JP7409900B2 - Method for producing polyphenylene ether resin composition - Google Patents
Method for producing polyphenylene ether resin composition Download PDFInfo
- Publication number
- JP7409900B2 JP7409900B2 JP2020025644A JP2020025644A JP7409900B2 JP 7409900 B2 JP7409900 B2 JP 7409900B2 JP 2020025644 A JP2020025644 A JP 2020025644A JP 2020025644 A JP2020025644 A JP 2020025644A JP 7409900 B2 JP7409900 B2 JP 7409900B2
- Authority
- JP
- Japan
- Prior art keywords
- resin composition
- barrel
- mass
- zone
- melt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011342 resin composition Substances 0.000 title claims description 157
- 229920001955 polyphenylene ether Polymers 0.000 title claims description 65
- 238000004519 manufacturing process Methods 0.000 title claims description 62
- 238000004898 kneading Methods 0.000 claims description 78
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 62
- 238000001125 extrusion Methods 0.000 claims description 55
- 229920005989 resin Polymers 0.000 claims description 55
- 239000011347 resin Substances 0.000 claims description 55
- 239000007787 solid Substances 0.000 claims description 49
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 38
- 239000000155 melt Substances 0.000 claims description 31
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 25
- 229910052757 nitrogen Inorganic materials 0.000 claims description 25
- 229910052760 oxygen Inorganic materials 0.000 claims description 25
- 239000001301 oxygen Substances 0.000 claims description 25
- 239000003963 antioxidant agent Substances 0.000 claims description 24
- 239000002994 raw material Substances 0.000 claims description 19
- 230000003078 antioxidant effect Effects 0.000 claims description 17
- 238000002347 injection Methods 0.000 claims description 13
- 239000007924 injection Substances 0.000 claims description 13
- 238000011144 upstream manufacturing Methods 0.000 claims description 13
- 239000007789 gas Substances 0.000 claims description 10
- 229920005672 polyolefin resin Polymers 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 7
- 229920006465 Styrenic thermoplastic elastomer Polymers 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 4
- -1 poly(2,6-dimethyl-1,4-phenylene) Polymers 0.000 description 31
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 30
- 230000006866 deterioration Effects 0.000 description 23
- 238000011156 evaluation Methods 0.000 description 23
- 230000000052 comparative effect Effects 0.000 description 20
- 238000000465 moulding Methods 0.000 description 16
- 230000000704 physical effect Effects 0.000 description 16
- 229920001577 copolymer Polymers 0.000 description 12
- 229910001873 dinitrogen Inorganic materials 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- 239000004793 Polystyrene Substances 0.000 description 11
- 229920002223 polystyrene Polymers 0.000 description 11
- 230000001590 oxidative effect Effects 0.000 description 10
- 238000011109 contamination Methods 0.000 description 9
- 238000002844 melting Methods 0.000 description 9
- 230000008018 melting Effects 0.000 description 9
- 230000032683 aging Effects 0.000 description 8
- 229920001971 elastomer Polymers 0.000 description 7
- 230000014759 maintenance of location Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000004132 cross linking Methods 0.000 description 5
- 239000011256 inorganic filler Substances 0.000 description 5
- 229910003475 inorganic filler Inorganic materials 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 229920002725 thermoplastic elastomer Polymers 0.000 description 5
- QQOMQLYQAXGHSU-UHFFFAOYSA-N 2,3,6-Trimethylphenol Chemical compound CC1=CC=C(C)C(O)=C1C QQOMQLYQAXGHSU-UHFFFAOYSA-N 0.000 description 4
- NXXYKOUNUYWIHA-UHFFFAOYSA-N 2,6-Dimethylphenol Chemical compound CC1=CC=CC(C)=C1O NXXYKOUNUYWIHA-UHFFFAOYSA-N 0.000 description 4
- OMIHGPLIXGGMJB-UHFFFAOYSA-N 7-oxabicyclo[4.1.0]hepta-1,3,5-triene Chemical group C1=CC=C2OC2=C1 OMIHGPLIXGGMJB-UHFFFAOYSA-N 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- 229920001400 block copolymer Polymers 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 239000006229 carbon black Substances 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 4
- 239000005060 rubber Substances 0.000 description 4
- 239000010802 sludge Substances 0.000 description 4
- SSADPHQCUURWSW-UHFFFAOYSA-N 3,9-bis(2,6-ditert-butyl-4-methylphenoxy)-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane Chemical compound CC(C)(C)C1=CC(C)=CC(C(C)(C)C)=C1OP1OCC2(COP(OC=3C(=CC(C)=CC=3C(C)(C)C)C(C)(C)C)OC2)CO1 SSADPHQCUURWSW-UHFFFAOYSA-N 0.000 description 3
- 229920001890 Novodur Polymers 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229920001519 homopolymer Polymers 0.000 description 3
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 3
- 238000005984 hydrogenation reaction Methods 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 150000008065 acid anhydrides Chemical class 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 125000001033 ether group Chemical group 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000006082 mold release agent Substances 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 229920001195 polyisoprene Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000012744 reinforcing agent Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 2
- HVLLSGMXQDNUAL-UHFFFAOYSA-N triphenyl phosphite Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)OC1=CC=CC=C1 HVLLSGMXQDNUAL-UHFFFAOYSA-N 0.000 description 2
- RSJKGSCJYJTIGS-UHFFFAOYSA-N undecane Chemical compound CCCCCCCCCCC RSJKGSCJYJTIGS-UHFFFAOYSA-N 0.000 description 2
- OEVVKKAVYQFQNV-UHFFFAOYSA-N 1-ethenyl-2,4-dimethylbenzene Chemical compound CC1=CC=C(C=C)C(C)=C1 OEVVKKAVYQFQNV-UHFFFAOYSA-N 0.000 description 1
- QEDJMOONZLUIMC-UHFFFAOYSA-N 1-tert-butyl-4-ethenylbenzene Chemical compound CC(C)(C)C1=CC=C(C=C)C=C1 QEDJMOONZLUIMC-UHFFFAOYSA-N 0.000 description 1
- KGRVJHAUYBGFFP-UHFFFAOYSA-N 2,2'-Methylenebis(4-methyl-6-tert-butylphenol) Chemical compound CC(C)(C)C1=CC(C)=CC(CC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=C1O KGRVJHAUYBGFFP-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- ROHFBIREHKPELA-UHFFFAOYSA-N 2-[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]prop-2-enoic acid;methane Chemical compound C.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O ROHFBIREHKPELA-UHFFFAOYSA-N 0.000 description 1
- SBYMUDUGTIKLCR-UHFFFAOYSA-N 2-chloroethenylbenzene Chemical compound ClC=CC1=CC=CC=C1 SBYMUDUGTIKLCR-UHFFFAOYSA-N 0.000 description 1
- PFANXOISJYKQRP-UHFFFAOYSA-N 2-tert-butyl-4-[1-(5-tert-butyl-4-hydroxy-2-methylphenyl)butyl]-5-methylphenol Chemical compound C=1C(C(C)(C)C)=C(O)C=C(C)C=1C(CCC)C1=CC(C(C)(C)C)=C(O)C=C1C PFANXOISJYKQRP-UHFFFAOYSA-N 0.000 description 1
- DDTHMESPCBONDT-UHFFFAOYSA-N 4-(4-oxocyclohexa-2,5-dien-1-ylidene)cyclohexa-2,5-dien-1-one Chemical compound C1=CC(=O)C=CC1=C1C=CC(=O)C=C1 DDTHMESPCBONDT-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 1
- FRCLQKLLFQYUJJ-UHFFFAOYSA-N P(O)(O)O.P(O)(O)O.C(C)(C)(C)C1=C(C(=CC(=C1)C)C(C)(C)C)C(O)(C(CO)(CO)CO)C1=C(C=C(C=C1C(C)(C)C)C)C(C)(C)C Chemical compound P(O)(O)O.P(O)(O)O.C(C)(C)(C)C1=C(C(=CC(=C1)C)C(C)(C)C)C(O)(C(CO)(CO)CO)C1=C(C=C(C=C1C(C)(C)C)C)C(C)(C)C FRCLQKLLFQYUJJ-UHFFFAOYSA-N 0.000 description 1
- JKIJEFPNVSHHEI-UHFFFAOYSA-N Phenol, 2,4-bis(1,1-dimethylethyl)-, phosphite (3:1) Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC=C1OP(OC=1C(=CC(=CC=1)C(C)(C)C)C(C)(C)C)OC1=CC=C(C(C)(C)C)C=C1C(C)(C)C JKIJEFPNVSHHEI-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 241000872198 Serjania polyphylla Species 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- JBTXGEJRJCNRLU-UHFFFAOYSA-N [2-(dihydroxyphosphanyloxymethyl)-3-hydroxy-2-(hydroxymethyl)propyl] dihydrogen phosphite Chemical compound OP(O)OCC(CO)(CO)COP(O)O JBTXGEJRJCNRLU-UHFFFAOYSA-N 0.000 description 1
- STLLXWLDRUVCHL-UHFFFAOYSA-N [2-[1-[2-hydroxy-3,5-bis(2-methylbutan-2-yl)phenyl]ethyl]-4,6-bis(2-methylbutan-2-yl)phenyl] prop-2-enoate Chemical compound CCC(C)(C)C1=CC(C(C)(C)CC)=CC(C(C)C=2C(=C(C=C(C=2)C(C)(C)CC)C(C)(C)CC)OC(=O)C=C)=C1O STLLXWLDRUVCHL-UHFFFAOYSA-N 0.000 description 1
- IORUEKDKNHHQAL-UHFFFAOYSA-N [2-tert-butyl-6-[(3-tert-butyl-2-hydroxy-5-methylphenyl)methyl]-4-methylphenyl] prop-2-enoate Chemical compound CC(C)(C)C1=CC(C)=CC(CC=2C(=C(C=C(C)C=2)C(C)(C)C)OC(=O)C=C)=C1O IORUEKDKNHHQAL-UHFFFAOYSA-N 0.000 description 1
- BGYHLZZASRKEJE-UHFFFAOYSA-N [3-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]-2,2-bis[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxymethyl]propyl] 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCC(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 BGYHLZZASRKEJE-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical class C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- MPMBRWOOISTHJV-UHFFFAOYSA-N but-1-enylbenzene Chemical compound CCC=CC1=CC=CC=C1 MPMBRWOOISTHJV-UHFFFAOYSA-N 0.000 description 1
- KAKZBPTYRLMSJV-UHFFFAOYSA-N butadiene group Chemical group C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 229920003244 diene elastomer Polymers 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 229920006244 ethylene-ethyl acrylate Polymers 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229920005669 high impact polystyrene Polymers 0.000 description 1
- 239000004797 high-impact polystyrene Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000002905 orthoesters Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- 239000002530 phenolic antioxidant Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- DOIRQSBPFJWKBE-UHFFFAOYSA-N phthalic acid di-n-butyl ester Natural products CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000012321 sodium triacetoxyborohydride Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/80—Component parts, details or accessories; Auxiliary operations
- B29B7/82—Heating or cooling
- B29B7/826—Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/30—Mixing; Kneading continuous, with mechanical mixing or kneading devices
- B29B7/34—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
- B29B7/38—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
- B29B7/46—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
- B29B7/48—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/30—Mixing; Kneading continuous, with mechanical mixing or kneading devices
- B29B7/58—Component parts, details or accessories; Auxiliary operations
- B29B7/72—Measuring, controlling or regulating
- B29B7/726—Measuring properties of mixture, e.g. temperature or density
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/30—Mixing; Kneading continuous, with mechanical mixing or kneading devices
- B29B7/58—Component parts, details or accessories; Auxiliary operations
- B29B7/72—Measuring, controlling or regulating
- B29B7/728—Measuring data of the driving system, e.g. torque, speed, power, vibration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/80—Component parts, details or accessories; Auxiliary operations
- B29B7/82—Heating or cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/80—Component parts, details or accessories; Auxiliary operations
- B29B7/84—Venting or degassing ; Removing liquids, e.g. by evaporating components
- B29B7/845—Venting, degassing or removing evaporated components in devices with rotary stirrers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/80—Component parts, details or accessories; Auxiliary operations
- B29B7/88—Adding charges, i.e. additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/022—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/14—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration
- B29C48/143—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration at a location before or in the feed unit, e.g. influencing the material in the hopper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/285—Feeding the extrusion material to the extruder
- B29C48/287—Raw material pre-treatment while feeding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/395—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
- B29C48/40—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/92—Measuring, controlling or regulating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/34—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
- C08G65/46—Post-polymerisation treatment, e.g. recovery, purification, drying
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/08—Polyethers derived from hydroxy compounds or from their metallic derivatives
- C08L71/10—Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
- C08L71/12—Polyphenylene oxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/08—Polyethers derived from hydroxy compounds or from their metallic derivatives
- C08L71/10—Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
- C08L71/12—Polyphenylene oxides
- C08L71/123—Polyphenylene oxides not modified by chemical after-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92504—Controlled parameter
- B29C2948/92704—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92819—Location or phase of control
- B29C2948/92857—Extrusion unit
- B29C2948/92876—Feeding, melting, plasticising or pumping zones, e.g. the melt itself
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/505—Screws
- B29C48/57—Screws provided with kneading disc-like elements, e.g. with oval-shaped elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/505—Screws
- B29C48/625—Screws characterised by the ratio of the threaded length of the screw to its outside diameter [L/D ratio]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/76—Venting, drying means; Degassing means
- B29C48/762—Vapour stripping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/78—Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
- B29C48/80—Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
- B29C48/802—Heating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/78—Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
- B29C48/80—Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
- B29C48/83—Heating or cooling the cylinders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/78—Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
- B29C48/875—Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling for achieving a non-uniform temperature distribution, e.g. using barrels having both cooling and heating zones
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2071/00—Use of polyethers, e.g. PEEK, i.e. polyether-etherketone or PEK, i.e. polyetherketone or derivatives thereof, as moulding material
- B29K2071/12—PPO, i.e. polyphenylene oxide; PPE, i.e. polyphenylene ether
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
- C08L2205/035—Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
Description
本発明は、ポリフェニレンエーテル系樹脂組成物の製造方法に関する。 The present invention relates to a method for producing a polyphenylene ether resin composition.
ポリフェニレンエーテル系樹脂組成物は、ポリフェニレンエーテル樹脂単独又は、ポリフェニレンエーテル樹脂とスチレン系樹脂に、必要に応じて、熱可塑性エラストマーや、更には難燃剤、熱安定剤、離型剤、滑剤、無機質充填剤等の添加剤成分を配合してなる。 The polyphenylene ether resin composition is made by adding a thermoplastic elastomer, a flame retardant, a heat stabilizer, a mold release agent, a lubricant, and an inorganic filler to the polyphenylene ether resin alone or to the polyphenylene ether resin and styrene resin, if necessary. It is made by blending additive components such as agents.
ポリフェニレンエーテル系樹脂組成物は、機械的物性、電気的特性、耐酸・耐アルカリ性、耐熱性に優れると共に、低比重で、吸水性が低く、且つ寸法安定性が良好である等の多様な特性を有しているため、家電製品、OA機器、事務機、情報機器や自動車等の材料として、幅広く利用されている。 Polyphenylene ether resin compositions have various properties such as excellent mechanical properties, electrical properties, acid and alkali resistance, and heat resistance, as well as low specific gravity, low water absorption, and good dimensional stability. Because of this, it is widely used as a material for home appliances, office automation equipment, office machines, information equipment, automobiles, etc.
しかしながら、ポリフェニレンエーテル系樹脂組成物は通常、溶融粘度が高いため、押出機等を用いて溶融混錬して樹脂組成物(ペレット)にする際に、溶融混錬された樹脂組成物が高温条件下で酸素と接触することによって、ポリフェニレンエーテル樹脂の酸化架橋が促進される。やがて樹脂のゲル化や炭化が起こり、それらが樹脂組成物中に異物として混入することで、成形品の外観低下や靭性等の低下の原因となる場合もある。 However, since polyphenylene ether resin compositions usually have a high melt viscosity, when melt-kneaded using an extruder or the like to form a resin composition (pellet), the melt-kneaded resin composition is exposed to high temperature conditions. Oxidative crosslinking of the polyphenylene ether resin is promoted by contacting it with oxygen below. Eventually, gelation and carbonization of the resin occur, and these foreign substances are mixed into the resin composition, which may cause deterioration in the appearance and toughness of the molded product.
また、ポリフェニレンエーテル系樹脂組成物は押出機による生産時に、押出機先端の、溶融混錬された樹脂組成物が排出される円形の排出口(ダイノズル)の周辺に、樹脂組成物が付着して生産の継続とともに付着物(メヤニ)が長時間、熱と外気に晒されて酸化架橋しながら髭状に成長してゆき、それがやがて押出された樹脂に付着して樹脂組成物中に混入することで、やはり成形品の外観低下や靭性等の低下の原因となる場合がある。 In addition, when polyphenylene ether resin compositions are produced using an extruder, the resin composition adheres to the area around the circular discharge port (die nozzle) at the tip of the extruder through which the melted and kneaded resin composition is discharged. As production continues, deposits are exposed to heat and the outside air for a long time and grow into whiskers while oxidizing and crosslinking, which eventually attaches to the extruded resin and mixes into the resin composition. This may also cause deterioration in the appearance and toughness of the molded product.
更には、成長したメヤニがダイノズルの周辺から離れずに存在することで、ダイノズルから継続的に紐状に排出される樹脂(ストランド)を裁断機(ペレタイザー)で引き取りながら裁断(ペレタイズ)する工程において、やがてストランドの流れが不安定になり、ストランド切れや、ペレタイザーによるストランド引き取り不良等の生産トラブルの原因となる場合もある。 Furthermore, since the grown resin does not leave the vicinity of the die nozzle, the resin (strand) that is continuously discharged from the die nozzle in the form of a string is collected and cut (pelletizing) by a cutting machine (pelletizer). Eventually, the flow of the strand becomes unstable, which may cause production problems such as strand breakage and poor strand take-up by the pelletizer.
特許文献1には、特定のポリフェニレンエーテル系樹脂組成物において、押出機の原料供給の第一供給口ホッパー内部の酸素濃度を1.0体積%以下に調整することで、押出機バレル内部に生じるポリフェニレンエーテル樹脂の劣化物を低減するための技術が開示されている。
特許文献2には、ポリフェニレンエーテル樹脂組成物を押出機で押出す際に、押出機のバレル全長を100%とした場合に、上流から45~75%の長さを未溶融混合ゾーンとすることで、樹脂の熱劣化を抑制して耐衝撃性や耐熱エージング特性を改善する技術が開示されている。
Patent Document 1 describes that in a specific polyphenylene ether resin composition, by adjusting the oxygen concentration inside the first supply port hopper for supplying the raw material of the extruder to 1.0% by volume or less, the oxygen concentration generated inside the extruder barrel is A technique for reducing degraded products of polyphenylene ether resin has been disclosed.
Patent Document 2 states that when extruding a polyphenylene ether resin composition with an extruder, when the entire barrel length of the extruder is 100%, a length of 45 to 75% from the upstream is an unmelted mixing zone. discloses a technique for suppressing thermal deterioration of resin and improving impact resistance and heat aging resistance.
しかし、特許文献1に記載の技術では、確かに押出機バレル内に生じるポリフェニレンエーテル樹脂の劣化物は低減されるが、ダイノズル周辺のメヤニ低減に関しては必ずしも十分ではない。
また、特許文献2に記載の技術は、押出機バレル内の異物発生の低減や、樹脂組成物の物性低下の抑制にはある程度効果的であったが、押出時のメヤニ抑制に関しては、やはりまだ十分ではない。
However, although the technique described in Patent Document 1 certainly reduces the degraded products of the polyphenylene ether resin produced in the extruder barrel, it is not necessarily sufficient to reduce the dirt around the die nozzle.
Furthermore, although the technology described in Patent Document 2 has been effective to some extent in reducing the generation of foreign matter in the extruder barrel and in suppressing the deterioration of the physical properties of the resin composition, it is still insufficient in terms of suppressing buildup during extrusion. Not enough.
そこで、本発明は、通常、押出時に押出機バレル内で発生するポリフェニレンエーテル樹脂の劣化物の発生や、ダイノズル周辺のメヤニの発生が著しく抑制されて、押出生産性が改善されていると共に、ポリフェニレンエーテル由来の異物の混入が低減されて、靭性が良好である樹脂組成物を得ることが可能な製造方法を提供することを目的とする。 Therefore, the present invention significantly suppresses the generation of degraded products of polyphenylene ether resin that normally occurs in the extruder barrel during extrusion and the generation of sludge around the die nozzle, improving extrusion productivity, and improves extrusion productivity. It is an object of the present invention to provide a manufacturing method capable of reducing the contamination of ether-derived foreign substances and obtaining a resin composition with good toughness.
本発明者らは上記課題を解決するため鋭意検討したところ、ポリフェニレンエーテルを一定量以上含有する樹脂組成物において、押出機を用いて特定の押出方法で押出すことで、押出時に押出機バレル内で発生するポリフェニレンエーテル樹脂の劣化物の発生や、ダイノズル周辺のメヤニの発生が著しく抑制されて、押出生産性が改善されると共に、ポリフェニレンエーテル由来の異物の混入が少なく、靭性の良好なポリフェニレンエーテル系樹脂組成物が安定的に製造されることを明らかにして、本発明を完成した。 The inventors of the present invention conducted extensive studies to solve the above problems, and found that by extruding a resin composition containing a certain amount or more of polyphenylene ether using an extruder using a specific extrusion method, it is possible to The generation of degraded products of the polyphenylene ether resin and the generation of slime around the die nozzle are significantly suppressed, improving extrusion productivity, and polyphenylene ether with good toughness and less contamination of foreign substances derived from polyphenylene ether. The present invention was completed by demonstrating that the based resin composition can be stably produced.
即ち、本発明は、以下の通りである。
[1]
押出機を用いて樹脂組成物を製造する方法であって、
前記樹脂組成物は、樹脂組成物全量(100質量%)に対しポリフェニレンエーテル(A)を10質量%以上含有し、
前記押出機は、固体搬送ゾーンと、溶融混練ゾーンと、溶融搬送ゾーンとを有し、前記固体搬送ゾーンは最上流部の集合ホッパー下に第一供給口が設けられたバレルC0を有する、二軸押出機であり、
前記押出機全体のバレル長さを100%とした場合に、前記押出機の上流側から30~60%が前記固体搬送ゾーン、残りの40~70%が前記溶融混練ゾーン及び前記溶融搬送ゾーンであり、
前記固体搬送ゾーンを構成するバレルのうち、前記第一供給口が設けられたバレルC0(水冷)を除いた残りのバレル長さを100%とした場合に、75%以上のバレルの設定温度が50~190℃の範囲内であり、
前記溶融混練ゾーンを構成するバレル及び前記溶融搬送ゾーンを構成するバレルの設定温度が250~320℃の範囲内であり、
前記第一供給口の上部に設けられた集合ホッパー内の酸素濃度を3vol%以下とする、
樹脂組成物の製造方法。
[2]
前記固体搬送ゾーンを構成するバレルのうち、前記第一供給口が設けられたバレルを除くバレル長さを100%とした場合に、100%のバレルの設定温度が50~190℃の範囲内である、[1]に記載の樹脂組成物の製造方法。
[3]
前記溶融搬送ゾーンは開口部が設けられたバレルを有し、前記開口部の上部に窒素注入ラインとガス抜き部とを設けたベントポートが設けられている、[1]又は[2]に記載の樹脂組成物の製造方法。
[4]
押出原料を全て前記第一供給口から供給する、[1]~[3]のいずれかに記載の樹脂組成物の製造方法。
[5]
前記樹脂組成物は、樹脂組成物全量(100質量%)に対し、スチレン系樹脂(B)5~80質量%をさらに含有する、[1]~[4]のいずれかに記載の樹脂組成物の製造方法。
[6]
前記樹脂組成物は、樹脂組成物全量(100質量%)に対し、スチレン系熱可塑性エラストマー(C)0.1~25質量%をさらに含有する、[1]~[5]のいずれかに記載の樹脂組成物の製造方法。
[7]
前記樹脂組成物は、樹脂組成物全量(100質量%)に対し、酸化防止剤(D)0.001~3質量%を更に含有する、[1]~[6]のいずれかに記載の樹脂組成物の製造方法。
[8]
前記樹脂組成物は、樹脂組成物全量(100質量%)に対するポリオレフィン系樹脂成分の含有量が5質量%以下である、[1]~[7]のいずれかに記載の樹脂組成物の製造方法。
That is, the present invention is as follows.
[1]
A method for producing a resin composition using an extruder, the method comprising:
The resin composition contains 10% by mass or more of polyphenylene ether (A) based on the total amount of the resin composition (100% by mass),
The extruder has a solid conveyance zone, a melt kneading zone, and a melt conveyance zone, and the solid conveyance zone has a barrel C0 provided with a first supply port under a collecting hopper at the most upstream part . It is a shaft extruder,
When the barrel length of the entire extruder is 100%, 30 to 60% from the upstream side of the extruder is the solid conveyance zone, and the remaining 40 to 70% is the melt kneading zone and the melt conveyance zone. can be,
Among the barrels constituting the solid transport zone, when the length of the remaining barrels excluding barrel C0 (water-cooled) in which the first supply port is provided is taken as 100%, the set temperature of 75% or more of the barrels is within the range of 50 to 190°C,
The set temperature of the barrel constituting the melt kneading zone and the barrel constituting the melt conveyance zone is within the range of 250 to 320 ° C.,
The oxygen concentration in the collection hopper provided above the first supply port is 3 vol% or less,
A method for producing a resin composition.
[2]
Among the barrels constituting the solid transportation zone, when the length of the barrel excluding the barrel in which the first supply port is provided is taken as 100%, the set temperature of 100% of the barrels is within the range of 50 to 190 ° C. A method for producing a resin composition according to [1].
[3]
According to [1] or [2], the melting conveyance zone has a barrel provided with an opening, and a vent port having a nitrogen injection line and a gas vent is provided above the opening. A method for producing a resin composition.
[4]
The method for producing a resin composition according to any one of [1] to [3], wherein all of the extrusion raw materials are supplied from the first supply port.
[5]
The resin composition according to any one of [1] to [4], wherein the resin composition further contains 5 to 80% by mass of a styrene resin (B) based on the total amount of the resin composition (100% by mass). manufacturing method.
[6]
The resin composition further contains 0.1 to 25% by mass of a styrene thermoplastic elastomer (C) based on the total amount of the resin composition (100% by mass), according to any one of [1] to [5]. A method for producing a resin composition.
[7]
The resin composition according to any one of [1] to [6], wherein the resin composition further contains 0.001 to 3% by mass of an antioxidant (D) based on the total amount (100% by mass) of the resin composition. Method for producing the composition.
[8]
The method for producing a resin composition according to any one of [1] to [7], wherein the resin composition has a polyolefin resin component content of 5% by mass or less based on the total amount of the resin composition (100% by mass). .
本発明の製造方法によって、通常、押出時に押出機バレル内で発生するポリフェニレンエーテル樹脂の劣化物の発生や、ダイノズル周辺のメヤニの発生が著しく抑制されて、押出生産性が改善されていると共に、ポリフェニレンエーテル由来の異物の混入が低減されて、靭性が良好である樹脂組成物を安定的に得ることが可能となる。 According to the manufacturing method of the present invention, the generation of degraded polyphenylene ether resin that normally occurs in the extruder barrel during extrusion and the generation of sludge around the die nozzle are significantly suppressed, and extrusion productivity is improved. The contamination of foreign substances derived from polyphenylene ether is reduced, making it possible to stably obtain a resin composition with good toughness.
以下、本発明を実施するための形態(以下、「本実施の形態」という)について詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。 Hereinafter, a mode for carrying out the present invention (hereinafter referred to as "this embodiment") will be described in detail. Note that the present invention is not limited to the following embodiments, and can be implemented with various modifications within the scope of the gist.
本実施の形態に係るポリフェニレンエーテル系樹脂組成物の製造方法は、押出機を用いて樹脂組成物を製造する方法であって、樹脂組成物は、樹脂組成物全量(100質量%)に対しポリフェニレンエーテル(A)を10質量%以上含有し、押出機は、固体搬送ゾーンと、溶融混練ゾーンと、溶融搬送ゾーンとを有し、前記固体搬送ゾーンは第一供給口が設けられたバレルを有する、二軸押出機であり、押出機全体のバレル長さを100%とした場合に、押出機の上流側から30~60%が固体搬送ゾーン、残りの40~70%が溶融混練ゾーン及び溶融搬送ゾーンであり、固体搬送ゾーンを構成するバレルのうち、第一供給口が設けられたバレルを除くバレル長さを100%とした場合に、75%以上のバレルの設定温度が50~190℃の範囲内であり、溶融混練ゾーンを構成するバレル及び溶融搬送ゾーンを構成するバレルの設定温度が250~320℃の範囲内であり、第一供給口の上部に設けられた集合ホッパー内の酸素濃度を3vol%以下とするものである。 The method for producing a polyphenylene ether resin composition according to the present embodiment is a method for producing a resin composition using an extruder, and the resin composition contains polyphenylene ether based on the total amount (100% by mass) of the resin composition. The extruder contains 10% by mass or more of ether (A), and the extruder has a solid conveyance zone, a melt kneading zone, and a melt conveyance zone, and the solid conveyance zone has a barrel provided with a first supply port. , is a twin-screw extruder, and when the barrel length of the entire extruder is taken as 100%, 30 to 60% from the upstream side of the extruder is a solid conveying zone, and the remaining 40 to 70% is a melt kneading zone and a melting zone. The set temperature of 75% or more of the barrels that constitute the solid transportation zone is 50 to 190°C, where the length of the barrels excluding the barrel where the first supply port is installed is taken as 100%. The set temperature of the barrel constituting the melt-kneading zone and the barrel constituting the melt conveyance zone is within the range of 250 to 320 °C, and the oxygen in the collecting hopper provided above the first supply port is within the range of 250 to 320 °C. The concentration is 3 vol% or less.
<<樹脂組成物>>
本実施の形態に係る樹脂組成物は、樹脂組成物全量(100質量%)に対しポリフェニレンエーテル(A)を10質量%以上含有する。
<<Resin composition>>
The resin composition according to the present embodiment contains polyphenylene ether (A) in an amount of 10% by mass or more based on the total amount (100% by mass) of the resin composition.
本実施の形態に係るポリフェニレンエーテル系樹脂組成物は、後述する本実施の形態に係る製造方法によって、本願(A)成分及び、必要に応じ(B)~(D)成分、更に必要に応じて追加されるその他の成分を溶融混練することによって製造される。 The polyphenylene ether-based resin composition according to the present embodiment is produced by using the manufacturing method according to the present embodiment described below, including component (A) of the present application, optionally components (B) to (D), and optionally components (B) to (D). Manufactured by melt-kneading other added ingredients.
本発明者らは、上記の樹脂組成物を特定の押出方法によって、押出時に押出機バレル内で発生するポリフェニレンエーテル樹脂の酸化架橋物の発生や、ダイノズル周辺のメヤニの発生が著しく抑制されて、押出生産性が改善されると共に、ポリフェニレンエーテル由来の異物の混入が少なくなることを見出した。以下、上記の樹脂組成物の各構成成分について詳細に説明する。 The present inventors have discovered that by extruding the above-described resin composition using a specific extrusion method, the generation of oxidized cross-linked products of the polyphenylene ether resin generated in the extruder barrel during extrusion and the generation of slime around the die nozzle are significantly suppressed. It has been found that extrusion productivity is improved and contamination of foreign substances derived from polyphenylene ether is reduced. Each constituent component of the above resin composition will be explained in detail below.
<ポリフェニレンエーテル(A)>
ポリフェニレンエーテル(A)は、繰り返し構成単位が一般式(1)の〔a〕及び/若しくは〔b〕からなる単独重合体(ホモポリマー)又は共重合体(コポリマー)であることが好ましい。
上記式(1)〔a〕、〔b〕中、R1、R2、R3、R4、R5及びR6は、それぞれ独立して、炭素数1~4のアルキル基、炭素数6~12のアリール基、並びにハロゲン原子及び水素原子からなる群から選ばれる一価の残基であることが好ましい。
但し、かかる場合、R5及びR6が同時に水素である場合を除く。
また、前記アルキル基のより好ましい炭素数は1~3であり、前記アリール基のより好ましい炭素数は6~8であり、前記一価の残基の中でもより好ましくは水素である。
なお、上記(1)の〔a〕及び〔b〕における繰り返し単位の数については、ポリフェニレンエーテル(A)の分子量分布により様々であるため、特に制限されることはない。
<Polyphenylene ether (A)>
The polyphenylene ether (A) is preferably a homopolymer or a copolymer whose repeating structural units are composed of [a] and/or [b] of general formula (1).
In the above formulas (1) [a] and [b], R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently an alkyl group having 1 to 4 carbon atoms, and 6 carbon atoms. Preferably, it is a monovalent residue selected from the group consisting of ~12 aryl groups, halogen atoms, and hydrogen atoms.
However, in such a case, the case where R5 and R6 are both hydrogen is excluded.
Further, the alkyl group preferably has 1 to 3 carbon atoms, the aryl group preferably has 6 to 8 carbon atoms, and among the monovalent residues, hydrogen is more preferable.
Note that the number of repeating units in [a] and [b] in (1) above is not particularly limited, since it varies depending on the molecular weight distribution of the polyphenylene ether (A).
ポリフェニレンエーテルの単独重合体としては、以下に制限されないが、例えば、ポリ(2,6-ジメチル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-エチル-1,4-フェニレン)エーテル、ポリ(2,6-ジエチル-1,4-フェニレン)エーテル、ポリ(2-エチル-6-n-プロピル-1,4-フェニレン)エーテル、ポリ(2,6-ジ-n-プロピル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-n-ブチル-1,4-フェニレン)エーテル、ポリ(2-エチル-6-イソプロピル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-クロロエチル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-ヒドロキシエチル-1,4-フェニレン)エーテル及びポリ(2-メチル-6-クロロエチル-1,4-フェニレン)エーテル等が挙げられる。 Homopolymers of polyphenylene ether include, but are not limited to, poly(2,6-dimethyl-1,4-phenylene) ether, poly(2-methyl-6-ethyl-1,4-phenylene) ether, etc. , poly(2,6-diethyl-1,4-phenylene) ether, poly(2-ethyl-6-n-propyl-1,4-phenylene) ether, poly(2,6-di-n-propyl-1) ,4-phenylene) ether, poly(2-methyl-6-n-butyl-1,4-phenylene) ether, poly(2-ethyl-6-isopropyl-1,4-phenylene) ether, poly(2-methyl -6-chloroethyl-1,4-phenylene) ether, poly(2-methyl-6-hydroxyethyl-1,4-phenylene) ether, poly(2-methyl-6-chloroethyl-1,4-phenylene) ether, etc. can be mentioned.
また、ポリフェニレンエーテルの共重合体としては、以下に制限されないが、例えば、2,6-ジメチルフェノールと2,3,6-トリメチルフェノールとの共重合体、2,6-ジメチルフェノールとo-クレゾールとの共重合体、2,3,6-トリメチルフェノールとo-クレゾールとの共重合体といった、ポリフェニレンエーテル構造を主体とするものが挙げられる。 In addition, copolymers of polyphenylene ether include, but are not limited to, copolymers of 2,6-dimethylphenol and 2,3,6-trimethylphenol, copolymers of 2,6-dimethylphenol and o-cresol, etc. and copolymers of 2,3,6-trimethylphenol and o-cresol, which mainly have a polyphenylene ether structure.
ポリフェニレンエーテルの中でも、ポリ(2,6-ジメチル-1,4-フェニレン)エーテルを用いることが好ましい。 Among polyphenylene ethers, it is preferable to use poly(2,6-dimethyl-1,4-phenylene) ether.
上述したポリフェニレンエーテル(A)は、一種単独で用いてもよく、2種以上併用してもよい。 The above-mentioned polyphenylene ether (A) may be used alone or in combination of two or more.
また、ポリフェニレンエーテル(A)は、式(1)の〔a〕及び〔b〕以外の種々のフェニレンエーテル単位を部分構造として含んでいてもよい。
かかるフェニレンエーテル単位としては、以下に制限されないが、例えば、特開平01-297428号公報及び特開昭63-301222号公報に記載されている、2-(ジアルキルアミノメチル)-6-メチルフェニレンエーテル単位や、2-(N-アルキル-N-フェニルアミノメチル)-6-メチルフェニレンエーテル単位等が挙げられる。
Moreover, the polyphenylene ether (A) may contain various phenylene ether units other than [a] and [b] in formula (1) as a partial structure.
Examples of such phenylene ether units include, but are not limited to, 2-(dialkylaminomethyl)-6-methylphenylene ether described in JP-A-01-297428 and JP-A-63-301222. units, 2-(N-alkyl-N-phenylaminomethyl)-6-methylphenylene ether units, and the like.
また、ポリフェニレンエーテル(A)は、主鎖中にフェニレンエーテル単位以外の構造単位を含んでいてもよい。
このような構造単位としては、例えば、ジフェノキノンに由来する単位が挙げられる。但し、主鎖中に含まれるフェニレンエーテル単位以外の構造単位は、ポリフェニレンエーテル(A)を100質量%として、20質量%以下であることが好ましく、より好ましくは10質量%以下、更に好ましくは5質量%以下である。
Moreover, polyphenylene ether (A) may contain structural units other than phenylene ether units in the main chain.
Examples of such structural units include units derived from diphenoquinone. However, the structural units other than phenylene ether units contained in the main chain are preferably 20% by mass or less, more preferably 10% by mass or less, and even more preferably 5% by mass, based on 100% by mass of polyphenylene ether (A). % by mass or less.
さらに、ポリフェニレンエーテル(A)は、ポリフェニレンエーテルの一部又は全部を、カルボン酸、酸無水物、酸アミド、イミド、アミン、オルトエステル、ヒドロキシ、カルボン酸アンモニウム塩よりなる群から選択される1種以上を含む官能化剤と反応(変性)させることにより官能化ポリフェニレンエーテルであってもよい。 Furthermore, the polyphenylene ether (A) is a type selected from the group consisting of carboxylic acids, acid anhydrides, acid amides, imides, amines, orthoesters, hydroxy, and carboxylic acid ammonium salts. The polyphenylene ether may be functionalized by reacting (modifying) with a functionalizing agent including the above.
本実施の形態に用いるポリフェニレンエーテル(A)の還元粘度は、0.25~0.60dL/gの範囲であることが好ましく、より好ましくは0.30~0.55dL/gで、さらに好ましくは0.35~0.50dL/gの範囲である。十分な機械物性の観点から0.25dL/g以上が好ましく、成形加工性と成形品の輝度感の観点から0.55dL/g以下が好ましい。
なお、本実施の形態における還元粘度は、クロロホルム溶媒、濃度0.50g/dL、30℃でウベローデ型粘度計を用いて測定して得られた値である。
The reduced viscosity of the polyphenylene ether (A) used in this embodiment is preferably in the range of 0.25 to 0.60 dL/g, more preferably 0.30 to 0.55 dL/g, even more preferably It is in the range of 0.35 to 0.50 dL/g. From the viewpoint of sufficient mechanical properties, it is preferably 0.25 dL/g or more, and from the viewpoint of molding processability and brightness of the molded product, it is preferably 0.55 dL/g or less.
Note that the reduced viscosity in this embodiment is a value obtained by measurement using an Ubbelohde viscometer at 30° C. in a chloroform solvent at a concentration of 0.50 g/dL.
本実施の形態に用いるポリフェニレンエーテル(A)の、押出等による加熱加工前(重合粉体性状の)重量平均分子量Mwと数平均分子量Mnとの比(Mw/Mn値)は、好ましくは1.2~3.0であり、より好ましくは1.5~2.5、さらにより好ましくは1.8~2.3である。該Mw/Mn値は、樹脂組成物の成形加工性の観点から1.2以上が好ましく、樹脂組成物の機械物性、特に引張強度保持の観点から3.0以下が好ましい。
なお、重量平均分子量Mw及び数平均分子量Mnとは、GPC(ゲルパーミエーションクロマトグラフィー)測定による、ポリスチレン換算分子量から得られるものである。
The ratio of the weight average molecular weight Mw to the number average molecular weight Mn (Mw/Mn value) of the polyphenylene ether (A) used in this embodiment before heating processing by extrusion or the like (in polymer powder state) is preferably 1. 2 to 3.0, more preferably 1.5 to 2.5, even more preferably 1.8 to 2.3. The Mw/Mn value is preferably 1.2 or more from the viewpoint of moldability of the resin composition, and preferably 3.0 or less from the viewpoint of maintaining the mechanical properties of the resin composition, particularly tensile strength.
Note that the weight average molecular weight Mw and the number average molecular weight Mn are obtained from the polystyrene equivalent molecular weight measured by GPC (gel permeation chromatography).
本実施の形態のポリフェニレンエーテル系樹脂組成物において、ポリフェニレンエーテル(A)の含有量は、樹脂組成物全体の10質量%以上含有する。好ましくは、20質量%以上の含有であり、より好ましくは30質量%以上の含有であり、さらに好ましくは、50質量%以上の含有である。本実施の形態の製法による十分な効果の発現の観点から、10質量%以上含有することが肝要である。 In the polyphenylene ether resin composition of this embodiment, the content of polyphenylene ether (A) is 10% by mass or more based on the entire resin composition. The content is preferably 20% by mass or more, more preferably 30% by mass or more, and even more preferably 50% by mass or more. From the viewpoint of achieving sufficient effects by the manufacturing method of this embodiment, it is important to contain 10% by mass or more.
<スチレン系樹脂成分(B)>
本実施の形態の樹脂組成物において、主に成形流動性改良を目的として、スチレン系樹脂(B)を配合することができる。
本実施の形態において、スチレン系樹脂(B)とは、スチレン系化合物の単独重合体、スチレン系化合物とスチレン系化合物に共重合可能な化合物(但し、共役ジエン化合物を除く)との共重合体をいう。この(B)成分は、後述の(C)成分の範疇に含まれるものは含まないものとする。
スチレン系樹脂(B)の具体例としては、スチレン、α-メチルスチレン、2,4-ジメチルスチレン、モノクロロスチレン、p-メチルスチレン、p-tert-ブチルスチレン、エチルスチレン等が挙げられる。
<Styrenic resin component (B)>
In the resin composition of this embodiment, a styrene resin (B) can be blended mainly for the purpose of improving molding fluidity.
In this embodiment, the styrene resin (B) is a homopolymer of a styrene compound, or a copolymer of a styrene compound and a compound copolymerizable with a styrene compound (excluding a conjugated diene compound). means. This component (B) does not include anything included in the category of component (C), which will be described later.
Specific examples of the styrene resin (B) include styrene, α-methylstyrene, 2,4-dimethylstyrene, monochlorostyrene, p-methylstyrene, p-tert-butylstyrene, and ethylstyrene.
また、スチレン系化合物と共重合可能な化合物としては、メチルメタクリレート、エチルメタクリレート等のメタクリル酸エステル類;アクリロニトリル、メタクリロニトリル等の不飽和ニトリル化合物類;無水マレイン酸等の酸無水物等が挙げられる。 Compounds that can be copolymerized with styrene compounds include methacrylic acid esters such as methyl methacrylate and ethyl methacrylate; unsaturated nitrile compounds such as acrylonitrile and methacrylonitrile; and acid anhydrides such as maleic anhydride. It will be done.
スチレン系樹脂(B)は、スチレン系化合物、又はスチレン系化合物とスチレン系化合物と共重合可能な化合物を、ゴム質重合体の存在下、又は非存在下で重合することによって得ることができる。
ここで、ゴム質重合体としては、共役ジエン系ゴム及び、共役ジエンと芳香族ビニル化合物のコポリマー又は、これらの水添物あるいは、エチレン-プロピレン共重合体系ゴム等が挙げられる。
The styrenic resin (B) can be obtained by polymerizing a styrene compound or a styrene compound and a compound copolymerizable with the styrene compound in the presence or absence of a rubbery polymer.
Examples of the rubbery polymer include conjugated diene rubbers, copolymers of conjugated dienes and aromatic vinyl compounds, hydrogenated products thereof, and ethylene-propylene copolymer rubbers.
本実施の形態においては、スチレン系樹脂(B)として、ポリスチレン又は、ゴム質重合体で強化されたハイインパクトポリスチレンであることが好ましく、ポリスチレンであることが更に好ましい。 In this embodiment, the styrene resin (B) is preferably polystyrene or high impact polystyrene reinforced with a rubbery polymer, and more preferably polystyrene.
本実施の形態において使用する樹脂組成物中のスチレン系樹脂(B)の含有量は、樹脂組成物100質量%中に5~80質量%を含有することが好ましく、より好ましくは10~60質量%であり、更により好ましくは20~60質量%であり、特に好ましくは25~45質量%である。十分な成形流動性付与の観点から5質量%以上の配合が好ましく、十分な耐熱性保持の観点から80質量%以下の配合が好ましい。 The content of the styrene resin (B) in the resin composition used in this embodiment is preferably 5 to 80% by mass, more preferably 10 to 60% by mass based on 100% by mass of the resin composition. %, even more preferably 20 to 60% by weight, particularly preferably 25 to 45% by weight. A blending amount of 5% by mass or more is preferable from the viewpoint of imparting sufficient molding fluidity, and a blending of 80% by mass or less is preferable from the viewpoint of maintaining sufficient heat resistance.
<スチレン系熱可塑性エラストマー(C)>
本実施の形態に用いられる、スチレン系熱可塑性エラストマー(C)とは、スチレンブロックと共役ジエン化合物ブロックとを有するブロック共重合体である。
<Styrenic thermoplastic elastomer (C)>
The styrenic thermoplastic elastomer (C) used in this embodiment is a block copolymer having a styrene block and a conjugated diene compound block.
前記共役ジエン化合物ブロックは、熱安定性の観点から、少なくとも水素添加率50%以上で水素添加されたものであることが好ましい。水素添加率はより好ましくは80%以上、更により好ましくは95%以上である。 From the viewpoint of thermal stability, the conjugated diene compound block is preferably hydrogenated at a hydrogenation rate of at least 50% or more. The hydrogenation rate is more preferably 80% or more, even more preferably 95% or more.
前記共役ジエン化合物ブロックとしては、以下に制限されないが、例えば、ポリブタジエン、ポリイソプレン、ポリ(エチレン・ブチレン)、ポリ(エチレン・プロピレン)及び、ビニル-ポリイソプレンが挙げられる。前記共役ジエン化合物ブロックは1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the conjugated diene compound block include, but are not limited to, polybutadiene, polyisoprene, poly(ethylene/butylene), poly(ethylene/propylene), and vinyl-polyisoprene. The conjugated diene compound blocks may be used alone or in combination of two or more.
ブロック共重合体を構成する繰り返し単位の配列の様式は、リニアタイプでもラジアルタイプでもよい。また、ポリスチレンブロック及びゴム中間ブロックにより構成されるブロック構造は二型、三型及び四型のいずれであってもよい。中でも、本実施の形態に所望の効果を十分に発揮し得る観点から、好ましくは、ポリスチレン-ポリ(エチレン・ブチレン)-ポリスチレン構造で構成される三型のリニアタイプのブロック共重合体である。なお、共役ジエン化合物ブロック中に30質量%を超えない範囲でブタジエン単位が含まれていてもよい。 The repeating units constituting the block copolymer may be arranged in either a linear type or a radial type. Further, the block structure constituted by the polystyrene block and the rubber intermediate block may be of type 2, type 3, or type 4. Among these, from the viewpoint of fully exhibiting the desired effects of this embodiment, a three-type linear type block copolymer constituted by a polystyrene-poly(ethylene/butylene)-polystyrene structure is preferred. Note that the conjugated diene compound block may contain butadiene units in an amount not exceeding 30% by mass.
また、本実施の組成物において、スチレン系熱可塑性エラストマーはカルボニル基やアミノ基等の官能基を導入してなる、官能化されたスチレン系熱可塑性エラストマーを用いることも可能である。 Furthermore, in the composition of this embodiment, the styrene-based thermoplastic elastomer may be a functionalized styrene-based thermoplastic elastomer into which a functional group such as a carbonyl group or an amino group is introduced.
本実施の形態に係る、スチレン系熱可塑性エラストマー(C)の結合スチレン量は20~90質量%の範囲から選ばれ、好ましくは55~80質量%、より好ましくは60~70質量%の範囲である。前記(A)成分及び前記(B)成分との混和性の観点から20質量%以上が好ましく、十分な耐衝撃性付与の観点から90質量%以下が好ましい。 The amount of bound styrene in the styrenic thermoplastic elastomer (C) according to the present embodiment is selected from the range of 20 to 90% by mass, preferably 55 to 80% by mass, more preferably 60 to 70% by mass. be. From the viewpoint of miscibility with the component (A) and the component (B), the content is preferably 20% by mass or more, and from the viewpoint of imparting sufficient impact resistance, the content is preferably 90% by mass or less.
本実施の形態に係る、スチレン系熱可塑性エラストマー(C)の数平均分子量Mnは30,000~500,000が好ましく、より好ましくは40,000~300,000、更により好ましくは45,000~250,000の範囲である。成形品における十分な靭性付与の観点から、30,000~500,000の範囲が好ましい。
前記(C)成分の、ポリスチレン換算分子量から得られる重量平均分子量Mwと数平均分子量Mnから求められるMw/Mn値は、好ましくは1.0~3.0、より好ましくは1.0~2.0、更により好ましくは1.0~1.5の範囲内である。機械特性の観点から、1.0~3.0の範囲内が好ましい。
The number average molecular weight Mn of the styrenic thermoplastic elastomer (C) according to the present embodiment is preferably 30,000 to 500,000, more preferably 40,000 to 300,000, even more preferably 45,000 to The range is 250,000. From the viewpoint of imparting sufficient toughness to the molded product, the range is preferably from 30,000 to 500,000.
The Mw/Mn value of the component (C) determined from the weight average molecular weight Mw obtained from the polystyrene equivalent molecular weight and the number average molecular weight Mn is preferably 1.0 to 3.0, more preferably 1.0 to 2. 0, and even more preferably within the range of 1.0 to 1.5. From the viewpoint of mechanical properties, it is preferably within the range of 1.0 to 3.0.
本実施の形態に係る、スチレン系熱可塑性エラストマー(C)の含有量は、樹脂組成物100質量%中において、0.1~25質量%を占めることが好ましく、より好ましくは0.5~20質量%、更により好ましくは1~20質量%の範囲内である。靭性改良の観点から、0.1質量%以上の含有が好ましく、成形品の機械特性の観点から、25質量%以下の含有が好ましい。 The content of the styrene thermoplastic elastomer (C) according to the present embodiment is preferably 0.1 to 25% by mass, more preferably 0.5 to 20% by mass in 100% by mass of the resin composition. % by weight, even more preferably in the range from 1 to 20% by weight. From the viewpoint of improving toughness, the content is preferably 0.1% by mass or more, and from the viewpoint of the mechanical properties of the molded article, the content is preferably 25% by mass or less.
<酸化防止剤(D)>
本実施の形態に係る樹脂組成物は、さらに酸化防止剤(D)を含んでいてもよい。
<Antioxidant (D)>
The resin composition according to this embodiment may further contain an antioxidant (D).
上記酸化防止剤(D)は、ラジカル連鎖禁止剤として働く1次酸化防止剤と、過酸化物を分解する効果のある2次酸化防止剤のどちらも使用可能である。すなわち、酸化防止剤を用いることにより、ポリフェニレンエーテルが長時間高温にさらされた際に、末端メチル基又は側鎖メチル基において生じ得るラジカルを捕捉することができ(1次酸化防止剤)、又は当該ラジカルにより末端メチル基又は側鎖メチル基に生じた過酸化物を分解することができ(2次酸化防止剤)、それ故に、ポリフェニレンエーテルの酸化架橋を防止することができる。 As the above-mentioned antioxidant (D), either a primary antioxidant that functions as a radical chain inhibitor or a secondary antioxidant that has the effect of decomposing peroxides can be used. That is, by using an antioxidant, it is possible to scavenge radicals that may be generated in the terminal methyl group or side chain methyl group when polyphenylene ether is exposed to high temperatures for a long time (primary antioxidant), or The radicals can decompose peroxides generated in terminal methyl groups or side chain methyl groups (secondary antioxidant), and therefore, oxidative crosslinking of polyphenylene ether can be prevented.
1次酸化防止剤としては、主にヒンダードフェノール系酸化防止剤が使用可能であり、具体例は、2,6-ジ-t-ブチル-4-メチルフェノール、ペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、n-オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、2-[1-(2-ヒドロキシ-3,5-ジ-t-ペンチルフェニル)エチル]-4,6-ジ-t-ペンチルフェニルアクリレート、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、アルキレイテッドビスフェノール、テトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、3,9-ビス[2-〔3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)-プロピオニロキシ〕-1,1-ジメチルエチル]-2,4,8,10-テトラオキシスピロ[5,5]ウンデカン等である。 As the primary antioxidant, mainly hindered phenolic antioxidants can be used, and specific examples include 2,6-di-t-butyl-4-methylphenol, pentaerythritol tetrakis [3-(3 , 5-di-t-butyl-4-hydroxyphenyl) propionate], n-octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2,2'-methylenebis(4- Methyl-6-t-butylphenol), 2-t-butyl-6-(3-t-butyl-2-hydroxy-5-methylbenzyl)-4-methylphenylacrylate, 2-[1-(2-hydroxy- 3,5-di-t-pentylphenyl)ethyl]-4,6-di-t-pentylphenyl acrylate, 4,4'-butylidenebis(3-methyl-6-t-butylphenol), alkylated bisphenol, tetrakis [Methylene-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate]methane, 3,9-bis[2-[3-(3-t-butyl-4-hydroxy-5-methyl) phenyl)-propionyloxy]-1,1-dimethylethyl]-2,4,8,10-tetraoxyspiro[5,5]undecane and the like.
2次酸化防止剤としては、主にリン系酸化防止剤を使用できる。リン系酸化防止剤の具体例は、トリスノニルフェニルホスファイト、トリフェニルホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスリトール-ジ-ホスファイト、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトール-ジ-ホスファイト、3,9-ビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5,5]ウンデカン等である。 As the secondary antioxidant, phosphorous antioxidants can mainly be used. Specific examples of phosphorous antioxidants include trisnonylphenyl phosphite, triphenyl phosphite, tris(2,4-di-t-butylphenyl) phosphite, and bis(2,4-di-t-butylphenyl). Pentaerythritol-di-phosphite, bis(2,6-di-t-butyl-4-methylphenyl)pentaerythritol-di-phosphite, 3,9-bis(2,6-di-tert-butyl-4 -methylphenoxy)-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5,5]undecane and the like.
また、他の酸化防止剤として、酸化亜鉛、酸化マグネシウム等の金属酸化物、硫化亜鉛等の金属硫化物を上記酸化防止剤と併用して用いることも可能である。 Further, as other antioxidants, metal oxides such as zinc oxide and magnesium oxide, and metal sulfides such as zinc sulfide can be used in combination with the above antioxidants.
これらのうち、成形品の靭性や長期高温暴露後の機械物性を改良させるためには、2次酸化防止剤であるリン系酸化防止剤が好ましく、ホスファイト系酸化防止剤がより好ましく、下記化学式(2)の構造を分子内に有するホスファイト系の酸化防止剤が特に好ましい。
酸化防止剤(D)の含有量は、樹脂組成物100質量%に対して、0.001~3質量%であることが好ましく、0.01~2質量%がより好ましく、0.1~1質量%が更により好ましく、0.1~0.5質量%が特により好ましい。押出成形加工時の樹脂の酸化劣化抑制の観点から、0.001質量%以上が好ましく、成形品表面外観保持の観点から、3質量%以下の添加が好ましい。 The content of the antioxidant (D) is preferably 0.001 to 3% by mass, more preferably 0.01 to 2% by mass, and more preferably 0.1 to 1% by mass, based on 100% by mass of the resin composition. % by weight is even more preferred, and 0.1 to 0.5% by weight is particularly more preferred. From the viewpoint of suppressing oxidative deterioration of the resin during extrusion processing, the addition amount is preferably 0.001% by mass or more, and from the viewpoint of maintaining the surface appearance of the molded product, the addition amount is preferably 3% by mass or less.
<その他の成分>
本実施の形態に係る樹脂組成物を着色する場合、カーボンブラック、酸化チタン、その他の無機系、有機系の公知の染料、顔料等からなる着色剤を、樹脂組成物100質量%中に、0.001~5質量%の範囲内で含有することが好ましい。十分な着色の観点から、0.001質量%以上の含有が好ましく、成形品の十分な機械強度、外観保持等の観点から5質量%以下の配合が好ましい。
<Other ingredients>
When coloring the resin composition according to this embodiment, a coloring agent such as carbon black, titanium oxide, or other inorganic or organic known dyes or pigments is added to 100% by mass of the resin composition. The content is preferably within the range of .001 to 5% by mass. From the viewpoint of sufficient coloring, the content is preferably 0.001% by mass or more, and from the viewpoint of maintaining sufficient mechanical strength and appearance of the molded article, the content is preferably 5% by mass or less.
本実施の形態に係る樹脂組成物において、ポリオレフィン系樹脂成分は、樹脂組成物100質量%中に、5質量%以下の含有が好ましい。
ポリオレフィン系樹脂成分としては、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂や、エチレン-プロピレン共重合体、エチレン-オクテン共重合体、エチレン-エチルアクリレート共重合体、エチレン-エチルメタクリレート共重合体等のポリオレフィン系共重合体等が挙げられる。
本実施の形態に係る樹脂組成物中におけるポリオレフィン系樹脂成分のより好ましい含有量は3質量%以下であり、更により好ましくは1質量%以下である。成形品の表層剥離等による物性低下や外観低下の抑制の観点から、5質量%以下の含有が好ましい。
In the resin composition according to the present embodiment, the polyolefin resin component is preferably contained in an amount of 5% by mass or less in 100% by mass of the resin composition.
The polyolefin resin component includes polyolefin resins such as polyethylene and polypropylene, and polyolefin copolymers such as ethylene-propylene copolymer, ethylene-octene copolymer, ethylene-ethyl acrylate copolymer, and ethylene-ethyl methacrylate copolymer. Examples include polymers.
The content of the polyolefin resin component in the resin composition according to the present embodiment is more preferably 3% by mass or less, and even more preferably 1% by mass or less. From the viewpoint of suppressing deterioration in physical properties and deterioration in appearance due to surface peeling of the molded article, the content is preferably 5% by mass or less.
本実施の形態に係る樹脂組成物には、成形品の靭性及び、成形外観の観点から、強化剤としての無機フィラーは含まないことが好ましい。強化剤としての無機フィラーとしては、一般的に、熱可塑性樹脂の補強に用いられるものであり、例えば、ガラス繊維、炭素繊維、ガラスフレーク、タルク、マイカ等が挙げられる。ここで、無機フィラーを含まないとは、無機フィラーの樹脂組成物100質量%中での含有量が1質量%以下であることをいう。上記含有量は、好適には0.5質量%以下であり、より好適には0.1質量%以下である。 The resin composition according to this embodiment preferably does not contain an inorganic filler as a reinforcing agent from the viewpoint of the toughness of the molded product and the appearance of the molded product. Inorganic fillers as reinforcing agents are generally used for reinforcing thermoplastic resins, and include, for example, glass fibers, carbon fibers, glass flakes, talc, mica, and the like. Here, "not containing an inorganic filler" means that the content of the inorganic filler in 100% by mass of the resin composition is 1% by mass or less. The content is preferably 0.5% by mass or less, more preferably 0.1% by mass or less.
本実施の形態に係る樹脂組成物には、その他、必要に応じて、紫外線吸収剤及び離型剤、滑剤等を本実施の形態における効果を著しく低下させない範囲で添加してもよい。 In addition, an ultraviolet absorber, a mold release agent, a lubricant, and the like may be added to the resin composition according to the present embodiment, as necessary, to the extent that the effects of the present embodiment are not significantly reduced.
<<樹脂組成物の製造方法>>
本実施の形態に係る樹脂組成物は、以下に述べるとおり、本願(A)成分、及び必要に応じ(B)~(D)成分、更に必要に応じて追加されるその他の成分を溶融混練することによって製造される。
<<Production method of resin composition>>
The resin composition according to the present embodiment is produced by melt-kneading the component (A) of the present application, components (B) to (D) as necessary, and other components added as necessary. Manufactured by
本発明者らは、上記の樹脂組成物を特定の押出方法によって、押出時に押出機バレル内で発生するポリフェニレンエーテル樹脂の劣化物の発生や、ダイノズル周辺のメヤニの発生が著しく抑制されて、押出生産性が改善されると共に、ポリフェニレンエーテル由来の異物の混入が少なく、靭性の良好なポリフェニレンエーテル系樹脂組成物が安定的に量産可能な製造方法を見出した。 The present inventors have discovered that by extruding the above resin composition using a specific extrusion method, the generation of degraded products of the polyphenylene ether resin generated in the extruder barrel during extrusion and the generation of slime around the die nozzle are significantly suppressed, and the extrusion We have found a manufacturing method that can stably mass-produce a polyphenylene ether-based resin composition that improves productivity, has less contamination of foreign substances derived from polyphenylene ether, and has good toughness.
以下、上記樹脂組成物の製造方法について詳細に説明する。 The method for producing the resin composition will be described in detail below.
本実施の形態のポリフェニレンエーテル系樹脂組成物は、前記(A)成分、必要に応じて前記(B)~(D)成分、更に必要に応じて追加されるその他の成分を、バレル内に固体搬送ゾーンと、溶融混練ゾーンと、溶融搬送ゾーンとを有する二軸押出機で溶融混錬することで製造される。 The polyphenylene ether resin composition of the present embodiment contains the component (A), the components (B) to (D) as necessary, and other components added as necessary in a solid state in a barrel. It is produced by melt-kneading using a twin-screw extruder having a conveyance zone, a melt-kneading zone, and a melt-conveyance zone.
そしてその際に、押出機全体のバレル長さを100%とした場合に、押出機の上流側から30~60%を固体搬送ゾーンとして、残りの40~70%を溶融混練ゾーンと溶融搬送ゾーンとし、更には固体搬送ゾーンを構成するバレルのうち、第一供給口が設けられたバレルを除くバレル長さを100%とした場合に、75%以上のバレルの設定温度を50~190℃の範囲内に設定して、溶融混練ゾーンと溶融搬送ゾーンのバレル設定温度を、250~320℃の範囲内に設定して、第一供給口の上部に設けられた集合ホッパー内の酸素濃度を3vol%以下に調整して溶融混練することにより製造することができる。 At that time, when the barrel length of the entire extruder is taken as 100%, 30 to 60% from the upstream side of the extruder is the solid conveyance zone, and the remaining 40 to 70% is the melt kneading zone and the melt conveyance zone. Furthermore, among the barrels constituting the solids transport zone, the set temperature of 75% or more of the barrels is set at 50 to 190°C, assuming that the length of the barrel excluding the barrel where the first supply port is installed is 100%. The barrel temperature of the melt-kneading zone and the melt-conveying zone is set within the range of 250 to 320°C, and the oxygen concentration in the collection hopper provided above the first supply port is set to 3 vol. % or less and melt-kneading it.
前記樹脂組成物を製造するにあたり、本実施の形態の所望の効果を十分に発揮し得る樹脂組成物を大量且つ安定的に得るという観点から、使用する二軸押出機はスクリュー径40~90mmの二軸押出機を用いることが好適である。
一好適例として、TEM58SS二軸押出機(東芝機械社製、バレル数13(第一供給口ホッパー下バレルも含む)、スクリュー径58mm、L/D=53);ニーディングディスクL:2個、ニーディングディスクR:12個、及びニーディングディスクN:4個を有するスクリューパターン)を用いた場合に、押出機全体のバレル長さ(第一供給口にホッパーが設けられたバレルも含む)を100%とした場合の、固体搬送ゾーンのバレル長さを45%、残りの溶融混錬ゾーンと溶融搬送ゾーンのバレル長さを55%とし、固体搬送ゾーンのバレル設定温度(第一供給口ホッパー下バレルは水冷のため除く)100~180℃、溶融混錬ゾーン及び溶融搬送ゾーンのバレル設定温度270~310℃、第一供給口上部の集合ホッパー内の酸素濃度0.3~2.0vol%、スクリュー回転数350~600rpm、押出レート350~600kg/hの条件で溶融混練する方法が挙げられる。
In producing the resin composition, the twin-screw extruder used is a twin-screw extruder with a screw diameter of 40 to 90 mm, from the viewpoint of stably obtaining a large amount of a resin composition that can sufficiently exhibit the desired effects of the present embodiment. Preferably, a twin screw extruder is used.
As a preferred example, a TEM58SS twin-screw extruder (manufactured by Toshiba Machine Co., Ltd., number of barrels: 13 (including the lower barrel of the first supply port hopper), screw diameter: 58 mm, L/D = 53); kneading disk L: 2 pieces, When using a screw pattern with 12 kneading discs R and 4 kneading discs N, the barrel length of the entire extruder (including the barrel with a hopper installed at the first supply port) is 100%, the barrel length of the solid transport zone is 45%, the barrel length of the remaining melt kneading zone and melt transport zone is 55%, and the barrel set temperature of the solid transport zone (first supply port hopper (Excluding the lower barrel because it is water-cooled) 100 to 180°C, Barrel setting temperature of the melt kneading zone and melt conveyance zone 270 to 310°C, Oxygen concentration in the collecting hopper above the first supply port 0.3 to 2.0 vol% , a method of melt-kneading under conditions of a screw rotation speed of 350 to 600 rpm and an extrusion rate of 350 to 600 kg/h.
前記樹脂組成物を製造するにあたり、二軸押出機バレル内の固体搬送ゾーンとは、押出原料成分を完全には溶融させずに、完全未溶融又は、押出原料成分中に未溶融成分が存在する半溶融状態で、一条及び/又は二条の右ねじの送りスクリューエレメント構成のみによって搬送されるゾーンを指す。 In producing the resin composition, the solid conveying zone in the barrel of a twin-screw extruder is defined as a zone in which the extruded raw material components are not completely melted, but are completely unmelted or unmelted components are present in the extruded raw material components. Refers to a zone that is conveyed in a semi-molten state only by a single-start and/or double-start right-handed feed screw element configuration.
押出機における固体搬送ゾーンの長さは、押出機全体のバレル長さを100%とした場合の、30~60%の長さの範囲から選ばれる。好ましくは35~60%の範囲内であり、より好ましくは40~55%の範囲内であり、更により好ましくは45~55%の範囲内である。ポリフェニレンエーテル樹脂の十分な熱劣化抑制の観点から、30%以上必要であって、押出原料成分の十分な溶融混練及び生産安定性の観点から60%以下の必要がある。 The length of the solid conveying zone in the extruder is selected from a range of 30 to 60% of the barrel length of the entire extruder as 100%. It is preferably within the range of 35 to 60%, more preferably within the range of 40 to 55%, even more preferably within the range of 45 to 55%. From the viewpoint of sufficient suppression of thermal deterioration of the polyphenylene ether resin, it is required to be 30% or more, and from the viewpoint of sufficient melt-kneading and production stability of the extrusion raw material components, it is necessary to be 60% or less.
二軸押出機バレル内の溶融混錬ゾーンとは、固体搬送ゾーンから送られてきた完全未溶融又は、半溶融状態の押出原料成分を文字通り溶融混練するゾーンであって、ニーディングディスクR、ニーディングディスクN、ニーディングディスクL等の混練スクリューエレメントを複数個含むスクリュー構成からなるゾーンを指す。
二軸押出機バレル内の溶融搬送ゾーンとは、溶融混練ゾーンから送られてきた押出原料成分を押出機の樹脂排出口(ダイノズル)まで搬送するゾーンであって、一条及び/又は二条の右ねじの送りスクリューエレメント構成のみによって溶融した押出原料成分が搬送されるゾーンを指す。
The melt-kneading zone in the barrel of a twin-screw extruder is a zone where completely unmolten or semi-molten extrusion raw material components sent from the solid conveyance zone are literally melt-kneaded. Refers to a zone consisting of a screw configuration including a plurality of kneading screw elements such as a kneading disk N and a kneading disk L.
The melt conveyance zone in the barrel of a twin-screw extruder is a zone in which the extruded raw material components sent from the melt-kneading zone are conveyed to the resin discharge port (die nozzle) of the extruder, and has a single thread and/or double thread right-hand thread. Refers to the zone in which the molten extrudate raw material components are conveyed only by the feeding screw element configuration.
押出機における溶融混練ゾーンと溶融搬送ゾーンとを合わせた長さは、押出機全体のバレル長さを100%とした場合の、70~40%の長さの範囲から選ばれる。好ましくは60~40%の範囲内であり、より好ましくは57~40%の範囲内であり、更により好ましくは57~45%の範囲内である。ポリフェニレンエーテル樹脂の十分な熱劣化抑制の観点から、70%以下必要であって、押出原料成分の十分な溶融混錬の観点から40%以上の必要がある。 The combined length of the melt kneading zone and the melt conveyance zone in the extruder is selected from a range of 70 to 40% of the barrel length of the entire extruder as 100%. It is preferably within the range of 60 to 40%, more preferably within the range of 57 to 40%, and even more preferably within the range of 57 to 45%. From the viewpoint of sufficient suppression of thermal deterioration of the polyphenylene ether resin, it is required to be 70% or less, and from the viewpoint of sufficient melting and kneading of the extrusion raw material components, it is necessary to be 40% or more.
押出機における溶融混練ゾーンの長さは、押出機全体のバレル長さを100%とした場合、15~40%の長さの範囲内であることが好ましい。より好ましくは20~40%の範囲内であり、更により好ましくは22~35%の範囲内である。押出樹脂成分の十分な溶融混練の観点から、15%以上であることが好ましく、ポリフェニレンエーテル樹脂の熱劣化抑制の観点から40%以下であることが好ましい。 The length of the melt-kneading zone in the extruder is preferably within a range of 15 to 40% when the barrel length of the entire extruder is taken as 100%. It is more preferably within the range of 20 to 40%, and even more preferably within the range of 22 to 35%. From the viewpoint of sufficient melt-kneading of the extruded resin component, it is preferably 15% or more, and from the viewpoint of suppressing thermal deterioration of the polyphenylene ether resin, it is preferably 40% or less.
押出機における固体搬送ゾーンのバレル設定温度は、前記固体搬送ゾーンを構成するバレルのうち、前記第一供給口が設けられたバレルを除くバレル長さを100%とした場合に、75%以上、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは100%のバレルの設定温度が50~190℃の範囲内から選ばれる。当該設定温度は、好ましくは70~190℃の範囲内であり、より好ましくは100~180℃の範囲内であり、更により好ましくは130~170℃の範囲内である。生産安定性の観点から50℃以上の必要があり、ポリフェニレンエーテル樹脂の熱劣化抑制の観点から190℃以下の必要がある。 The barrel set temperature of the solid conveyance zone in the extruder is 75% or more, when the barrel length excluding the barrel in which the first supply port is provided among the barrels constituting the solid conveyance zone is taken as 100%, Preferably 80% or more, more preferably 90% or more, and even more preferably 100% of the barrel temperature is selected from within the range of 50 to 190°C. The set temperature is preferably within the range of 70 to 190°C, more preferably within the range of 100 to 180°C, and even more preferably within the range of 130 to 170°C. From the viewpoint of production stability, the temperature needs to be 50°C or higher, and from the viewpoint of suppressing thermal deterioration of the polyphenylene ether resin, the temperature needs to be 190°C or lower.
押出機における溶融混練ゾーンと溶融搬送ゾーンのバレル設定温度は、250~320℃の範囲内から選ばれる。好ましくは260~320℃の範囲内であり、より好ましくは270~310℃の範囲内である。押出樹脂成分の十分な溶融混練と生産安定性の観点から、250℃以上であることが必要であり、ポリフェニレンエーテル樹脂の熱劣化抑制と生産安定性の観点から320℃以下であることが必要である。 The barrel temperature settings of the melt kneading zone and melt conveyance zone in the extruder are selected from within the range of 250 to 320°C. The temperature is preferably within the range of 260 to 320°C, more preferably within the range of 270 to 310°C. From the viewpoint of sufficient melt-kneading of the extruded resin component and production stability, the temperature must be 250°C or higher, and from the viewpoint of suppressing thermal deterioration of the polyphenylene ether resin and production stability, the temperature must be 320°C or lower. be.
押出機における樹脂排出部(ダイヘッド)の設定温度は270~320℃の範囲内であることが好ましい。より好ましくは290~315℃の範囲内であって、更により好ましくは300~310℃の範囲内である。生産安定性の観点から270℃以上であることが好ましく、ポリフェニレンエーテル樹脂の熱劣化抑制の観点から320℃以下であることが好ましい。 The set temperature of the resin discharge part (die head) in the extruder is preferably within the range of 270 to 320°C. The temperature is more preferably within the range of 290 to 315°C, and even more preferably within the range of 300 to 310°C. From the viewpoint of production stability, the temperature is preferably 270°C or higher, and from the viewpoint of suppressing thermal deterioration of the polyphenylene ether resin, the temperature is preferably 320°C or lower.
本実施の形態に用いる樹脂組成物を、二軸押出機を用いて製造する際に注意すべきは、押出樹脂ペレット中に、前記(A)成分であるポリフェニレンエーテルから酸化劣化によって生じるゲルや炭化物が混入することで、成形品の表面外観や靭性等の物性を低下させる原因となる点である。
そこで、前記(A)成分を最上流(トップフィード)の原料投入口から投入して、最上流投入口における集合ホッパー内部の酸素濃度を3vol%以下に設定しておくことが重要である。集合ホッパー内部の酸素濃度は、好ましくは2vol%以下であり、より好ましくは1vol%以下であり、更により好ましくは0.5vol%以下である。
When producing the resin composition used in this embodiment using a twin-screw extruder, it is important to note that gels and carbides produced by oxidative deterioration from the polyphenylene ether, which is the component (A), may be present in the extruded resin pellets. This is the point where the contamination of the molded product causes deterioration of the physical properties such as the surface appearance and toughness of the molded product.
Therefore, it is important to input the component (A) from the most upstream (top feed) raw material input port and to set the oxygen concentration inside the collecting hopper at the most upstream input port to 3 vol% or less. The oxygen concentration inside the collection hopper is preferably 2 vol% or less, more preferably 1 vol% or less, and even more preferably 0.5 vol% or less.
酸素濃度の調節は、原料貯蔵ホッパー内を十分に窒素置換して、原料貯蔵ホッパーから押出機原料投入口までの、フィード配管ライン中での空気の出入りがないように密閉した上で、窒素フィード量の調節、ガス抜き口の開度を調節することで可能である。 To adjust the oxygen concentration, replace the inside of the raw material storage hopper with sufficient nitrogen, seal the feed piping line from the raw material storage hopper to the extruder raw material input port to prevent air from entering or exiting, and then replace the nitrogen feed. This can be done by adjusting the amount and the opening degree of the gas vent.
なお、本実施の形態の樹脂組成物の製造において、押出原材料は、全て第一供給口(トップフィード)から供給されることが、最上流投入口における集合ホッパー内部の酸素濃度の十分な低減の観点から好ましく、前記(A)成分の酸化劣化抑制と本願用途で求められる効果の十分な発現の観点からも好ましい。 In the production of the resin composition of this embodiment, all extruded raw materials are supplied from the first supply port (top feed) to sufficiently reduce the oxygen concentration inside the collecting hopper at the most upstream input port. It is preferable from this point of view, and also preferable from the perspective of suppressing oxidative deterioration of the component (A) and sufficiently exhibiting the effects required for the application of the present invention.
なお、集合ホッパー内部の酸素濃度の測定は、酸素濃度計を用いて行われ、酸素濃度計のセンサー部分が、集合ホッパー内部の中間部に位置するように設置することで、押出中、常時測定することが可能である。 The oxygen concentration inside the collecting hopper is measured using an oxygen concentration meter, and by installing the oxygen concentration meter so that the sensor part is located in the middle of the collecting hopper, constant measurement is possible during extrusion. It is possible to do so.
また、押出機のダイノズルから押出された溶融樹脂が空気に接触することで、ノズルの縁に付着した溶融樹脂が酸化架橋による劣化が進行して、メヤニ発生、成長の一因となる場合がある。長時間にわたる生産の進行に従ってノズルの縁に成長していき、やがて樹脂に混入して外観不良や物性低下の原因となる場合もあるため、ダイノズルから出た直後の樹脂に窒素ガスを吹き付けることが好ましい。窒素ガスの吹付は公知のメヤニ除去装置を用いて、窒素ガスのラインを接続して吹付が可能である。 In addition, when the molten resin extruded from the die nozzle of the extruder comes into contact with air, the molten resin adhering to the nozzle edge may progress to deteriorate due to oxidation crosslinking, which may be a contributing factor to the formation and growth of dirt. . As production progresses over a long period of time, nitrogen gas grows on the edges of the nozzle and may eventually get mixed into the resin, causing poor appearance and deterioration of physical properties. Therefore, nitrogen gas should not be sprayed onto the resin immediately after it comes out of the die nozzle. preferable. Nitrogen gas can be sprayed using a known dirt removal device by connecting a nitrogen gas line.
ダイノズルへの窒素ガスの吹付量は、1~50L/minの範囲内が好ましく、より好ましくは5~30L/minの範囲内であり、更により好ましくは10~25L/minの範囲内である。樹脂と窒素ガスとの十分な接触の観点から1L/min以上であることが好ましく、周囲の環境への配慮の観点から50L/min以下であることが好ましい。 The amount of nitrogen gas sprayed to the die nozzle is preferably within the range of 1 to 50 L/min, more preferably within the range of 5 to 30 L/min, and even more preferably within the range of 10 to 25 L/min. From the viewpoint of sufficient contact between the resin and nitrogen gas, the flow rate is preferably 1 L/min or more, and from the viewpoint of consideration to the surrounding environment, the flow rate is preferably 50 L/min or less.
通常、押出時には原材料成分中の残留揮発分除去のために、真空ベントで減圧脱揮することが本来は望ましいが、その際、真空ベントとその周辺のバレル内部で、各バレルのつなぎ目のわずかな隙間から外気が吸引されて、溶融樹脂の酸化架橋による樹脂の劣化が促進される場合がある。その場合、真空ベントであえて減圧脱揮せずに押出す方が好ましい場合もある。真空ベントを外してそのバレル上部に栓をすると、押出時に溶融樹脂から発生するガスによってバレルの内圧が上昇して、ダイノズルからの溶融樹脂の排出が不安定になり押出時にストランド引き取りが困難となることがあるため、バレル上部の開口部に窒素注入ラインとガス抜き部とを設けたベントポートを設置して、ベントポート内部に窒素注入ラインから窒素を注入してベント開口部の溶融樹脂に吹き付けて、溶融樹脂から発生したガス成分と窒素ガスとをガス抜き部から排出しながら押出すことが好ましい。 Normally, during extrusion, it is desirable to devolatilize under reduced pressure using a vacuum vent in order to remove residual volatile matter in the raw material components, but in this case, it is necessary to devolatilize the raw material under reduced pressure at the vacuum vent and the surrounding barrels. Outside air may be sucked in through the gap, accelerating the deterioration of the resin due to oxidative crosslinking of the molten resin. In that case, it may be preferable to extrude without devolatilizing under reduced pressure using a vacuum vent. If you remove the vacuum vent and plug the top of the barrel, the internal pressure of the barrel will increase due to the gas generated from the molten resin during extrusion, making the discharge of the molten resin from the die nozzle unstable and making it difficult to take off the strand during extrusion. Therefore, a vent port with a nitrogen injection line and a gas vent is installed at the opening at the top of the barrel, and nitrogen is injected from the nitrogen injection line into the vent port and sprayed onto the molten resin at the vent opening. Preferably, the gas component and nitrogen gas generated from the molten resin are extruded while being discharged from the gas venting section.
ベントポート内部に注入する窒素ガスの流量は1~50L/minの範囲内が好ましく、より好ましくは5~30L/minの範囲内であり、更により好ましくは10~25L/minの範囲内である。樹脂と窒素ガスとの十分な接触の観点から1L/min以上であることが好ましく、周囲の環境への配慮の観点から50L/min以下であることが好ましい。 The flow rate of nitrogen gas injected into the vent port is preferably within the range of 1 to 50 L/min, more preferably within the range of 5 to 30 L/min, and even more preferably within the range of 10 to 25 L/min. . From the viewpoint of sufficient contact between the resin and nitrogen gas, the flow rate is preferably 1 L/min or more, and from the viewpoint of consideration to the surrounding environment, the flow rate is preferably 50 L/min or less.
本実施の形態の樹脂組成物の製造において、二軸押出機のスクリュー回転数は250~700rpmの範囲内が好ましい。より好ましくは300~600rpmの範囲内であり、更により好ましくは350~600rpmの範囲内であり、特に更により好ましくは400~500rpmの範囲内である。樹脂組成物の十分な溶融混練の観点から250rpm以上であることが好ましく、樹脂組成物のせん断発熱による熱劣化の抑制の観点から700rpm以下であることが好ましい。 In producing the resin composition of this embodiment, the screw rotation speed of the twin-screw extruder is preferably within the range of 250 to 700 rpm. The speed is more preferably within the range of 300 to 600 rpm, even more preferably within the range of 350 to 600 rpm, and even more preferably within the range of 400 to 500 rpm. The speed is preferably 250 rpm or more from the viewpoint of sufficient melt-kneading of the resin composition, and preferably 700 rpm or less from the viewpoint of suppressing thermal deterioration of the resin composition due to shear heat generation.
本実施の形態の樹脂組成物の製造において、二軸押出機の押出レートは250~700kg/hの範囲内であることが好ましい。より好ましくは300~600kg/hの範囲内であり、更により好ましくは350~500kg/hの範囲内であり、特に更により好ましくは350~450kg/hの範囲内である。十分な量産性の観点から250kg/h以上であることが好ましく、生産安定性の観点から700kg/h以下であることが好ましい。 In producing the resin composition of this embodiment, the extrusion rate of the twin-screw extruder is preferably within the range of 250 to 700 kg/h. It is more preferably within the range of 300 to 600 kg/h, even more preferably within the range of 350 to 500 kg/h, and even more preferably within the range of 350 to 450 kg/h. From the viewpoint of sufficient mass productivity, it is preferably 250 kg/h or more, and from the viewpoint of production stability, it is preferably 700 kg/h or less.
[成形品]
本実施の形態の、ポリフェニレンエーテル系樹脂組成物からなる成形品は、上述の製造方法によって得られた樹脂組成物を成形することにより得ることができる。
前記樹脂組成物の成形方法としては、以下に制限されないが、例えば、射出成形、押出成形、真空成形及び圧空成形が好適に挙げられ、特に成形外観の観点から、射出成形がより好適に用いられる。
[Molding]
The molded article made of the polyphenylene ether resin composition of this embodiment can be obtained by molding the resin composition obtained by the above-mentioned manufacturing method.
The method for molding the resin composition is not limited to the following, but suitable examples include injection molding, extrusion molding, vacuum molding, and pressure molding, with injection molding being more preferably used, particularly from the viewpoint of molded appearance. .
前記樹脂組成物の成形時の成形温度は、バレル設定最高温度250~340℃の範囲内で行うことが好ましく、より好ましい範囲は270~330℃であり、更により好ましくは280~320℃である。十分な成形加工性の観点から、成形温度は、250℃以上が好ましく、樹脂の熱劣化抑制、物性保持の観点から340℃以下が好ましい。 The molding temperature during molding of the resin composition is preferably within the range of the maximum barrel setting temperature of 250 to 340 °C, more preferably 270 to 330 °C, and even more preferably 280 to 320 °C. . From the viewpoint of sufficient molding processability, the molding temperature is preferably 250°C or higher, and from the viewpoint of suppressing thermal deterioration of the resin and maintaining physical properties, the molding temperature is preferably 340°C or lower.
前記樹脂組成物の成形時の金型温度は、40~150℃の範囲内で行なうことが好ましく、より好ましくは80~140℃であり、更により好ましくは80~120℃の範囲内である。十分な成形品外観保持の観点から、金型温度は、40℃以上が好ましく、成形安定性の観点から150℃以下であることが好ましい。 The mold temperature during molding of the resin composition is preferably within the range of 40 to 150°C, more preferably 80 to 140°C, and even more preferably 80 to 120°C. From the viewpoint of maintaining sufficient appearance of the molded product, the mold temperature is preferably 40°C or higher, and from the viewpoint of molding stability, it is preferably 150°C or lower.
本実施の形態における好適な成形品としては、本実施の形態の製造方法によって、押出時に押出機バレル内で発生するポリフェニレンエーテル樹脂の劣化物の発生や、ダイノズル周辺のメヤニの発生が著しく抑制されて、押出生産性が改善されると共に、ポリフェニレンエーテル由来の異物の混入が少なく、靭性の良好なポリフェニレンエーテル系樹脂組成物が安定的に量産可能なことから、家電OA機器部品や、電機電子機器、自動車用途、各種工業製品等が挙げられる。 The preferred molded product in this embodiment is that the production method of this embodiment significantly suppresses the generation of degraded products of polyphenylene ether resin generated in the extruder barrel during extrusion and the generation of sludge around the die nozzle. As a result, extrusion productivity is improved, polyphenylene ether-based resin compositions with less contamination of polyphenylene ether-derived foreign substances and good toughness can be stably mass-produced. , automotive applications, various industrial products, etc.
以下、本実施の形態を実施例及び比較例によってさらに具体的に説明するが、本実施の形態はこれらの実施例のみに制限されるものではない。 Hereinafter, this embodiment will be described in more detail with reference to Examples and Comparative Examples, but this embodiment is not limited to these Examples.
実施例及び比較例に用いた物性の評価、測定方法及び原材料を以下に示す。 Evaluation of physical properties, measurement methods, and raw materials used in Examples and Comparative Examples are shown below.
[生産安定性]
1.メヤニ
下記の実施例及び比較例の樹脂組成物を、TEM58SS二軸押出機(東芝機械社製、バレル数12(第一供給口ホッパー下バレルは除く)、スクリュー径58mm、L/D=53)を用いて、後述する押出条件で溶融混練して生産する際に、メヤニ(溶融樹脂がダイノズルの縁に付着して針状に成長したもの)発生の有無を確認した。
連続運転2時間後に目視でメヤニの発生が認められなかったものを「〇(優れる)」、運転2時間後までに目視でメヤニの発生が認められたものを「×(不良)」と判定した。評価基準としては、「○」の判定のものが本願の製造方法として好適である。
[Production stability]
1. Meyani The resin compositions of the following Examples and Comparative Examples were processed using a TEM58SS twin screw extruder (manufactured by Toshiba Machine Co., Ltd., number of barrels: 12 (excluding the lower barrel of the first supply port hopper), screw diameter: 58 mm, L/D = 53). During production by melt-kneading under the extrusion conditions described below, it was confirmed whether sludge (melted resin adhered to the edge of the die nozzle and grew into needle-like shapes) was generated.
Those in which no buildup was visually observed after 2 hours of continuous operation were rated as "〇 (excellent)", and those in which buildup was visually observed within 2 hours of continuous operation were rated as "x" (poor). . As for the evaluation criteria, those with a rating of "○" are suitable for the manufacturing method of the present application.
2.ストランド引き取り安定性
上記「1.メヤニ」での樹脂組成物の押出において、連続運転2時間後までストランドが安定的に引き取れたものを「〇(優れる)」、運転2時間中にストランド切れの発生が2回以内のものを「△(良)」、運転2時間中に3回以上ストランド切れが発生したものを「×(不良)」と判定した。評価基準としては、「○」の判定のものが本願の製造方法として好適である。
2. Strand withdrawal stability In extrusion of the resin composition in the above "1. Meyani", those whose strands were stably withdrawn up to 2 hours of continuous operation were rated "〇 (excellent)", and strand breakage occurred during 2 hours of operation. Those in which the strand broke twice or less were judged as "△ (good)", and those in which strand breakage occurred three or more times during two hours of operation were judged as "x (poor)". As for the evaluation criteria, those with a rating of "○" are suitable for the manufacturing method of the present application.
[物性評価]
3.靭性(引張強度、引張伸度)
上記「1.メヤニ」での押出で得られた実施例及び比較例の樹脂組成物のペレットを、100℃の熱風乾燥機中で2時間乾燥した。乾燥後の樹脂組成物を、ISO物性試験片金型を備え付けた射出成型機(IS-80EPN、東芝機械社製)により、シリンダー温度320℃、金型温度80℃、射出圧力50MPa(ゲージ圧)、射出速度200mm/sec、射出時間/冷却時間=20sec/20secに設定して、ISO3167、多目的試験片A型のダンベル成形片を成形した。得られたダンベル成形片を23℃で24時間放置後、ISO527に準拠して、引張試験速度5mm/minの条件で、引張強度及び、引張伸度(引張呼び歪み)を23℃で各5本測定して、その平均値を求めた。評価基準としては引張強度が高い値であるほど、機械的強度に優れて、また引張伸度が高いほど靭性に優れて、樹脂組成物の酸化劣化が抑制され異物の混入も少ないと判定した。
[Evaluation of the physical properties]
3. Toughness (tensile strength, tensile elongation)
The pellets of the resin compositions of Examples and Comparative Examples obtained by extrusion using the above "1. Meyani" were dried for 2 hours in a hot air dryer at 100°C. The dried resin composition was molded using an injection molding machine (IS-80EPN, manufactured by Toshiba Machine Co., Ltd.) equipped with an ISO physical property test piece mold at a cylinder temperature of 320°C, a mold temperature of 80°C, and an injection pressure of 50 MPa (gauge pressure). , an injection speed of 200 mm/sec, and an injection time/cooling time = 20 sec/20 sec were set to mold a dumbbell molded piece of ISO3167, multipurpose test piece A type. After leaving the obtained dumbbell molded pieces at 23°C for 24 hours, the tensile strength and tensile elongation (nominal tensile strain) were tested at 23°C for 5 pieces each at a tensile test speed of 5 mm/min in accordance with ISO527. The measurements were taken and the average value was determined. As evaluation criteria, it was determined that the higher the tensile strength, the better the mechanical strength, and the higher the tensile elongation, the better the toughness, the more oxidative deterioration of the resin composition was suppressed, and the less contamination of foreign substances.
4.熱安定性(エージング後引張強度保持率)
上記「3.靭性(引張強度、引張伸度)」で成形して得られた実施例1~12及び比較例1~6の樹脂組成物のISOダンベル成形片を、140℃に設定した熱風オーブン中で1000時間エージングを行った後、23℃で24時間放置後、ISO527に準拠して、引張試験速度5mm/minの条件で、引張強度を23℃で各5本測定してその平均値を求めて、更にエージング前の引張強度を100%とした時の、エージング後の引張強度の値の保持率%を算出した。エージング後引張強度の保持率が高いほど、押出機バレル内部での樹脂組成物の酸化劣化が抑制されて異物の混入も少ないと判定した。
4. Thermal stability (tensile strength retention after aging)
ISO dumbbell molded pieces of the resin compositions of Examples 1 to 12 and Comparative Examples 1 to 6 obtained by molding according to "3. Toughness (tensile strength, tensile elongation)" above were placed in a hot air oven set at 140°C. After aging for 1000 hours in a 23°C chamber, after standing at 23°C for 24 hours, the tensile strength of each 5 pieces was measured at 23°C at a tensile test speed of 5 mm/min in accordance with ISO527, and the average value was calculated. Then, when the tensile strength before aging was taken as 100%, the retention percentage of the tensile strength value after aging was calculated. It was determined that the higher the retention rate of tensile strength after aging, the more the oxidative deterioration of the resin composition inside the extruder barrel was suppressed and the less foreign matter was mixed in.
[原材料]
<ポリフェニレンエーテル(A)>
(A-1)
還元粘度0.50dL/g(0.5g/dLクロロホルム溶液、30℃、ウベローデ粘度計で測定)のポリ(2,6-ジメチル-1,4-フェニレン)エーテル。
<スチレン系樹脂(B)>
(B-1)
ゼネラルパーパスポリスチレン(商品名:ポリスチレン685[登録商標]、PSJ社製)。なお、これはゴム成分を含まないポリスチレン、即ち、ゴム強化されていないポリスチレンである。
<スチレン系熱可塑性エラストマー(C)>
(C-1)
結合スチレン量62質量%で、ポリスチレンブロック-ポリ(スチレン・ブタジエン)ランダムブロック-ポリスチレンブロックの構造を有する、三型タイプのブロック共重合体。水素添加率98%。Mn=48000、Mw=55000、Mw/Mn= 1.146。
<酸化防止剤(D)>
(D-1)
リン系酸化防止剤(化学名:3,9-ビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5,5]ウンデカン。商品名:アデカスタブPEP-36〔登録商標〕、アデカ社製)。
<その他の成分>
(着色剤)
平均一次粒子径16nmのカーボンブラック。
(ポリオレフィン系樹脂成分)
エチレン・プロピレン共重合体(商品名:タフマーP0680J[登録商標]、三井化学社製)。
[raw materials]
<Polyphenylene ether (A)>
(A-1)
Poly(2,6-dimethyl-1,4-phenylene) ether with a reduced viscosity of 0.50 dL/g (0.5 g/dL chloroform solution, 30° C., measured with an Ubbelohde viscometer).
<Styrenic resin (B)>
(B-1)
General purpose polystyrene (trade name: Polystyrene 685 [registered trademark], manufactured by PSJ). Note that this is polystyrene that does not contain a rubber component, that is, polystyrene that is not reinforced with rubber.
<Styrenic thermoplastic elastomer (C)>
(C-1)
A three-type block copolymer with a bound styrene content of 62% by mass and a polystyrene block-poly(styrene-butadiene) random block-polystyrene block structure. Hydrogenation rate is 98%. Mn=48000, Mw=55000, Mw/Mn=1.146.
<Antioxidant (D)>
(D-1)
Phosphorous antioxidant (chemical name: 3,9-bis(2,6-di-tert-butyl-4-methylphenoxy)-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5,5 ]Undecane.Product name: ADEKA STAB PEP-36 [registered trademark], manufactured by ADEKA Corporation).
<Other ingredients>
(colorant)
Carbon black with an average primary particle size of 16 nm.
(Polyolefin resin component)
Ethylene-propylene copolymer (trade name: TAFMER P0680J [registered trademark], manufactured by Mitsui Chemicals).
[実施例1]
(A-1)100質量%を、TEM58SS二軸押出機(東芝機械社製、バレル数13(第一供給口ホッパー下バレルを含む)、スクリュー径58mm、L/D=53);ニーディングディスクL:2個、ニーディングディスクR:12個、及びニーディングディスクN:4個を有するスクリューパターン)の最上流部(トップフィード)から供給して、押出機全体のバレル長さ(第一供給口ホッパー下バレルも含む)を100%とした場合の、固体搬送ゾーン(第一供給口ホッパー下バレルも含む)のバレル長さを38.5%、残りの溶融混練ゾーンと溶融搬送ゾーンのバレル長さを61.5%(内、溶融混練ゾーンのバレル長さ:38.5%)とし、固体搬送ゾーンのバレル設定温度(第一供給口ホッパー下バレルC0は水冷のため除く)C1~C4まで全て180℃、溶融混練ゾーンのバレル設定温度C5~C9まで全て290℃、溶融搬送ゾーンのバレル設定温度C10~C12の内、C10を290℃、C11を300℃、C12を320℃に設定して、ダイヘッド部を320℃に設定して、ダイノズルへの窒素吹付けを流量20L/minで行い、C11バレル上部開口部に窒素注入ラインとガス抜き部とを設けたベントポートを設置して、押出中に窒素注入ラインから20L/minの流量で窒素吹込みを行なった。更に、第一供給口上部の集合ホッパー内の酸素濃度を0.5vol%になるように設定して、スクリュー回転数500rpm、押出レート400kg/hの条件で溶融混練して樹脂組成物を得た。得られた樹脂組成物の評価結果を下記表1に示す。
[Example 1]
(A-1) 100% by mass was added to a TEM58SS twin-screw extruder (manufactured by Toshiba Machine Co., Ltd., number of barrels 13 (including the lower barrel of the first supply port hopper), screw diameter 58 mm, L/D = 53); kneading disk L: 2 pieces, kneading disk R: 12 pieces, and kneading disk N: 4 pieces. The barrel length of the solids transport zone (including the lower barrel of the first supply hopper) is 38.5%, and the barrel length of the remaining melt kneading zone and melt transport zone is 100%. The length is 61.5% (of which, the barrel length of the melt-kneading zone: 38.5%), and the barrel setting temperature of the solid conveyance zone (the lower barrel C0 of the first supply port hopper is excluded because it is water-cooled) C1 to C4 The melt kneading zone barrel set temperature C5 to C9 are all 290 °C. Of the melt conveyance zone barrel set temperatures C10 to C12, C10 is set to 290 °C, C11 is set to 300 °C, and C12 is set to 320 °C. Then, the die head was set at 320°C, nitrogen was blown into the die nozzle at a flow rate of 20 L/min, and a vent port with a nitrogen injection line and a gas vent was installed at the upper opening of the C11 barrel. During extrusion, nitrogen was blown from a nitrogen injection line at a flow rate of 20 L/min. Furthermore, the oxygen concentration in the collection hopper above the first supply port was set to 0.5 vol%, and a resin composition was obtained by melting and kneading at a screw rotation speed of 500 rpm and an extrusion rate of 400 kg/h. . The evaluation results of the obtained resin composition are shown in Table 1 below.
[実施例2]
(A-1)70質量%と、(B-1)30質量%とを、前記の実施例1に記載の二軸押出機を用いて最上流部から供給して押出した。その際、押出機全体のバレル長さ(第一供給口ホッパー下バレルも含む)を100%とした場合の、固体搬送ゾーン(第一供給口ホッパー下バレルも含む)のバレル長さを46.2%、残りの溶融混練ゾーンと溶融搬送ゾーンのバレル長さを53.8%(内、溶融混練ゾーンのバレル長さ:30.8%)とし、固体搬送ゾーンのバレル設定温度(第一供給口ホッパー下バレルC0は水冷のため除く)C1~C5まで全て180℃、溶融混練ゾーンのバレル設定温度C6~C9まで全て290℃、溶融搬送ゾーンのバレル設定温度C10~C12の内、C10を290℃、C11を300℃、C12を310℃に設定して、ダイヘッド部を310℃に設定して、ダイノズルへの窒素吹付けは行わず、C11バレル上部開口部にベント真空ラインを接続したベントポートを設置して、ベント真空度7.998kPa(60Torr)とした以外は、実施例1と同様な条件で溶融混練して押出して樹脂組成物を得た。得られた樹脂組成物の評価結果を下記表1に示す。
[Example 2]
70% by mass of (A-1) and 30% by mass of (B-1) were supplied from the most upstream part and extruded using the twin screw extruder described in Example 1 above. At that time, when the barrel length of the entire extruder (including the first supply port hopper bottom barrel) is taken as 100%, the barrel length of the solid conveyance zone (including the first supply port hopper bottom barrel) is 46. 2%, the barrel length of the remaining melt-kneading zone and melt-conveying zone is 53.8% (of which, the barrel length of the melt-kneading zone: 30.8%), and the barrel set temperature of the solid conveyance zone (first supply Barrel C0 (lower barrel of mouth hopper is excluded because it is water-cooled) C1 to C5 are all 180°C, melt kneading zone barrel setting temperature C6 to C9 are all 290°C, and melting conveyance zone barrel setting temperature C10 to C12 is 290°C. ℃, C11 was set to 300℃, C12 was set to 310℃, the die head was set to 310℃, nitrogen was not blown to the die nozzle, and the vent port was connected to the vent vacuum line to the upper opening of the C11 barrel. A resin composition was obtained by melt-kneading and extruding under the same conditions as in Example 1, except that a vent vacuum was set at 7.998 kPa (60 Torr). The evaluation results of the obtained resin composition are shown in Table 1 below.
[実施例3]
(A-1)50質量%と、(B-1)30質量%と、(C-1)20質量%とを、前記の実施例1に記載の二軸押出機を用いて最上流部から供給して押出した。その際、押出機全体のバレル長さ(第一供給口ホッパー下バレルも含む)を100%とした場合の、固体搬送ゾーン(第一供給口ホッパー下バレルも含む)のバレル長さを53.8%、残りの溶融混練ゾーンと溶融搬送ゾーンのバレル長さを46.2%(内、溶融混練ゾーンのバレル長さ:30.8%)とし、固体搬送ゾーンのバレル設定温度(第一供給口ホッパー下バレルC0は水冷のため除く)C1~C6までの内、C1を50℃、C2~C4を100℃、C5、C6を140℃に設定、溶融混練ゾーンのバレル設定温度C7~C10まで全て280℃、溶融搬送ゾーンのバレル設定温度C11~C12を280℃に設定して、ダイヘッド部を300℃に設定して、ダイノズルへの窒素吹付けは行わず、C11バレル上部開口部にベント真空ラインを接続したベントポートを設置して、ベント真空度7.998kPa(60Torr)として、更に、第一供給口上部の集合ホッパー内の酸素濃度を1.0vol%になるように設定した以外は、実施例1と同様な条件で溶融混練して押出して樹脂組成物を得た。得られた樹脂組成物の評価結果を下記表1に示す。
[Example 3]
(A-1) 50% by mass, (B-1) 30% by mass, and (C-1) 20% by mass from the most upstream part using the twin screw extruder described in Example 1 above. It was fed and extruded. At that time, when the barrel length of the entire extruder (including the first supply port hopper bottom barrel) is taken as 100%, the barrel length of the solid conveyance zone (including the first supply port hopper bottom barrel) is 53. 8%, the barrel length of the remaining melt-kneading zone and melt-conveying zone is 46.2% (of which, the barrel length of the melt-kneading zone: 30.8%), and the barrel set temperature of the solid conveyance zone (first supply Barrel C0 below the mouth hopper is excluded because it is water-cooled) Among C1 to C6, C1 is set to 50°C, C2 to C4 to 100°C, C5 and C6 to 140°C, and the barrel setting temperature of the melt kneading zone is C7 to C10. All barrel temperatures C11 to C12 in the melting conveyance zone were set to 280°C, the die head was set to 300°C, nitrogen was not blown to the die nozzle, and a vent vacuum was applied to the upper opening of the C11 barrel. Except that a vent port with a line connected was installed, the vent vacuum was set to 7.998 kPa (60 Torr), and the oxygen concentration in the collection hopper above the first supply port was set to 1.0 vol%. A resin composition was obtained by melt-kneading and extrusion under the same conditions as in Example 1. The evaluation results of the obtained resin composition are shown in Table 1 below.
[実施例4]
ダイノズルへの窒素吹付けを流量20L/minで行った以外は、前記の実施例3と同様な条件で溶融混練して押出して樹脂組成物を得た。得られた樹脂組成物の評価結果を下記表1に示す。
[Example 4]
A resin composition was obtained by melt-kneading and extrusion under the same conditions as in Example 3, except that nitrogen was blown into the die nozzle at a flow rate of 20 L/min. The evaluation results of the obtained resin composition are shown in Table 1 below.
[実施例5]
C11バレル上部開口部に、窒素注入ラインとガス抜き部とを設けたベントポートを設置して、押出中に窒素注入ラインから20L/minの流量で窒素吹込みを行なった以外は、前記の実施例4と同様な条件で溶融混練して押出して樹脂組成物を得た。得られた樹脂組成物の評価結果を下記表1に示す。
[Example 5]
The above implementation was carried out except that a vent port with a nitrogen injection line and a gas vent was installed at the upper opening of the C11 barrel, and nitrogen was blown at a flow rate of 20 L/min from the nitrogen injection line during extrusion. A resin composition was obtained by melt-kneading and extrusion under the same conditions as in Example 4. The evaluation results of the obtained resin composition are shown in Table 1 below.
[実施例6]
(A-1)30質量%と、(B-1)50質量%と、(C-1)20質量%とを、第一供給口上部の集合ホッパー内の酸素濃度を1.5vol%になるように設定した以外は、実施例3と同様な条件で溶融混練して押出して樹脂組成物を得た。得られた樹脂組成物の評価結果を下記表1に示す。
[Example 6]
(A-1) 30% by mass, (B-1) 50% by mass, and (C-1) 20% by mass to bring the oxygen concentration in the collection hopper above the first supply port to 1.5vol%. A resin composition was obtained by melt-kneading and extrusion under the same conditions as in Example 3, except for the following settings. The evaluation results of the obtained resin composition are shown in Table 1 below.
[実施例7]
(A-1)15質量%と、(B-1)65質量%と、(C-1)20質量%とを、押出機全体のバレル長さ(第一供給口ホッパー下バレルも含む)を100%とした場合の、固体搬送ゾーン(第一供給口ホッパー下バレルも含む)のバレル長さを38.5%、残りの溶融混練ゾーンと溶融搬送ゾーンのバレル長さを61.5%(内、溶融混練ゾーンのバレル長さ:23.1%)とし、固体搬送ゾーンのバレル設定温度(第一供給口ホッパー下バレルC0は水冷のため除く)C1~C4までの内、C1を50℃、C2~C3を100℃、C4を130℃に設定、溶融混練ゾーンのバレル設定温度C5~C7まで全て270℃、溶融搬送ゾーンのバレル設定温度C8~C12を全て270℃に設定して、ダイヘッド部を280℃に設定して、ダイノズルへの窒素吹付けは行わず、C11バレル上部開口部にベント真空ラインを接続したベントポートを設置して、ベント真空度7.998kPa(60Torr)として、更に、第一供給口上部の集合ホッパー内の酸素濃度を1.8vol%になるように設定した以外は、前記の実施例6と同様な条件で溶融混練して押出して樹脂組成物を得た。得られた樹脂組成物の評価結果を下記表1に示す。
[Example 7]
(A-1) 15% by mass, (B-1) 65% by mass, and (C-1) 20% by mass, and the entire barrel length of the extruder (including the lower barrel of the first supply port hopper). When taken as 100%, the barrel length of the solid conveyance zone (including the first supply port hopper lower barrel) is 38.5%, and the barrel length of the remaining melt kneading zone and melt conveyance zone is 61.5% ( (The barrel length of the melt-kneading zone: 23.1%), and the barrel set temperature of the solid transport zone (the lower barrel C0 of the first supply port hopper is excluded because it is water-cooled), and of C1 to C4, C1 is 50℃ , C2 to C3 are set to 100°C, C4 is set to 130°C, barrel set temperatures C5 to C7 of the melt kneading zone are all set to 270°C, barrel set temperatures C8 to C12 of the melting conveyance zone are all set to 270°C, and the die head is The temperature was set at 280°C, nitrogen was not sprayed into the die nozzle, and a vent port with a vent vacuum line connected to the upper opening of the C11 barrel was installed to set the vent vacuum to 7.998 kPa (60 Torr). A resin composition was obtained by melt-kneading and extrusion under the same conditions as in Example 6, except that the oxygen concentration in the collection hopper above the first supply port was set to 1.8 vol%. The evaluation results of the obtained resin composition are shown in Table 1 below.
[実施例8]
(A-1)50質量%と、(B-1)29.5質量%と、(C-1)20質量%と、(D-1)0.5質量%とを、固体搬送ゾーンのバレル設定温度(第一供給口ホッパー下バレルC0は水冷のため除く)C1~C6までの全てを150℃に設定、第一供給口上部の集合ホッパー内の酸素濃度を2.7vol%になるように設定した以外は、前記の実施例3と同様な条件で溶融混練して押出して樹脂組成物を得た。得られた樹脂組成物の評価結果を下記表1に示す。
[Example 8]
(A-1) 50% by mass, (B-1) 29.5% by mass, (C-1) 20% by mass, and (D-1) 0.5% by mass in the barrel of the solid conveyance zone. Set temperature (excluding the lower barrel C0 of the first supply port hopper because it is water-cooled) set all C1 to C6 at 150°C, and set the oxygen concentration in the collection hopper above the first supply port to 2.7 vol%. A resin composition was obtained by melt-kneading and extrusion under the same conditions as in Example 3 except for the following settings. The evaluation results of the obtained resin composition are shown in Table 1 below.
[実施例9]
(A-1)65質量%と、(B-1)20質量%と、(C-1)14質量%と、(D-1)0.5質量%と、カーボンブラック0.5質量%とを、前記の実施例1に記載の二軸押出機を用いて最上流部から供給して押出した。その際、押出機全体のバレル長さ(第一供給口ホッパー下バレルも含む)を100%とした場合の、固体搬送ゾーン(第一供給口ホッパー下バレルも含む)のバレル長さを46.2%、残りの溶融混練ゾーンと溶融搬送ゾーンのバレル長さを53.8%(内、溶融混練ゾーンのバレル長さ:38.5%)とし、固体搬送ゾーンのバレル設定温度(第一供給口ホッパー下バレルC0は水冷のため除く)C1~C5までの内、C1を120℃、C2~C4を150℃、C5を180℃に設定、溶融混練ゾーンのバレル設定温度C6~C10を全て280℃、溶融搬送ゾーンのバレル設定温度C11~C12の内、C11を280℃、C12を300℃に設定して、ダイヘッド部を310℃に設定して、ダイノズルへの窒素吹付けは行わず、C11バレル上部開口部にベント真空ラインを接続したベントポートを設置して、ベント真空度7.998kPa(60Torr)として、第一供給口上部の集合ホッパー内の酸素濃度を2.0vol%になるように設定した以外は、実施例1と同様な条件で溶融混練して押出して樹脂組成物を得た。得られた樹脂組成物の評価結果を下記表1に示す。
[Example 9]
(A-1) 65% by mass, (B-1) 20% by mass, (C-1) 14% by mass, (D-1) 0.5% by mass, and carbon black 0.5% by mass. was supplied from the most upstream part and extruded using the twin screw extruder described in Example 1 above. At that time, when the barrel length of the entire extruder (including the first supply port hopper bottom barrel) is taken as 100%, the barrel length of the solid conveyance zone (including the first supply port hopper bottom barrel) is 46. 2%, the barrel length of the remaining melt-kneading zone and melt-conveying zone is 53.8% (of which, the barrel length of the melt-kneading zone: 38.5%), and the barrel set temperature of the solid conveyance zone (first supply (Excluding the lower barrel C0 of the mouth hopper because it is water-cooled) Among C1 to C5, set C1 to 120°C, C2 to C4 to 150°C, and C5 to 180°C, and set the barrel temperature C6 to C10 in the melt-kneading zone to all 280°C. Of the barrel set temperatures C11 to C12 in the melting conveyance zone, C11 was set to 280°C, C12 was set to 300°C, the die head was set to 310°C, nitrogen was not sprayed to the die nozzle, and C11 was A vent port with a vent vacuum line connected to the upper opening of the barrel was installed to set the vent vacuum level to 7.998 kPa (60 Torr) and the oxygen concentration in the collection hopper above the first supply port to 2.0 vol%. A resin composition was obtained by melt-kneading and extrusion under the same conditions as in Example 1 except for the following settings. The evaluation results of the obtained resin composition are shown in Table 1 below.
[実施例10]
(C-1)14質量%の内の4質量%を、ポリオレフィン系樹脂成分のタフマーP0680Jに置き換えた以外は、実施例9と同様な条件で溶融混練して押出して樹脂組成物を得た。得られた樹脂組成物の評価結果を下記表1に示す。
[Example 10]
(C-1) A resin composition was obtained by melt-kneading and extrusion under the same conditions as in Example 9, except that 4% by mass of the 14% by mass was replaced with Tafmer P0680J, a polyolefin resin component. The evaluation results of the obtained resin composition are shown in Table 1 below.
[実施例11]
固体搬送ゾーンのバレル設定温度の内、C6を230℃に設定した以外は、実施例3と同様な条件で溶融混練して押出して樹脂組成物を得た。得られた樹脂組成物の評価結果を下記表1に示す。
[Example 11]
A resin composition was obtained by melt-kneading and extrusion under the same conditions as in Example 3, except that C6 was set at 230° C. in the barrel temperature of the solid conveyance zone. The evaluation results of the obtained resin composition are shown in Table 1 below.
[実施例12]
固体搬送ゾーンのバレル設定温度の内、C5を250℃に設定した以外は、実施例9と同様な条件で溶融混練して押出して樹脂組成物を得た。得られた樹脂組成物の評価結果を下記表1に示す。
[Example 12]
A resin composition was obtained by melt-kneading and extrusion under the same conditions as in Example 9, except that C5 was set at 250° C. among the barrel temperatures of the solid conveyance zone. The evaluation results of the obtained resin composition are shown in Table 1 below.
[比較例1]
押出機全体のバレル長さ(第一供給口ホッパー下バレルも含む)を100%とした場合の、固体搬送ゾーン(第一供給口ホッパー下バレルも含む)のバレル長さを23.1%、残りの溶融混練ゾーンと溶融搬送ゾーンのバレル長さを76.9%(内、溶融混練ゾーンのバレル長さ:38.5%)とし、固体搬送ゾーンのバレル設定温度(第一供給口ホッパー下バレルC0は水冷のため除く)C1~C2までの内、C1を120℃、C2を180℃に設定、溶融混練ゾーンのバレル設定温度C3~C7を全て280℃、溶融搬送ゾーンのバレル設定温度C8~C12の内、C8~C11を280℃、C12を300℃に設定した以外は、実施例9と同様な条件で溶融混練して押出して樹脂組成物を得た。得られた樹脂組成物の評価結果を下記表1に示す。
[Comparative example 1]
When the barrel length of the entire extruder (including the first supply port hopper bottom barrel) is taken as 100%, the barrel length of the solid conveyance zone (including the first supply port hopper bottom barrel) is 23.1%, The barrel length of the remaining melt-kneading zone and melt-conveying zone is set to 76.9% (of which, the barrel length of the melt-kneading zone: 38.5%), and the barrel set temperature of the solids conveying zone (below the first supply port hopper) is set to 76.9%. (Barrel C0 is excluded because it is water-cooled) Of C1 to C2, C1 is set to 120°C and C2 is set to 180°C. All barrel set temperatures C3 to C7 of the melt kneading zone are set to 280°C. Barrel set temperature of the melt conveyance zone is C8. A resin composition was obtained by melt-kneading and extruding under the same conditions as in Example 9, except that among C8 to C12, C8 to C11 were set to 280°C and C12 was set to 300°C. The evaluation results of the obtained resin composition are shown in Table 1 below.
[比較例2]
固体搬送ゾーンのバレル設定温度(第一供給口ホッパー下バレルC0は水冷のため除く)C1~C5までの内、C1を230℃、C2~C4を250℃、C5を280℃に設定して、第一供給口上部の集合ホッパー内の酸素濃度を0.5vol%になるように設定した以外は、実施例9と同様な条件で溶融混練して押出して樹脂組成物を得た。得られた樹脂組成物の評価結果を下記表1に示す。
[Comparative example 2]
Barrel set temperature of the solids transfer zone (first supply port hopper lower barrel C0 is excluded because it is water-cooled) Among C1 to C5, C1 is set to 230°C, C2 to C4 is set to 250°C, and C5 is set to 280°C. A resin composition was obtained by melt-kneading and extruding under the same conditions as in Example 9, except that the oxygen concentration in the collection hopper above the first supply port was set to 0.5 vol%. The evaluation results of the obtained resin composition are shown in Table 1 below.
[比較例3]
押出機全体のバレル長さ(第一供給口ホッパー下バレルも含む)を100%とした場合の、固体搬送ゾーン(第一供給口ホッパー下バレルも含む)のバレル長さを61.5%、残りの溶融混練ゾーンと溶融搬送ゾーンのバレル長さを38.5%(内、溶融混練ゾーンのバレル長さ:15.4%)とし、固体搬送ゾーンのバレル設定温度(第一供給口ホッパー下バレルC0は水冷のため除く)C1~C7までの内、C1~C3までを120℃、C4~C6までを150℃、C7を180℃に設定、溶融混練ゾーンのバレル設定温度C8~C9を全て280℃、溶融搬送ゾーンのバレル設定温度C10~C12の内、C10、C11を280℃、C12を300℃に設定して、第一供給口上部の集合ホッパー内の酸素濃度を0.5vol%になるように設定した以外は、実施例9と同様な条件で溶融混練して押出して樹脂組成物を得た。得られた樹脂組成物の評価結果を下記表1に示す。
[Comparative example 3]
When the barrel length of the entire extruder (including the first supply port hopper bottom barrel) is taken as 100%, the barrel length of the solid conveyance zone (including the first supply port hopper bottom barrel) is 61.5%, The barrel length of the remaining melt-kneading zone and melt-conveying zone is set to 38.5% (of which, the barrel length of the melt-kneading zone: 15.4%), and the barrel set temperature of the solids conveying zone (below the first supply port hopper) is set to 38.5%. Barrel C0 is excluded because it is water-cooled) Among C1 to C7, C1 to C3 are set to 120°C, C4 to C6 are set to 150°C, and C7 is set to 180°C. All barrel set temperatures C8 to C9 in the melt kneading zone are set. Of the barrel set temperatures C10 to C12 in the melting conveyance zone, set C10 and C11 to 280°C and C12 to 300°C, and set the oxygen concentration in the collecting hopper above the first supply port to 0.5 vol%. A resin composition was obtained by melt-kneading and extrusion under the same conditions as in Example 9, except that the resin composition was set to be as follows. The evaluation results of the obtained resin composition are shown in Table 1 below.
[比較例4]
第一供給口上部の集合ホッパー内の酸素濃度を4.5vol%になるように設定した以外は、実施例9と同様な条件で溶融混練して押出して樹脂組成物を得た。得られた樹脂組成物の評価結果を下記表1に示す。
[Comparative example 4]
A resin composition was obtained by melt-kneading and extrusion under the same conditions as in Example 9, except that the oxygen concentration in the collection hopper above the first supply port was set to 4.5 vol%. The evaluation results of the obtained resin composition are shown in Table 1 below.
[比較例5]
ダイノズルへの窒素吹付けを流量20L/minで行い、C11バレル上部開口部に窒素注入ラインとガス抜き部とを設けたベントポートを設置して、押出中に窒素注入ラインから20L/minの流量で窒素吹込みを行なった以外は、比較例2と同様な条件で溶融混練して押出して樹脂組成物を得た。得られた樹脂組成物の評価結果を下記表1に示す。
[Comparative example 5]
Nitrogen is blown into the die nozzle at a flow rate of 20 L/min, and a vent port with a nitrogen injection line and a gas vent is installed at the upper opening of the C11 barrel to maintain a flow rate of 20 L/min from the nitrogen injection line during extrusion. A resin composition was obtained by melt-kneading and extrusion under the same conditions as in Comparative Example 2, except that nitrogen was blown therein. The evaluation results of the obtained resin composition are shown in Table 1 below.
[比較例6]
固体搬送ゾーンのバレル設定温度の内、C4、C5を250℃に設定した以外は、実施例9と同様な条件で溶融混練して押出して樹脂組成物を得た。得られた樹脂組成物の評価結果を下記表1に示す。
[Comparative example 6]
A resin composition was obtained by melt-kneading and extrusion under the same conditions as in Example 9, except that C4 and C5 of the barrel temperature of the solid conveyance zone were set at 250°C. The evaluation results of the obtained resin composition are shown in Table 1 below.
表1に示すように、実施例1~12の樹脂組成物は、いずれも本願の請求範囲に記載の製造方法によって製造されており、2時間に及ぶ押出生産時に、ダイノズルにメヤニの発生は認められず、ストランド引き取り安定性も良好で、ストランド切れはまったく見られなかった。
実施例4はダイノズル部の、穴から樹脂が排出する箇所への窒素ガスの吹付を行っているが、行っていない実施例3と比較して、引張伸度や、エージング後引張強度保持率が優れる傾向が見られた。
実施例5は、更にベントポート内に窒素ガスの吹込みを行っているが、実施例4と比較して更に、引張伸度、エージング後引張強度保持率が優れる傾向であった。
実施例8は、本願の製法に加えて、樹脂組成物に酸化防止剤成分(C)を配合することで、押出時に樹脂の酸化劣化がより一層抑制されて、更に引張伸度やエージング後引張強度保持率が優れる傾向が見られた。
実施例9は、樹脂組成物に着色剤(カーボンブラック)を配合しても、本願製法により生産安定性や樹脂性能に影響を及ぼさず、良好な性能の樹脂組成物が得られた。
実施例10は、5質量%以内であれば、ポリオレフィン系樹脂成分が配合されても、生産安定性や物性の低下等の影響は受けず、むしろ引張伸度や、エージング後引張強度保持率は優れる傾向が見られた。
実施例11、12は、いずれも固体搬送ゾーンのバレル長さと設定温度が本願の請求範囲内であり、物性も良好であるが、固体搬送ゾーンのうち前記第一供給口が設けられたバレルを除くバレル長さにおいて、設定温度が50~190℃のバレルの長さを75~100%未満の範囲にすることで、当該長さが100%の場合と比較して、成形品の靭性や熱安定性が若干低下する傾向が見られた。
一方、比較例1~6は、いずれも樹脂組成物が、本願製法の請求範囲から外れた製法で生産されているため、生産安定性、物性、共に十分ではなかった。
比較例1は固体搬送ゾーンの長さが短く、また、比較例2は固体搬送ゾーンのバレル設定温度が高く、いずれも本願の請求範囲外であるため、生産時にメヤニの発生、成長が見られて、生産安定性、物性、共に十分ではなかった。
比較例3は、固体搬送ゾーンの長さが長すぎて本願の請求範囲外となり、樹脂組成物中に未溶融物が見られて、ストランド引き取り安定性、物性が十分ではなかった。
比較例4は、集合ホッパー内部の酸素濃度が高く、本願製法の請求範囲外となり、生産時にメヤニの発生、成長が見られて、生産安定性、物性、共に十分ではなかった。
比較例5は、比較例2と同様、固体搬送ゾーンのバレル設定温度が高く、本願の請求範囲外であり、ダイノズルへの窒素吹付やベントポートへの窒素吹込みを実施したため、メヤニの成長は抑制されて、ストランド引き取りは最後まで安定であったが、生産時にメヤニの発生は認められ、かつ物性が十分ではなかった。
比較例6は、固体搬送ゾーンの設定温度が本願の請求範囲外であるため、ストランド引き取りは最後まで安定であったが、生産時にメヤニの発生が認められた。また、物性も十分ではなかった。
As shown in Table 1, the resin compositions of Examples 1 to 12 were all manufactured by the manufacturing method described in the claims of the present application, and no buildup was observed on the die nozzle during extrusion production for 2 hours. No strand breakage was observed, the strand take-up stability was good, and no strand breakage was observed.
In Example 4, nitrogen gas was sprayed to the part of the die nozzle where the resin was discharged from the hole, but the tensile elongation and tensile strength retention rate after aging were lower than in Example 3, which was not sprayed with nitrogen gas. A good trend was observed.
In Example 5, nitrogen gas was further blown into the vent port, but the tensile elongation and post-aging tensile strength retention tended to be even better than in Example 4.
In Example 8, in addition to the manufacturing method of the present application, by blending the antioxidant component (C) into the resin composition, oxidative deterioration of the resin during extrusion is further suppressed, and the tensile elongation and post-aging tensile strength are further reduced. A tendency for excellent strength retention was observed.
In Example 9, even when a colorant (carbon black) was blended into the resin composition, the production stability and resin performance were not affected by the present production method, and a resin composition with good performance was obtained.
In Example 10, even if the polyolefin resin component is blended within 5% by mass, the production stability and physical properties are not affected, but rather the tensile elongation and tensile strength retention after aging are A good trend was observed.
In both Examples 11 and 12, the barrel length and set temperature of the solid transport zone are within the claimed range of the present application, and the physical properties are also good. By setting the length of the barrel with a set temperature of 50 to 190°C to a range of 75 to less than 100%, the toughness and heat of the molded product can be improved compared to when the length is 100%. A tendency for stability to decrease slightly was observed.
On the other hand, in Comparative Examples 1 to 6, the resin compositions were produced by a manufacturing method that was outside the claimed range of the manufacturing method of the present application, so both production stability and physical properties were insufficient.
In Comparative Example 1, the length of the solid conveyance zone is short, and in Comparative Example 2, the barrel temperature setting of the solid conveyance zone is high, both of which are outside the scope of the claims of the present application. However, both production stability and physical properties were insufficient.
In Comparative Example 3, the length of the solid transport zone was too long and fell outside the scope of the claims of the present application, and unmelted substances were found in the resin composition, resulting in insufficient strand take-up stability and physical properties.
In Comparative Example 4, the oxygen concentration inside the collection hopper was high, which was outside the scope of the claimed production method, and the generation and growth of slime was observed during production, resulting in unsatisfactory production stability and physical properties.
In Comparative Example 5, like Comparative Example 2, the barrel temperature in the solid conveyance zone was high and was outside the scope of the claims of this application, and nitrogen was blown into the die nozzle and nitrogen was blown into the vent port, so the growth of Meyani was Although the strands were suppressed and the strand take-up was stable until the end, smearing was observed during production, and the physical properties were not sufficient.
In Comparative Example 6, since the set temperature of the solid conveyance zone was outside the claimed range of the present application, strand take-up was stable until the end, but smearing was observed during production. Moreover, the physical properties were also not sufficient.
本発明の製造方法によって、押出時に押出機バレル内で発生するポリフェニレンエーテル樹脂の劣化物の発生や、ダイノズル周辺のメヤニの発生が著しく抑制されて、押出生産安定性が改善されると共に、異物の混入が少ないことから、靭性の良好なポリフェニレンエーテル系樹脂組成物が安定的に量産可能であり、得られた樹脂組成物は家電OA機器部品や、電機電子機器、自動車用途、各種工業製品等に良好に利用可能である。
The production method of the present invention significantly suppresses the generation of degraded polyphenylene ether resin generated in the extruder barrel during extrusion and the generation of dirt around the die nozzle, improving extrusion production stability, and Because there is little contamination, polyphenylene ether resin compositions with good toughness can be stably mass-produced, and the resulting resin compositions can be used in home appliance OA equipment parts, electrical and electronic equipment, automotive applications, various industrial products, etc. It is available in good condition.
Claims (8)
前記樹脂組成物は、樹脂組成物全量(100質量%)に対しポリフェニレンエーテル(A)を10質量%以上含有し、
前記押出機は、固体搬送ゾーンと、溶融混練ゾーンと、溶融搬送ゾーンとを有し、前記固体搬送ゾーンは最上流部の集合ホッパー下に第一供給口が設けられたバレルC0を有する、二軸押出機であり、
前記押出機全体のバレル長さを100%とした場合に、前記押出機の上流側から30~60%が前記固体搬送ゾーン、残りの40~70%が前記溶融混練ゾーン及び前記溶融搬送ゾーンであり、
前記固体搬送ゾーンを構成するバレルのうち、前記第一供給口が設けられたバレルC0(水冷)を除いた残りのバレル長さを100%とした場合に、75%以上のバレルの設定温度が50~190℃の範囲内であり、
前記溶融混練ゾーンを構成するバレル及び前記溶融搬送ゾーンを構成するバレルの設定温度が250~320℃の範囲内であり、
前記第一供給口の上部に設けられた集合ホッパー内の酸素濃度を3vol%以下とする、
樹脂組成物の製造方法。 A method for producing a resin composition using an extruder, the method comprising:
The resin composition contains 10% by mass or more of polyphenylene ether (A) based on the total amount of the resin composition (100% by mass),
The extruder has a solid conveyance zone, a melt kneading zone, and a melt conveyance zone, and the solid conveyance zone has a barrel C0 provided with a first supply port under a collecting hopper at the most upstream part . It is a shaft extruder,
When the barrel length of the entire extruder is 100%, 30 to 60% from the upstream side of the extruder is the solid conveyance zone, and the remaining 40 to 70% is the melt kneading zone and the melt conveyance zone. can be,
Among the barrels constituting the solid transport zone, when the length of the remaining barrels excluding barrel C0 (water-cooled) in which the first supply port is provided is taken as 100%, the set temperature of 75% or more of the barrels is within the range of 50 to 190°C,
The set temperature of the barrel constituting the melt kneading zone and the barrel constituting the melt conveyance zone is within the range of 250 to 320 ° C.,
The oxygen concentration in the collection hopper provided above the first supply port is 3 vol% or less,
A method for producing a resin composition.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019080430 | 2019-04-19 | ||
JP2019080430 | 2019-04-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020175649A JP2020175649A (en) | 2020-10-29 |
JP7409900B2 true JP7409900B2 (en) | 2024-01-09 |
Family
ID=72913958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020025644A Active JP7409900B2 (en) | 2019-04-19 | 2020-02-18 | Method for producing polyphenylene ether resin composition |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7409900B2 (en) |
CN (1) | CN111823531A (en) |
NL (1) | NL2025363B1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002292626A (en) | 2001-03-29 | 2002-10-09 | Toray Ind Inc | Method for manufacture of thermoplastic resin pellet |
JP2006523558A (en) | 2003-04-17 | 2006-10-19 | ゼネラル・エレクトリック・カンパニイ | Polymer resin blend and method for producing the same |
WO2009119624A1 (en) | 2008-03-27 | 2009-10-01 | 東レ株式会社 | Process for producing thermoplastic resin composition |
WO2011058861A1 (en) | 2009-11-13 | 2011-05-19 | 三菱エンジニアリングプラスチックス株式会社 | Production method for molded body of polyphenylene ether resin composition |
WO2012046308A1 (en) | 2010-10-06 | 2012-04-12 | 三菱エンジニアリングプラスチックス株式会社 | Method for producing polyphenylene ether resin compositions |
WO2012176798A1 (en) | 2011-06-20 | 2012-12-27 | 旭化成ケミカルズ株式会社 | Polyphenylene ether resin composition and method for producing same |
JP2018048227A (en) | 2016-09-20 | 2018-03-29 | 旭化成株式会社 | Method for producing thermoplastic resin composition |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2523322B2 (en) | 1987-06-01 | 1996-08-07 | 旭化成工業株式会社 | Polyphenylene ether copolymer |
JP2609536B2 (en) | 1988-05-26 | 1997-05-14 | 旭化成工業株式会社 | Polyphenylene ether copolymer composition |
ATE415455T1 (en) * | 2003-09-30 | 2008-12-15 | Asahi Kasei Chemicals Corp | METHOD FOR PRODUCING A POLYPHENYLENE ETHER RESIN COMPOSITION |
US8710119B2 (en) * | 2005-03-29 | 2014-04-29 | Asahi Kasei Chemicals Corporation | Process for producing polyphenylene ether composition |
JP5196630B2 (en) | 2007-04-26 | 2013-05-15 | 旭化成ケミカルズ株式会社 | Process for producing polyphenylene ether resin composition |
JP5534964B2 (en) * | 2010-06-11 | 2014-07-02 | 旭化成ケミカルズ株式会社 | Method for producing polyphenylene ether resin composition |
JP5942081B2 (en) | 2011-06-07 | 2016-06-29 | 旭化成株式会社 | Formed body by vacuum forming or blow molding |
JP6785114B2 (en) * | 2016-10-04 | 2020-11-18 | 旭化成株式会社 | Polyphenylene ether-based resin composition |
JP7010666B2 (en) * | 2016-11-22 | 2022-02-10 | 旭化成株式会社 | Resin composition |
-
2020
- 2020-02-18 JP JP2020025644A patent/JP7409900B2/en active Active
- 2020-03-30 CN CN202010235038.2A patent/CN111823531A/en active Pending
- 2020-04-17 NL NL2025363A patent/NL2025363B1/en active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002292626A (en) | 2001-03-29 | 2002-10-09 | Toray Ind Inc | Method for manufacture of thermoplastic resin pellet |
JP2006523558A (en) | 2003-04-17 | 2006-10-19 | ゼネラル・エレクトリック・カンパニイ | Polymer resin blend and method for producing the same |
WO2009119624A1 (en) | 2008-03-27 | 2009-10-01 | 東レ株式会社 | Process for producing thermoplastic resin composition |
WO2011058861A1 (en) | 2009-11-13 | 2011-05-19 | 三菱エンジニアリングプラスチックス株式会社 | Production method for molded body of polyphenylene ether resin composition |
WO2012046308A1 (en) | 2010-10-06 | 2012-04-12 | 三菱エンジニアリングプラスチックス株式会社 | Method for producing polyphenylene ether resin compositions |
WO2012176798A1 (en) | 2011-06-20 | 2012-12-27 | 旭化成ケミカルズ株式会社 | Polyphenylene ether resin composition and method for producing same |
JP2018048227A (en) | 2016-09-20 | 2018-03-29 | 旭化成株式会社 | Method for producing thermoplastic resin composition |
Also Published As
Publication number | Publication date |
---|---|
CN111823531A (en) | 2020-10-27 |
JP2020175649A (en) | 2020-10-29 |
NL2025363A (en) | 2020-10-22 |
NL2025363B1 (en) | 2023-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5196630B2 (en) | Process for producing polyphenylene ether resin composition | |
WO2007059138A1 (en) | Thermoplastic method, composition, and article | |
JP3860304B2 (en) | Method for producing resin composition | |
WO2012115664A1 (en) | Injection molded article and poly(arylene ether) composition for use therein | |
JP7026559B2 (en) | Method for manufacturing thermoplastic resin composition | |
JP3989075B2 (en) | Method for producing resin composition | |
US7736565B2 (en) | Process for producing PPE resin composition | |
JP5088647B2 (en) | Resin composition and process for producing the same | |
JP2010138216A (en) | Resin composition, method for producing the same and molded article obtained therefrom, cable covering material, and cable | |
WO2002043943A1 (en) | Methods for molding and processing blends with thermoplastic resins | |
JP4357512B2 (en) | Manufacturing method of conductive masterbatch | |
JP7409900B2 (en) | Method for producing polyphenylene ether resin composition | |
JP7280133B2 (en) | Polyphenylene ether resin composition | |
JP2018035218A (en) | Resin composition | |
CN108084691B (en) | Resin composition | |
WO2001060917A1 (en) | Poly(arylene ether)-polystyrene composition | |
JP3613888B2 (en) | Method for producing resin composition | |
JP2797015B2 (en) | Resin molding | |
JP2019156957A (en) | Resin composition | |
CN111688053B (en) | Method for producing resin composition | |
JP3853919B2 (en) | Resin composition | |
JP7082006B2 (en) | Polyphenylene ether-based resin composition and molded product | |
CN109912957B (en) | Resin composition, method for producing resin composition, and molded article | |
JP2004197100A (en) | Poly(arylene ether) composition | |
JP7490465B2 (en) | Polyphenylene ether resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221025 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230831 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230905 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231012 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231219 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231221 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7409900 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |