放置した場合
に発生する問題、例えば、駆動系の耐久性低下や走行抵
抗の増大やタイトコーナブレーキの発生等を速やかに解
消することができる。Therefore, problems that occur when abnormalities in the front and rear wheel rotational speed difference output values are left unaddressed, such as decreased durability of the drive system, increased running resistance, and occurrence of tight corner braking, can be quickly resolved.
以上、実施例を図面に基づいて説明してきたが、具体的
な構成及び制御内容はこの実施例に限られるものではな
い。Although the embodiment has been described above based on the drawings, the specific configuration and control contents are not limited to this embodiment.
例えば、実施例では、後輪側をエンジン駆動直結にした
後輪ベースの四輪駆動車の駆動力配分制御 9
御装置への適応例を示したが、前輪側をエンジン駆動直
結にした前輪ベースの四輪駆動車の駆動力配分制御装置
へも適応出来る。For example, in the embodiment, an example of application to a drive force distribution control device for a rear wheel-based four-wheel drive vehicle in which the rear wheels are directly connected to the engine drive was shown. It can also be applied to the drive force distribution control system of four-wheel drive vehicles.
(発明の効果)
以上説明してきたように、本発明の四輪駆動車の駆動力
配分制御装置にあっては、前後輪回転速度差出力値の異
常を車両の連続加減速可能時間に基づいて検出し、異常
検出時には直ちに所定のフェイルセーフ作動を行なう手
段とした為、前後輪のうち一方にはエンジン駆動力を直
接伝達し、他方にはトルク配分用クラッチを介して伝達
するトルクスプリット式の四輪駆動車において、前後輪
回転速度差出力値の異常を放置した場合に発生する問題
を速やかに解消することが出来るという効果が得られる
。(Effects of the Invention) As explained above, in the driving force distribution control device for a four-wheel drive vehicle of the present invention, an abnormality in the front and rear wheel rotational speed difference output value is detected based on the continuous acceleration/deceleration time of the vehicle. The system uses a torque split type system that directly transmits engine driving force to one of the front and rear wheels and transmits it to the other through a torque distribution clutch. In a four-wheel drive vehicle, an effect can be obtained in that a problem that occurs when an abnormality in the front and rear wheel rotational speed difference output value is left unaddressed can be quickly resolved.
第1図は本発明の四輪駆動車の駆動力配分制御装置を示
すクレーム対応図、第2図は実施例のトルクスブリ・ン
ト制御装置(駆動力配分制御装置)を適応した四輪駆動
車の駆動系、制動系及び制御系を示す全体概略図、第3
図は実施例装置に用いられた電子制御系を示すフロック
図、第4図は前後輪回転速度差出力値異常検出装置を示
す機能フロック図、第5図はクラッチ異常検出装置を示
す機能ブロック図、第6図は前後輪駆動力配分制御作動
を示すメインルーチンのフローチャート、第7図は基本
的な前後輪駆動力配分制御特性図、第8図は前後輪回転
速度差出力値異常検出作動の流れを示すサブルーチンの
フローチャート、第9図は加減速しきい値α。と設定タ
イマー値T。どの関係特性図である。
a・・・トルク配分用クラッチ
b・・・前後輪回転速度差検出手段
C・・・駆動力配分制御手段
d・・・回転速度差出力値異常検出手段e・・・フェイ
ルセーフ作動手段Fig. 1 is a claim correspondence diagram showing a driving force distribution control device for a four-wheel drive vehicle according to the present invention, and Fig. 2 is a diagram showing a complaint response diagram showing a driving force distribution control device for a four-wheel drive vehicle according to the present invention. Overall schematic diagram showing the drive system, braking system, and control system, Part 3
The figure is a block diagram showing the electronic control system used in the embodiment device, Figure 4 is a functional block diagram showing the front and rear wheel rotational speed difference output value abnormality detection device, and Figure 5 is a functional block diagram showing the clutch abnormality detection device. , Figure 6 is a flowchart of the main routine showing front and rear wheel drive force distribution control operation, Figure 7 is a basic front and rear wheel drive force distribution control characteristic diagram, and Figure 8 is a flowchart of front and rear wheel rotational speed difference output value abnormality detection operation. FIG. 9 is a flowchart of the subroutine showing the flow of the acceleration/deceleration threshold α. and the set timer value T. What is the relationship characteristic diagram? a... Torque distribution clutch b... Front and rear wheel rotation speed difference detection means C... Driving force distribution control means d... Rotation speed difference output value abnormality detection means e... Fail-safe operation means
Claims (1)
の他方への駆動系の途中に設けられ、伝達されるエンジ
ン駆動力を外部からの締結力制御で変更可能とするトル
ク配分用クラッチと、 前後輪回転速度差検出手段からの出力値に応じた締結力
指令値を前記トルク配分用クラッチへ出力する駆動力配
分制御手段と、 前後輪回転速度差出力値が所定値を超える状態の継続時
間が車両の連続加減速可能時間に基づく設定時間を上回
った時に出力値が異常であると検出する回転速度差出力
値異常検出手段と、 前記回転速度差出力値異常検出手段から異常信号が出力
された時、所定のフェイルセーフ作動を行なうフェイル
セーフ作動手段と、 を備えている事を特徴とする四輪駆動車の駆動力配分制
御装置。[Scope of Claims] 1) A drive system that is directly connected to the engine to one of the front and rear wheels is provided in the middle of the drive system to the other of the front and rear wheels, and the transmitted engine drive force can be changed by external fastening force control. a torque distribution clutch, which outputs a fastening force command value to the torque distribution clutch according to an output value from the front and rear wheel rotational speed difference detection means; A rotational speed difference output value abnormality detecting means for detecting that the output value is abnormal when the duration of the state exceeding a predetermined value exceeds a set time based on the continuous acceleration/deceleration possible time of the vehicle; and the rotational speed difference output value abnormality. A drive force distribution control device for a four-wheel drive vehicle, comprising: fail-safe activation means for performing a predetermined fail-safe operation when an abnormal signal is output from the detection means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8649389A JPH02267028A (en) | 1989-04-05 | 1989-04-05 | Driving power distribution controller of four-wheel drive vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8649389A JPH02267028A (en) | 1989-04-05 | 1989-04-05 | Driving power distribution controller of four-wheel drive vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02267028A true JPH02267028A (en) | 1990-10-31 |
Family
ID=13888510
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8649389A Pending JPH02267028A (en) | 1989-04-05 | 1989-04-05 | Driving power distribution controller of four-wheel drive vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02267028A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02286430A (en) * | 1989-04-26 | 1990-11-26 | Honda Motor Co Ltd | Driving force distribution control device for front and rear wheel drive vehicle |
JPH0699754A (en) * | 1992-09-22 | 1994-04-12 | Nissan Motor Co Ltd | Oil pressure control unit for vehicle |
JP2006137317A (en) * | 2004-11-12 | 2006-06-01 | Toyota Motor Corp | Wheel speed sensor abnormality detecting device and automobile with the same |
-
1989
- 1989-04-05 JP JP8649389A patent/JPH02267028A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02286430A (en) * | 1989-04-26 | 1990-11-26 | Honda Motor Co Ltd | Driving force distribution control device for front and rear wheel drive vehicle |
JPH0699754A (en) * | 1992-09-22 | 1994-04-12 | Nissan Motor Co Ltd | Oil pressure control unit for vehicle |
JP2006137317A (en) * | 2004-11-12 | 2006-06-01 | Toyota Motor Corp | Wheel speed sensor abnormality detecting device and automobile with the same |
JP4706235B2 (en) * | 2004-11-12 | 2011-06-22 | トヨタ自動車株式会社 | Wheel speed sensor abnormality detection device and automobile equipped with the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4986388A (en) | Driving force distribution control system for 4wd vehicle | |
EP0393596B1 (en) | Torque split control system for 4WD vehicle | |
US4511014A (en) | System for controlling a power transmission of a four-wheel drive vehicle | |
US5010974A (en) | 4WD vehicle with driving force distribution control | |
JP2768134B2 (en) | Driving force distribution control device for four-wheel drive vehicle | |
JP2002234355A (en) | Control device for four-wheel drive vehicle | |
JPH11139288A (en) | Traction control device of four-wheel drive vehicle | |
JPH029981B2 (en) | ||
JP2646820B2 (en) | Driving force distribution control device for four-wheel drive vehicle | |
JPH02267028A (en) | Driving power distribution controller of four-wheel drive vehicle | |
JPH07128221A (en) | Road surface condition detector | |
JPH02281149A (en) | Apparatus for correcting output value of lateral acceleration sensor and driving-power-distribution controlling apparatus for four-wheel driving vehicle | |
JPH02278157A (en) | Apparatus for detecting abnormality of lateral acceleration sensor | |
JP2004017721A (en) | Controller for four-wheel-drive vehicle | |
JPH0740042B2 (en) | Longitudinal acceleration sensor abnormality detection device | |
JPH02284069A (en) | Correcting device for lateral acceleration sensor output value | |
JPH02293221A (en) | Drive force distribution controlling device for four-wheel drive car | |
JPH0379462A (en) | Antiskid control device | |
JP3455989B2 (en) | Vehicle power transmission | |
KR100335943B1 (en) | System for improving power of movement using a antilock break system | |
JP2857791B2 (en) | 4-wheel drive vehicle with switching drive power distribution | |
JP4129222B2 (en) | Brake control device | |
JP3713827B2 (en) | Driving force control method and driving force control device for four-wheel drive vehicle | |
JP2003312290A (en) | Torque allocation controller for four-wheeled-drive vehicle | |
JPH0439789Y2 (en) |