JP2891365B2 - Manufacturing method of ceramic superconductor - Google Patents
Manufacturing method of ceramic superconductorInfo
- Publication number
- JP2891365B2 JP2891365B2 JP1101006A JP10100689A JP2891365B2 JP 2891365 B2 JP2891365 B2 JP 2891365B2 JP 1101006 A JP1101006 A JP 1101006A JP 10100689 A JP10100689 A JP 10100689A JP 2891365 B2 JP2891365 B2 JP 2891365B2
- Authority
- JP
- Japan
- Prior art keywords
- tape
- ceramic
- superconductor
- manufacturing
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000919 ceramic Substances 0.000 title claims description 24
- 239000002887 superconductor Substances 0.000 title claims description 13
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 238000004544 sputter deposition Methods 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 9
- 229910001374 Invar Inorganic materials 0.000 claims description 7
- 238000000034 method Methods 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 239000000843 powder Substances 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 239000000758 substrate Substances 0.000 description 6
- 239000010949 copper Substances 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 229910009203 Y-Ba-Cu-O Inorganic materials 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910002480 Cu-O Inorganic materials 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910015901 Bi-Sr-Ca-Cu-O Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910002482 Cu–Ni Inorganic materials 0.000 description 1
- 229910020012 Nb—Ti Inorganic materials 0.000 description 1
- 229910002367 SrTiO Inorganic materials 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000001552 radio frequency sputter deposition Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Physical Vapour Deposition (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は超電導体の製造方法に係り、特にセラミック
ス系超電導体の製造方法に関する。Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a superconductor, and more particularly to a method for manufacturing a ceramic-based superconductor.
[従来の技術] 近年、セラミックス超電導体の開発が世界中で急ピッ
チで進められており、この超電導体は従来の最高の臨界
温度を示すNb3Geの23Kを大巾に越えるもので、La−Sr−
Cu−O系、Y−Ba−Cu−O系、Bi−Sr−Ca−Cu−O系等
のほか、233Kあるいは300K以上の臨界温度(以下Tcと称
する。)を示すセラミックスも報告されている。[Prior art] In recent years, the development of ceramic superconductors has been progressing at a rapid pace all over the world, and this superconductor greatly exceeds the conventional maximum critical temperature of 23 K of Nb 3 Ge, −Sr−
In addition to Cu-O-based, Y-Ba-Cu-O-based, Bi-Sr-Ca-Cu-O-based and the like, ceramics exhibiting a critical temperature of 233K or 300K or higher (hereinafter referred to as Tc) have also been reported. .
このようにセラミックス超電導材料は液体窒素温度以
上や室温付近で用いることができる可能性があり、この
場合、高価な液体ヘリウムを使用しなくて済むため、経
済的に極めて有利となるほか、超電導発電機に使用され
ると構造がシンプルで熱機関の効率も向上する等の利用
を有する。As described above, there is a possibility that the ceramic superconducting material can be used at a temperature equal to or higher than the temperature of liquid nitrogen or near room temperature. In this case, it is not necessary to use expensive liquid helium. When it is used for a machine, it has a simple structure and the efficiency of a heat engine is improved.
しかしながら、セラミックスは硬くて、かつ脆いた
め、現在実用化されているNb−Ti系やNb3Sn系超電導体
のように曲げたり、あるいはコイル巻きすることができ
ず、この点を克服することが実用化への第1歩となる。However, ceramics are hard and brittle, bend as now Nb-Ti system has been put to practical use and Nb 3 Sn superconductor, or can not be coiled, to overcome this point This is the first step toward practical use.
現在線材の製造方法として、 アモルファスのテープあるいは線材を酸素雰囲気下で
加熱処理する方法、 合金管(たとえばCu−Ni合金)の内部に原料の粉末を
充填し、両端を引張って線材やテープ状に成形する方
法、 銅系合金管内にセラミックス粉末を充填し、熱処理お
よび圧延加工等を施して線材やテープ状に成形する方
法、 等が提案されている。At present, the method of manufacturing wires is to heat amorphous tapes or wires in an oxygen atmosphere. Fill the inside of an alloy tube (eg Cu-Ni alloy) with the powder of the raw material and pull both ends to form a wire or tape. There has been proposed a method of forming, a method of filling ceramic powder in a copper-based alloy tube, performing heat treatment, rolling, and the like to form a wire or tape.
