JPH02179839A - High strength copper alloy having excellent impact resistance - Google Patents
High strength copper alloy having excellent impact resistanceInfo
- Publication number
- JPH02179839A JPH02179839A JP33549188A JP33549188A JPH02179839A JP H02179839 A JPH02179839 A JP H02179839A JP 33549188 A JP33549188 A JP 33549188A JP 33549188 A JP33549188 A JP 33549188A JP H02179839 A JPH02179839 A JP H02179839A
- Authority
- JP
- Japan
- Prior art keywords
- impact resistance
- strength
- copper alloy
- excellent impact
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims abstract description 8
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 12
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 8
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 7
- 239000010949 copper Substances 0.000 claims abstract description 7
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 5
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 5
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 5
- 229910052717 sulfur Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 abstract description 10
- 229910045601 alloy Inorganic materials 0.000 abstract description 6
- 239000000956 alloy Substances 0.000 abstract description 6
- 230000001105 regulatory effect Effects 0.000 abstract description 3
- 239000000463 material Substances 0.000 description 38
- 230000000694 effects Effects 0.000 description 11
- 238000011282 treatment Methods 0.000 description 10
- 238000012360 testing method Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 238000005482 strain hardening Methods 0.000 description 7
- 239000002244 precipitate Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 230000032683 aging Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 229910000851 Alloy steel Inorganic materials 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 2
- 229910019974 CrSi Inorganic materials 0.000 description 2
- 239000010974 bronze Substances 0.000 description 2
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 231100000241 scar Toxicity 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- 229910017891 Cu—Ni2Si Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000003483 aging Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003353 gold alloy Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Iron Core Of Rotating Electric Machines (AREA)
Abstract
Description
(産業上の利用分野)
本発明は耐衝撃特性に優れた高強度鋼合金に関し、特に
、耐衝撃特性・、摩耗性が要求される機械部品(例、さ
く岩槻用のライフルナツト)、また。
低電気抵抗、非磁性を要求され、且つ耐衝撃特性を必要
とする機械部品(例、超電導発電機用常温ロータ)用に
適している。
(従来の技術及び解決しようとする課題)近年、連続、
高負荷使用の如〈産業機械の使用条件は過酷となってき
ている中で、各種産業機械の動力伝達部品や摺動部品に
要求される特性が厳しくなっている。そのため、従来の
材料では十分に要求を満足できない場合が生じている。
具体的には以下のとおりである。
従来、JISに規定される各種リン青銅材が最も一般的
に用いられている材料であるが、耐摩耗性、耐衝撃特性
が十分とは云えず、また、冷間加工により強度向上を図
っているため、大きさの制限があり、経済的にも問題が
ある。また、JISに規定される各種アルミ青銅材は耐
摩耗性の点で十分でない、一方、耐摩耗鋼合金(特願昭
61−044872号)やプラスチック用銅合金(特願
昭61−16491号)などが提案されているが、前者
は耐摩耗性は十分であるものの、耐衝撃特性が劣り、後
者は耐衝撃特性が劣るという欠点がある。また、長径間
型線用材料として開発されたいわゆるCA金合金Cor
son合金)が知られている。
このCA金合金析出硬化に寄与するNi2Si化合物相
を有するCu−Ni2Si擬二元系合金(3〜6%Al
、10%以下Znを含むものもある)で、熱間加工、冷
間加工後に溶体化処理、焼入れ、焼戻し時効硬化処理が
施されるもので、導電率が比較的よい材料であるが、熱
間加工性に問題がある。
本発明は、上記従来技術の欠点を解消し、高強度で耐衝
撃特性に優れ、大型機械部品用にも適用可能な材料を提
供することを目的とするものである。
(課題を解決するための手段)
本発明者は、上記特性を満たすことができる材料として
、まず、
(1) 従来材に比べ耐衝撃特性、耐摩耗性を向上さ
せ、耐久性を上げる。
(2)冷間加工によらず1強度、耐衝撃特性を向上させ
る。
(3)熱間加工性を向上させることにより、大型機械部
品への適用を可能とする。
などの観点から種々の材料について検討した結果、前述
のCA金合金着目するに至り、これをベースにしたCu
基合金において、冷間加工によらずに高強度化、耐WI
撃特性を改善でき、熱間加工性を向上できる方策を見い
出すべく鋭意研究を重ねた。
その結果、以下■〜■の知見を得ることができ、本発明
をなしたものである。
■ Cu中に析出硬化元素であるNx及びSiを添加し
、Ni2Si等の金属間化合物を分散析出させ、強度の
向上を図る。
■ しかし、■の手段では十分な靭性が得られないため
、α相固溶強化元素であるAlを添加し、靭性を改善す
る。
■ このCu −Ni −S i −A Q系では、高
温での絞り、伸びが小さいために熱間加工性が悪いので
、Crを添加して熱間加工性を改善する。
■ 耐衝撃特性は、結晶粒度の影響を受けるため、結晶
粒度微細化元素であるTi、Zr、Nb等を適宜添加し
て、靭性、強度の向上を図る。
■ Siは脆化元素であり、α相中にSiが固溶される
と靭性が低下するので、これを防止するためには、Ni
、Si、CrSi、等でSiを析出物として固定し、過
剰な遊離Siを生じないためにSi量をCr、Ni量と
の関係で規制する。
すなわち、本発明は、Ni:3〜10%、5ilo。
7〜2.5%、Al:2〜6%及びCr:0.1〜1゜
0%を含有し、且つ次式
%式%
を満足し、必要に応じて、更にZr、Ti及びNbのう
ちの1種又は2種以上を0.05〜0.5%含有し、残
部がCuよりなることを特徴とする耐衝撃特性に優れた
高強度銅合金を要旨とするものである。
以下に本発明を更に詳述する。
まず、本発明における化学成分の限定理由は以下のとお
りである。
Ni: 3〜10%
NiはSiと析出物(Ni2Si)を形成し、母地組織
であるα相中に分散析出するので、強度向上のために重
要な元素である。しかし、3%未満では理論量のSiが
存在したとしても、強度が十分に得られない。また、N
iはα相中に固溶することにより靭性が向上するので、
理論量以上を必要とするが、10%以上ではその改善効
果ははジ飽和する。したがって、Ni量は3〜10%の
範囲とする。
Si:0.7〜2.5%
SiはNi及びCrと析出物(Ni、Si、CrSi、
等)を形成し1強度向上に重要な元素である。しかし、
0.7%未満の場合は析出強化が十分でなく、また2、
5%を超える場合は、強度向上効果が飽和すると共に析
出物量が多くなり、靭性が低下してくる。したがって、
Si量は0.7〜2.5%の範囲とする。
Cr:0.1〜1.0%
Crは高温における絞り及び伸びを改善するために添加
され、熱間加工を容易とするために必要な元素である。
その効果は0.1%から認められるが、1.0%超では
改善効果は飽和する。したがって、Cr量は061〜1
.0%の範囲とする。
但し、Siは上記Ni、Cr量との関係で規制する必要
がある。すなわち、Siは珪化物として固定しないと靭
性低下の原因となる。したがって、Ni、Si、CrS
i2の化学量論より計算される量よりもあまり過剰に含
有させてはならず、次式1式%
を満足する必要がある。
Al:2.0〜6.0%
Alはα相を強化するために必要な元素であり、靭性向
上のためにも不可欠である。また高温下に曝された場合
の耐高温酸化特性を改善する効果もある6しかし、2.
0%未満では靭性改善効果は認められず、また6、0%
超の場合はα相中に固溶しきれずに粒界にそって脆硬な
第3相を生ずるために靭性が低下する。したがって、A
l量は2゜0〜6.0%の範囲とする。
Zr、 Ti びNbの1種又は2種以上:0.05
〜0.5%
Zr、Ti、Nbは結晶粒の微細化元素であり。
靭性、強度の向上効果があり、特に結晶粒度の影響を受
ける耐衝撃特性の改善に効果がある。また、これらの元
素はCrと共に熱間加工性改善効果が認められるので、
これらの元素の1種又は2種以上を適量で添加すること
ができる。添加する場合には、これらの元素の1種又は
2種以上を0.05〜0.5%の範囲とする。0.05
%未満ではそのような効果は顕著でなく、また0、5%
を越えて添加しても微細化効果は飽和する。
なお、上記Cu基合金は、熱間加工後、溶体化処理及び
時効処理を施すことにより製造されるが、耐衝撃特性に
優れ、高強度であり、また熱間加工性が優れているので
、大型部品としても適用可能である。
(実施例)
次に本発明の実施例を示す。
失庭態上
第1表に示す化学成分を有する銅合金を常法により溶製
したインゴットを750〜850℃で約75%の圧下率
で熱間加工した後、溶体化処理及び時効処理を施した。
但し、比較材Nα10は、熱間加工が十分できないため
、溶体化処理後、冷間加工を行い、時効処理を施した。
また、比較材Nα8は約75%の圧下率で熱間加工した
状態で供試し、比較材Nα7、h9は市販材を供試した
。
得られた供試材の引張強さ、伸び、硬さ、衝撃値及び摩
耗量を第1表に併記する。
なお、摩耗量については、以下の試験条件で大館式摩耗
試験法により測定した。その摩耗試験では、第1図に示
すように、 10mmt X 20mmX 30mm寸
法の試験片1に半径r、径30mmφX3mmし寸法の
回転円板(相手材)2を一定荷重で押し付け、試験片1
の摩耗量を次式にて測定した。
ab’
ここで、W、:試験片の摩耗量(、m3)a:相手材の
厚さ(−m)
b:摩耗痕幅(mIn)(第2図参照)r:相手材の半
径(mm)
く摩耗試験条件〉
相手材:SCM440(浸炭焼入材)、RC60
荷重:19.8kg(一定)
摩擦速度: 0.94m/see
摩擦距離:600m
潤滑条件:無潤滑
試験数:n=3
第1表より、以下の如く考察される。
Na 1〜Na 10は比較材であり、N(111−N
[116は本発明材である。
比較材Nα1〜&2は、本発明材&12及びNα14と
比べ、Al量が適正でないために衝撃値が低い。
比較材Nα3はSi量が不足しているために十分な強度
が得られず、本発明材Nα13と比較して低値である。
比較材恥4は過剰のNi、Siが含まれる場合であり、
硬さは向上しているが、衝撃値が著しく低下している。
比較材翫5はSl、Ni、Crのバランスがくずれ、S
iが過剰となっているために衝撃値が低下している。
比較材勲6はNiが適正範囲を下回る場合であり、強度
、衝撃値の点で十分とは云えない。
比較材1llQ7とNα9の市販材は冷間加工によって
強度向上を図っているが、Wf撃値、耐摩耗性の点で十
分とは云えない。
比較材Nα8、Na 10は衝撃値が十分でない。
一方、本発明材はいずれも衝撃値が高く、強度も十分に
あり、耐摩耗性の点でも市販材(Nα7、Nα9)を上
回っている。(Industrial Application Field) The present invention relates to a high-strength steel alloy with excellent impact resistance, particularly for mechanical parts that require impact resistance and wear resistance (eg, rifle nuts for rock drilling). It is suitable for mechanical parts that require low electrical resistance, non-magnetism, and impact resistance (eg, room-temperature rotor for superconducting generators). (Conventional technology and problems to be solved) In recent years, continuous
As the operating conditions of industrial machinery are becoming harsher, such as high-load use, the characteristics required of power transmission parts and sliding parts of various industrial machines are becoming stricter. Therefore, there are cases where conventional materials cannot fully satisfy the requirements. Specifically, the details are as follows. Traditionally, various phosphor bronze materials specified by JIS have been the most commonly used materials, but their wear resistance and impact resistance are not sufficient, and they have not been improved in strength through cold working. Because of this, there are size restrictions and there are economical problems. In addition, various aluminum bronze materials specified by JIS do not have sufficient wear resistance, while wear-resistant steel alloys (Japanese Patent Application No. 61-044872) and copper alloys for plastics (Japanese Patent Application No. 16491-1987) Although the former has sufficient wear resistance, it has poor impact resistance, and the latter has poor impact resistance. In addition, the so-called CA gold alloy Cor, which was developed as a material for long-span type wires,
son alloy) is known. A Cu-Ni2Si pseudo-binary alloy (3-6% Al
, some containing up to 10% Zn), and are subjected to solution treatment, quenching, tempering and age hardening treatment after hot working and cold working, and are materials with relatively good electrical conductivity, but There is a problem with machinability. The object of the present invention is to eliminate the drawbacks of the above-mentioned prior art, and to provide a material that has high strength and excellent impact resistance, and is applicable to large mechanical parts. (Means for Solving the Problems) As a material that can satisfy the above-mentioned characteristics, the present inventors first of all: (1) improve impact resistance and abrasion resistance compared to conventional materials, and increase durability. (2) Improving strength and impact resistance without cold working. (3) By improving hot workability, it can be applied to large mechanical parts. As a result of examining various materials from the viewpoint of
In base alloys, high strength and WI resistance can be achieved without cold working.
