JPH01292871A - Manufacture of oxide superconductive molding with electrode layer - Google Patents
Manufacture of oxide superconductive molding with electrode layerInfo
- Publication number
- JPH01292871A JPH01292871A JP63123669A JP12366988A JPH01292871A JP H01292871 A JPH01292871 A JP H01292871A JP 63123669 A JP63123669 A JP 63123669A JP 12366988 A JP12366988 A JP 12366988A JP H01292871 A JPH01292871 A JP H01292871A
- Authority
- JP
- Japan
- Prior art keywords
- molding
- electrode layer
- oxide
- powder
- superconductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 238000000465 moulding Methods 0.000 title abstract 9
- 239000002887 superconductor Substances 0.000 claims abstract description 21
- 239000000843 powder Substances 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 claims abstract description 15
- 239000002243 precursor Substances 0.000 claims abstract description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 3
- 239000001301 oxygen Substances 0.000 claims abstract description 3
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 3
- 229910009203 Y-Ba-Cu-O Inorganic materials 0.000 claims abstract 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 abstract description 11
- 238000005245 sintering Methods 0.000 abstract description 8
- 239000000126 substance Substances 0.000 abstract description 6
- 239000000428 dust Substances 0.000 abstract 5
- 229910052709 silver Inorganic materials 0.000 abstract 2
- 239000004332 silver Substances 0.000 abstract 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract 1
- 239000000853 adhesive Substances 0.000 abstract 1
- 230000001070 adhesive effect Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 abstract 1
- 239000001257 hydrogen Substances 0.000 abstract 1
- 229910052739 hydrogen Inorganic materials 0.000 abstract 1
- 239000002184 metal Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 238000005476 soldering Methods 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000009969 flowable effect Effects 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は電極層付酸化物超電導成形体の製造方法に関す
る。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing an oxide superconducting molded body with an electrode layer.
Y−Ba−Cu−0系の酸化物超電導体は、液体N2温
度以上で超電導となるため従来の液体He温度で超電導
を示す金属超電導体に較べて格段に経済的であり、各分
野での利用が検討されている。Y-Ba-Cu-0-based oxide superconductors become superconducting at temperatures above liquid N2 temperature, so they are much more economical than conventional metal superconductors that exhibit superconductivity at liquid He temperatures, and are widely used in various fields. Its use is being considered.
ところで上記の酸化物超電導体は脆いため金属材料のよ
うに塑性加工ができず、これらを板材や線材等に加工す
るには、主に粉末冶金法が用いられ、例えば原料粉末を
仮焼成して仮焼粉となし、この仮焼粉を基体上に被覆成
形したり、又は所望形状に圧粉成形し、次いでこれをO
t含有雰囲気中で加熱し焼結反応させて酸化物超電導成
形体となす方法が用いられている。By the way, the above-mentioned oxide superconductors are brittle and cannot be plastically worked like metal materials, so powder metallurgy is mainly used to process them into plates, wires, etc. For example, by pre-sintering the raw material powder, This calcined powder is coated on a substrate or compacted into a desired shape, and then heated with O.
A method is used in which an oxide superconducting molded body is formed by heating in a t-containing atmosphere and causing a sintering reaction.
一方上記のような酸化物超電導成形体にリード線等を接
続するには酸化物超電導成形体表面に銅等の金属片をセ
ラミックス半田付法、金属蒸着法又は金属ペースト焼付
法等の方法により密着させ、この金属片にリード線を半
田付けする方法等により行われていた。しかしながら上
記のような方法では酸化物超電導成形体表面に金属片を
十分な強度で密着させることが出来ず接触抵抗が大きく
なるばかりでなく、使用中に金属片が酸化物超電導成形
体から剥離したり更には金属片の取付は作業に手間がか
かり、又取付は時に超電導成形体が局部加熱されて超電
導特性が劣化する等の種々の問題があった。On the other hand, in order to connect lead wires, etc. to the oxide superconducting molded body as described above, a piece of metal such as copper is tightly attached to the surface of the oxide superconducting molded body by a method such as ceramic soldering, metal vapor deposition, or metal paste baking. This was done by attaching a lead wire to the metal piece and soldering it to the metal piece. However, with the above method, it is not possible to adhere the metal piece to the surface of the oxide superconducting molded body with sufficient strength, and the contact resistance not only increases, but also the metal piece peels off from the oxide superconducting molded body during use. Moreover, the attachment of the metal pieces is labor-intensive, and the attachment sometimes causes various problems such as local heating of the superconducting molded body and deterioration of superconducting properties.
本発明はかかる状況に鑑みなされたもので、その目的と
するところは密着強度の高い電極層を有する超電導特性
に優れたY−Ba−Cu−0系酸化物超電導成形体の製
造方法を提供することにある。The present invention was made in view of the above circumstances, and its purpose is to provide a method for manufacturing a Y-Ba-Cu-0 based oxide superconducting molded body having an electrode layer with high adhesion strength and having excellent superconducting properties. There is a particular thing.
即ち本発明はY−Ba−Cu−0系酸化物超電導体前駆
物質の圧粉成形体上の所定の箇所に銀の板状体又は粉体
を配置し、次いで全体を酸素含有雰囲気中で930〜9
58 ”Cの温度範囲で加熱処理すること特徴とするも
のである。That is, in the present invention, a silver plate or powder is placed at a predetermined location on a green compact of a Y-Ba-Cu-0 based oxide superconductor precursor, and then the whole is heated for 930°C in an oxygen-containing atmosphere. ~9
It is characterized by heat treatment in a temperature range of 58''C.
本発明によれば上記の如き温度範囲で加熱処理されるこ
とによりY−Ba−Cu−0系酸化物超電導体前駆物質
の圧粉成形体は、加熱焼結反応により目的の酸化物超電
導体にせしめられると共に、前記圧粉成形体上の所定の
個所に予め配置したAgの板状体又は粉体は流動可能な
準溶融棒状態となって前記圧粉成形体表面に存在する微
細な網目状の空隙内に含浸するため投描効果により強固
に密着したAgの電極層を有するY−Ba−Cu−0系
酸化物超電導成形体が得られるものである。According to the present invention, the powder compact of the Y-Ba-Cu-0-based oxide superconductor precursor is heat-treated in the above-mentioned temperature range, and is transformed into the target oxide superconductor through a heating sintering reaction. At the same time, the Ag plate or powder previously placed at a predetermined location on the powder compact becomes a flowable quasi-molten rod, and the fine mesh-like structure existing on the surface of the powder compact becomes a flowable semi-molten rod. A Y--Ba--Cu--0 based oxide superconducting molded body having an electrode layer of Ag that is firmly adhered to it due to the projection effect can be obtained by impregnating into the voids of the Y--Ba--Cu--0 type oxide superconducting body.
本発明方法は、上記のように酸化物超電導体の前駆物質
を酸化物超電導体に焼結反応させる加熱工程を利用して
同時に超電導成形体の所定の個所に電極層を密着させる
ので、従来の如く超電導成形体に後工程により電極層を
密着させる必要がなく効率的である。As described above, the method of the present invention utilizes the heating step of causing a sintering reaction of the precursor of the oxide superconductor to the oxide superconductor, and simultaneously brings the electrode layer into close contact with a predetermined location of the superconducting molded body. This method is efficient since it is not necessary to adhere the electrode layer to the superconducting molded body in a post-process.
本発明においてY−Ba−Cu−0系の酸化物超電導体
前駆物質とは、YBa、Cu30.の化学式で示される
複合酸化物で、この複合酸化物は酸素含有雰囲気中で所
定の加熱処理を施すことにより酸素量の補給等がなされ
てY B a z Cu s Oq−δ(δ=0.2〜
0.3)の化学式で示される酸化物超電導体となるもの
である。In the present invention, Y-Ba-Cu-0-based oxide superconductor precursors include YBa, Cu30. A complex oxide represented by the chemical formula: Y B az Cu s Oq-δ (δ=0. 2~
This is an oxide superconductor represented by the chemical formula 0.3).
本発明において電極層となるAgはY−Ba−Cu−0
系酸化物超電導体と反応することがないので、930〜
958℃の高温に加熱しても得られるY−Ba−Cu−
0系酸化物超電導体の超電導特性を低下させるようなこ
とがない。In the present invention, Ag that becomes the electrode layer is Y-Ba-Cu-0
Since it does not react with the system oxide superconductor, 930~
Y-Ba-Cu- obtained even when heated to a high temperature of 958°C
There is no deterioration in the superconducting properties of the 0-based oxide superconductor.
以下に本発明を実施例により詳細に説明する。 The present invention will be explained in detail below using examples.
実施例I
YBa、Cu1Oxの化学式で示される酸化物超電導体
前駆物質粉体を6I!I11角80m長さの棒状に圧粉
成形したのち、この圧粉成形体の両端側面に電極層とし
て4011角0.1 a厚さのAg箔をプレス圧着し、
次いで全体を大気中で940℃6時間加熱°して上記酸
化物超電導体前駆物質の圧粉成形体を焼結するとともに
上記Ag箔の下層部分を上記圧粉成形体の空隙内に含浸
させ、次いで940℃より毎分2℃の速度で徐冷してA
g電極層を有する酸化物超電導成形体を製造した。Example I Oxide superconductor precursor powder represented by the chemical formula of YBa, Cu1Ox was 6I! After compacting into a rod shape of I11 square and 80 m length, Ag foil of 4011 square and 0.1 a thickness was press-bonded as an electrode layer on both end sides of this compacted body.
Next, the whole is heated in the atmosphere at 940° C. for 6 hours to sinter the powder compact of the oxide superconductor precursor and impregnate the lower layer portion of the Ag foil into the voids of the powder compact, Then, it was slowly cooled from 940°C at a rate of 2°C per minute to form A.
An oxide superconducting molded body having a g-electrode layer was manufactured.
実施例2
実施例1で用いたと同一の酸化物超電導体前駆物質の圧
粉成形体の両端側面にAg箔をプレス圧着する代りに有
機ビヒクルをバインダとしたAg粉ペーストを塗布し、
940℃で焼結処理する前に500℃30分間の脱バイ
ンダ処理を施した他は実施例1と同じ方法によりAg電
極層付酸化物超電導成形体を製造した。Example 2 Instead of press-bonding Ag foil to the side surfaces of both ends of the compacted body of the same oxide superconductor precursor used in Example 1, an Ag powder paste using an organic vehicle as a binder was applied,
An oxide superconducting molded body with an Ag electrode layer was produced in the same manner as in Example 1, except that the binder was removed at 500°C for 30 minutes before the sintering process at 940°C.
比較例1
加熱焼結を940℃6H行う代りに920℃2OH行っ
た他は実施例1と同じ方法によりAg電極層付酸化物超
電導成形体を製造した。Comparative Example 1 An oxide superconducting molded body with an Ag electrode layer was produced in the same manner as in Example 1, except that instead of heating and sintering at 940°C for 6 hours, it was heated at 920°C for 2OH.
比較例2
実施例1で用いたと同じ酸化物超電導体前駆物質の圧粉
成形体を大気中で940℃6時間加熱焼結し、次いで9
40℃より毎分2℃の速度で徐冷して酸化物超電導成形
体となしたのち、上記超電導成形体の両端側面に411
I11角0.1 ms厚さのAg箔をセラミックス半田
を用いて加熱接続した。Comparative Example 2 A powder compact of the same oxide superconductor precursor used in Example 1 was heated and sintered at 940°C for 6 hours in the atmosphere, and then heated at 940°C for 6 hours.
After slowly cooling from 40°C at a rate of 2°C per minute to form an oxide superconducting molded body, 411 was applied to both end sides of the superconducting molded body.
Ag foils of I11 square and 0.1 ms thick were heat-connected using ceramic solder.
斯くの如くして得た各々の酸化物超電導成形体のAg電
極層にリード線を半田付けして電極層と超電導成形体間
の接触抵抗及び臨界電流密度(JC)を測定した。結果
は主な製造条件を併記して第1表に示した。A lead wire was soldered to the Ag electrode layer of each of the oxide superconducting molded bodies thus obtained, and the contact resistance and critical current density (JC) between the electrode layer and the superconducting molded body were measured. The results are shown in Table 1 along with the main manufacturing conditions.
第1表より明らかなように本発明方法品(実施例1,2
)はAg電極層の密着性が良好な為接触抵抗が小さく、
又J、も高い値を示している。As is clear from Table 1, the method of the present invention (Examples 1 and 2)
) has a low contact resistance due to the good adhesion of the Ag electrode layer.
J also shows a high value.
これに対し比較例1は焼結温度が低い為空隙内へのAg
の含浸が十分になされずAg電極層の密着不良を生じて
接触抵抗が高い値となった。また比較例2はセラミンク
ス半田付法によりAg電極層を取り付けた為密着性が悪
く接触抵抗が高いばかりでなく半田付けの際の加熱によ
り超電導体層が劣化してJcが低い値となった。On the other hand, in Comparative Example 1, the sintering temperature was low, so Ag
The impregnation of the Ag electrode layer was not sufficient, resulting in poor adhesion of the Ag electrode layer, resulting in a high contact resistance. Further, in Comparative Example 2, the Ag electrode layer was attached by the ceramic soldering method, so not only was the adhesion poor and the contact resistance high, but also the superconductor layer deteriorated due to heating during soldering, resulting in a low Jc value.
以上述べたように本発明方法によれば超電導特性を損ね
ることなく、−工程にて所定の個所に強固に密着したA
gの電極層を有するY−Ba−Cu−0系酸化物超電導
成形体が製造できるものであり、工業上顕著な効果を奏
する。As described above, according to the method of the present invention, the A
It is possible to produce a Y-Ba-Cu-0 based oxide superconducting molded body having an electrode layer of g, which has a remarkable industrial effect.
Claims (1)
成形体上の所定の箇所に銀の板状体又は粉体を配置し、
次いで全体を酸素含有雰囲気中で930〜958℃の温
度範囲で加熱処理することを特徴とする電極層付酸化物
超電導成形体の製造方法。Arranging a silver plate or powder at a predetermined location on a compacted body of a Y-Ba-Cu-O-based oxide superconductor precursor,
A method for producing an oxide superconducting molded body with an electrode layer, the method comprising: then heat-treating the entire body at a temperature range of 930 to 958°C in an oxygen-containing atmosphere.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63123669A JPH01292871A (en) | 1988-05-20 | 1988-05-20 | Manufacture of oxide superconductive molding with electrode layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63123669A JPH01292871A (en) | 1988-05-20 | 1988-05-20 | Manufacture of oxide superconductive molding with electrode layer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01292871A true JPH01292871A (en) | 1989-11-27 |
Family
ID=14866367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63123669A Pending JPH01292871A (en) | 1988-05-20 | 1988-05-20 | Manufacture of oxide superconductive molding with electrode layer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01292871A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0341782A (en) * | 1989-07-10 | 1991-02-22 | Sanyo Electric Co Ltd | Formation of electrode of oxide superconductor film |
EP0426077A2 (en) * | 1989-11-03 | 1991-05-08 | Gec Alsthom Sa | Process for making a low-resistant connection between a metal and a ceramic superconducting HTSC |
-
1988
- 1988-05-20 JP JP63123669A patent/JPH01292871A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0341782A (en) * | 1989-07-10 | 1991-02-22 | Sanyo Electric Co Ltd | Formation of electrode of oxide superconductor film |
EP0426077A2 (en) * | 1989-11-03 | 1991-05-08 | Gec Alsthom Sa | Process for making a low-resistant connection between a metal and a ceramic superconducting HTSC |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0401461B1 (en) | Oxide superconductor and method of manufacturing the same | |
EP0305820A2 (en) | Method of manufacturing a superconductor | |
JP3563832B2 (en) | Method for metallizing ferrite using surface reduction | |
JPH01292871A (en) | Manufacture of oxide superconductive molding with electrode layer | |
JP2904998B2 (en) | Solid object made of ceramic high-temperature superconducting material connected to metal conductor and method of manufacturing the same | |
JP3623868B2 (en) | High durability oxide superconductor and manufacturing method thereof | |
JPH02183915A (en) | Oxide superconducting compact | |
JP3383799B2 (en) | Superconducting composite and manufacturing method thereof | |
JP2597704B2 (en) | Metal-coated superconducting ceramics compact and metal-coated superconducting ceramic-metal joint using the same | |
JP3448597B2 (en) | Bismuth-based oxide superconducting composite and method for producing the same | |
JP3281892B2 (en) | Ceramic superconducting composite and manufacturing method thereof | |
JPH06172046A (en) | Production of metal-oxide superconducting composite material | |
JPH01194214A (en) | Manufacture of oxide superconductive compact | |
JPS63304529A (en) | Formation of oxide superconductor thin film | |
JP2555089B2 (en) | Method for manufacturing superconducting conductor | |
JP2544735B2 (en) | Superconducting material | |
JPS63237314A (en) | Manufacture of superconductive compound material | |
JP3590567B2 (en) | Manufacturing method of oxide superconducting wire and oxide superconducting wire | |
JP2727565B2 (en) | Superconductor manufacturing method | |
JPH03192615A (en) | Oxide superconducting structural body and manufacture thereof | |
JPH01109613A (en) | Manufacture of oxide superconductor | |
JP2891365B2 (en) | Manufacturing method of ceramic superconductor | |
JPH0227622A (en) | Manufacture of superconductive filament | |
JPH03122917A (en) | Manufacture of ceramics superconductive conductor | |
JPH02216712A (en) | Oxide high temperature superconductor and manufacture thereof |