JPH02102136A - Mold for molding optical element and production thereof - Google Patents

Mold for molding optical element and production thereof

Info

Publication number
JPH02102136A
JPH02102136A JP25672288A JP25672288A JPH02102136A JP H02102136 A JPH02102136 A JP H02102136A JP 25672288 A JP25672288 A JP 25672288A JP 25672288 A JP25672288 A JP 25672288A JP H02102136 A JPH02102136 A JP H02102136A
Authority
JP
Japan
Prior art keywords
molding
mold
optical element
main body
connector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25672288A
Other languages
Japanese (ja)
Inventor
Hiroshi Ito
弘 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP25672288A priority Critical patent/JPH02102136A/en
Publication of JPH02102136A publication Critical patent/JPH02102136A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/082Construction of plunger or mould for making solid articles, e.g. lenses having profiled, patterned or microstructured surfaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/03Press-mould materials defined by material properties or parameters, e.g. relative CTE of mould parts
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/41Profiled surfaces
    • C03B2215/412Profiled surfaces fine structured, e.g. fresnel lenses, prismatic reflectors, other sharp-edged surface profiles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/46Lenses, e.g. bi-convex
    • C03B2215/47Bi-concave
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/46Lenses, e.g. bi-convex
    • C03B2215/48Convex-concave
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/72Barrel presses or equivalent, e.g. of the ring mould type

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

PURPOSE:To provide a totally durable mold for molding optical elements by forming the optical element-molding mold into a two-layered structure comprising a thin molding mold main body and a durable connector capable of disposing a butt surface only in a necessary thickness. CONSTITUTION:The mold 7 for molding the optical elements is integrally composed of a molding mold main body 5 prepared by press-molding glass with heating and a connector 6 having a butt surface 6a used on the molding of the optical elements and made of a heat-resistant metal (e.g., WC-Ni series cemented carbide) or ceramic having approximately the same linear expansion coefficient as the above-mentioned molding mold main body 5. For the production of the optical element-molding mold 7, the molding mold main body 5 is simultaneously integrally bonded to the connector 6 in the press-molding process (wherein a mold raw material 4 is inserted between a molding matrix 3 and the connector 6 and pressed with the connector 6 in a heated state; 3b is a molding surface) of the molding mold main body 5.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光学素子成形用型とその製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a mold for molding an optical element and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

一般に、レンズ、プリズム、フィルター等の光学素子を
得るには、一対の光学素子成形用型間に光学素子の成形
素子を配置し、これを熱間にて押圧成形する方法が行わ
れている。
Generally, in order to obtain optical elements such as lenses, prisms, filters, etc., a method is used in which a molding element of the optical element is placed between a pair of molds for molding the optical element, and the molded element is hot press-molded.

従来、このような成形方法で使用する光学素子成形用型
、特に非球面成形用型を製造するには、高精度でかつ高
剛性の超精密CNC旋盤により超精密に研削あるいは切
削して高い形状精度を確保し、その後必要によって、短
時間の研摩を施して完全な鏡面とする方法が採られてい
た。
Conventionally, in order to manufacture molds for molding optical elements used in such molding methods, especially molds for molding aspherical surfaces, a high-precision grinding or cutting process is performed using a high-precision, high-rigidity, ultra-precision CNC lathe. The method used was to ensure accuracy and then, if necessary, polish it for a short period of time to create a perfect mirror surface.

しかしながら、例えば光ピツクアップ用非球面対物レン
ズ成形用型等のように0.ItIm以下の形状精度を要
求される型を製造するには、上記従来の製造方法では、
バイトまたは砥石の摩耗等のために、多数個の成形用型
を連続して高精度に加工することが困難であった。また
、成形用型の形状精度のバラツキが大きく、最終的に得
られる光学素子の性能にもバラツキを生じ、歩留りも低
かった。さらに、加工に要する時間が非常に長く、極め
て高価なものとなってしまった。
However, for example, a mold for molding an aspherical objective lens for optical pickup, etc. In order to manufacture a mold that requires shape accuracy of ItIm or less, the above conventional manufacturing method requires the following steps:
Due to wear of the cutting tool or the grindstone, it has been difficult to process a large number of molds continuously with high precision. Furthermore, the shape accuracy of the molding molds varied widely, resulting in variations in the performance of the optical elements finally obtained, and the yield was low. Furthermore, the time required for processing is extremely long, resulting in an extremely expensive product.

因って前記欠点を解消すべく、本出願人は特願昭62−
186816号にて、ガラスよりなる成形用型素材を、
熱間にて成形母型で押圧成形することにより、成形用型
素材に成形母型を転写させて光学素子成形用型を得る光
学素子成形用型の製造方法を提案した。
Therefore, in order to eliminate the above-mentioned drawbacks, the present applicant filed a patent application in 1983-
In No. 186816, a mold material made of glass,
We proposed a method for manufacturing a mold for molding an optical element, in which a mold for molding an optical element is obtained by transferring the molding mold onto the mold material by hot pressure molding with a molding mold.

また、本出願人はガラスよりなる光学素子成形用型とし
て、特願昭62−134580号には窒素およびフッ素
を含有するガラス又はガラスセラミックスよりなるガラ
ス製品の成形用型を提案した。さらに、特願昭62−1
34581号には、成形保持温度よりも高いデーパージ
ング温度を有するガラスよりなり、成形面に離型被膜を
被覆されていることを特徴とするガラス製品の成形用型
を提案した。
Furthermore, the present applicant has proposed a mold for molding glass products made of glass or glass ceramics containing nitrogen and fluorine in Japanese Patent Application No. 134580/1983 as a mold for molding optical elements made of glass. Furthermore, the patent application 1986-1
No. 34581 proposed a mold for molding glass products, which is made of glass having a tapering temperature higher than the molding holding temperature, and whose molding surface is coated with a release film.

また、特開昭62−226825号公報記載の発明にお
いては、プレス温度より転移点温度の裔いガラス型を用
い、被成形ガラス体と該ガラス型間に融着防止層を介在
させたプレスレンズの製造方法が開示されている。
Furthermore, in the invention described in JP-A No. 62-226825, a pressed glass mold having a transition point temperature lower than the pressing temperature is used, and an anti-fusion layer is interposed between the glass body to be formed and the glass mold. A manufacturing method is disclosed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

光学素子成形用型は、成形される光学素子の光学面相互
の偏芯をおさえるための、一定の長さの衝面を必要とす
るものである。
A mold for molding an optical element requires an abutting surface of a certain length to suppress mutual eccentricity of the optical surfaces of the optical element to be molded.

しかしながら、前記従来技術における成形型は、成形型
のすべてがガラス又はガラスセラミックスで一体に成形
されている。
However, all of the molds in the prior art are integrally molded from glass or glass ceramics.

このため、カケや摩耗が生じ易く、衝面の耐久性に問題
を有し、光学素子の偏芯精度を長期間維持することが困
難な欠点があった。
For this reason, there are disadvantages in that chipping and abrasion are likely to occur, there are problems with the durability of the impact surface, and it is difficult to maintain eccentricity accuracy of the optical element for a long period of time.

また、成形型に衝面を設けて成形することは、成形型の
厚みが増すことになり、特にカメラレンズの成形型など
では顕著である。
Further, when a mold is provided with a face for molding, the thickness of the mold increases, and this is particularly noticeable in molds for camera lenses.

しかるに、ガラスはガラス特有の耐熱衝撃性に弱点を有
するものであり、成形型の厚みが増すことで、成形型の
成形面自身の成形工程や、これを用いた光学素子の成形
工程の、特に冷却過程において、いわゆるカンが生じ、
ガラスよりなる成形型の寿命が短くなる欠点を有してい
た。
However, glass has a weakness in thermal shock resistance, which is unique to glass, and as the thickness of the mold increases, the molding process of the molding surface itself and the molding process of optical elements using it, especially During the cooling process, so-called cans are formed,
This had the disadvantage that the life of the mold made of glass was shortened.

因って、本発明は前記従来技術における欠点に鑑みて開
発されたもので、偏芯防止用術部が耐久性を有するとと
もに、熱衝撃性に優れることで、総合的に耐久性を有す
る、熱間により押圧成形したガラスより成る光学素子成
形用型とその製造方法の提供を目的とするものである。
Therefore, the present invention has been developed in view of the drawbacks in the prior art, and has an eccentricity prevention surgical part that is durable and has excellent thermal shock resistance, so that it has overall durability. The object of the present invention is to provide a mold for molding an optical element made of hot press molded glass and a method for manufacturing the same.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、第1図の概念図に示す如く、筒状の加熱リン
グ1に嵌合する各成形母型2.3の間に載置された光学
素子成形用型の型素材4をヒータlaにて成形可能な温
度に加熱するとともに、成形母型2,3で押圧成形して
成形用型本体5を得る。
As shown in the conceptual diagram of FIG. The mold body 5 is heated to a temperature at which it can be molded, and is press-molded using molding molds 2 and 3 to obtain a molding mold body 5.

接合体6は、光学素子成形時の偏芯を小さくするための
衝面6aを有し、前記成形用型本体5とほぼ線膨脹係数
の等しい耐熱性を有する金属あるいはセラミックスで形
成されている。
The joined body 6 has an impact surface 6a for reducing eccentricity during molding of the optical element, and is made of a heat resistant metal or ceramic having a coefficient of linear expansion approximately equal to that of the mold body 5.

そして、前記成形用型本体5の成形面5aの光学的中心
軸と、該接合体6の衝面6aの中心軸を一致させた状態
で一体的に構成したものである。
The optical center axis of the molding surface 5a of the mold body 5 and the center axis of the impact surface 6a of the joined body 6 are made to coincide with each other.

〔作 用〕[For production]

本発明による光学素子の成形用型とその製造方法によれ
ば、厚さの薄い成形用型本体と、衝面を必要な長さだけ
設けることのできる耐久性を有する接合体との二層構造
に構成したことにより、長期間にわたり成形用型を使用
することができる。
According to the mold for molding an optical element and the manufacturing method thereof according to the present invention, the two-layer structure includes a thin mold body and a durable bonded body that can provide a required length of the impact surface. With this structure, the mold can be used for a long period of time.

〔実施例〕〔Example〕

以下、本発明による光学素子の成形用型とその製造方法
の実施例について図面を参照しながら詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of a mold for molding an optical element and a method for manufacturing the same according to the present invention will be described in detail below with reference to the drawings.

(第1実施例) 第2図乃至第5図は、本発明の第1実施例を示す断面図
である。
(First Embodiment) FIGS. 2 to 5 are cross-sectional views showing a first embodiment of the present invention.

第2図aは、本発明の実施例において使用する押圧成型
装置を示すもので、ヒータ1aを内設した筒状の加熱リ
ング1には、上方に接合体6、下方に成形母型3が嵌合
されている。
FIG. 2a shows a press molding apparatus used in an embodiment of the present invention, in which a cylindrical heating ring 1 with a heater 1a installed therein has a joined body 6 on the top and a molding mold 3 on the bottom. It is fitted.

そして、この接合体6.成形母型3は、リング1の軸芯
と一致した軸芯を有している。
And this zygote 6. The molding mother die 3 has an axis that coincides with the axis of the ring 1.

接合体6は、図示を省略した加圧装置、例えばエアシリ
ンダに連結配置した押圧板により押圧力を発生すべく軸
方向に移動自在に設けられている。
The joined body 6 is provided so as to be movable in the axial direction so as to generate a pressing force by a pressurizing device (not shown), for example, a pressing plate connected to an air cylinder.

さらに接合体6は、後述する型素材La5FO16の線
膨張係数6.0XIO−’(常温)とほぼ等しい線膨張
係数6.5XIO−’(常温)を有するWC−Ni系超
硬合金により形成され、その接合面6aのみ酸化雰囲気
中での加熱処理等により酸化処理が施されている。
Further, the joined body 6 is formed of a WC-Ni cemented carbide having a linear expansion coefficient of 6.5XIO-' (at room temperature) which is approximately equal to the linear expansion coefficient of 6.0XIO-' (at room temperature) of the mold material La5FO16, which will be described later. Only the bonding surface 6a is subjected to oxidation treatment such as heat treatment in an oxidizing atmosphere.

下型の成形母型3は、第3図(a)、 (b)に示すよ
うに、成形母型本体3aはWC−Ni系超硬合金からな
り、その成形面3bは所望の光学素子の形状に対応した
形状、本実施例においては、非球面形状に形成されてい
る。この成形面3bの加工は、従来から非球面の創成に
用いられている方法で、高精度かつ高剛性の超精密CN
C旋盤により超精密に研削あるいは切削加工して高い形
状精度を確保し、その後短時間の研磨を施して完全な鏡
面とした。
As shown in FIGS. 3(a) and 3(b), the lower molding mother mold 3 has a molding mother mold main body 3a made of WC-Ni cemented carbide, and a molding surface 3b of the molding surface 3b which is formed of a desired optical element. The shape corresponds to the shape, in this example, it is formed into an aspherical shape. This molding surface 3b is processed using a method conventionally used to create an aspherical surface.
Ultra-precision grinding or cutting was performed using a C lathe to ensure high shape accuracy, followed by short polishing to create a perfect mirror surface.

前述の高い形状精度とは、例えばピ・2クアンプ用非球
面対物レンズ成形用型を製造する成形母型3にあっては
、設計形状からのズレ量が0.1μm以下でかつ表面粗
さが0.07μm以下程度を示すものである。
The above-mentioned high shape accuracy means, for example, that the molding mold 3 for manufacturing the aspherical objective lens mold for the P2Q amplifier has a deviation from the designed shape of 0.1 μm or less and a surface roughness. This indicates approximately 0.07 μm or less.

また、成形母型本体3aの成形面3bには、イオンブレ
ーティング法によって0.1μmのCrNの離型被膜3
cが形成されている。
In addition, a 0.1 μm CrN mold release coating 3 is applied to the molding surface 3b of the molding matrix body 3a by the ion-blating method.
c is formed.

一方、光学素子成形用型の型素材4は、本実施例で最終
的に得ようとする光学素子の成形素材がSF6であるの
で、その成形素材の屈伏点温度約480 ’Cよりも高
い屈伏点温度をもったLa5F016からなっている。
On the other hand, since the molding material for the optical element to be finally obtained in this example is SF6, the molding material 4 of the optical element molding mold has a yield temperature higher than the yielding point temperature of about 480'C. It is made of La5F016 with a point temperature.

ここで、型素材4の形状は、所望の非球面に近似した球
面形状に研磨(前加工、)シておくと良い。
Here, the shape of the mold material 4 is preferably polished (pre-processed) into a spherical shape that approximates the desired aspherical surface.

また、加熱リング1に用いる材料は、加熱時も接合体6
と成形母型3との軸芯を一致させるために、接合体6、
成形母型3の材料よりも線膨張係数が同等か、わずかに
小さい材料で形成されている。
In addition, the material used for the heating ring 1 is also suitable for the joined body 6 during heating.
In order to align the axes of the molding matrix 3 and the joined body 6,
It is made of a material whose coefficient of linear expansion is the same or slightly smaller than that of the material of the molding matrix 3.

接合体6.成形母型3間には、光学素子成形用型の型素
材4と、型素材4の外周を形成する胴型8が嵌挿されて
いる。
Zygote 6. A mold material 4 for an optical element mold and a body mold 8 forming the outer periphery of the mold material 4 are fitted between the molding mother molds 3 .

この胴型8は、型素材4の外周を規制し、第4図に示す
如く、型素材4を成形した成形用型7の型素材部外径5
bを、接合体術部6bより小さくする機能を有するもの
で、成形後分離可能なように型素材4より線膨張係数の
小さい(4,0x10−6)SiCにより形成されてい
る。
This body mold 8 regulates the outer periphery of the mold material 4, and as shown in FIG.
It has a function of making b smaller than the operative part 6b of the zygote, and is made of SiC having a linear expansion coefficient smaller than that of the mold material 4 (4,0x10-6) so that it can be separated after molding.

このような構成の押圧成形装置によって、光学素子成形
用型を製造するには、加熱温度をLa5F016からな
る型素材4の軟化点付近の740 ’Cとし、加圧装置
に連結した接合体6の作用により型素材4に対し50k
g/C−の圧力が加わるようにして約1時間保持した。
In order to manufacture a mold for molding an optical element using a press molding apparatus having such a configuration, the heating temperature is set to 740'C, which is around the softening point of the mold material 4 made of La5F016, and the temperature of the bonded body 6 connected to the pressurizing apparatus is set to 740'C. 50k for mold material 4 due to action
A pressure of g/C- was applied and maintained for about 1 hour.

かかる押圧成形後、約200°Cまで徐冷し、型素材4
の成形後の状態である光学素子成形用型の本体7を取出
したところ、成形母型3の離型被膜3cへの型素材4の
融着は全くなく、また、成形用型本体7の熱衝撃(冷却
時)によるカンの発生もなく、成形母型3の有する高い
形状精度がそのまま転写された光学素子成形用型本体7
を得ることができた。この成形用型本体7の接合体6と
、型素材4とは、強固な融着状態で一体的に接合される
とともに、上記のように内部応力による転写精度の劣化
も認められなかった。
After such press molding, the mold material 4 is slowly cooled to about 200°C.
When the body 7 of the mold for molding an optical element was taken out in the state after molding, there was no fusion of the mold material 4 to the release coating 3c of the molding matrix 3, and the heat of the mold body 7 for molding A mold body 7 for molding an optical element in which the high shape accuracy of the molding mother mold 3 is directly transferred without any formation of holes due to impact (during cooling).
I was able to get The joined body 6 of the mold body 7 and the mold material 4 were integrally joined in a strongly fused state, and no deterioration in transfer accuracy due to internal stress was observed as described above.

光学素子成形用型本体7は、成形用型本体7の成形面5
aに真空蒸着法によって0.1μmのNgFtの離型被
膜5cを形成したもので、光学素子成形用型本体7の成
形面5aにおける表面粗さは、0.02μm程度であり
、成形母型3の表面粗さの1/2以下であった。
The mold body 7 for molding an optical element has a molding surface 5 of the mold body 7 for molding.
A 0.1 μm NgFt release coating 5c is formed on the mold body 7 by vacuum evaporation, and the surface roughness of the molding surface 5a of the optical element molding mold body 7 is about 0.02 μm. The surface roughness was less than 1/2 of that of .

このようにして得られた光学素子成形用型7は、高い形
状精度と面精度とを兼ね備えており、またこの押圧成形
により同品質の成形用型をバラツキなく、かつ安価に量
産できた。−船釣な製品ライフを考慮すると、型寿命を
Nショットとした場合、一つの成形母型3を製造してお
けば、実質的な型寿命はNXNとなり、十分に量産を行
うことができる。例えばN=1000で100万シヨツ
トが可能であり、N=10000では1億シヨツトが可
能である。
The mold 7 for molding an optical element obtained in this manner has both high shape accuracy and surface precision, and by this press molding, molds for molding of the same quality can be mass-produced without variation and at low cost. - Considering the long life of the product, if the mold life is N shots, if one molding mother mold 3 is manufactured, the actual mold life will be NXN, and mass production can be carried out sufficiently. For example, when N=1,000, 1 million shots are possible, and when N=10,000, 100 million shots are possible.

次に、本実施例により得られた光学素子成形用型7を用
いて、第5図に示すように、光学素子を押圧成形した。
Next, as shown in FIG. 5, an optical element was press-molded using the optical element molding die 7 obtained in this example.

第5図において、9はヒータ9aを内設した加熱リング
で、この加熱リング9には、本発明に係る一対の成形用
型71.72が嵌合されている。
In FIG. 5, reference numeral 9 denotes a heating ring having a heater 9a therein, and a pair of molds 71 and 72 according to the present invention are fitted into this heating ring 9.

また、上型の成形用型71は、図示を省略した加圧装置
に連結されており、軸方向に移動して押圧可能になって
いる。そして、画成形用型71゜72の間には、予め所
望の非球面に近似の球面形状に研磨等の前加工をしたS
F6からなる光学素子の成形素材10が設けられている
Further, the upper molding mold 71 is connected to a pressing device (not shown), and can be moved and pressed in the axial direction. Then, between the image forming molds 71 and 72, there is a S which has been pre-processed such as polishing into a spherical shape that approximates the desired aspherical surface.
A molding material 10 for an optical element made of F6 is provided.

このような押圧成形装置により、加熱温度を成形素材1
0の軟化点付近の530°Cとし、成形素材10に対し
20kg/cdの圧力が加わるように加圧しながら約3
0分保持した。この押圧成形後、約200°Cまで徐冷
して光学素子を取出した。この光学素子は、成形用型7
1.72の高い形状精度と面精度とがそのまま転写され
た良好なものであった。そして、成形用型71.72は
、連続使用しても、その南部6bは摩耗したり破損した
りすることがなく、十分な耐久性を有するものであった
With such a press molding device, the heating temperature can be adjusted to the molding material 1.
The temperature was set at 530°C, which is near the softening point of 0, and the molding material 10 was heated at approximately 3°C while applying pressure of 20kg/cd.
It was held for 0 minutes. After this press molding, the optical element was slowly cooled to about 200°C and taken out. This optical element is molded into a mold 7
The high shape accuracy and surface accuracy of 1.72 were transferred as they were and were good. Even when the molding molds 71 and 72 were used continuously, the southern part 6b did not wear out or break, and had sufficient durability.

なお、本実施例においては、成形母型3の成形温度は、
型素材4の軟化点付近としたが、本発明はかかる実施例
に限定されるものではなく、型素材4の屈伏点以上であ
れば、成形圧力も数十kg/ciで成形可能となり、成
形用型として十分な強度を得ることができる。また、成
形母型3の材料は、超硬合金に限定されるものではなく
、SiC。
In addition, in this example, the molding temperature of the molding mother mold 3 is as follows:
Although the softening point of the mold material 4 was set near, the present invention is not limited to such embodiments.If the yielding point of the mold material 4 is higher than that, molding can be performed at a molding pressure of several tens of kg/ci. Sufficient strength can be obtained as a mold. Moreover, the material of the molding matrix 3 is not limited to cemented carbide, but may be SiC.

5ixCa、単結晶W、Cr3C,合金9石英ガ合金等
石英ガラスさらに、成形母型3の形状は、非球面に限定
されず、球面または平面であっても適用できる。
5ixCa, single crystal W, Cr3C, alloy 9 quartz glass such as quartz ga alloy, etc.Furthermore, the shape of the molding matrix 3 is not limited to an aspherical surface, and may be spherical or flat.

成形母型3の離型被膜3Cは、TiN、CrCN、c−
BN、a−BN、AnN、SiC,WC。
The mold release coating 3C of the molding matrix 3 is made of TiN, CrCN, c-
BN, a-BN, AnN, SiC, WC.

TiB2.Tic、B、C等のセラミックス膜でも実施
例と同等の効果を得ることができる。
TiB2. Ceramic films such as Tic, B, and C can also provide the same effect as in the embodiment.

また、接合体6の材料においても、超硬合金に限定され
るものではなく、SiC,Si3 C,。
Further, the material of the joined body 6 is not limited to cemented carbide, but may include SiC, Si3C, and the like.

単結晶W、Cr、C,合金、耐熱性ステンレス鋼等の型
素材とほぼ線膨張係数の等しい金属あるいはセラミック
スであれば実施例と同等の効果が得られるものである。
The same effect as in the embodiment can be obtained if the material is a metal or ceramic having a coefficient of linear expansion approximately equal to that of the mold material, such as single crystal W, Cr, C, alloy, or heat-resistant stainless steel.

(第2実施例) 第6図は、本発明の第2実施例を示す断面図である。(Second example) FIG. 6 is a sectional view showing a second embodiment of the present invention.

当該実施例に示される光学素子の製造に用いる成形用型
は、前記第1実施例の接合体6の接合面6aに凹部6C
を設けて形成した点が異なり、他の構成は同一の構成か
ら成るもので、他の構成については同一番号を符してそ
の説明を省略する。
The mold used for manufacturing the optical element shown in this example has a concave portion 6C on the joining surface 6a of the joined body 6 of the first example.
The other components are the same in that they are formed with a .

成形用型本体11における接合体6の接合面6aに、凹
部6Cを設けて形成したことにより、成形時に型素材4
が凹部6c内に流入し、成形用型本体11の型素材部1
1aと接合体6との接合が一体的に成形される。
By forming the concave portion 6C on the joining surface 6a of the joined body 6 in the mold body 11, the mold material 4 is formed during molding.
flows into the recess 6c, and the mold material part 1 of the mold body 11
The joint between 1a and the joined body 6 is integrally molded.

本実施例では、凹部6cを設けたことにより、型素材部
11aと接合体6の接触面積が大きくなることで、より
強固に接合する効果が得られる。
In this embodiment, by providing the recess 6c, the contact area between the mold material portion 11a and the joined body 6 becomes larger, thereby achieving the effect of more firmly joining them.

なお、凹部6cの側面を逆勾配にしたり、凹部6cの断
面をL形、上形にして、型素材部11aと接合体6が分
離しにくい形状にすることにより、更に上記効果を顕著
にすることができる。
Note that the above effect can be made more pronounced by making the side surfaces of the recess 6c have a reverse slope, or by making the cross section of the recess 6c L-shaped or upwardly shaped so that it is difficult to separate the mold material 11a and the joined body 6. be able to.

(第3実施例) 第7図は、本発明の第3実施例を示す断面図である。(Third example) FIG. 7 is a sectional view showing a third embodiment of the present invention.

当該実施例に示される光学素子の製造に用いる成形用型
は、前記第1実施例の接合体6の接合面6aに、成形母
型3の離型被膜3cの形状に対応し、型素材4の成形後
の厚みがほぼ等厚となる凸形状の接合部6dを設けて形
成した点が異なり、他の構成は同一の構成から成るもの
で、他の構成については同一番号を符してその説明を省
略する。
The mold used for manufacturing the optical element shown in this embodiment has a mold material 4 corresponding to the shape of the release coating 3c of the molding matrix 3 on the bonding surface 6a of the bonded body 6 of the first embodiment. They differ in that they are formed by providing a convex joint 6d that has approximately the same thickness after molding, and the other configurations are the same, and the other configurations will be designated by the same number. The explanation will be omitted.

本実施例では、接合部6dを設けたことで、成形用型本
体12の型素材部12aがほぼ等厚に成形されつつ成形
面12bへの転写が行われる。
In this embodiment, by providing the joint portion 6d, the mold material portion 12a of the mold body 12 is molded to have approximately the same thickness and is transferred to the molding surface 12b.

成形用型本体12の型素材12aが等厚に成形されるこ
とにより、型素材12a内の温度分布が均一化されるこ
とで、成形面12bへの転写精度が向上するとともに、
バラツキを一層少なくする効果が得られる。
By molding the mold material 12a of the mold body 12 to have the same thickness, the temperature distribution within the mold material 12a is made uniform, which improves the accuracy of transfer to the molding surface 12b, and
The effect of further reducing variations can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上、説明したように本発明による光学素子の成形用型
とその製造方法によれば、押圧成形で長期間にわたり使
用可能な光学素子成形用型が得られることにより、非球
面形状等の高精度な光学素子を、安価に量産できる。
As described above, according to the mold for molding an optical element and the method for manufacturing the same according to the present invention, a mold for molding an optical element that can be used for a long period of time by pressure molding can be obtained, thereby making it possible to produce high-precision molds such as aspherical shapes. optical elements can be mass-produced at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による光学素子の成形用型とその製造
方法の概念図を示す断面図、第2図乃至第5図は同第1
実施例を示し、第2図は押圧装置を示す断面図、第3図
は成形母型を示す断面図、第4図は成形用型を示す断面
図、第5図は押圧装置を示す断面図、第6図は同第2実
施例を示す断面図、第7図は同第3実施例を示す断面図
である。 1・・・加熱リング  2.3・・・成形用母型4・・
・型素材    5・・・成形用型本体6・・・接合体 1・・・加熱IIノグ 2.3・・・成形用母型 4・・・型素材 5・・成形用型本体 6・・・接合俸 第 図
FIG. 1 is a sectional view showing a conceptual diagram of a mold for molding an optical element according to the present invention and a method for manufacturing the same, and FIGS.
2 is a sectional view showing a pressing device, FIG. 3 is a sectional view showing a molding matrix, FIG. 4 is a sectional view showing a mold, and FIG. 5 is a sectional view showing a pressing device. , FIG. 6 is a sectional view showing the second embodiment, and FIG. 7 is a sectional view showing the third embodiment. 1...Heating ring 2.3...Molding mold 4...
・Mold material 5...Mold body 6...Joint body 1...Heating II nog 2.3...Mold material 4...Mold material 5...Mold body 6...・Joint salary chart

Claims (2)

【特許請求の範囲】[Claims] (1)熱間にて押圧成形したガラスより成る成形用型本
体と、光学素子成形時における衝面を有し、前記成形用
型本体とほぼ線膨張係数が等しく耐熱性を有する金属又
はセラミックスから成る接合体を、一体的に構成したこ
とを特徴とする光学素子成形用型。
(1) It has a mold body made of hot press-formed glass and an impact surface for molding optical elements, and is made of a heat-resistant metal or ceramic having a coefficient of linear expansion almost equal to that of the mold body. What is claimed is: 1. A mold for molding an optical element, characterized in that the joined body is integrally constructed.
(2)光学素子の成形用型を製造するにあたり、成形用
型本体の押圧成形工程において、同時に成形用型本体と
接合体を一体的に接合することを特徴とする光学素子成
形用型の製造方法。
(2) Manufacturing a mold for molding an optical element, which is characterized in that the mold body and the assembly are integrally joined at the same time during the press molding process of the mold body. Method.
JP25672288A 1988-10-12 1988-10-12 Mold for molding optical element and production thereof Pending JPH02102136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25672288A JPH02102136A (en) 1988-10-12 1988-10-12 Mold for molding optical element and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25672288A JPH02102136A (en) 1988-10-12 1988-10-12 Mold for molding optical element and production thereof

Publications (1)

Publication Number Publication Date
JPH02102136A true JPH02102136A (en) 1990-04-13

Family

ID=17296541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25672288A Pending JPH02102136A (en) 1988-10-12 1988-10-12 Mold for molding optical element and production thereof

Country Status (1)

Country Link
JP (1) JPH02102136A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04362031A (en) * 1991-06-06 1992-12-15 Canon Inc Press mold structure for optical element
JP2003104735A (en) * 2001-09-28 2003-04-09 Konica Corp Optical element forming mold, optical element and method for manufacturing optical element forming mold
JP2008074675A (en) * 2006-09-22 2008-04-03 Olympus Corp Method of producing die for forming optical element, and method for production of optical element
JP2008137874A (en) * 2006-12-05 2008-06-19 Olympus Corp Molding tool and its production method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04362031A (en) * 1991-06-06 1992-12-15 Canon Inc Press mold structure for optical element
JP2003104735A (en) * 2001-09-28 2003-04-09 Konica Corp Optical element forming mold, optical element and method for manufacturing optical element forming mold
JP2008074675A (en) * 2006-09-22 2008-04-03 Olympus Corp Method of producing die for forming optical element, and method for production of optical element
JP2008137874A (en) * 2006-12-05 2008-06-19 Olympus Corp Molding tool and its production method

Similar Documents

Publication Publication Date Title
US20030115907A1 (en) Multiple lens molding system and method
JPH0142900B2 (en)
JPH02102136A (en) Mold for molding optical element and production thereof
US5762676A (en) Product for molding glass lenses having difficult shapes
JPH11130448A (en) Optical element and its production and mold for forming optical element used for the same
JP2004010456A (en) Manufacturing method of optical element and optical element
JP3134581B2 (en) Mold for optical element molding
JP2621956B2 (en) Optical element molding method
JP3869507B2 (en) Method for forming optical glass element
JP2003063832A (en) Mold for forming optical element
JPH0146453B2 (en)
JP2001010831A (en) Molding mold for glass optical element and production of glass optical element using the same
JP2501588B2 (en) Mold for press molding optical glass element and molding method thereof
JP2501230B2 (en) Mold for molding lens
JP2000001322A (en) Optical element forming apparatus and production of optical element
JPH0451495B2 (en)
JP3199825B2 (en) Optical element molding method
JP3850062B2 (en) Optical element manufacturing method and optical element mold
JPH01167242A (en) Mold for lens molding
JP2004210550A (en) Molding mold
JP2718451B2 (en) Optical glass parts molding method
JPH1044158A (en) Manufacture of glass mold for spectacles
JPH01298034A (en) Production of optical glass element
JPH01226746A (en) Glass lens formation mold
JPH0699159B2 (en) Optical element molding method