We conducted extensive research to find ways to improve the impact properties and hot workability. As a result, the following findings (1) to (4) were obtained, and the present invention was made. (2) Nx and Si, which are precipitation hardening elements, are added to Cu to disperse and precipitate intermetallic compounds such as Ni2Si to improve strength. (2) However, since sufficient toughness cannot be obtained by the method (2), Al, which is an α-phase solid solution strengthening element, is added to improve the toughness. (2) This Cu-Ni-S i -A Q system has poor hot workability due to low drawing and elongation at high temperatures, so Cr is added to improve hot workability. (2) Since impact resistance is affected by grain size, grain size refining elements such as Ti, Zr, and Nb are appropriately added to improve toughness and strength. ■ Si is an embrittlement element, and when Si is dissolved in the α phase, the toughness decreases. To prevent this, Ni
, Si, CrSi, etc. to fix Si as a precipitate, and the amount of Si is regulated in relation to the amount of Cr and Ni in order to prevent excessive free Si. That is, in the present invention, Ni: 3 to 10%, 5ilo. 7 to 2.5%, Al: 2 to 6%, and Cr: 0.1 to 1. The gist of the invention is a high-strength copper alloy with excellent impact resistance, characterized by containing 0.05 to 0.5% of one or more of these, with the remainder being Cu. The present invention will be explained in further detail below. First, the reasons for limiting the chemical components in the present invention are as follows. Ni: 3 to 10% Ni forms a precipitate (Ni2Si) with Si and is dispersed and precipitated in the α phase that is the parent structure, so it is an important element for improving strength. However, if it is less than 3%, sufficient strength cannot be obtained even if a theoretical amount of Si is present. Also, N
Since i improves toughness by solid solution in α phase,
It is necessary to use a stoichiometric amount or more, but if the amount is 10% or more, the improvement effect becomes saturated. Therefore, the amount of Ni is in the range of 3 to 10%. Si: 0.7-2.5% Si is a mixture of Ni and Cr and precipitates (Ni, Si, CrSi,
etc.) and is an important element for improving strength. but,
If it is less than 0.7%, precipitation strengthening will not be sufficient, and 2.
If it exceeds 5%, the strength improving effect is saturated, the amount of precipitates increases, and the toughness decreases. therefore,
The amount of Si is in the range of 0.7 to 2.5%. Cr: 0.1 to 1.0% Cr is added to improve drawing and elongation at high temperatures, and is a necessary element to facilitate hot working. The effect is recognized from 0.1%, but the improvement effect is saturated at more than 1.0%. Therefore, the amount of Cr is 061~1
.. The range is 0%. However, Si needs to be regulated in relation to the above-mentioned Ni and Cr contents. That is, unless Si is fixed as a silicide, it causes a decrease in toughness. Therefore, Ni, Si, CrS
It must not be contained in much excess than the amount calculated from the stoichiometry of i2, and it is necessary to satisfy the following formula 1, %. Al: 2.0 to 6.0% Al is an element necessary to strengthen the α phase and is also essential for improving toughness. It also has the effect of improving high-temperature oxidation resistance when exposed to high temperatures.6 However, 2.
At less than 0%, no toughness improvement effect is observed, and at 6.0%
In the case of a larger amount, the toughness decreases because the hard and brittle third phase is formed along the grain boundaries without being completely dissolved in the α phase. Therefore, A
The amount of l is in the range of 2°0 to 6.0%. One or more of Zr, Ti and Nb: 0.05
~0.5% Zr, Ti, and Nb are elements for refining crystal grains. It has the effect of improving toughness and strength, and is particularly effective in improving impact resistance properties, which are affected by grain size. In addition, these elements, together with Cr, are recognized to have the effect of improving hot workability.
One or more of these elements can be added in appropriate amounts. When added, one or more of these elements should be in the range of 0.05 to 0.5%. 0.05
Such an effect is not significant below 0.5%.
Even if it is added in excess of this amount, the refinement effect will be saturated. The above-mentioned Cu-based alloy is produced by subjecting it to solution treatment and aging treatment after hot working, and it has excellent impact resistance, high strength, and excellent hot workability. It can also be applied to large parts. (Example) Next, an example of the present invention will be shown. An ingot produced by a conventional method from a copper alloy having the chemical components shown in Table 1 was hot worked at a reduction rate of approximately 75% at 750 to 850°C, and then subjected to solution treatment and aging treatment. did. However, since the comparative material Nα10 could not be sufficiently hot worked, it was subjected to cold working and aging treatment after solution treatment. Further, the comparison material Nα8 was tested after hot working at a rolling reduction rate of about 75%, and the comparison materials Nα7 and h9 were commercially available materials. The tensile strength, elongation, hardness, impact value, and wear amount of the obtained test materials are also listed in Table 1. The amount of wear was measured by the Odate wear test method under the following test conditions. In the wear test, as shown in Fig. 1, a rotating disk (counterpart material) 2 with a radius r and a diameter of 30 mmφ x 3 mm was pressed against a test piece 1 with dimensions of 10 mm x 20 mm x 30 mm with a constant load.
The amount of wear was measured using the following formula. ab' where, W: Amount of wear on the test piece (, m3) a: Thickness of the mating material (-m) b: Width of wear scar (mIn) (see Figure 2) r: Radius of the mating material (mm) ) Wear test conditions〉 Compatible material: SCM440 (carburized and quenched material), RC60 Load: 19.8kg (constant) Friction speed: 0.94m/see Friction distance: 600m Lubrication conditions: Number of non-lubricated tests: n = 3rd From Table 1, the following considerations can be made. Na 1 to Na 10 are comparative materials, and N(111-N
[116 is the material of the present invention. Comparative materials Nα1 to &2 have lower impact values than inventive materials &12 and Nα14 because the amount of Al is not appropriate. Comparative material Nα3 does not have sufficient strength due to insufficient Si content, and has a lower value than inventive material Nα13. Comparison material 4 is a case where excessive Ni and Si are included,
Although the hardness has improved, the impact value has decreased significantly. Comparison material 5 has an imbalance of Sl, Ni, and Cr, and S
The impact value is reduced because i is excessive. Comparative material No. 6 has Ni content below the appropriate range, and cannot be said to be sufficient in terms of strength and impact value. Comparative materials 1llQ7 and Nα9, commercially available materials, are improved in strength by cold working, but cannot be said to be sufficient in terms of Wf impact value and wear resistance. Comparative materials Nα8 and Na10 do not have sufficient impact values. On the other hand, all of the materials of the present invention have high impact values, sufficient strength, and exceed commercially available materials (Nα7, Nα9) in terms of wear resistance.
去JJL側
本例は熱間加工性に及ぼすCr添加の影響を調べたもの
である。
実験では、5.1%Al−5.3%Ni−1.3%Si
−残部Cuの組成をベース材として、これにCrを種々
の量で添加したインゴットを溶製し、このインゴットに
ついて各種温度(高温)での伸びを調査した。その結果
を第3図に示す。
第3図より明らかなように、Cr無添加材に比べ、0.
1%Crを添加することにより、高温での伸びが著しく
改善される60.9%Crの添加でもその改善度は大差
ない。
なお、Crをこれらの容量で添加した銅合金について実
施例1の本発明材と同様の条件で熱間加工、溶体化処理
及び時効処理を施したところ、実施例1の本発明材と同
様の好結果が得られた。
(発明の効果)
以上詳述したように、本発明によれば、衝撃特性に優れ
、且つ冷間加工によらずに高強度化することが可能であ
る。また、熱間加工性が改善されるので、大型部品への
適用が拡大する。
具体的な特性としては、衝撃値5kg−m、引張強さ7
0 kgf / mm”以上を有するものであり、その
工業的価値は大きい。In this example, the influence of Cr addition on hot workability was investigated. In the experiment, 5.1%Al-5.3%Ni-1.3%Si
- Using the composition of the remaining Cu as a base material, ingots were prepared by adding various amounts of Cr to this, and the elongation of these ingots at various temperatures (high temperatures) was investigated. The results are shown in FIG. As is clear from Fig. 3, compared to the Cr-free material, 0.
By adding 1% Cr, the elongation at high temperatures is significantly improved. Even with the addition of 60.9% Cr, the degree of improvement is not much different. Note that when hot working, solution treatment, and aging treatment were performed on the copper alloy to which Cr was added in these amounts under the same conditions as the inventive material of Example 1, the same results as the inventive material of Example 1 were obtained. Good results were obtained. (Effects of the Invention) As detailed above, according to the present invention, it is possible to have excellent impact properties and increase strength without cold working. Furthermore, since hot workability is improved, the application to large parts is expanded. Specific properties include impact value of 5 kg-m and tensile strength of 7.
0 kgf/mm" or more, and its industrial value is great.
第1図及び第2図は大館式摩耗試験法の要領を説明する
図で、第1図は試験概略を示し、第2図は摩耗痕幅すを
示しており、
第3図はCr添加量と高温伸びの関係を示す図である。
特許出願人 株式会社神戸製鋼所
代理人弁理士 中 村 尚
第1図
荷!
↓
第3図
第2図
i六゛島炙髪ム/!(゛ごンFigures 1 and 2 are diagrams explaining the outline of the Odate wear test method. Figure 1 shows the test outline, Figure 2 shows the wear scar width, and Figure 3 shows the amount of Cr added. It is a figure showing the relationship between and high temperature elongation. Patent applicant Takashi Nakamura, Patent attorney representing Kobe Steel, Ltd. 1st shipment! ↓ Figure 3 Figure 2 I Rokujima broiled hair/! (゛gon
Claims (1)
i:0.7〜2.5%、Al:2〜6%及びCr:0.
1〜1.0%を含有し、且つ次式 1.2Cr+0.24Ni≧0.9Si を満足し、残部がCuよりなることを特徴とする耐衝撃
特性に優れた高強度銅合金。 (2)Ni:3〜10%、Si:0.7〜2.5%、A
l:2〜6%及びCr:0.1〜1.0%を含有し、更
にZr、Ti及びNbのうちの1種又は2種以上を0.
05〜0.5%含有し、且つ次式 1.2Cr+0.24Ni≧0.9Si を満足し、残部がCuよりなることを特徴とする耐衝撃
特性に優れた高強度銅合金。[Claims] (1) In weight% (the same applies hereinafter), Ni: 3 to 10%, S
i: 0.7-2.5%, Al: 2-6% and Cr: 0.
1 to 1.0%, and satisfies the following formula: 1.2Cr+0.24Ni≧0.9Si, with the remainder being Cu. A high-strength copper alloy with excellent impact resistance. (2) Ni: 3-10%, Si: 0.7-2.5%, A
1 to 6% and Cr: 0.1 to 1.0%, and further contains 0.1 to 0.1% of one or more of Zr, Ti, and Nb.
A high-strength copper alloy with excellent impact resistance, characterized by containing 05 to 0.5% and satisfying the following formula: 1.2Cr+0.24Ni≧0.9Si, with the remainder being Cu.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33549188A JPH02179839A (en) | 1988-12-29 | 1988-12-29 | High strength copper alloy having excellent impact resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33549188A JPH02179839A (en) | 1988-12-29 | 1988-12-29 | High strength copper alloy having excellent impact resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02179839A true JPH02179839A (en) | 1990-07-12 |
JPH0469219B2 JPH0469219B2 (en) | 1992-11-05 |
Family
ID=18289167
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33549188A Granted JPH02179839A (en) | 1988-12-29 | 1988-12-29 | High strength copper alloy having excellent impact resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02179839A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0499140A (en) * | 1990-08-03 | 1992-03-31 | Hitachi Ltd | Die material for plastic molding and its manufacture |
EP0939139A3 (en) * | 1998-02-26 | 2000-01-12 | Nissan Motor Company Limited | Abrasion resistant copper alloy for build-up cladding on engine cylinder head |
US6096142A (en) * | 1994-07-20 | 2000-08-01 | Nissan Motor Co., Ltd. | High temperature abrasion resistant copper alloy |
EP2653574A1 (en) * | 2010-12-13 | 2013-10-23 | Nippon Seisen Co., Ltd. | Copper alloy and method for producing copper alloy |
EP4095274A1 (en) * | 2021-05-26 | 2022-11-30 | National Tsing Hua University | High strength and wear resistant multi-element copper alloy and article comprising the same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5776143A (en) * | 1980-10-30 | 1982-05-13 | Mitsubishi Metal Corp | Mn-si-type intermetallic compound-dispersed high-strength brass having toughness and abrasion-resistance |
JPS63238249A (en) * | 1987-03-26 | 1988-10-04 | Mitsubishi Metal Corp | Synchronous ring made of cu alloy for gearbox |
JPS63241131A (en) * | 1986-11-20 | 1988-10-06 | Nippon Mining Co Ltd | Copper alloy for sliding material |
-
1988
- 1988-12-29 JP JP33549188A patent/JPH02179839A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5776143A (en) * | 1980-10-30 | 1982-05-13 | Mitsubishi Metal Corp | Mn-si-type intermetallic compound-dispersed high-strength brass having toughness and abrasion-resistance |
JPS63241131A (en) * | 1986-11-20 | 1988-10-06 | Nippon Mining Co Ltd | Copper alloy for sliding material |
JPS63238249A (en) * | 1987-03-26 | 1988-10-04 | Mitsubishi Metal Corp | Synchronous ring made of cu alloy for gearbox |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0499140A (en) * | 1990-08-03 | 1992-03-31 | Hitachi Ltd | Die material for plastic molding and its manufacture |
US6096142A (en) * | 1994-07-20 | 2000-08-01 | Nissan Motor Co., Ltd. | High temperature abrasion resistant copper alloy |
EP0939139A3 (en) * | 1998-02-26 | 2000-01-12 | Nissan Motor Company Limited | Abrasion resistant copper alloy for build-up cladding on engine cylinder head |
EP1120472A3 (en) * | 1998-02-26 | 2002-01-02 | Nissan Motor Co., Ltd. | Abrasion resistant copper alloy for build-up cladding on engine cylinder head |
US6531003B2 (en) | 1998-02-26 | 2003-03-11 | Mitsui Mining & Smelting Co., Ltd. | Abrasion resistant copper alloy, copper alloy powder for build-up cladding, and engine cylinder head |
EP2653574A1 (en) * | 2010-12-13 | 2013-10-23 | Nippon Seisen Co., Ltd. | Copper alloy and method for producing copper alloy |
EP2653574A4 (en) * | 2010-12-13 | 2014-09-10 | Nippon Seisen Co Ltd | Copper alloy and method for producing copper alloy |
EP4095274A1 (en) * | 2021-05-26 | 2022-11-30 | National Tsing Hua University | High strength and wear resistant multi-element copper alloy and article comprising the same |
JP2022182908A (en) * | 2021-05-26 | 2022-12-08 | 國立清華大學 | High strength wear resistant multicomponent copper alloy |
US11767578B2 (en) | 2021-05-26 | 2023-09-26 | National Tsing Hua University | High strength and wear resistant multi-element copper alloy and article comprising the same |
Also Published As
Publication number | Publication date |
---|---|
JPH0469219B2 (en) | 1992-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3912503A (en) | Galling resistant austenitic stainless steel | |
US4039356A (en) | Galling resistant austenitic stainless steel | |
JP2761181B2 (en) | Tin-based white metal bearing alloy with excellent heat and fatigue resistance | |
JPH02179839A (en) | High strength copper alloy having excellent impact resistance | |
JPS6263637A (en) | Aluminum bearing alloy | |
US2798806A (en) | Titanium alloy | |
JPH07107183B2 (en) | Wear resistant Cu alloy with high strength and toughness | |
JP4807949B2 (en) | Rolled steel bar for case hardening with excellent high-temperature carburizing characteristics | |
JPH08127831A (en) | Synchronizer ring made of copper alloy excellent in wear resistance | |
US2645574A (en) | Steel for high-temperature use | |
JP2819906B2 (en) | Ni-base alloy for tools with excellent room and high temperature strength | |
JPH0788548B2 (en) | Wear resistant Cu alloy with high strength and toughness | |
JP2007113071A (en) | Case hardening steel having excellent rolling fatigue property and crystal grain coarsening prevention property | |
JPS6086237A (en) | Cu-alloy for slide member | |
JPS6086236A (en) | Cu-alloy for slide member | |
JP3256184B2 (en) | Method for producing ultra-free-cutting steel rods and parts, and ultra-free-cutting steel rods and parts using them | |
JPS6254176B2 (en) | ||
JPS58100654A (en) | Aluminum alloy for casting with superior heat resistance | |
JPH08157986A (en) | High strength and high ductility titanium alloy | |
JPH0913133A (en) | Aluminum bronze and sliding member using the same | |
JPH0832937B2 (en) | Wear resistant Cu alloy with high strength and toughness | |
JPH04337048A (en) | Carburizing steel minimal in abnormal layer | |
JPH08157987A (en) | High strength and high ductility titanium alloy | |
JP2952006B2 (en) | Piston ring material | |
JPH07116538B2 (en) | Wear resistant Cu alloy with high strength and toughness |