しかしながら、上記の方法においては、極めて急速
な冷却を必要とするため、実用線材を得る方法としては
難点を有しており、上記の方法では、長尺の線材を連
続的に製造することが困難であり、上記の方法では加
工工程が複雑となる難点がある。この場合、セラミック
ス超電導体生成の熱処理は、超電導特性向上の観点から
成形後、すなわち最終線径近傍で施すことが望ましい
が、銅系合金管で被覆されているため成形後に内部に酸
素を供給することが極めて困難であり、実際上不可能で
ある。However, in the above method, since extremely rapid cooling is required, there is a difficulty as a method for obtaining a practical wire rod, and in the above method, it is difficult to continuously produce a long wire rod. However, the above method has a disadvantage that the processing steps are complicated. In this case, the heat treatment for forming the ceramic superconductor is preferably performed after forming, that is, in the vicinity of the final wire diameter from the viewpoint of improving the superconducting properties. It is extremely difficult and practically impossible.
この点を改善する方法として、セラミックスの焼成温
度で耐酸化性を有し、かつセラミックスと反応し難い
上、酸素透過機能を有する金属管内にセラミックスを充
填することが検討されている。As a method for improving this point, filling ceramics in a metal tube having oxidation resistance at the firing temperature of the ceramics, hardly reacting with the ceramics, and having an oxygen permeable function has been studied.
[発明が解決しようとする課題] この場合には成形後、最終段階で焼成することができ
るが、原料粉末の充填密度向上が難しく、かつ焼成後に
粒界が多数残存する上、収縮するためクラックが生じ易
いという欠点があり、さらに配向性に問題があるため臨
界電流密度(以下Jcと称する。)が低下するという問題
を有する。[Problems to be Solved by the Invention] In this case, firing can be performed at the final stage after molding, but it is difficult to improve the packing density of the raw material powder, and after firing, many grain boundaries remain and shrinkage occurs. And the critical current density (hereinafter referred to as Jc) is reduced due to the problem of orientation.
本発明は上記の問題を解決するためになされたもの
で、粉末材料を用いる際の種々の欠点を除去した高いJc
のセラミックス系超電導体の製造方法を提供することを
その目的とする。The present invention has been made in order to solve the above problems, and has a high Jc which eliminates various disadvantages when using a powder material.
It is an object of the present invention to provide a method for producing a ceramic-based superconductor.
本発明はスパッタリング法により基体上に直接超電導
物質を生成するもので、この基体としてAgまたはインバ
ーよりなるテープを用いるものである。従来スパッタリ
ング法により基体上にセラミックス超電導物質の薄膜を
生成させる研究がY−Ba−Cu−O系でなされているが、
これ等は基体としてMgO、SrTiO3、ZrO2等のセラミック
ス基板を用いるもので金属基板上への薄膜生成は未だ報
告されていない。According to the present invention, a superconducting substance is directly formed on a substrate by a sputtering method, and a tape made of Ag or Invar is used as the substrate. Conventionally, a study of forming a thin film of a ceramic superconducting material on a substrate by a sputtering method has been made in a Y-Ba-Cu-O system.
These methods use a ceramic substrate such as MgO, SrTiO 3 , ZrO 2 or the like as a substrate, and no report has been made on the formation of a thin film on a metal substrate.
[課題を解決するための手段] 本発明のセラミックス系超電導体の製造方法は、(1
〜3)×10-5/℃以下の線膨脹係数を有する厚さ0.3mm
以下のAgまたはインバーよりなるテープ上に、直接セラ
ミックス超電導物質をスパッタリング法により被着せし
めるものである。[Means for Solving the Problems] The method for producing a ceramic superconductor of the present invention comprises:
~ 3) 0.3mm thick with a coefficient of linear expansion of less than × 10 -5 / ℃
A ceramic superconducting material is directly applied on a tape made of the following Ag or Invar by a sputtering method.
