JP3850062B2 - Optical element manufacturing method and optical element mold - Google Patents

Optical element manufacturing method and optical element mold Download PDF

Info

Publication number
JP3850062B2
JP3850062B2 JP05146596A JP5146596A JP3850062B2 JP 3850062 B2 JP3850062 B2 JP 3850062B2 JP 05146596 A JP05146596 A JP 05146596A JP 5146596 A JP5146596 A JP 5146596A JP 3850062 B2 JP3850062 B2 JP 3850062B2
Authority
JP
Japan
Prior art keywords
optical element
molding
mold
polishing
glass material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05146596A
Other languages
Japanese (ja)
Other versions
JPH09241029A (en
Inventor
正人 中濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP05146596A priority Critical patent/JP3850062B2/en
Publication of JPH09241029A publication Critical patent/JPH09241029A/en
Application granted granted Critical
Publication of JP3850062B2 publication Critical patent/JP3850062B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/03Press-mould materials defined by material properties or parameters, e.g. relative CTE of mould parts

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光学素子を押圧成形により製造するガラス光学素子の製造方法及び光学素子成形用ガラス素材並びに光学素子成形型に関するものである。
【0002】
【従来の技術】
従来、ガラス光学素子の製造方法としては、特開平3−33023号公報に記載されているように、あらかじめ近似した所定の曲率半径に研削仕上げした後、バレル研磨にて粗さ0.5μm以下の鏡面に両表面を仕上げたガラス素材を加熱軟化し、所定の形状に形成された成形型により押圧成形し、所望の光学素子を得るものである。
【0003】
しかしながら、光学素子の中でRが小さいものや、凹レンズで中心部の肉厚が0.5mm程度に薄いものや、外径がφ30mm以上のものなどは、押圧成形のみで製造するのは、肉厚が薄いものは肉厚が薄いために形状が光学機能面として良好な状態になる前にガラスが冷えて固まったり、外径が大きいものは変形量が多すぎて所望の光学素子の厚みまで押圧できないなどの理由で、押圧成形のみで製造するのは難しく、両面が鏡面に加工されたガラス素材をあらかじめ押圧成形することにより、片面はそのまま光学機能面に使用できる面、残りの片面は最終形状の近似形状または平面とした成形物とし、近似形状または平面の面を研削、研磨することによって最終的な形状に仕上げ、所望の光学素子を得る製造方法を用いることがあった。
【0004】
【発明が解決しようとする課題】
しかるに、前述した方法によると、両面とも研削、研磨により鏡面加工したガラス素材を、成形型により押圧成形することによって近似形状に形成した後、最終形状に研削、研磨加工を行ない所望の光学素子を得るので、図8に示すように加工工程が煩雑になるという欠点があった。 また、粗成形物の研磨加工にバレル研磨を用いるので、加工時間に長時間を要するという欠点があった。
【0005】
本発明は、上記した問題点に鑑みてなされたもので、請求項1の発明は加工工程を簡略化し得る光学素子の製造方法、請求項2の発明は成形型の研磨工程を1つ省略し得る光学素子成形型を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するために、本発明は以下のように構成した。請求項1の光学素子の製造方法は、片面側が鏡面にまで研磨加工され反対の面が粗面に研削加工されたガラス素材を加熱軟化し、一対の成形型にて押圧成形した後、得られた成形物の前記粗面側を研削研磨加工、または研磨加工することで所望の光学素子を得ることとした。
【0008】
請求項2の光学素子成形型は、対をなす成形型の一方の型の成形面の最大表面粗さを0.05μm以下とし、他方の型の成形面の最大表面粗さを0.1μm以上とすることとした。
【0009】
請求項1の発明の作用を説明する。
片面は鏡面に他の面は粗面のままに加工されたガラス素材を加熱軟化し、押圧成形した後、粗面側のみ研削研磨加工することにより、肉厚の薄い光学素子や外径の大きな光学素子でも粗面側が鏡面に加工され、鏡面側はそのまま鏡面を維持しているので、研削研磨加工が一面のみで良く、上記肉厚の薄い光学素子等でも比較的短時間に製造し得ることである。
【0011】
請求項2の作用を説明する。本発明の成形型を作製する場合、成形物の一方の面の鏡面を光学性能を満たす鏡面に維持するために型の成形面の一面は0.05μm以下の鏡面に仕上げる必要がある。型の成形面の他の一面は成形物を成形後、研削研磨加工するので、鏡面仕上げは不要で0.1μm以上の面粗さで良い。上記のごとく成形型の一面のみ研磨による鏡面加工をすればよいので、成形型を容易につくることができる。
【0012】
【発明の実施の形態】
[発明の実施の形態1]
本発明の実施形態1を図1〜図5に基づいて説明する。
本発明の実施形態1においては、図2に示すように球欠メニスカス形状の光学素子2を製造する場合を例にとる。光学素子2は、A′面が近軸曲率半径がRA の非球面であり、B′面は曲率半径がRB の球面である。
【0013】
図1は、ガラス素材1であり、A面は曲率半径RA で最大表面粗さ0.05μm以下の鏡面に形成されており、B面は平面で最大表面粗さ0.1μm以上の粗面に加工されている。ガラス素材1を加工する際は、切断加工されたガラス円板を研削加工しA面、B面とも所望する光学素子に近似形状にした後、A面側を研磨皿を用いる一般的な研磨加工により仕上げるか、あらかじめ近似形状になっているダイレクトプレス品からA面側を研磨皿を用いる一般的な研磨手段により仕上げてもよい。
【0014】
図3は、成形型3を示している。成形型3はWCを素材とし、成形面3aは曲率半径RA で最大表面粗さ0.05μm以下に鏡面加工されている。また、全体は窒化クロムにて被覆されている。
【0015】
図4は、成形型4を示している。成形型4はWCを素材とし、成形面4aは平面で最大表面粗さ0.1μm以上に加工されている。また、全体は窒化クロムにて被覆されている。
【0016】
図5(A)は、ガラス素材の押圧成形方法を示すための説明図で、図5(B)は成形型3、4で成形した成形物8を示している。成形型3と成形型4は成形室7内に対向配置されており、成形型3と成形型4とガラス素材とを加熱するためのヒータ6で囲まれている。
【0017】
次に、本発明の実施形態1の作用を説明する。
図5(A)に示すように、上記ガラス素材1を、所定の形状に形成された成形面3a、4aを備えた一対の成形型3、成形型4間に配置する。そして、成形室7を非酸化性雰囲気とし、ガラス素材1をヒータ6で加熱軟化する。このガラス素材1が加圧成形可能である所定温度に加熱軟化された時、図示しない加圧手段(例えばエアシリンダ等)を介して、成形型3、成形型4により所定の圧力、時間にて押圧成形を行う。その後、ヒータ6による加熱保持を中止し、成形型3、成形型4と加圧成形された成形物8aを転移点温度以下の温度に冷却する。この冷却が完了した時点で成形型3、成形型4間から図5(B)に示す成形物8を取り出す。
【0018】
取り出された成形物8は、A面が成形型3の成形面3aにより、B面が成形型4の成形面4aに押圧成形されたことにより、A面側は最大表面粗さが0.05μm以下の非球面であり、B面側は最大表面粗さ0.1μm以上の平面になっている。
【0019】
次に、B面側に曲率半径RB の球欠面を研削加工により形成する。この研削加工としては、カーブジェネレータ、砂掛けなどの精研削加工を用いることができる。このようにして、図2に示すような光学素子2の形状で、B′面が粗面の中間物が造られる。
【0020】
次に、B′面側を研磨加工することで、B′面の表面粗さを向上させ、最大表面粗さが0.05μm以下の鏡面であるB′面を得、所望の光学素子2が製造される。
【0021】
本発明の実施形態1の効果を説明する。
本発明の実施形態1によると、バレル研磨法ではなく研磨皿を使用する一般的な研磨法により片面のみを研磨したガラス素材を用いるようにしたので、研磨時間を短くすることができるとともに、ガラス素材加工段階での片面の研磨工程(図8の(4)の工程)をなくすことができる。また、成形後に片面側を研削、研磨して光学素子2のB′面を得るので、成形物のB′面は粗くとも良く、型加工(図8の(12)の工程)を省略することができる。
【0022】
[発明の実施の形態2]
本発明の実施形態2を図6に基づいて説明する。図6は本発明の実施形態2に用いるガラス素材である。ガラス素材1のA面は、研磨皿を用いる一般的な加工手段により、最大表面粗さ0.05μm以下の平面に形成されており、B面は最大表面粗さ0.1μm以上の平面に研削加工されている。その他の構成は、実施形態1の図3〜図5に示す構成と同じなので省略する。
【0023】
本発明の実施形態2の作用を説明する。
ガラス素材1は、加熱軟化された状態で押圧成形されると変形し、A面が近軸曲率半径RA の非球面で、B面が平面となり、実施形態1で説明した成形物8となる。円板形状から、成形物8を得る以外は、実施形態1と同じ方法で光学素子2を製造するので以下省略する。
【0024】
本発明の実施形態2によれば、丸目、切断加工による円板をガラス素材として用いるので、研削加工によりA面側に曲率を造る工程を省略できる。
【0025】
[発明の実施の形態3]
本発明の実施形態3を図7に基づいて説明する。図7は、本実施形態3に用いる成形型5で、この成形型5は実施形態1の成形型4に換えて用いられる。成形型5はWCを素材とし、その成形面5aは、曲率半径RB の凸面が形設され最大表面粗さ0.1μm以上に加工されている。また、全体は窒化クロムにて被覆されている。
その他の構成は実施形態2と同じなので省略する。
【0026】
本実施形態の作用を説明する。
ガラス素材1は、加熱軟化された状態で押圧成形されると変形し、A面は成形型3の成形面3aにより近軸曲率半径がRA の非球面で、B面は成形型5の成形面5aにより曲率半径RB の球面となり、光学素子2の形状に形成される。この時、成形物はほぼ図2の光学素子2と同じ形状をしており、A′面側は最大表面粗さが0.05μm以下であり、B′面側は最大表面粗さ0.1μm以上になっている。
【0027】
この成形物のB′面側を研磨加工することでB′面の粗さを向上させ、最大表面粗さを0.05μm以下とし、所望の光学素子2を得ることができる。
【0028】
本発明の実施形態3によれば、円板状のガラス素材1を用いて凸状の成形面5aを有する成形型5より光学素子2の球欠部の形状を形成するようにしたので、研削加工の工程を省略することができる。
【0029】
【発明の効果】
以上説明したように、本発明によれば以下の効果を得ることができる。請求項1の発明によれば、成形物の片面を粗面としたことで光学素子の製造工程を簡略化することができる。請求項2の発明によれば、成形型の研磨工程を一つ無くすことができる。
【図面の簡単な説明】
【図1】本発明の実施形態1のガラス素材を示す断面図である。
【図2】本発明の実施形態1で成形した光学素子を示す断面図である。
【図3】本発明の実施形態1の成形型を示す断面図である。
【図4】本発明の実施形態1の成形型を示す断面図である。
【図5】図5(A)は本発明の実施形態1の光学素子の製造方法を説明するための説明図、図5(B)は成形物を示す断面図である。
【図6】本発明の実施形態2のガラス素材を示す断面図である。
【図7】本発明の実施形態3の成形型を示す断面図である。
【図8】従来技術の製造工程を示すチャートである。
【符号の説明】
1 ガラス素材
2 光学素子
3、4、5 成形型
3a、4a、5a 成形面
6 ヒータ
7 成形室
8 成形物
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a glass optical element manufacturing method for manufacturing an optical element by press molding, an optical element molding glass material, and an optical element molding die.
[0002]
[Prior art]
Conventionally, as a method for producing a glass optical element, as described in JP-A-3-33023, after grinding to a predetermined radius of curvature approximated in advance, the roughness is 0.5 μm or less by barrel polishing. A glass material having both mirror surfaces finished is heated and softened and press-molded with a molding die formed in a predetermined shape to obtain a desired optical element.
[0003]
However, optical elements with small R, concave lenses with a center thickness as thin as about 0.5 mm, and those with an outer diameter of 30 mm or more are manufactured by press molding only. If the thickness is thin, the glass is cooled and hardened before the shape becomes good as an optical function surface, and if the outer diameter is large, the amount of deformation is too large to reach the desired optical element thickness. It is difficult to manufacture only by pressing because it cannot be pressed, etc., by pre-pressing a glass material that has been mirror-finished on both sides, one side can be used as an optical functional surface as it is, the remaining one side is the final In some cases, a molded product having an approximate shape or a flat shape is used, and the surface of the approximate shape or the flat surface is ground and polished to be finished into a final shape to obtain a desired optical element.
[0004]
[Problems to be solved by the invention]
However, according to the above-described method, a glass material that has been mirror-finished by grinding and polishing on both sides is formed into an approximate shape by pressing with a mold, and then the desired optical element is formed by grinding and polishing to a final shape. Therefore, there is a drawback that the processing steps become complicated as shown in FIG. Further, since barrel polishing is used for polishing the rough molded product, there is a drawback that a long processing time is required.
[0005]
The present invention has been made in view of the above-mentioned problems. The invention of claim 1 is a method for manufacturing an optical element that can simplify the processing process, and the invention of claim 2 omits one polishing process of the mold. It is an object of the present invention to provide an optical element mold that can be obtained.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the present invention is configured as follows. The method of manufacturing an optical element according to claim 1 is obtained after heat softening a glass material whose one surface side is polished to a mirror surface and whose opposite surface is ground to a rough surface, and press-molded with a pair of molds. The desired optical element was obtained by grinding or polishing the rough surface side of the molded product.
[0008]
The optical element molding die according to claim 2 has a maximum surface roughness of a molding surface of one mold of a pair of molding dies of 0.05 μm or less and a maximum surface roughness of a molding surface of the other mold of 0.1 μm or more. It was decided that.
[0009]
The operation of the invention of claim 1 will be described.
One side is mirror-finished and the other side is rough, but the glass material is heated and softened. After press molding, only the rough side is ground and polished, so that thin optical elements and large outer diameters are used. Even in the optical element, the rough surface side is processed into a mirror surface, and the mirror surface side maintains the mirror surface as it is, so that only one surface can be ground and polished, and even the above thin optical elements can be manufactured in a relatively short time. It is.
[0011]
The operation of the second aspect will be described. When producing the molding die of the present invention, one surface of the molding surface of the die needs to be finished to a mirror surface of 0.05 μm or less in order to maintain the mirror surface of one surface of the molded product as a mirror surface satisfying optical performance. Since the other surface of the mold is ground and polished after the molded product is formed, a mirror finish is not required and a surface roughness of 0.1 μm or more is sufficient. Since only one surface of the molding die needs to be mirror-finished by polishing as described above, the molding die can be easily manufactured.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 of the Invention
Embodiment 1 of this invention is demonstrated based on FIGS.
In Embodiment 1 of the present invention, as shown in FIG. 2, a case where a spherical meniscus optical element 2 is manufactured is taken as an example. The optical element 2, A 'plane paraxial curvature radius of an aspherical RA, B' surface curvature radius of the spherical surface of R B.
[0013]
FIG. 1 shows a glass material 1 in which a surface A is a mirror surface with a radius of curvature R A and a maximum surface roughness of 0.05 μm or less, and a surface B is a flat surface with a maximum surface roughness of 0.1 μm or more. Has been processed. When processing the glass material 1, the cut glass disk is ground to make the A surface and B surface approximate to the desired optical elements, and then the A surface side is a general polishing process using a polishing dish Alternatively, the surface A may be finished by a general polishing means using a polishing dish from a direct press product that has an approximate shape in advance.
[0014]
FIG. 3 shows the mold 3. The molding die 3 is made of WC, and the molding surface 3a is mirror-finished with a radius of curvature RA and a maximum surface roughness of 0.05 μm or less. The whole is covered with chromium nitride.
[0015]
FIG. 4 shows the mold 4. The molding die 4 is made of WC, and the molding surface 4a is flat and processed with a maximum surface roughness of 0.1 μm or more. The whole is covered with chromium nitride.
[0016]
FIG. 5A is an explanatory diagram for illustrating a glass material press-molding method, and FIG. 5B shows a molded product 8 molded by the molding dies 3 and 4. The mold 3 and the mold 4 are disposed opposite to each other in the molding chamber 7 and are surrounded by a heater 6 for heating the mold 3, the mold 4, and the glass material.
[0017]
Next, the operation of Embodiment 1 of the present invention will be described.
As shown in FIG. 5A, the glass material 1 is placed between a pair of molds 3 and 4 having molding surfaces 3a and 4a formed in a predetermined shape. Then, the molding chamber 7 is set to a non-oxidizing atmosphere, and the glass material 1 is heated and softened by the heater 6. When the glass material 1 is heated and softened to a predetermined temperature at which pressure molding is possible, the molding die 3 and the molding die 4 are used at a predetermined pressure and time through a pressurizing means (for example, an air cylinder) not shown. Press molding. Thereafter, the heating and holding by the heater 6 is stopped, and the mold 3, the mold 4 and the molded product 8a formed by pressure molding are cooled to a temperature not higher than the transition temperature. When this cooling is completed, the molded product 8 shown in FIG. 5B is taken out between the mold 3 and the mold 4.
[0018]
The taken-out molded product 8 has a maximum surface roughness of 0.05 μm on the A-side because the A-side is press-molded by the molding surface 3a of the molding die 3 and the B-side is pressed by the molding surface 4a of the molding die 4. The following aspheric surfaces are provided, and the B surface side is a flat surface having a maximum surface roughness of 0.1 μm or more.
[0019]
Next, the sagittal surface curvature radius R B is formed by grinding in the B face. As this grinding process, a precision grinding process such as a curve generator or sanding can be used. In this way, an intermediate having the rough surface B ′ in the shape of the optical element 2 as shown in FIG. 2 is produced.
[0020]
Next, by polishing the B ′ surface side, the surface roughness of the B ′ surface is improved to obtain a B ′ surface that is a mirror surface having a maximum surface roughness of 0.05 μm or less. Manufactured.
[0021]
The effect of Embodiment 1 of the present invention will be described.
According to Embodiment 1 of the present invention, since a glass material having only one surface polished by a general polishing method using a polishing dish instead of a barrel polishing method is used, the polishing time can be shortened and the glass The single-side polishing step (step (4) in FIG. 8) at the material processing stage can be eliminated. Also, since one side of the optical element 2 is ground and polished after molding to obtain the B ′ surface of the optical element 2, the B ′ surface of the molded product may be rough, and the mold processing (step (12) in FIG. 8) is omitted. Can do.
[0022]
[Embodiment 2 of the Invention]
A second embodiment of the present invention will be described with reference to FIG. FIG. 6 shows a glass material used in Embodiment 2 of the present invention. The A side of the glass material 1 is formed into a plane having a maximum surface roughness of 0.05 μm or less by a general processing means using a polishing dish, and the B surface is ground to a plane having a maximum surface roughness of 0.1 μm or more. Has been processed. Other configurations are the same as the configurations shown in FIGS.
[0023]
The operation of Embodiment 2 of the present invention will be described.
The glass material 1 is deformed when it is press-molded in a heat-softened state, and the A surface is an aspherical surface having a paraxial radius of curvature R A and the B surface is a flat surface, resulting in the molded product 8 described in the first embodiment. . Since the optical element 2 is manufactured by the same method as in Embodiment 1 except that the molded product 8 is obtained from the disc shape, the description thereof is omitted below.
[0024]
According to the second embodiment of the present invention, since a round plate or a disc formed by cutting is used as a glass material, the step of creating a curvature on the A surface side by grinding can be omitted.
[0025]
Embodiment 3 of the Invention
A third embodiment of the present invention will be described with reference to FIG. FIG. 7 shows a mold 5 used in the third embodiment. This mold 5 is used in place of the mold 4 in the first embodiment. Mold 5 and the material of WC, its molding surface 5a is convex radius of curvature R B is processed into a more Katachi設to the maximum surface roughness 0.1 [mu] m. The whole is covered with chromium nitride.
The other configuration is the same as that of the second embodiment, and is omitted.
[0026]
The operation of this embodiment will be described.
The glass material 1 is deformed when it is press-molded in a heat-softened state. The A surface is an aspherical surface with a paraxial radius of curvature RA due to the molding surface 3 a of the molding die 3, and the B surface is molding of the molding die 5. The surface 5 a becomes a spherical surface with a radius of curvature R B and is formed in the shape of the optical element 2. At this time, the molded product has substantially the same shape as the optical element 2 of FIG. 2, the maximum surface roughness is 0.05 μm or less on the A ′ side, and the maximum surface roughness is 0.1 μm on the B ′ side. That's it.
[0027]
By polishing the B ′ surface side of this molded product, the roughness of the B ′ surface can be improved, the maximum surface roughness can be 0.05 μm or less, and the desired optical element 2 can be obtained.
[0028]
According to Embodiment 3 of the present invention, the shape of the spherical notch portion of the optical element 2 is formed from the molding die 5 having the convex molding surface 5a by using the disk-shaped glass material 1, and thus grinding. Processing steps can be omitted.
[0029]
【The invention's effect】
As described above, according to the present invention, the following effects can be obtained. According to the first aspect of the present invention, the manufacturing process of the optical element can be simplified by making one side of the molded product rough. According to the invention of claim 2, it is possible to eliminate one formed shape type polishing step.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a glass material according to Embodiment 1 of the present invention.
FIG. 2 is a cross-sectional view showing an optical element molded in Embodiment 1 of the present invention.
FIG. 3 is a cross-sectional view showing a mold according to Embodiment 1 of the present invention.
FIG. 4 is a cross-sectional view showing a mold according to Embodiment 1 of the present invention.
FIG. 5 (A) is an explanatory view for explaining a method of manufacturing an optical element according to Embodiment 1 of the present invention, and FIG. 5 (B) is a cross-sectional view showing a molded product.
FIG. 6 is a cross-sectional view showing a glass material according to Embodiment 2 of the present invention.
FIG. 7 is a cross-sectional view showing a mold according to Embodiment 3 of the present invention.
FIG. 8 is a chart showing a manufacturing process of the prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Glass material 2 Optical element 3, 4, 5 Mold 3a, 4a, 5a Molding surface 6 Heater 7 Molding chamber 8 Molded article

Claims (2)

片面側は鏡面にまで研磨加工され反対の面は粗面に研削加工されたガラス素材を加熱軟化し、一対の成形型にて押圧成形した後、得られた成形物の前記粗面側を研削研磨加工、または研磨加工することで所望の光学素子を得ることを特徴とする光学素子の製造方法。One side is polished to a mirror surface and the other side is roughened to heat and soften the glass material. After pressing with a pair of molds, the rough side of the molded product is ground. A method for producing an optical element, characterized in that a desired optical element is obtained by polishing or polishing. 対をなす成形型の一方の型の成形面の最大表面粗さを0.05μm以下とし、他方の型の成形面の最大表面粗さを0.1μm以上としたことを特徴とする光学素子成形型。Optical element molding characterized in that the maximum surface roughness of the molding surface of one of the molds forming a pair is 0.05 μm or less and the maximum surface roughness of the molding surface of the other mold is 0.1 μm or more Type.
JP05146596A 1996-03-08 1996-03-08 Optical element manufacturing method and optical element mold Expired - Fee Related JP3850062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05146596A JP3850062B2 (en) 1996-03-08 1996-03-08 Optical element manufacturing method and optical element mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05146596A JP3850062B2 (en) 1996-03-08 1996-03-08 Optical element manufacturing method and optical element mold

Publications (2)

Publication Number Publication Date
JPH09241029A JPH09241029A (en) 1997-09-16
JP3850062B2 true JP3850062B2 (en) 2006-11-29

Family

ID=12887701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05146596A Expired - Fee Related JP3850062B2 (en) 1996-03-08 1996-03-08 Optical element manufacturing method and optical element mold

Country Status (1)

Country Link
JP (1) JP3850062B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5559982B2 (en) * 2009-05-11 2014-07-23 Hoya株式会社 Glass aspheric lens and manufacturing method thereof

Also Published As

Publication number Publication date
JPH09241029A (en) 1997-09-16

Similar Documents

Publication Publication Date Title
US4895585A (en) Method of manufacturing lens elements
US20030115907A1 (en) Multiple lens molding system and method
JP2592575B2 (en) Method for manufacturing intraocular lens
JP3850062B2 (en) Optical element manufacturing method and optical element mold
JP2001163628A (en) Producing method of molding
JP2621956B2 (en) Optical element molding method
JP3681114B2 (en) Manufacturing method of glass optical element
JP2501588B2 (en) Mold for press molding optical glass element and molding method thereof
JP2001010831A (en) Molding mold for glass optical element and production of glass optical element using the same
JPS63295448A (en) Method for molding glass lens
JP3299785B2 (en) Manufacturing method of optical glass lens
JPS61291424A (en) Forming mold of glass lens and forming method
JP2000281360A (en) Optical blank for forming, production of optical blank for forming and method for forming optical parts
JPH02102136A (en) Mold for molding optical element and production thereof
JP2001166117A (en) Method of producing glass optical elements
JPS6325233A (en) Compression molding of optical element
JP3217153B2 (en) Optical material molding die, optical material molding method using the same, and optical material obtained thereby
JP2003063832A (en) Mold for forming optical element
JPH01226746A (en) Glass lens formation mold
JPH10109312A (en) Production of glass mold for glasses
JP2003063835A (en) Mold for forming optical element and method for manufacturing the same
JPH1044158A (en) Manufacture of glass mold for spectacles
JP2003026430A (en) Mold for molding high-precision prism, method for manufacturing the same and method for manufacturing high-precision prism
JPH05301723A (en) Method for forming optical element
JP2621941B2 (en) Optical element molding method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees