JPH01292871A - Manufacture of oxide superconductive molding with electrode layer - Google Patents

Manufacture of oxide superconductive molding with electrode layer

Info

Publication number
JPH01292871A
JPH01292871A JP63123669A JP12366988A JPH01292871A JP H01292871 A JPH01292871 A JP H01292871A JP 63123669 A JP63123669 A JP 63123669A JP 12366988 A JP12366988 A JP 12366988A JP H01292871 A JPH01292871 A JP H01292871A
Authority
JP
Japan
Prior art keywords
molding
electrode layer
oxide
powder
superconductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63123669A
Other languages
Japanese (ja)
Inventor
Kumiko Imai
今井 久美子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP63123669A priority Critical patent/JPH01292871A/en
Publication of JPH01292871A publication Critical patent/JPH01292871A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain an oxide superconductive molding having an electrode layer with high adhesive strength and excellent in a superconductive characteristic by arranging a plate-shaped substance or powder of silver on a prescribed spot on a dust molding of a Y-Ba-Cu-O oxide superconductor precursor followed by performing heat treatment on the whole in an atmosphere containing hydrogen in the temperature range of 930-958 deg.C. CONSTITUTION:A plate-shaped substance or powder of silver is arranged on a prescribed spot on a dust molding of a Y-Ba-Cu-O oxide superconductor precursor followed by performing heat treatment on the whole in an oxygen containing atmosphere in the temperature range of 930-958 deg.C. By this heat treatment, the dust molding performs heating sintering reaction for becoming an oxide superconductor ad the plate-shaped substance of powder of Ag prearranged on a prescribed spot on the dust molding becomes a fluidizable semimolten state so that the Y-Ba-Cu-O oxide superconductive molding having electrode layer of Ag strongly adhered inside a micromeshlike gas existing on the dust molding surface. Thereby, there is no need of adhering the electrode layer to the superconductive molding by a later process.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電極層付酸化物超電導成形体の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing an oxide superconducting molded body with an electrode layer.

〔従来の技術とその課題〕[Conventional technology and its issues]

Y−Ba−Cu−0系の酸化物超電導体は、液体N2温
度以上で超電導となるため従来の液体He温度で超電導
を示す金属超電導体に較べて格段に経済的であり、各分
野での利用が検討されている。
Y-Ba-Cu-0-based oxide superconductors become superconducting at temperatures above liquid N2 temperature, so they are much more economical than conventional metal superconductors that exhibit superconductivity at liquid He temperatures, and are widely used in various fields. Its use is being considered.

ところで上記の酸化物超電導体は脆いため金属材料のよ
うに塑性加工ができず、これらを板材や線材等に加工す
るには、主に粉末冶金法が用いられ、例えば原料粉末を
仮焼成して仮焼粉となし、この仮焼粉を基体上に被覆成
形したり、又は所望形状に圧粉成形し、次いでこれをO
t含有雰囲気中で加熱し焼結反応させて酸化物超電導成
形体となす方法が用いられている。
By the way, the above-mentioned oxide superconductors are brittle and cannot be plastically worked like metal materials, so powder metallurgy is mainly used to process them into plates, wires, etc. For example, by pre-sintering the raw material powder, This calcined powder is coated on a substrate or compacted into a desired shape, and then heated with O.
A method is used in which an oxide superconducting molded body is formed by heating in a t-containing atmosphere and causing a sintering reaction.

一方上記のような酸化物超電導成形体にリード線等を接
続するには酸化物超電導成形体表面に銅等の金属片をセ
ラミックス半田付法、金属蒸着法又は金属ペースト焼付
法等の方法により密着させ、この金属片にリード線を半
田付けする方法等により行われていた。しかしながら上
記のような方法では酸化物超電導成形体表面に金属片を
十分な強度で密着させることが出来ず接触抵抗が大きく
なるばかりでなく、使用中に金属片が酸化物超電導成形
体から剥離したり更には金属片の取付は作業に手間がか
かり、又取付は時に超電導成形体が局部加熱されて超電
導特性が劣化する等の種々の問題があった。
On the other hand, in order to connect lead wires, etc. to the oxide superconducting molded body as described above, a piece of metal such as copper is tightly attached to the surface of the oxide superconducting molded body by a method such as ceramic soldering, metal vapor deposition, or metal paste baking. This was done by attaching a lead wire to the metal piece and soldering it to the metal piece. However, with the above method, it is not possible to adhere the metal piece to the surface of the oxide superconducting molded body with sufficient strength, and the contact resistance not only increases, but also the metal piece peels off from the oxide superconducting molded body during use. Moreover, the attachment of the metal pieces is labor-intensive, and the attachment sometimes causes various problems such as local heating of the superconducting molded body and deterioration of superconducting properties.

〔課題を解決する為の手段及び作用〕[Means and actions to solve the problem]

本発明はかかる状況に鑑みなされたもので、その目的と
するところは密着強度の高い電極層を有する超電導特性
に優れたY−Ba−Cu−0系酸化物超電導成形体の製
造方法を提供することにある。
The present invention was made in view of the above circumstances, and its purpose is to provide a method for manufacturing a Y-Ba-Cu-0 based oxide superconducting molded body having an electrode layer with high adhesion strength and having excellent superconducting properties. There is a particular thing.

即ち本発明はY−Ba−Cu−0系酸化物超電導体前駆
物質の圧粉成形体上の所定の箇所に銀の板状体又は粉体
を配置し、次いで全体を酸素含有雰囲気中で930〜9
58 ”Cの温度範囲で加熱処理すること特徴とするも
のである。
That is, in the present invention, a silver plate or powder is placed at a predetermined location on a green compact of a Y-Ba-Cu-0 based oxide superconductor precursor, and then the whole is heated for 930°C in an oxygen-containing atmosphere. ~9
It is characterized by heat treatment in a temperature range of 58''C.

本発明によれば上記の如き温度範囲で加熱処理されるこ
とによりY−Ba−Cu−0系酸化物超電導体前駆物質
の圧粉成形体は、加熱焼結反応により目的の酸化物超電
導体にせしめられると共に、前記圧粉成形体上の所定の
個所に予め配置したAgの板状体又は粉体は流動可能な
準溶融棒状態となって前記圧粉成形体表面に存在する微
細な網目状の空隙内に含浸するため投描効果により強固
に密着したAgの電極層を有するY−Ba−Cu−0系
酸化物超電導成形体が得られるものである。
According to the present invention, the powder compact of the Y-Ba-Cu-0-based oxide superconductor precursor is heat-treated in the above-mentioned temperature range, and is transformed into the target oxide superconductor through a heating sintering reaction. At the same time, the Ag plate or powder previously placed at a predetermined location on the powder compact becomes a flowable quasi-molten rod, and the fine mesh-like structure existing on the surface of the powder compact becomes a flowable semi-molten rod. A Y--Ba--Cu--0 based oxide superconducting molded body having an electrode layer of Ag that is firmly adhered to it due to the projection effect can be obtained by impregnating into the voids of the Y--Ba--Cu--0 type oxide superconducting body.

本発明方法は、上記のように酸化物超電導体の前駆物質
を酸化物超電導体に焼結反応させる加熱工程を利用して
同時に超電導成形体の所定の個所に電極層を密着させる
ので、従来の如く超電導成形体に後工程により電極層を
密着させる必要がなく効率的である。
As described above, the method of the present invention utilizes the heating step of causing a sintering reaction of the precursor of the oxide superconductor to the oxide superconductor, and simultaneously brings the electrode layer into close contact with a predetermined location of the superconducting molded body. This method is efficient since it is not necessary to adhere the electrode layer to the superconducting molded body in a post-process.

本発明においてY−Ba−Cu−0系の酸化物超電導体
前駆物質とは、YBa、Cu30.の化学式で示される
複合酸化物で、この複合酸化物は酸素含有雰囲気中で所
定の加熱処理を施すことにより酸素量の補給等がなされ
てY B a z Cu s Oq−δ(δ=0.2〜
0.3)の化学式で示される酸化物超電導体となるもの
である。
In the present invention, Y-Ba-Cu-0-based oxide superconductor precursors include YBa, Cu30. A complex oxide represented by the chemical formula: Y B az Cu s Oq-δ (δ=0. 2~
This is an oxide superconductor represented by the chemical formula 0.3).

本発明において電極層となるAgはY−Ba−Cu−0
系酸化物超電導体と反応することがないので、930〜
958℃の高温に加熱しても得られるY−Ba−Cu−
0系酸化物超電導体の超電導特性を低下させるようなこ
とがない。
In the present invention, Ag that becomes the electrode layer is Y-Ba-Cu-0
Since it does not react with the system oxide superconductor, 930~
Y-Ba-Cu- obtained even when heated to a high temperature of 958°C
There is no deterioration in the superconducting properties of the 0-based oxide superconductor.

〔実施例〕〔Example〕

以下に本発明を実施例により詳細に説明する。 The present invention will be explained in detail below using examples.

実施例I YBa、Cu1Oxの化学式で示される酸化物超電導体
前駆物質粉体を6I!I11角80m長さの棒状に圧粉
成形したのち、この圧粉成形体の両端側面に電極層とし
て4011角0.1 a厚さのAg箔をプレス圧着し、
次いで全体を大気中で940℃6時間加熱°して上記酸
化物超電導体前駆物質の圧粉成形体を焼結するとともに
上記Ag箔の下層部分を上記圧粉成形体の空隙内に含浸
させ、次いで940℃より毎分2℃の速度で徐冷してA
g電極層を有する酸化物超電導成形体を製造した。
Example I Oxide superconductor precursor powder represented by the chemical formula of YBa, Cu1Ox was 6I! After compacting into a rod shape of I11 square and 80 m length, Ag foil of 4011 square and 0.1 a thickness was press-bonded as an electrode layer on both end sides of this compacted body.
Next, the whole is heated in the atmosphere at 940° C. for 6 hours to sinter the powder compact of the oxide superconductor precursor and impregnate the lower layer portion of the Ag foil into the voids of the powder compact, Then, it was slowly cooled from 940°C at a rate of 2°C per minute to form A.
An oxide superconducting molded body having a g-electrode layer was manufactured.

実施例2 実施例1で用いたと同一の酸化物超電導体前駆物質の圧
粉成形体の両端側面にAg箔をプレス圧着する代りに有
機ビヒクルをバインダとしたAg粉ペーストを塗布し、
940℃で焼結処理する前に500℃30分間の脱バイ
ンダ処理を施した他は実施例1と同じ方法によりAg電
極層付酸化物超電導成形体を製造した。
Example 2 Instead of press-bonding Ag foil to the side surfaces of both ends of the compacted body of the same oxide superconductor precursor used in Example 1, an Ag powder paste using an organic vehicle as a binder was applied,
An oxide superconducting molded body with an Ag electrode layer was produced in the same manner as in Example 1, except that the binder was removed at 500°C for 30 minutes before the sintering process at 940°C.

比較例1 加熱焼結を940℃6H行う代りに920℃2OH行っ
た他は実施例1と同じ方法によりAg電極層付酸化物超
電導成形体を製造した。
Comparative Example 1 An oxide superconducting molded body with an Ag electrode layer was produced in the same manner as in Example 1, except that instead of heating and sintering at 940°C for 6 hours, it was heated at 920°C for 2OH.

比較例2 実施例1で用いたと同じ酸化物超電導体前駆物質の圧粉
成形体を大気中で940℃6時間加熱焼結し、次いで9
40℃より毎分2℃の速度で徐冷して酸化物超電導成形
体となしたのち、上記超電導成形体の両端側面に411
I11角0.1 ms厚さのAg箔をセラミックス半田
を用いて加熱接続した。
Comparative Example 2 A powder compact of the same oxide superconductor precursor used in Example 1 was heated and sintered at 940°C for 6 hours in the atmosphere, and then heated at 940°C for 6 hours.
After slowly cooling from 40°C at a rate of 2°C per minute to form an oxide superconducting molded body, 411 was applied to both end sides of the superconducting molded body.
Ag foils of I11 square and 0.1 ms thick were heat-connected using ceramic solder.

斯くの如くして得た各々の酸化物超電導成形体のAg電
極層にリード線を半田付けして電極層と超電導成形体間
の接触抵抗及び臨界電流密度(JC)を測定した。結果
は主な製造条件を併記して第1表に示した。
A lead wire was soldered to the Ag electrode layer of each of the oxide superconducting molded bodies thus obtained, and the contact resistance and critical current density (JC) between the electrode layer and the superconducting molded body were measured. The results are shown in Table 1 along with the main manufacturing conditions.

第1表より明らかなように本発明方法品(実施例1,2
)はAg電極層の密着性が良好な為接触抵抗が小さく、
又J、も高い値を示している。
As is clear from Table 1, the method of the present invention (Examples 1 and 2)
) has a low contact resistance due to the good adhesion of the Ag electrode layer.
J also shows a high value.

これに対し比較例1は焼結温度が低い為空隙内へのAg
の含浸が十分になされずAg電極層の密着不良を生じて
接触抵抗が高い値となった。また比較例2はセラミンク
ス半田付法によりAg電極層を取り付けた為密着性が悪
く接触抵抗が高いばかりでなく半田付けの際の加熱によ
り超電導体層が劣化してJcが低い値となった。
On the other hand, in Comparative Example 1, the sintering temperature was low, so Ag
The impregnation of the Ag electrode layer was not sufficient, resulting in poor adhesion of the Ag electrode layer, resulting in a high contact resistance. Further, in Comparative Example 2, the Ag electrode layer was attached by the ceramic soldering method, so not only was the adhesion poor and the contact resistance high, but also the superconductor layer deteriorated due to heating during soldering, resulting in a low Jc value.

〔効果〕〔effect〕

以上述べたように本発明方法によれば超電導特性を損ね
ることなく、−工程にて所定の個所に強固に密着したA
gの電極層を有するY−Ba−Cu−0系酸化物超電導
成形体が製造できるものであり、工業上顕著な効果を奏
する。
As described above, according to the method of the present invention, the A
It is possible to produce a Y-Ba-Cu-0 based oxide superconducting molded body having an electrode layer of g, which has a remarkable industrial effect.

Claims (1)

【特許請求の範囲】[Claims]  Y−Ba−Cu−O系酸化物超電導体前駆物質の圧粉
成形体上の所定の箇所に銀の板状体又は粉体を配置し、
次いで全体を酸素含有雰囲気中で930〜958℃の温
度範囲で加熱処理することを特徴とする電極層付酸化物
超電導成形体の製造方法。
Arranging a silver plate or powder at a predetermined location on a compacted body of a Y-Ba-Cu-O-based oxide superconductor precursor,
A method for producing an oxide superconducting molded body with an electrode layer, the method comprising: then heat-treating the entire body at a temperature range of 930 to 958°C in an oxygen-containing atmosphere.
JP63123669A 1988-05-20 1988-05-20 Manufacture of oxide superconductive molding with electrode layer Pending JPH01292871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63123669A JPH01292871A (en) 1988-05-20 1988-05-20 Manufacture of oxide superconductive molding with electrode layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63123669A JPH01292871A (en) 1988-05-20 1988-05-20 Manufacture of oxide superconductive molding with electrode layer

Publications (1)

Publication Number Publication Date
JPH01292871A true JPH01292871A (en) 1989-11-27

Family

ID=14866367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63123669A Pending JPH01292871A (en) 1988-05-20 1988-05-20 Manufacture of oxide superconductive molding with electrode layer

Country Status (1)

Country Link
JP (1) JPH01292871A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341782A (en) * 1989-07-10 1991-02-22 Sanyo Electric Co Ltd Formation of electrode of oxide superconductor film
EP0426077A2 (en) * 1989-11-03 1991-05-08 Gec Alsthom Sa Process for making a low-resistant connection between a metal and a ceramic superconducting HTSC

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341782A (en) * 1989-07-10 1991-02-22 Sanyo Electric Co Ltd Formation of electrode of oxide superconductor film
EP0426077A2 (en) * 1989-11-03 1991-05-08 Gec Alsthom Sa Process for making a low-resistant connection between a metal and a ceramic superconducting HTSC

Similar Documents

Publication Publication Date Title
EP0401461B1 (en) Oxide superconductor and method of manufacturing the same
EP0305820A2 (en) Method of manufacturing a superconductor
JP3563832B2 (en) Method for metallizing ferrite using surface reduction
JPH01292871A (en) Manufacture of oxide superconductive molding with electrode layer
JP2904998B2 (en) Solid object made of ceramic high-temperature superconducting material connected to metal conductor and method of manufacturing the same
JP3623868B2 (en) High durability oxide superconductor and manufacturing method thereof
JPH02183915A (en) Oxide superconducting compact
JP3383799B2 (en) Superconducting composite and manufacturing method thereof
JP2597704B2 (en) Metal-coated superconducting ceramics compact and metal-coated superconducting ceramic-metal joint using the same
JP3448597B2 (en) Bismuth-based oxide superconducting composite and method for producing the same
JP3281892B2 (en) Ceramic superconducting composite and manufacturing method thereof
JPH06172046A (en) Production of metal-oxide superconducting composite material
JPH01194214A (en) Manufacture of oxide superconductive compact
JPS63304529A (en) Formation of oxide superconductor thin film
JP2555089B2 (en) Method for manufacturing superconducting conductor
JP2544735B2 (en) Superconducting material
JPS63237314A (en) Manufacture of superconductive compound material
JP3590567B2 (en) Manufacturing method of oxide superconducting wire and oxide superconducting wire
JP2727565B2 (en) Superconductor manufacturing method
JPH03192615A (en) Oxide superconducting structural body and manufacture thereof
JPH01109613A (en) Manufacture of oxide superconductor
JP2891365B2 (en) Manufacturing method of ceramic superconductor
JPH0227622A (en) Manufacture of superconductive filament
JPH03122917A (en) Manufacture of ceramics superconductive conductor
JPH02216712A (en) Oxide high temperature superconductor and manufacture thereof