本発明における金属(合金を含む。)テープは、ヒー
トショックの影響を小さくし、超電導物質との密着性を
向上させるため、セラミックス超電導物質の線膨脹係数
1.0〜1.5X10-5/℃の近傍の線膨脹係数を有するもの
で、かつ900℃以下の酸素雰囲気中での加熱条件に対し
耐酸化性を有するものが用いられる。The metal (including alloy) tape in the present invention reduces the influence of heat shock and improves the adhesion to the superconducting material.
Those having a linear expansion coefficient in the vicinity of 1.0 to 1.5 × 10 −5 / ° C. and having oxidation resistance to heating conditions in an oxygen atmosphere of 900 ° C. or less are used.
このような金属としてAgまたはインバーが好適する。
またその厚さは可撓性をもたせるために、0.3mm以下と
する必要がある。Ag or Invar is suitable as such a metal.
Further, its thickness needs to be 0.3 mm or less in order to have flexibility.
上記のセラミックス超電導物質としては、YBa2Cu3OX
やBiSrCaCu2OX等を代表的なものとして挙げることがで
きるが、もちろんこれに限定されるものではない。As the above ceramic superconducting material, YBa 2 Cu 3 OX
And BiSrCaCu 2 OX and the like can be mentioned as typical examples, but are not limited to these.
[作用] 本発明の方法においては、スパッタリング法を用いる
ため、従来のセラミックス超電導体の焼成温度(900〜1
000℃)より低い加熱条件で金属テープを加熱すればよ
く、したがって金属テープとして耐酸化性の優れた貴金
属を用いなくとも線材化が可能となり、かつテープとセ
ラミックスとの反応も防止することができる。同時にセ
ラミックスの密度も向上するとともに、粒界が少ないた
めJcも向上する。[Operation] In the method of the present invention, since the sputtering method is used, the firing temperature of the conventional ceramic superconductor (900 to 1
It is sufficient to heat the metal tape under a heating condition lower than 000 ° C), so that it is possible to form a wire without using a noble metal having excellent oxidation resistance as the metal tape, and it is also possible to prevent the reaction between the tape and the ceramic. . At the same time, the density of ceramics is improved, and Jc is also improved due to fewer grain boundaries.
さらにスパッタリングの際にテープを加熱する条件を
制御することにより、配向性の制御も容易であり、した
がってJcも容易に向上させることができる。この場合、
被着後の熱処理を必要としないため、その製造工程も簡
略化される。Further, by controlling the conditions for heating the tape during sputtering, the orientation can be easily controlled, and thus Jc can be easily improved. in this case,
Since no post-deposition heat treatment is required, the manufacturing process is also simplified.
また金属テープの線膨脹係数とその厚さを規定するこ
とにより、クラックの発生も防止し得るとともに可撓性
も向上する。By defining the coefficient of linear expansion and the thickness of the metal tape, cracks can be prevented and the flexibility can be improved.
[実施例] 実施例1および2 金属テープとして厚さ100μmのAgおよびインバーテ
ープを用い、このテープの上にYBa2Cu3OXを厚さ1μm
の厚さに形成した。このときのスパッタ条件を下記に示
す。[Examples] Examples 1 and 2 Ag and Invar tape having a thickness of 100 µm were used as metal tapes, and YBa 2 Cu 3 OX was coated on the tape with a thickness of 1 µm.
It was formed in thickness. The sputtering conditions at this time are shown below.
スパッタ装置:rfスパッタ装置13.5MHz ターゲット:YBa2.0Cu4.0Ox焼結体 スパッタガス:Ar/O2(=1.0) ガス圧:9×10-2Torr rfパワー:100W テープ温度:650℃ deposition速度:20Å/min なお金属テープは予め化学的処理により表面を清浄に
して用いた。またターゲットはY2O3、BaCO3およびCuOの
粉末を所定比率で混合し、930℃×8hrs仮焼後、950℃×
8hrs焼成し、これを粉砕して得た粉末を外径80mmφ、厚
さ1mmのディスクに成型したものを用いた。Sputtering device: rf sputtering device 13.5MHz Target: YBa 2.0 Cu 4.0 Ox sintered body Sputtering gas: Ar / O 2 (= 1.0) Gas pressure: 9 × 10 -2 Torr rf power: 100W Tape temperature: 650 ° C Deposition speed: 20Å / min The metal tape was used after cleaning the surface by chemical treatment in advance. The target was prepared by mixing powders of Y 2 O 3 , BaCO 3 and CuO at a predetermined ratio, calcining at 930 ° C. for 8 hours, and then heating at 950 ° C.
A powder obtained by baking for 8 hours and pulverizing the resulting powder into a disk having an outer diameter of 80 mmφ and a thickness of 1 mm was used.
スパッタリング後、大気中または酸素雰囲気下で室温
まで冷却した。After the sputtering, it was cooled to room temperature in the air or under an oxygen atmosphere.
このようにして得られた超電導テープの電気抵抗(4
端子法)、結晶構造(X線回折)、断面の組織(走査電
顕)を調べた。The electric resistance of the superconducting tape thus obtained (4
Terminal method), crystal structure (X-ray diffraction), and cross-sectional structure (scanning electron microscope).
上記の方法により得られた超電導テープのTcはいずれ
も約85K、Jcは10000A/cm2以上であることが確認され
た。It was confirmed that the Tc of each of the superconducting tapes obtained by the above method was about 85K and the Jc was 10,000 A / cm 2 or more.
成膜状態について観察した結果を第1表に示す。 Table 1 shows the results of observation of the film formation state.
上記の結果から、特にAgおよびインバーテープにおい
ては、それぞれ結晶粒度は異なるが超電導物質の密着性
が良好であることが明らかである。 From the above results, it is clear that, in particular, in the case of Ag and Invar tape, although the crystal grain sizes are different from each other, the adhesion of the superconducting substance is good.
第1図は実施例1(Ag)のX線回折チャートを示した
もので、●はテープ材質によるピークを、面指数はY−
Ba−Cu−O超電導物質のピークを示している。FIG. 1 shows an X-ray diffraction chart of Example 1 (Ag).
The peak of the Ba-Cu-O superconducting material is shown.
実施例3 厚さ0.1〜1.0mmのインバー板上に、上記実施例と同様
の方法によりY−Ba−Cu−O超電導物質を被着させ、こ
の板より幅20mm、長さ150mmの試料を採取した。この試
料をスパン長100mm、撓み量20mmまで荷重を負荷し、撓
み状態および表面状態を観察した。結果を第2表に示
す。Example 3 A Y-Ba-Cu-O superconducting material was applied on an invar plate having a thickness of 0.1 to 1.0 mm in the same manner as in the above embodiment, and a sample having a width of 20 mm and a length of 150 mm was collected from the plate. did. A load was applied to the sample to a span length of 100 mm and a bending amount of 20 mm, and the bending state and the surface state were observed. The results are shown in Table 2.
比較例1〜2 金属テープとして厚さ100μmのTaおよびWテープを
用いた以外は実施例1〜4と同様の方法により、テープ
上にYBa2Cu3OXを厚さ1μmに形成した。この超電導テ
ープのTcおよびJcは実施例1および2と同程度であっ
た。なお成膜状態についての観察結果を第1表に示し
た。なおTa、Wの成膜状態が不良なのは、これらの酸化
物が比較的安定で、テープとの界面に容易に形成される
ためと考えられる。したがって金属テープとしては、物
理的性質のほか化学的性質を考慮して選択する必要があ
る。 Comparative Examples 1-2 YBa 2 Cu 3 OX was formed on the tape to a thickness of 1 μm in the same manner as in Examples 1-4, except that Ta and W tapes having a thickness of 100 μm were used as metal tapes. The Tc and Jc of this superconducting tape were similar to those of Examples 1 and 2. Table 1 shows the observation results of the film formation state. It is considered that the film formation state of Ta and W is poor because these oxides are relatively stable and are easily formed at the interface with the tape. Therefore, it is necessary to select a metal tape in consideration of not only physical properties but also chemical properties.
[発明の効果] 以上述べたように本発明のセラミックス系超電導体の
製造方法によれば、ヒートショックの影響や粉末を用い
る際の充填率の低下、クラックの発生、配向性の低下、
粒界の影響やテープとセラミックスとの反応等を防止す
ることができ、高いJcと可撓性を有する線材をスパッタ
リング法により製造することができる。[Effects of the Invention] As described above, according to the method for manufacturing a ceramics-based superconductor of the present invention, the influence of heat shock, a decrease in the filling rate when powder is used, generation of cracks, a decrease in orientation,
The influence of the grain boundary, the reaction between the tape and the ceramic, and the like can be prevented, and a wire having high Jc and flexibility can be manufactured by a sputtering method.
第1図はそれぞれ本発明により製造された超電導体の一
実施例のX線回折チャートである。FIG. 1 is an X-ray diffraction chart of one embodiment of a superconductor manufactured according to the present invention.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 福島 正忠 神奈川県川崎市川崎区小田栄2丁目1番 1号 昭和電線電纜株式会社内 (72)発明者 前田 慶一郎 神奈川県川崎市川崎区小田栄2丁目1番 1号 昭和電線電纜株式会社内 (72)発明者 小林 公樹 神奈川県川崎市川崎区小田栄2丁目1番 1号 昭和電線電纜株式会社内 (56)参考文献 特開 昭63−239738(JP,A) (58)調査した分野(Int.Cl.6,DB名) C23C 14/00 - 14/58 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masatada Fukushima 2-1-1, Oda Sakae, Kawasaki-ku, Kawasaki City, Kanagawa Prefecture Inside Showa Electric Wire & Cable Co., Ltd. (72) Keiichiro Maeda 2 Ei Oda, Kawasaki-ku, Kawasaki City, Kanagawa Prefecture (1-1) Showa Electric Wire & Cable Co., Ltd. JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C23C 14/00-14/58
Claims (1)
する厚さ0.3mm以下のAgまたはインバーよりなるテープ
上に、直接セラミックス超電導物質をスパッタリング法
により被着せしめたことを特徴とするセラミックス系超
電導体の製造方法。1. A ceramic superconducting material is directly deposited on a tape made of Ag or Invar having a linear expansion coefficient of 1 × 10 −5 to 3 × 10 −5 / ° C. and having a thickness of 0.3 mm or less by a sputtering method. A method for producing a ceramic-based superconductor.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21442488 | 1988-08-29 | ||
JP63-214424 | 1988-08-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02149665A JPH02149665A (en) | 1990-06-08 |
JP2891365B2 true JP2891365B2 (en) | 1999-05-17 |
Family
ID=16655561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1101006A Expired - Fee Related JP2891365B2 (en) | 1988-08-29 | 1989-04-20 | Manufacturing method of ceramic superconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2891365B2 (en) |
-
1989
- 1989-04-20 JP JP1101006A patent/JP2891365B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH02149665A (en) | 1990-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0292959B1 (en) | Superconducting member | |
EP0884787B1 (en) | Oxide superconductor wire and method of manufacturing the same | |
JPH1081518A (en) | Production of product comprising superconducting material | |
US5063200A (en) | Ceramic superconductor article | |
JP2636049B2 (en) | Method for producing oxide superconductor and method for producing oxide superconducting wire | |
JP4398582B2 (en) | Oxide superconducting wire and method for producing the same | |
JP2891365B2 (en) | Manufacturing method of ceramic superconductor | |
JP3369225B2 (en) | Method for producing oxide high-temperature superconducting wire | |
JPH0476324B2 (en) | ||
JP2643972B2 (en) | Oxide superconducting material | |
JPH0577602B2 (en) | ||
JP3061634B2 (en) | Oxide superconducting tape conductor | |
JP3090709B2 (en) | Oxide superconducting wire and method of manufacturing the same | |
JPH0261910A (en) | Superconducting material wire and its manufacture | |
JP2670362B2 (en) | Method for manufacturing conductor for current lead | |
JP3590567B2 (en) | Manufacturing method of oxide superconducting wire and oxide superconducting wire | |
JP3622411B2 (en) | Oxide superconducting composite and manufacturing method thereof | |
JPH06251929A (en) | Manufacture of oxide superconducting coil | |
JP2727565B2 (en) | Superconductor manufacturing method | |
JP3149170B2 (en) | Method for producing bismuth-based oxide superconductor | |
JP2734596B2 (en) | Oxide superconducting wire | |
JPH11329118A (en) | Oxide superconducting composite material and its manufacture | |
JP2822328B2 (en) | Superconductor manufacturing method | |
JP2525842B2 (en) | Superconducting wire and its manufacturing method | |
JP3248190B2 (en) | Oxide superconducting wire, its manufacturing method and its handling method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |