JPH01143791A - Aluminum alloy filler metal - Google Patents
Aluminum alloy filler metalInfo
- Publication number
- JPH01143791A JPH01143791A JP62298788A JP29878887A JPH01143791A JP H01143791 A JPH01143791 A JP H01143791A JP 62298788 A JP62298788 A JP 62298788A JP 29878887 A JP29878887 A JP 29878887A JP H01143791 A JPH01143791 A JP H01143791A
- Authority
- JP
- Japan
- Prior art keywords
- weld
- filler metal
- aluminum alloy
- solidification
- filler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052751 metal Inorganic materials 0.000 title abstract description 27
- 239000002184 metal Substances 0.000 title abstract description 27
- 239000000945 filler Substances 0.000 title abstract description 23
- 229910000838 Al alloy Inorganic materials 0.000 title abstract description 10
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 5
- 239000012535 impurity Substances 0.000 claims abstract description 4
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 230000035945 sensitivity Effects 0.000 abstract 2
- 239000000155 melt Substances 0.000 abstract 1
- 238000007711 solidification Methods 0.000 description 16
- 230000008023 solidification Effects 0.000 description 16
- 238000000034 method Methods 0.000 description 14
- 238000005336 cracking Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 13
- 239000000463 material Substances 0.000 description 13
- 238000003466 welding Methods 0.000 description 13
- 239000000956 alloy Substances 0.000 description 7
- 229910009369 Zn Mg Inorganic materials 0.000 description 5
- 229910007573 Zn-Mg Inorganic materials 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 238000007670 refining Methods 0.000 description 5
- 239000011324 bead Substances 0.000 description 4
- 239000010953 base metal Substances 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 229910019086 Mg-Cu Inorganic materials 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 229910002059 quaternary alloy Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Nonmetallic Welding Materials (AREA)
- Arc Welding In General (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
この発明は溶接に用いられるアルミニウム合金溶加材、
特にA Q −Z n −M g系、AQ−Zn−Mg
−Cu系その他の合金材料の溶接に用いられる溶加材に
関する。[Detailed Description of the Invention] Industrial Application Field This invention relates to an aluminum alloy filler material used in welding,
Especially AQ-Zn-Mg system, AQ-Zn-Mg
- It relates to a filler material used for welding Cu-based and other alloy materials.
従来の技術
AQ−Zn−Mg三元系、A、Q−Zn−Mg−Cu四
元系合金材料は溶接凝固割れ感受性が敏感なため、実施
工において溶接条件(入熱オーバー)、拘束条件、継手
形状等により溶接割れを起こすことがある。そこでこの
ような合金材料において溶接凝固割れ感受性を低減させ
るために、微細化元素であるZrを母材や溶加材に添加
したり、パルス溶接法、サイクロマチイック法により溶
湯を撹拌して結晶粒の微細化を図ること等が検討されて
いる。Conventional technology AQ-Zn-Mg ternary system and A,Q-Zn-Mg-Cu quaternary system alloy materials are sensitive to weld solidification cracking, so welding conditions (excessive heat input), restraint conditions, Weld cracks may occur depending on the shape of the joint, etc. Therefore, in order to reduce the susceptibility to weld solidification cracking in such alloy materials, Zr, which is a refining element, is added to the base metal or filler metal, and the molten metal is stirred using pulse welding or cyclomatic methods to improve crystallization. Consideration is being given to making the grains finer.
発明が解決しようとする問題点
しかしながらZrを添加する方法では、通常0.15w
t%程度のZrが母材に添加されているのみであり、従
ってこの程度のZr添加量では溶接時の希釈によりビー
ドにおけるZrQが0.07〜0.08wt%程度とな
るため、微細化効果が小さく溶接割れ改善効果をほとん
ど期待できないものであった。一方溶湯撹拌法では、溶
湯の撹拌には最適パルス周波数(10〜40Hz)があ
り、市販の溶接機(60Hz)では溶湯撹拌効果が小さ
いことから、溶接電源の開発が必要であること、さらに
は溶湯撹拌するためビード外観が不均一となること、さ
らにはまたサイクロマチイック法の場合には母材裏面(
トーチ反対側)にトーチと同時に駆動する電磁コイルが
必要なため実施工では無理な場合が多いことなどの欠点
があった。Problems to be solved by the invention However, in the method of adding Zr, usually 0.15w
Only about t% of Zr is added to the base metal, and therefore, with this amount of Zr addition, the ZrQ in the bead becomes about 0.07 to 0.08wt% due to dilution during welding, so there is no refining effect. was so small that little improvement in weld cracking could be expected. On the other hand, in the molten metal stirring method, there is an optimum pulse frequency (10 to 40Hz) for stirring the molten metal, and commercially available welding machines (60Hz) have a small molten metal stirring effect, so it is necessary to develop a welding power source. Since the molten metal is stirred, the bead appearance may become uneven, and in the case of the cyclomatic method, the back surface of the base material (
The disadvantage of this method is that it requires an electromagnetic coil (on the opposite side of the torch) that is driven simultaneously with the torch, which is often impossible to carry out in practice.
この発明はかかる技術的背景に鑑みてなされたものであ
って、Afl−Zn−Mg三元系、AQ−Zn−Mg−
Cu四元系合金材料に対してその溶接割れ感受性を改善
し得るアルミニウム合金溶加材の提供を目的とするもの
である。This invention was made in view of this technical background, and it is based on the Afl-Zn-Mg ternary system, AQ-Zn-Mg-
The object of the present invention is to provide an aluminum alloy filler material that can improve the weld cracking susceptibility of Cu quaternary alloy materials.
問題点を解決するための手段
上記目的においてこの発明に係る溶加材は、Mg :
6〜10wt%、Zr:0. 26〜1. 5νt%を
含有し、あるいはさらにMn:0.05〜1.5wt%
、Cr:0. 01〜0. 5wt%、Ti :
0. 005〜0. 2wt%、B:0.001〜0.
01wt%、V:0,01〜0.7wt%、Zn :
0.05〜8.Owt%の一種または2f!以上を含有
し、残部がアルミニウム及び不可避不純物からなること
を特徴とするものである。Means for Solving the Problems For the above purpose, the filler metal according to the present invention contains Mg:
6 to 10 wt%, Zr: 0. 26-1. 5 νt%, or further Mn: 0.05 to 1.5 wt%
, Cr:0. 01~0. 5wt%, Ti:
0. 005~0. 2wt%, B: 0.001-0.
01wt%, V: 0.01-0.7wt%, Zn:
0.05-8. One of Owt% or 2f! It is characterized by containing the above, with the remainder consisting of aluminum and unavoidable impurities.
溶加材中に含まれる各元素の添加意義と添加範囲の限定
理由について説明すれば、Mgは溶加材自体ひいては溶
接継手の強度向上に寄与するものであるが、その含有量
が6wt%未満ではその効果に乏しく、逆に10wt%
を超える場合には加工性が悪くなったり靭性が低下した
りする欠点を派生する。Mgの特に好ましい含有範囲は
6.5〜g、Owt%である。To explain the significance of adding each element contained in the filler metal and the reason for limiting the range of addition, Mg contributes to improving the strength of the filler metal itself and even the welded joint, but Mg content is less than 6 wt%. However, the effect is poor, and on the contrary, 10wt%
If it exceeds this value, defects such as poor workability and decreased toughness will result. A particularly preferable content range of Mg is 6.5 to 6.5 g, Owt%.
Zrは溶接部の結晶粒を微細化して溶接割れ防止に寄与
するものである。しかし含有量が0゜26wt%未満で
は溶接時に母材と希釈されるため微細化効果が小さいも
のとなり溶接割れ防止効果に乏しく、逆に1.5wt%
を超えると結晶粒径にバラツキが出るとともに、加工が
困難となる。Zrの特に好ましい含有範囲は0.3〜0
.5wt%である。また溶接割れ感受性を充分に低減す
るには、溶接ビードにおけるZr量が0.35νt%以
上となるのが望ましい。Zr contributes to the prevention of weld cracking by refining the crystal grains in the weld zone. However, if the content is less than 0.26 wt%, it will be diluted with the base metal during welding, so the refining effect will be small and the weld crack prevention effect will be poor.
If it exceeds this, the grain size will vary and processing will become difficult. A particularly preferable content range of Zr is 0.3 to 0.
.. It is 5wt%. Further, in order to sufficiently reduce weld cracking susceptibility, it is desirable that the Zr content in the weld bead is 0.35vt% or more.
上記必須元素のほか、任意元素としてその1種または2
種以上の含有が許容されるMn、Cr、Ti、B、V、
Znは、溶加材ひいては溶接部の諸性質の改善に有効な
ものである。即ち、Mn、Cr、はともに耐食性及び強
度向上に寄与するものである。しかしMnが0,05w
t%未満、Crが0.01wt%未満ではそれらの効果
に乏しく、逆にMnが1.5wt%を超えると粗大金属
間化合物が晶出し靭性を阻害する。またCrが0.5w
t%を超えて含有されても靭性を阻害するものとなる。In addition to the above essential elements, one or two optional elements
Mn, Cr, Ti, B, V, which are allowed to contain more than one species,
Zn is effective in improving various properties of the filler metal and ultimately of the weld zone. That is, Mn and Cr both contribute to improving corrosion resistance and strength. However, Mn is 0.05w
If the Mn content is less than t% or 0.01 wt%, these effects will be poor, while if the Mn content exceeds 1.5 wt%, coarse intermetallic compounds will crystallize and inhibit toughness. Also, Cr is 0.5w
Even if the content exceeds t%, the toughness will be impaired.
Ti、BSVは前記2「と同じく結晶粒を微細化し溶接
割れ感受性の改善に寄与するものである。しかしTLが
0゜005wt%未満、Bが0.001wt%未満、V
:0.01wt%未満の場合には該効果に乏しく、逆に
Tiが0.2wt%を超えると靭性を阻害し、またBが
0.01wt%を超えると溶着する溶融金属の流動性を
阻害し、■が0.7wt%を超えると加工性を阻害する
ものとなる。またZnは溶加材や溶接部の継手強度向上
に寄与するものであるが、0.05wt%未満ではその
効果に乏しく、逆に8.0wt%を超えると耐応力腐食
割れ性が低下するとともに溶接割れを生じる虞れがある
。Ti and BSV contribute to refinement of crystal grains and improvement of weld cracking susceptibility as in 2 above. However, when TL is less than 0°005 wt%, B is less than 0.001 wt%, and V
: When Ti is less than 0.01 wt%, the effect is poor; on the other hand, when Ti exceeds 0.2 wt%, toughness is inhibited, and when B exceeds 0.01 wt%, the fluidity of the molten metal to be welded is inhibited. However, if ■ exceeds 0.7 wt%, processability will be inhibited. In addition, Zn contributes to improving the joint strength of filler metals and welded parts, but if it is less than 0.05 wt%, the effect is poor, and if it exceeds 8.0 wt%, stress corrosion cracking resistance decreases and There is a risk of weld cracking.
ところで、上記のような溶加材の製造はZr添加量が多
くなると、常法に従う連続あるいは半連続鋳造法による
製造が困難であり、高2「含を合金材料の製造を特徴と
する特別な製造法を採用しなければならない。かかる製
造法として、例えば加圧凝固押出法を挙げうる。この方
法を説明すると次のとおりである。すなわち、上記各元
素を添加したアルミニウム合金を溶解し、その溶湯を加
圧凝固用金型に注湯して加圧凝固せしめることにより、
欠陥のない結晶粒の均一かつ微細なビレットの作製を行
うものである。加圧凝固用金型は、これに押出機のコン
テすを利用するものとしても良い。即ち、アルミニウム
合金溶湯を直接該コンテナに注入し、ステムで加圧しつ
つ凝固させるものとしても良い。By the way, when the amount of Zr added becomes large, it becomes difficult to manufacture the filler metal as described above by the conventional continuous or semi-continuous casting method. An example of such a manufacturing method is a pressure solidification extrusion method.This method is explained as follows.In other words, an aluminum alloy to which each of the above elements has been added is melted, and the aluminum alloy is melted. By pouring molten metal into a pressurized solidification mold and solidifying it under pressure,
This method produces billets with uniform and fine crystal grains without defects. The pressurized solidification mold may utilize a container of an extruder. That is, the molten aluminum alloy may be directly poured into the container and solidified while being pressurized by the stem.
もちろんこの場合、上記コンテナの前面は盲ダイスを付
設して塞ぎ、加圧凝固中の溶湯の噴き出しを防ぐものと
することが必要である。また上記の注湯に際しては、前
記金型を予め300〜350℃程度に加熱しておくもの
とすることが望ましい。これによりビレットに一層微細
な組織を得ることを可能にする。即ち300℃程度未満
であると、注湯後前記アルミニウムの凝固がすぐに開始
してしまい、加圧凝固による効果が充分に達成され難い
。一方350℃を超える高温に加熱しておくと、冷却速
度が遅くなり、晶出物が成長して上記微細化効果を充分
に達成し難いものとなる傾向がみられる。注湯後、すぐ
さま前記金型内の溶湯を加圧ピストンにより加圧し、凝
固を進行せしめることによってビレットを作製する。す
なわち加圧凝固法によってビレットを作製する。この際
の加圧力は50Ktf/7以上であれば良く、望ましく
は500〜100ONjf/cd程度とするのが良い。Of course, in this case, it is necessary to close the front surface of the container with a blind die to prevent the molten metal from spouting out during pressurized solidification. Further, when pouring the metal, it is desirable to heat the mold to about 300 to 350°C in advance. This makes it possible to obtain a finer texture in the billet. That is, if the temperature is less than about 300°C, solidification of the aluminum will start immediately after pouring, making it difficult to achieve the sufficient effect of pressure solidification. On the other hand, if it is heated to a high temperature exceeding 350° C., the cooling rate slows down, and crystallized substances tend to grow, making it difficult to sufficiently achieve the above-mentioned refinement effect. Immediately after pouring the molten metal, the molten metal in the mold is pressurized by a pressurizing piston to advance solidification, thereby producing a billet. That is, a billet is produced by a pressure solidification method. The pressing force at this time may be 50 Ktf/7 or more, preferably about 500 to 100 ONjf/cd.
この加圧力の大小はビレットの品質にさして大きな影響
を与えるものではない。しかしながら50に9f/cI
i未満では加圧凝固法による鋳造割れ防止及び結晶粒の
微細化効果に不十分であり、反面例えば1500幻f/
aIを超えるような高圧を付加しても、それに要するエ
ネルギの増大に見合う効果の比例的向上を見ることがで
きないためむしろ無益である。このように、所定の加圧
状態下においてアルミニウム合金を凝固させることによ
り、鋳造割れを生じさせることなく、かつ晶出物の小さ
なビレットを作製しうる。こうして加圧凝固法により作
製したビレットは、次にこれを押出加工して所期する溶
加材とする。The magnitude of this pressing force does not significantly affect the quality of the billet. However, 9f/cI in 50
If it is less than i, the effect of preventing casting cracks and refining crystal grains by the pressure solidification method is insufficient.
Even if a high pressure exceeding aI is applied, it is rather useless because the effect cannot be proportionally improved to compensate for the increase in energy required. In this way, by solidifying the aluminum alloy under a predetermined pressurized state, a small billet of crystallized material can be produced without causing casting cracks. The billet thus produced by the pressure solidification method is then extruded to form the desired filler material.
該溶加材は一般的にはJISZ3232に規定する径及
び許容差の溶接棒及び電極ワイヤとして使用されるもの
である。The filler metal is generally used as welding rods and electrode wires with diameters and tolerances specified in JIS Z3232.
なおZ「の高含有を可能とする溶加材の製造方法の1例
として加圧凝固押出法を示したが、本発明に係る溶加材
は該方法によって製造されたものに限定されるものでは
ない。Although the pressure coagulation extrusion method is shown as an example of a method for producing a filler material that enables a high content of Z, the filler material according to the present invention is limited to that produced by this method. isn't it.
発明の効果
この発明に係るアルミニウム合金溶加材によれば、溶接
凝固割れ感受性の敏感なAΩ−Zn−Mg系、Afl−
Zn−Mg−Cu系合金材料においても溶接部の凝固組
織を微細化でき、溶接割れ感受性を改善しつるとともに
、継手強度を向上することができる。この結果談合金材
料の溶接構造材としての使用範囲を格段に拡大すること
ができる。Effects of the Invention According to the aluminum alloy filler material according to the present invention, AΩ-Zn-Mg series, Afl-
Even in Zn-Mg-Cu alloy materials, it is possible to refine the solidification structure of the weld zone, improve weld cracking susceptibility, and improve joint strength. As a result, the range of use of alloy materials as welded structural materials can be greatly expanded.
実施例 次にこの発明の詳細な説明する。Example Next, this invention will be explained in detail.
[以下余白]
上記第2表に示す組成の直径1.6mの各種溶加材と、
第1表に示す組成の7N01アルミニウム合金母材をT
5処理してなる試験片を用いてMIG Hould
craft割れ試験を実施した。なおNo6に示す溶
加材は通常の連続鋳造法により作製し、No1〜5の溶
加材は以下に示す加圧凝固押出法により作製した。[Left below] Various filler metals with a diameter of 1.6 m having the composition shown in Table 2 above,
The 7N01 aluminum alloy base material with the composition shown in Table 1 was
MIG Hould using a test piece treated with 5
A craft cracking test was conducted. Note that the filler metal No. 6 was produced by a normal continuous casting method, and the filler metals Nos. 1 to 5 were produced by the pressure solidification extrusion method shown below.
すなわち各合金を液相線温度+100℃に溶解し、その
溶湯を予め約300℃に加熱した加圧凝固用金型に注湯
したのち、すぐさまこれを1000Ktf/aiに加圧
し、該加圧下に凝固させた。そして、およそ液相線温度
の172程度の温度にまで冷却したとき、加圧凝固工程
を終了し、得られたビレット(直径75m5+、長さ1
00M)をすぐさま押出機のコンテナに装入し、直径1
2履の丸棒に押出し、該押出材を溶加材として用いた。That is, each alloy was melted to a liquidus temperature of +100°C, and the molten metal was poured into a pressurized solidification mold that had been preheated to about 300°C, and then immediately pressurized to 1000 Ktf/ai, and then heated under the pressure. It solidified. When the billet is cooled to about 172 degrees of the liquidus temperature, the pressure solidification process is completed and the resulting billet (diameter 75 m5+, length 1
00M) into the extruder container immediately, and
It was extruded into two round bars, and the extruded material was used as a filler material.
また試験片(1)は第1図に示すように厚さ:6aw、
長さ(L): 25Lw。In addition, the test piece (1) has a thickness of 6 aw as shown in Figure 1.
Length (L): 25Lw.
幅(W): 200m、スリット(la)の間隔(Q)
s 10wn、 (X) : 40mw*、 (
Y) : 10Iwとした。なお(2)はタブ板であ
る。試験は下記の溶接条件で同図に矢印(X)で示す方
向にMIG溶接した際の溶接部(3)の割れ長さを測定
し、割れ率を求めたものである。Width (W): 200m, slit (la) spacing (Q)
s 10wn, (X): 40mw*, (
Y): 10 Iw. Note that (2) is a tab plate. In the test, the crack length of the welded part (3) was measured when MIG welding was performed in the direction shown by the arrow (X) in the same figure under the following welding conditions, and the crack rate was determined.
溶接条件
電流:220A
電圧:27v
溶接速度:401/*1n
シールドガス流量:25Ω/mIn
試験はそれぞれ3回行った。それらの結果を第3表に示
す。Welding conditions Current: 220A Voltage: 27v Welding speed: 401/*1n Shielding gas flow rate: 25Ω/mIn Each test was performed three times. The results are shown in Table 3.
[以下余白]
第3表
(注)
割れ率(%)−割れ長さ ×100試験片長さ(2
50)
また前記試験片の溶接継手の余盛を削除して溶接部の機
械的性質を調べた。その結果を下記第4表に示す。[Margin below] Table 3 (Note) Crack rate (%) - Crack length x 100 Test piece length (2
50) In addition, the mechanical properties of the welded part were investigated by removing the excess of the welded joint of the test piece. The results are shown in Table 4 below.
第4表
上記結果から明らかなように、本発明に係る溶加材を用
いれば、溶接割れが発生しにくいものであり、また溶接
継手強度にも極めて優れたものとなしうろことがわかる
。また各試験片の溶接ビードの縦断面の平均結晶粒径を
調べたところ、N01:約35 p m %N o 2
;約25μm%No3:約35μm、No4:約30
μm5N05:約35μm%No6:約70〜80u
mであり、割れ率と良く対応していることがわかる。As is clear from the above results in Table 4, when the filler metal according to the present invention is used, weld cracking is less likely to occur and the strength of the welded joint is also extremely excellent. In addition, when the average crystal grain size of the longitudinal section of the weld bead of each test piece was examined, it was found that N01: approximately 35 p m %N o 2
; Approx. 25 μm% No. 3: Approx. 35 μm, No. 4: Approx. 30
μm5N05: Approx. 35 μm% No6: Approx. 70-80u
m, and it can be seen that it corresponds well to the cracking rate.
【図面の簡単な説明】
第1図は溶接割れ試験片の概略平面図である。
(1)・・・試験片、(la)・・・スリット、(2)
・・・タブ板、(3)・・・溶接部。
以上
第1図[Brief Description of the Drawings] Figure 1 is a schematic plan view of a weld crack test piece. (1)...Test piece, (la)...Slit, (2)
...Tab plate, (3)...Welded part. Figure 1 above
Claims (2)
wt%を含有し、残部がアルミニウム及び不可避不純物
からなることを特徴とするアルミニウム合金溶加材。(1) Mg: 6 to 10 wt%, Zr: 0.26 to 1.5
% by weight, with the remainder consisting of aluminum and unavoidable impurities.
wt%を含有し、さらにMn:0.05〜1.5wt%
、Cr:0.01〜0.5wt%、Ti:0.005〜
0.2wt%、B:0.001〜0.01wt%、V:
0.01〜0.7wt%、Zn:0.05〜8.0wt
%の一種または2種以上を含有し、残部がアルミニウム
及び不可避不純物からなることを特徴とするアルミニウ
ム合金溶加材。(2) Mg: 6 to 10 wt%, Zr: 0.26 to 1.5
wt%, and further contains Mn: 0.05 to 1.5 wt%
, Cr: 0.01~0.5wt%, Ti: 0.005~
0.2wt%, B: 0.001-0.01wt%, V:
0.01-0.7wt%, Zn: 0.05-8.0wt
% or more, and the remainder consists of aluminum and unavoidable impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62298788A JPH01143791A (en) | 1987-11-26 | 1987-11-26 | Aluminum alloy filler metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62298788A JPH01143791A (en) | 1987-11-26 | 1987-11-26 | Aluminum alloy filler metal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01143791A true JPH01143791A (en) | 1989-06-06 |
JPH0575517B2 JPH0575517B2 (en) | 1993-10-20 |
Family
ID=17864226
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62298788A Granted JPH01143791A (en) | 1987-11-26 | 1987-11-26 | Aluminum alloy filler metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01143791A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010060021A1 (en) * | 2008-11-24 | 2010-05-27 | Alcoa Inc. | Fusion weldable filler alloys |
WO2010140568A1 (en) | 2009-06-05 | 2010-12-09 | 住友軽金属工業株式会社 | Frame for two-wheeler and all-terrain vehicle and process for producing same |
JP2019527299A (en) * | 2016-07-05 | 2019-09-26 | ナノアル エルエルシー | Ribbons and powders from high strength corrosion resistant aluminum alloys |
US11603583B2 (en) | 2016-07-05 | 2023-03-14 | NanoAL LLC | Ribbons and powders from high strength corrosion resistant aluminum alloys |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52128854A (en) * | 1976-04-22 | 1977-10-28 | Kobe Steel Ltd | Filler metal of aluminum alloys for large heat input welding |
JPS5665960A (en) * | 1979-10-01 | 1981-06-04 | Showa Denko Kk | Aluminum alloy filler metal with high toughness at low temperature |
JPS6111155B2 (en) * | 1982-07-07 | 1986-04-01 | Furukawa Aluminium |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3422860A1 (en) * | 1984-06-20 | 1986-01-02 | Bayer Ag, 5090 Leverkusen | METHOD AND DEVICE FOR TREATING LIQUIDS WITH CATIONAL EXCHANGERS AND ANION EXCHANGERS |
-
1987
- 1987-11-26 JP JP62298788A patent/JPH01143791A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52128854A (en) * | 1976-04-22 | 1977-10-28 | Kobe Steel Ltd | Filler metal of aluminum alloys for large heat input welding |
JPS5665960A (en) * | 1979-10-01 | 1981-06-04 | Showa Denko Kk | Aluminum alloy filler metal with high toughness at low temperature |
JPS6111155B2 (en) * | 1982-07-07 | 1986-04-01 | Furukawa Aluminium |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010060021A1 (en) * | 2008-11-24 | 2010-05-27 | Alcoa Inc. | Fusion weldable filler alloys |
WO2010140568A1 (en) | 2009-06-05 | 2010-12-09 | 住友軽金属工業株式会社 | Frame for two-wheeler and all-terrain vehicle and process for producing same |
JP2011011256A (en) * | 2009-06-05 | 2011-01-20 | Sumitomo Light Metal Ind Ltd | Frame for two-wheeler and all-terrain vehicle |
JP4669903B2 (en) * | 2009-06-05 | 2011-04-13 | 住友軽金属工業株式会社 | Frame materials for motorcycles and buggy cars |
US8263233B2 (en) | 2009-06-05 | 2012-09-11 | Sumitomo Light Metal Industries, Ltd. | Frame member for use in two-wheeled vehicle and all-terrain vehicle, and method for producing the same |
JP2019527299A (en) * | 2016-07-05 | 2019-09-26 | ナノアル エルエルシー | Ribbons and powders from high strength corrosion resistant aluminum alloys |
US11603583B2 (en) | 2016-07-05 | 2023-03-14 | NanoAL LLC | Ribbons and powders from high strength corrosion resistant aluminum alloys |
Also Published As
Publication number | Publication date |
---|---|
JPH0575517B2 (en) | 1993-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0701002A1 (en) | Process for moulding aluminium- or magnesiumalloys in semi-solidified state | |
CN108411170B (en) | Preparation method of high-magnesium aluminum alloy welding wire | |
US6843863B2 (en) | Aluminum alloys having improved cast surface quality | |
CN105385906B (en) | A kind of Al Mg In series solder wires and preparation method thereof | |
JP2001220639A (en) | Aluminum alloy for casting | |
KR101511632B1 (en) | Method for manufacturing of Al-Zn alloy sheet using twin roll casting and Al-Zn alloy sheet thereby | |
CN111187951A (en) | Aluminum-magnesium-scandium-zirconium-titanium alloy and preparation method thereof | |
CN114231802A (en) | Rare earth aluminum alloy bar for forging aluminum alloy hub and preparation method thereof | |
JP2018520268A (en) | Extruded material | |
JP3219293B2 (en) | Aluminum alloy filler metal and its manufacturing method | |
JPH05239584A (en) | Rolled sheet of high strength aluminum alloy and its production | |
JPH01143791A (en) | Aluminum alloy filler metal | |
JPH0635624B2 (en) | Manufacturing method of high strength aluminum alloy extruded material | |
CN109434319A (en) | A kind of aluminium alloy TIG welding wire and preparation method thereof | |
CN114589430B (en) | Al-Mg alloy welding wire and preparation method thereof | |
US3544761A (en) | Process of welding aluminum | |
CN116445757A (en) | Aluminum alloy rod and preparation method thereof | |
JP2859019B2 (en) | Aluminum alloy filler metal for molding dies and method of manufacturing the same | |
JPS62218527A (en) | Manufacture of extruded magnesium alloy material having superior modulus of elasticity | |
CN219402895U (en) | Manufacturing equipment of Al-Zn-Mg-Cu alloy welding wire | |
US3492119A (en) | Filament reinforced metals | |
JP2578453B2 (en) | Manufacturing method of aluminum alloy filler metal | |
JPS6356394A (en) | Aluminum alloy filler metal | |
JPH08165539A (en) | Heat treated type thin aluminum extruded shape and its production | |
JPS5911381B2 (en) | Continuous casting method for Al and Al alloys |