JPH02153538A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPH02153538A JPH02153538A JP30807288A JP30807288A JPH02153538A JP H02153538 A JPH02153538 A JP H02153538A JP 30807288 A JP30807288 A JP 30807288A JP 30807288 A JP30807288 A JP 30807288A JP H02153538 A JPH02153538 A JP H02153538A
- Authority
- JP
- Japan
- Prior art keywords
- gate
- insulating film
- film
- drain
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims description 30
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- 239000000758 substrate Substances 0.000 claims abstract description 26
- 238000000034 method Methods 0.000 claims abstract description 20
- 238000005468 ion implantation Methods 0.000 claims abstract description 15
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 15
- 239000012535 impurity Substances 0.000 claims description 14
- 150000002500 ions Chemical class 0.000 claims description 11
- 230000003647 oxidation Effects 0.000 claims description 11
- 238000007254 oxidation reaction Methods 0.000 claims description 11
- 150000004767 nitrides Chemical class 0.000 abstract description 17
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 9
- 229910052710 silicon Inorganic materials 0.000 abstract description 9
- 239000010703 silicon Substances 0.000 abstract description 9
- 238000002513 implantation Methods 0.000 abstract description 5
- 229920005591 polysilicon Polymers 0.000 abstract description 5
- -1 arsenic ions Chemical class 0.000 abstract description 4
- 229910052785 arsenic Inorganic materials 0.000 abstract description 3
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 3
- 239000011574 phosphorus Substances 0.000 abstract description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 11
- 230000000694 effects Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 3
- 230000005465 channeling Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、半導体装置の製造方法に関し、特に、ライ
トリイ・ドープド・ドレイン(LightlyDope
d Drln :以下LDDと称す)構造の絶縁ゲート
電界効果半導体装置の製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a semiconductor device, and in particular, to a method for manufacturing a semiconductor device.
The present invention relates to a method of manufacturing an insulated gate field effect semiconductor device having a structure (hereinafter referred to as LDD).
第4図(a)〜(C)は従来のこの種の半導体装置の製
造方法の主要段階における状態を示す断面図である。(
特願昭60−43951号、特願昭60−43952号
参照)。これらの図において、21はp型シリコン基板
、22はフィールド酸化膜、23はゲート絶縁膜、24
はポリシリコン(多結晶シリコン)、25はフォトレジ
スト、26は低濃度ソース・ドレイン領域(n−層)、
27は高濃度ソース・ドレイン領域(n″層)である。FIGS. 4A to 4C are cross-sectional views showing the main stages of a conventional method for manufacturing a semiconductor device of this type. (
(See Japanese Patent Application No. 60-43951 and Japanese Patent Application No. 60-43952). In these figures, 21 is a p-type silicon substrate, 22 is a field oxide film, 23 is a gate insulating film, and 24 is a p-type silicon substrate.
25 is a photoresist, 26 is a low concentration source/drain region (n-layer),
27 is a highly doped source/drain region (n'' layer).
次に製造行程において説明する。Next, the manufacturing process will be explained.
まず、第4図(a)に示すように、p型シリコン基板2
1にフィールド酸化膜22を形成した後、ゲート絶縁膜
23としてSi3N4からなる第1の窒化膜を約200
人形成する。次にゲート電極を形成するためのゲート電
極材料としてポリシリコン24をCVD法により400
0人を堆積させ、このポリシリコン24に導電性を持た
せるためにP(リン)のような不純物をドープした後、
フォトレジスト25を用いてゲート電tiTa iI
域が残るようにバターニングを行う。次にパターニング
されたフォトレジスト25をマスクとしてゲート電極材
料であるポリシリコン24をRIE法等によってエツチ
ングし、ゲート電極24Gを形成する(第4図(b))
。その後、フォトレジスト25を除去して、ゲート電極
24GをマスクにしてPイオンを第4図(b)に示すよ
うにp型シリコン基板1に鉛直方向から約45度の角度
で斜め回転イオン注入し、低濃度ソース・ドレイン領域
(n−層)26を形成する。そして、第4図(C)に示
すように通常の鉛直方向イオン注入でAs(砒素)を注
入し、高濃度ソース・ドレイン領域(n 4−層)27
を形成してLDD構造を得る。First, as shown in FIG. 4(a), a p-type silicon substrate 2
After forming a field oxide film 22 on the first nitride film 22, a first nitride film made of Si3N4 is deposited as a gate insulating film 23 with a thickness of about 200%.
Form people. Next, as a gate electrode material for forming a gate electrode, polysilicon 24 was deposited using a CVD method.
After doping the polysilicon 24 with an impurity such as P (phosphorus) to make it conductive,
Gate voltage tiTa iI using photoresist 25
Buttering is done so that areas remain. Next, using the patterned photoresist 25 as a mask, the polysilicon 24, which is the gate electrode material, is etched by RIE or the like to form a gate electrode 24G (FIG. 4(b)).
. Thereafter, the photoresist 25 is removed, and using the gate electrode 24G as a mask, P ions are implanted into the p-type silicon substrate 1 at an angle of approximately 45 degrees from the vertical direction, as shown in FIG. 4(b). , a low concentration source/drain region (n- layer) 26 is formed. Then, as shown in FIG. 4(C), As (arsenic) is implanted by normal vertical ion implantation, and the high concentration source/drain region (n4- layer) 27
is formed to obtain an LDD structure.
(発明が解決しようとする課題)
上記のような従来の製造方法によって得られるLDD構
造は、ゲート電tf!24 aの端とn1層である高濃
度ソース・ドレイン領域27がオーバラップしているた
めに、ゲート絶縁膜23が薄くなると、上記オーバラッ
プ領域の空乏化したドレインにおいて、バンド間でトン
ネリングが生じ、ドレインリーク電流が発生するという
問題点があった(詳しくはT、Y、Chan、J、Ch
en、P、に、Ko and C,)Iu。(Problems to be Solved by the Invention) The LDD structure obtained by the conventional manufacturing method as described above has a gate voltage tf! Since the end of 24a overlaps the high concentration source/drain region 27 which is the n1 layer, when the gate insulating film 23 becomes thinner, tunneling occurs between bands in the depleted drain in the overlap region. , there was a problem that drain leakage current occurred (for details, see T, Y, Chan, J, Ch.
en, P., Ko and C.) Iu.
1987 IEDM Technical Diges
t、p、718.特開昭61−101077号公報等参
照)。1987 IEDM Technical Diges
t, p, 718. (See Japanese Patent Application Laid-Open No. 61-101077, etc.).
この発明は、上記のような問題点を解消するためになさ
れたもので、得られる半導体装置のゲート訪起のドレイ
ンリーク電流を低減できる半導体装置の製造方法を提供
することを目的としている。The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a method for manufacturing a semiconductor device that can reduce gate-induced drain leakage current of the resulting semiconductor device.
この発明にかかる半導体装置の製造方法は、導電型の半
導体基板上にゲート絶縁膜、その上にゲート電極となる
多結晶シリコン膜、さらにその上に耐酸化性の絶縁膜を
備えたゲートを形成する工程と、絶縁膜をマスクとして
ゲート側壁部に酸化膜を形成する工程と、耐酸化性の絶
縁膜およびゲート側壁部の酸化膜をマスクとして、半導
体基板と異なる導電型の不純物をイオン注入してソース
・ドレインの高濃度領域を形成する工程と、絶縁膜およ
びゲート側壁部の酸化膜を除去した後、ゲートをマスク
として半導体基板と異なる導電型の不純物イオンを斜め
回転イオン注入してソース・ドレインの低濃度領域を形
成する工程とを含むものである。The method for manufacturing a semiconductor device according to the present invention includes forming a gate having a gate insulating film on a conductive semiconductor substrate, a polycrystalline silicon film serving as a gate electrode on the gate insulating film, and an oxidation-resistant insulating film on the gate insulating film. a step of forming an oxide film on the gate sidewalls using the insulating film as a mask, and a step of ion-implanting impurities of a conductivity type different from that of the semiconductor substrate using the oxidation-resistant insulating film and the oxide film on the gate sidewalls as masks. After removing the insulating film and the oxide film on the side walls of the gate, impurity ions of a conductivity type different from that of the semiconductor substrate are obliquely implanted using the gate as a mask. The method includes a step of forming a low concentration region of the drain.
また、上記において、低濃度ソース・ドレイン領域を先
に形成した後、高濃度ソース・ドレイン領域を形成して
もよい。Further, in the above, the lightly doped source/drain regions may be formed first, and then the highly doped source/drain regions may be formed.
この発明の請求項(1)の半導体装置の製造方法におい
ては、ソース・ドレインの高濃度領域がゲートをマスク
としての斜め回転イオン注入により形成され、ソース・
ドレインの高濃度領域が、ゲート側壁部に酸化膜が形成
された酸化膜および絶縁膜をマスクとしてのイオン注入
により形成されることにより、ゲート端とソース・ドレ
インの高濃度領域端のオーバラップが防止される。In the method for manufacturing a semiconductor device according to claim (1) of the present invention, the high concentration regions of the source and drain are formed by oblique rotational ion implantation using the gate as a mask.
The high concentration region of the drain is formed by ion implantation using an oxide film and an insulating film as masks, with an oxide film formed on the gate sidewalls, so that the overlap between the gate end and the end of the high concentration region of the source/drain is prevented. Prevented.
この発明の請求項(2)の半導体装置の製造方法におい
ては、ソース・ドレインの低濃度領域がイオン注入によ
り形成され、ソース・ドレイン高濃度領域が、ゲートを
マスクとしてのイオン注入により形成され、この後ゲー
ト側壁部に酸化膜が形成されることによりゲートが短く
され、ゲート端とソース・ドレインの高濃度領域端のオ
ーバラップが防止される。In the method for manufacturing a semiconductor device according to claim (2) of the present invention, the low concentration source/drain regions are formed by ion implantation, the high concentration source/drain regions are formed by ion implantation using the gate as a mask, Thereafter, an oxide film is formed on the side walls of the gate, thereby shortening the gate and preventing the gate end from overlapping with the end of the high concentration region of the source/drain.
第1図(a)〜(C)はこの発明の半導体装置の製造方
法の一実施例の主要階段における状態を示す断面図であ
る。FIGS. 1A to 1C are cross-sectional views showing the main steps of an embodiment of the method for manufacturing a semiconductor device according to the present invention.
これらの図において、1はp型シリコン基板、2はフィ
ールド酸化膜、3はゲート絶縁膜、4は多結晶シリコン
膜、5は窒化膜、6は酸化膜、7は高濃度ソース・ドレ
イン領域(n−層)、8は低濃度ソース・ドレイン領域
(n“層)である。In these figures, 1 is a p-type silicon substrate, 2 is a field oxide film, 3 is a gate insulating film, 4 is a polycrystalline silicon film, 5 is a nitride film, 6 is an oxide film, and 7 is a high concentration source/drain region ( 8 is a low concentration source/drain region (n" layer).
次に製造行程について説明する。Next, the manufacturing process will be explained.
まず、第1図(a)に示すように、例えばp型シリコン
基板1にフィールド酸化膜2を形成した後、例えば酸化
膜からなるゲート絶縁膜3およびゲート電極となる多結
晶シリコン膜4を形成した後、さらにその上にLPCV
D法で耐酸化性の、例えば窒化膜5を堆積し、フォトエ
ツチングしてゲートを形成する。次に、第1図(b)に
示すように、窒化D! 5をマスクにして、熱処理を行
って酸化膜6をゲート側壁部に形成する。そして、窒化
膜5およびゲート側壁部6の酸化膜6をマスクにして、
例えば砒素イオンAsを4X10”(cm−2)注入し
、高濃度ソース・ドレイン領域7を形成する。次に第1
図(C)に示すように、窒化膜5およびゲート側壁部の
酸化膜6を除去した後、例えばリンイオンPを1xlO
”(cm−2)の注入量で鉛直方向から約45の角度で
、斜め回転イオン注入し、低濃度ソース・ドレイン領域
8を形成することでLDD構造を得る。First, as shown in FIG. 1(a), a field oxide film 2 is formed on, for example, a p-type silicon substrate 1, and then a gate insulating film 3 made of, for example, an oxide film and a polycrystalline silicon film 4 that will become a gate electrode are formed. After that, add LPCV on top of that.
An oxidation-resistant nitride film 5, for example, is deposited by method D and photoetched to form a gate. Next, as shown in FIG. 1(b), nitrided D! 5 as a mask, heat treatment is performed to form an oxide film 6 on the gate sidewalls. Then, using the nitride film 5 and the oxide film 6 on the gate side wall portion 6 as a mask,
For example, arsenic ions As are implanted at 4×10” (cm−2) to form high concentration source/drain regions 7. Next, the first
As shown in Figure (C), after removing the nitride film 5 and the oxide film 6 on the gate sidewalls, for example, phosphorus ions P are
The LDD structure is obtained by performing oblique rotational ion implantation at an angle of about 45 degrees from the vertical direction at an implantation dose of 1.5 cm -2 to form low concentration source/drain regions 8.
以下図示はしないが、コンタクト窓開け、電極配線行程
などを行うことによって素子が完成する。ここで、ゲー
ト絶縁膜3として、例えば耐酸化性の5NOS構造(酸
化膜+窒化膜)を採用すると、ゲート側壁部のみを酸化
するため、さらに効果的である。Although not shown below, the device is completed by performing processes such as opening contact windows and wiring electrodes. Here, if, for example, an oxidation-resistant 5NOS structure (oxide film + nitride film) is adopted as the gate insulating film 3, it is more effective because only the gate sidewalls are oxidized.
また、上記実施例では、先に高濃度ソース・ドレイン領
域7を形成したが、低濃度ソース・ドレイン領域8を先
に形成することも可能である。Further, in the above embodiment, the highly doped source/drain regions 7 are formed first, but it is also possible to form the lightly doped source/drain regions 8 first.
この場合の実施例を第2図(a)〜(d)によって説明
する。まず、第2図(a)に示すように、第1図(a)
と同様にしてP型シリコン基板1に、フィールド酸化膜
2を形成した後、窒化膜からなるゲート絶縁膜3と多結
晶シリコン膜4と窒化膜5よりなるゲートを形成し、窒
化膜5をマスクとして斜め回転イオン注入で、P等の低
濃度のn型不純物をイオン注入することで、低濃度ソー
ス・ドレイン領域8を形成する。次に、第2図(b)に
示すように、窒化膜5をマスクとして高温の酸化雰囲気
にさらし、ゲート側壁部に酸化膜6を形成した後、窒化
膜5およびゲート側壁部の酸化膜6をマスクとしてAs
等の高濃度のn型不純物をイオン注入し、高濃度ソース
・ドレイン領域7を形成してLDD構造を得る。An example in this case will be explained with reference to FIGS. 2(a) to (d). First, as shown in FIG. 2(a), as shown in FIG.
After forming a field oxide film 2 on a P-type silicon substrate 1 in the same manner as above, a gate insulating film 3 made of a nitride film, a gate made of a polycrystalline silicon film 4 and a nitride film 5 is formed, and the nitride film 5 is masked. The low concentration source/drain regions 8 are formed by ion implanting a low concentration n-type impurity such as P using oblique rotational ion implantation. Next, as shown in FIG. 2(b), the nitride film 5 is used as a mask and exposed to a high temperature oxidizing atmosphere to form an oxide film 6 on the gate sidewalls. As as a mask
A high concentration n-type impurity such as the like is ion-implanted to form a high concentration source/drain region 7 to obtain an LDD structure.
この方法だと、後工程におけるイオン注入の際にゲート
側壁部の酸化膜6を除去する必要がなく、フィールド酸
化膜2の膜減りもない。With this method, there is no need to remove the oxide film 6 on the side walls of the gate during ion implantation in the subsequent process, and there is no reduction in the thickness of the field oxide film 2.
また、ゲート電極である多結晶シリコン膜4上の窒化膜
5および高濃度ソース・ドレイン領域7上の窒化膜5を
除去し、さらに第2図(C)に示すように、例えばTi
9をスパッタ法で堆積させて熱処理を施せば、ゲート電
極部および高濃度ソース・ドレイン領域7をシリサイド
化して低抵抗化できる。ただし、ゲート側壁部は酸化膜
6があるのでシリサイド化せず、未反応のTi9を除去
することで、第2図(d)に示すように、セルファライ
ンでゲート電極および高濃度ソース・ドレイン領域7に
シリサイド部10.11を形成できる。なお、高濃度ソ
ース・ドレイン領域7を形成するためのイオン注入は、
サリサイド(SALICIDE:Selfaligne
d 5ilicide)構造にしてから行うことも可能
である。Further, the nitride film 5 on the polycrystalline silicon film 4 serving as the gate electrode and the nitride film 5 on the high concentration source/drain region 7 are removed, and further, as shown in FIG.
By depositing 9 by sputtering and subjecting it to heat treatment, the gate electrode portion and the high concentration source/drain regions 7 can be silicided and their resistance can be lowered. However, since the gate sidewall part has an oxide film 6, it is not silicided, and by removing unreacted Ti9, the gate electrode and high concentration source/drain regions are formed in the self-alignment line as shown in FIG. 2(d). A silicide portion 10.11 can be formed at 7. Note that the ion implantation for forming the high concentration source/drain regions 7 is as follows:
SALICIDE: Selfaligne
It is also possible to carry out the process after forming the d5ilicide structure.
また、上記2つの実施例は、Nチャネル絶縁ゲート電極
効果半導体装置の製造方法について述べたが、もちろん
p基板をn基板にし、注入するn型不純物イオンをp型
不純物イオンにすることにより、pチャネル絶縁ゲート
電界効果半導体装置にも適用可能である。Furthermore, although the above two embodiments have described the method of manufacturing an N-channel insulated gate electrode effect semiconductor device, by changing the p-substrate to an n-substrate and replacing the n-type impurity ions to be implanted with p-type impurity ions, it is possible to It is also applicable to channel insulated gate field effect semiconductor devices.
ところで、上記実施例でCMOSを作成する場合にはソ
ース・ドレインイオン注入領域を限定するために、フォ
トレジスト等を使用する必要があるが、低濃度と高濃度
のイオン注入の間に高温の熱処理がある場合にはフォト
レジストのバターニング回数が増える問題がある。By the way, when creating a CMOS in the above embodiment, it is necessary to use photoresist or the like to limit the source/drain ion implantation region, but high temperature heat treatment is required between low concentration and high concentration ion implantation. If there is, there is a problem that the number of times of patterning the photoresist increases.
しかし、以下に示す方法によれば、ソース・ドレインの
低濃度および高濃度の注入を一括して行うことが可能に
なる。However, according to the method described below, it becomes possible to simultaneously perform low-concentration and high-concentration implantation of the source and drain.
すなわち、まず、第3図(a)に示すようにゲート電極
形成のためのフォトレジスト12のパタニング後、窒化
膜5.多結晶シリコン膜4をRIE法でエツチングした
後、フォトレジスト12を除去する。次にn型のソース
・ドレイン領域形成のためにフォトレジスト13を用い
て他の領域を覆うようにバターニングする。その後、第
3図(b)に示すように、フォトレジスト13.ポリシ
リコン4および窒化膜5をマスクにして、n型不純物、
例えばPを鉛直方向から45°の角度で斜め回転イオン
注入し、低濃度ソース・ドレイン領域8を作成する。次
に第3図(e)に示すように、鉛直方向から約7°の角
度(チャネリング防止)で、例えばAsを回転注入し、
高濃度ソース・ドレイン領域7を形成することでn型の
LDD構造が形成される。そして、この後、第2図(d
)に示すように、ゲート側壁部に酸化膜6を形成して、
高濃度ソース・ドレイン領域7のオーバラップを解消す
る。また、nウェル14内のp型ソース・ドレインもL
DD構造を用いるなら同様の方法で作成できる。さらに
、第3図(e)に示すように、サリサイド構造にするこ
とも可能である。上記の約7°の角度でイオン注入する
のは、通常のようにSt基板上に酸化膜6なしで0°注
入するとチャネリング((ioo)基板や(111)基
板の結晶格子において、注入されたイオンが衝突しない
場所が生じ、ここに注入されたイオンは深く注入される
)現象が生じるため、注入角度をこのように約7°程度
傾ける。That is, first, as shown in FIG. 3(a), after patterning a photoresist 12 for forming a gate electrode, a nitride film 5. After etching the polycrystalline silicon film 4 by RIE, the photoresist 12 is removed. Next, in order to form n-type source/drain regions, a photoresist 13 is used and patterned to cover other regions. Thereafter, as shown in FIG. 3(b), the photoresist 13. Using polysilicon 4 and nitride film 5 as masks, n-type impurities,
For example, the low concentration source/drain regions 8 are created by performing oblique rotational ion implantation of P at an angle of 45° from the vertical direction. Next, as shown in FIG. 3(e), for example, As is rotationally injected at an angle of about 7° from the vertical direction (to prevent channeling).
By forming the highly doped source/drain regions 7, an n-type LDD structure is formed. Then, after this, Figure 2 (d
), an oxide film 6 is formed on the side walls of the gate,
The overlap of the high concentration source/drain regions 7 is eliminated. In addition, the p-type source and drain in the n-well 14 are also L
If a DD structure is used, it can be created in a similar manner. Furthermore, as shown in FIG. 3(e), it is also possible to use a salicide structure. The reason for implanting ions at an angle of approximately 7° as described above is that when implanting ions at an angle of 0° onto a St substrate without an oxide film 6 as usual, the implantation occurs in the crystal lattice of a channeling ((ioo) or (111) substrate). The implantation angle is thus tilted by about 7 degrees because a phenomenon occurs in which ions do not collide and the ions implanted there are deeply implanted.
〔発明の効果)
以上説明したように、この発明の請求項(1)の半導体
装置の製造方法は、一導電型の半導体基板上にゲート絶
縁膜、その上にゲート電極となる多結晶シリコン膜、さ
らにその上に耐酸化性の絶縁膜を備えたゲートを形成す
る工程と、絶縁膜をマスクとしてゲート側壁部に酸化膜
を形成する工程と、耐酸化性の絶縁膜およびゲート側壁
部の酸化膜をマスクとして、半導体基板と異なる導電型
の不純物をイオン注入してソース・ドレインの高濃度領
域を形成する工程と、絶縁膜およびゲート側壁部の酸化
膜を除去した後、ゲートをマスクとして半導体基板と異
なる導電型の不純物イオンを斜め回転イオン注入してソ
ース・ドレインの低濃度領域を形成する工程とを含むの
で、ゲート端とソース・ドレインの領域端がオーバラッ
プしないように構成でき、ゲート誘起のドレインリーク
電流を低減するという効果がある。また、ゲートとソー
ス・ドレインの低濃度領域のみがオーバラップしたLD
D構造となっているので、ゲート容量が低減される。[Effects of the Invention] As explained above, the method for manufacturing a semiconductor device according to claim (1) of the present invention includes a gate insulating film on a semiconductor substrate of one conductivity type, and a polycrystalline silicon film serving as a gate electrode on the gate insulating film. , a step of forming a gate with an oxidation-resistant insulating film thereon, a step of forming an oxide film on the gate sidewalls using the insulating film as a mask, and a step of oxidizing the oxidation-resistant insulating film and the gate sidewalls. Using the film as a mask, impurities of a conductivity type different from that of the semiconductor substrate are ion-implanted to form high concentration regions of the source and drain. After removing the insulating film and the oxide film on the side walls of the gate, the semiconductor substrate is implanted using the gate as a mask. This process includes the step of obliquely rotationally implanting impurity ions of a conductivity type different from that of the substrate to form low concentration regions of the source/drain, so that the gate edge and the edge of the source/drain region do not overlap. This has the effect of reducing induced drain leakage current. In addition, an LD in which only the low concentration regions of the gate and source/drain overlap
Since it has a D structure, gate capacitance is reduced.
また、この発明の請求項 (2)の半導体装置の製造方
法は、低濃度ソース・ドレイン領域を先に形成した後、
高濃度ソース・ドレイン領域を形成するので、上記請求
項(1)の作用効果の他、イオン注入の際にゲート側壁
部の酸化膜を除去する必要がない利点がある。Further, in the method for manufacturing a semiconductor device according to claim (2) of the present invention, after forming the low concentration source/drain regions first,
Since highly doped source/drain regions are formed, there is an advantage in addition to the effects of the above-mentioned aspect (1) that there is no need to remove the oxide film on the side walls of the gate during ion implantation.
第1図はこの発明の一実施例を説明するための断面図、
第2図、第3図はこの発明の他の実施例を説明するため
の断面図、第4図は従来のLDD構造の半導体装置の製
造方法を説明するための断面図である。
図において、1はp型シリコン基板、2はフィールド酸
化膜、3はゲート絶縁膜、4は多結晶シリコン膜、5は
窒化膜、6は酸化膜、7は高濃度ソース・ドレイン領域
、8は低濃度ソース・ドレイン領域、9はTi、10.
11はシリサイド部、12.13はフォトレジスト、1
4はnウェルである。
なお、各図中の同一符号は同一または相当部分を示す。FIG. 1 is a sectional view for explaining one embodiment of the present invention;
2 and 3 are cross-sectional views for explaining other embodiments of the present invention, and FIG. 4 is a cross-sectional view for explaining a conventional method of manufacturing a semiconductor device having an LDD structure. In the figure, 1 is a p-type silicon substrate, 2 is a field oxide film, 3 is a gate insulating film, 4 is a polycrystalline silicon film, 5 is a nitride film, 6 is an oxide film, 7 is a high concentration source/drain region, and 8 is a Low concentration source/drain regions, 9 Ti, 10.
11 is a silicide part, 12.13 is a photoresist, 1
4 is an n-well. Note that the same reference numerals in each figure indicate the same or corresponding parts.
Claims (2)
にゲート電極となる多結晶シリコン膜、さらにその上に
耐酸化性の絶縁膜を備えたゲートを形成する工程と、前
記絶縁膜をマスクとしてゲート側壁部に酸化膜を形成す
る工程と、前記耐酸化性の絶縁膜およびゲート側壁部の
酸化膜をマスクとして、前記半導体基板と異なる導電型
の不純物をイオン注入してソース・ドレインの高濃度領
域を形成する工程と、前記絶縁膜およびゲート側壁部の
酸化膜を除去した後、前記ゲートをマスクとして前記半
導体基板と異なる導電型の不純物イオンを斜め回転イオ
ン注入して前記ソース・ドレインの低濃度領域を形成す
る工程とを含むことを特徴とする半導体装置の製造方法
。(1) A step of forming a gate having a gate insulating film on a semiconductor substrate of one conductivity type, a polycrystalline silicon film to serve as a gate electrode on the gate insulating film, and an oxidation-resistant insulating film on the gate insulating film, and the insulating film forming an oxide film on the gate sidewall using the oxidation-resistant insulating film and the oxide film on the gate sidewall as a mask, and ion-implanting an impurity of a conductivity type different from that of the semiconductor substrate to form the source and drain. After removing the insulating film and the oxide film on the side walls of the gate, impurity ions of a conductivity type different from that of the semiconductor substrate are obliquely ion-implanted into the source region using the gate as a mask. 1. A method of manufacturing a semiconductor device, comprising the step of forming a low concentration region of a drain.
にゲート電極となる多結晶シリコン膜、さらにその上に
耐酸化性の絶縁膜を備えたゲートを形成する工程と、前
記ゲートをマスクとしてソース・ドレイン領域に前記半
導体基板と異なる導電型の不純物を斜め回転イオン注入
してソース・ドレインの低濃度領域を形成する工程と、
前記耐酸化性の絶縁膜をマスクとしてゲート側壁部に酸
化膜を形成する工程と、前記半導体基板と異なる導電型
の不純物をイオン注入してソース・ドレインの高濃度領
域を形成する工程と、前記耐酸化性の絶縁膜およびソー
ス・ドレイン領域のゲート絶縁膜を除去する工程とを含
むことを特徴とする半導体装置の製造方法。(2) A step of forming a gate having a gate insulating film on a semiconductor substrate of one conductivity type, a polycrystalline silicon film to serve as a gate electrode on the gate insulating film, and an oxidation-resistant insulating film on the gate insulating film, and forming the gate. forming low concentration regions of the source and drain by obliquely rotating ion implantation of impurities of a conductivity type different from that of the semiconductor substrate into the source and drain regions as a mask;
a step of forming an oxide film on the gate sidewall using the oxidation-resistant insulating film as a mask; a step of ion-implanting impurities of a conductivity type different from that of the semiconductor substrate to form high concentration regions of the source and drain; 1. A method for manufacturing a semiconductor device, comprising the step of removing an oxidation-resistant insulating film and a gate insulating film in source/drain regions.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63308072A JP2781913B2 (en) | 1988-12-05 | 1988-12-05 | Method of manufacturing semiconductor device having LDD structure |
US07/399,947 US5146291A (en) | 1988-08-31 | 1989-08-31 | MIS device having lightly doped drain structure |
US07/896,535 US5217913A (en) | 1988-08-31 | 1992-06-09 | Method of manufacturing an MIS device having lightly doped drain structure and conductive sidewall spacers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63308072A JP2781913B2 (en) | 1988-12-05 | 1988-12-05 | Method of manufacturing semiconductor device having LDD structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02153538A true JPH02153538A (en) | 1990-06-13 |
JP2781913B2 JP2781913B2 (en) | 1998-07-30 |
Family
ID=17976539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63308072A Expired - Lifetime JP2781913B2 (en) | 1988-08-31 | 1988-12-05 | Method of manufacturing semiconductor device having LDD structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2781913B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5217910A (en) * | 1990-11-05 | 1993-06-08 | Mitsubishi Denki Kabushiki Kaisha | Method of fabricating semiconductor device having sidewall spacers and oblique implantation |
US5258319A (en) * | 1988-02-19 | 1993-11-02 | Mitsubishi Denki Kabushiki Kaisha | Method of manufacturing a MOS type field effect transistor using an oblique ion implantation step |
US6507069B1 (en) | 1994-07-14 | 2003-01-14 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacture thereof |
US6897526B1 (en) | 1998-02-12 | 2005-05-24 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and process for producing the same |
US6906383B1 (en) | 1994-07-14 | 2005-06-14 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacture thereof |
EP1665334A2 (en) * | 2003-08-26 | 2006-06-07 | International Business Machines Corporation | Method to produce transistor having reduced gate height |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59198763A (en) * | 1983-04-27 | 1984-11-10 | Hitachi Ltd | Mos type field effect transistor and manufacture thereof |
JPS62293776A (en) * | 1986-06-13 | 1987-12-21 | Matsushita Electric Ind Co Ltd | Manufacture of semiconductor device |
JPS6373667A (en) * | 1986-09-17 | 1988-04-04 | Sanyo Electric Co Ltd | Manufacture of mos semiconductor device |
JPS6376376A (en) * | 1986-09-18 | 1988-04-06 | Sanyo Electric Co Ltd | Manufacture of metal-oxide semiconductor (mos) device |
-
1988
- 1988-12-05 JP JP63308072A patent/JP2781913B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59198763A (en) * | 1983-04-27 | 1984-11-10 | Hitachi Ltd | Mos type field effect transistor and manufacture thereof |
JPS62293776A (en) * | 1986-06-13 | 1987-12-21 | Matsushita Electric Ind Co Ltd | Manufacture of semiconductor device |
JPS6373667A (en) * | 1986-09-17 | 1988-04-04 | Sanyo Electric Co Ltd | Manufacture of mos semiconductor device |
JPS6376376A (en) * | 1986-09-18 | 1988-04-06 | Sanyo Electric Co Ltd | Manufacture of metal-oxide semiconductor (mos) device |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5258319A (en) * | 1988-02-19 | 1993-11-02 | Mitsubishi Denki Kabushiki Kaisha | Method of manufacturing a MOS type field effect transistor using an oblique ion implantation step |
US5217910A (en) * | 1990-11-05 | 1993-06-08 | Mitsubishi Denki Kabushiki Kaisha | Method of fabricating semiconductor device having sidewall spacers and oblique implantation |
US6507069B1 (en) | 1994-07-14 | 2003-01-14 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacture thereof |
US6773971B1 (en) | 1994-07-14 | 2004-08-10 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing a semiconductor device having lightly-doped drain (LDD) regions |
US6906383B1 (en) | 1994-07-14 | 2005-06-14 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacture thereof |
US7183614B2 (en) | 1994-07-14 | 2007-02-27 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacture thereof |
US7635895B2 (en) | 1994-07-14 | 2009-12-22 | Semiconductor Energy Laboratory Co., Ltd. | Display device |
US8273613B2 (en) | 1994-07-14 | 2012-09-25 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacture thereof |
US6897526B1 (en) | 1998-02-12 | 2005-05-24 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and process for producing the same |
US7687855B2 (en) | 1998-02-12 | 2010-03-30 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having impurity region |
EP1665334A2 (en) * | 2003-08-26 | 2006-06-07 | International Business Machines Corporation | Method to produce transistor having reduced gate height |
EP1665334A4 (en) * | 2003-08-26 | 2011-02-23 | Ibm | Method to produce transistor having reduced gate height |
Also Published As
Publication number | Publication date |
---|---|
JP2781913B2 (en) | 1998-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0356202B1 (en) | Mosfet and fabrication method | |
US6008100A (en) | Metal-oxide semiconductor field effect transistor device fabrication process | |
JP2781913B2 (en) | Method of manufacturing semiconductor device having LDD structure | |
US5518938A (en) | Process for fabricating a CMOS transistor having high-voltage metal-gate | |
KR100311498B1 (en) | Method for forming dual gate of semiconductor device | |
JPH07283400A (en) | Semiconductor device and its manufacture | |
JPH09205151A (en) | Manufacture of complementary semiconductor device | |
JPH07297397A (en) | Manufacture of semiconductor device | |
JPH08288504A (en) | Method of semiconductor device | |
JPH0831949A (en) | Dual gate structure cmos semiconductor device and its manufacture | |
JPH1117024A (en) | Manufacture of semiconductor device | |
KR100311177B1 (en) | A method of fabricating semiconductor device | |
EP0878833B1 (en) | Process for the selective formation of salicide on active areas of MOS devices | |
JP3363675B2 (en) | Method for manufacturing semiconductor device | |
JPH0243339B2 (en) | ||
JPH10261795A (en) | Insulating gate-type field-effect transistor and its manufacture | |
JP2806226B2 (en) | Method of manufacturing MIS type semiconductor integrated circuit device | |
JPH1131814A (en) | Manufacture of semiconductor device | |
JP2002076137A (en) | Semiconductor device and its manufacturing method | |
KR19990003214A (en) | Manufacturing Method of Asymmetric CMOS Transistor | |
KR100250686B1 (en) | Manufacturing method of a semiconductor device | |
JP2915036B2 (en) | Method for manufacturing semiconductor integrated circuit device | |
KR20010038087A (en) | method for manufacturing of semiconductor device | |
JPH04179239A (en) | Manufacture of semiconductor device | |
JPH04363019A (en) | Manufacture of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080522 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080522 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090522 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090522 Year of fee payment: 11 |