JP6847686B2 - Interlayer heat bonding method, cooling system - Google Patents

Interlayer heat bonding method, cooling system Download PDF

Info

Publication number
JP6847686B2
JP6847686B2 JP2017017694A JP2017017694A JP6847686B2 JP 6847686 B2 JP6847686 B2 JP 6847686B2 JP 2017017694 A JP2017017694 A JP 2017017694A JP 2017017694 A JP2017017694 A JP 2017017694A JP 6847686 B2 JP6847686 B2 JP 6847686B2
Authority
JP
Japan
Prior art keywords
thermal
film
graphite
graphite film
interlayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017017694A
Other languages
Japanese (ja)
Other versions
JP2018125456A (en
Inventor
村上 睦明
睦明 村上
篤 多々見
篤 多々見
正満 立花
正満 立花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2017017694A priority Critical patent/JP6847686B2/en
Publication of JP2018125456A publication Critical patent/JP2018125456A/en
Application granted granted Critical
Publication of JP6847686B2 publication Critical patent/JP6847686B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、発熱源の熱を速やかに冷却・放熱部に伝達するための層間熱接合方法に関し、特に異なる線熱膨張係数を有する2つの部材の間の層間熱接合方法、冷却システムに関する。 The present invention relates to an interlayer heat bonding method for rapidly transferring the heat of a heat generating source to a cooling / heat dissipation unit, and particularly to an interlayer heat bonding method and a cooling system between two members having different linear thermal expansion coefficients.

近年、マイクロプロセッサの高速化やLED(Light Emitting Diode)チップの高性能化に伴う発熱量の上昇により、携帯電話、パソコン、PDA(Personal Digital Assistant)、ゲーム機などの電子機器やLED照明などにおける高い熱への対応が解決するべき大きな課題となっている。放熱・冷却には熱伝導、熱放射、熱の対流を利用する方法があり、熱の対流を利用する冷却方式としてはヒートシンクや空冷ファンが、熱放射を利用するものとしてはセラミック板が、熱伝導を利用するものとしては各種の熱伝導(拡散)シート、熱伝導性樹脂などがある。発熱源の熱を効果的に放熱・冷却するには、これらの放熱・冷却方式を組み合わせ、発熱部の熱を回路基板や冷却フィン、ヒートシンクなどの放熱・冷却部に効率よく伝達する必要があり、そのためには発熱部と放熱・冷却部間の熱抵抗の低減が重要となる。 In recent years, due to the increase in heat generation due to the speeding up of microprocessors and the high performance of LED (Light Emitting Diode) chips, electronic devices such as mobile phones, personal computers, PDAs (Personal Digital Assistants), game machines, and LED lighting have become available. Dealing with high heat has become a major issue to be solved. There are methods that use heat conduction, heat radiation, and heat convection for heat dissipation and cooling. Heat sinks and air-cooled fans are used as cooling methods that use heat convection, and ceramic plates are used as heat radiation. There are various types of heat conductive (diffusion) sheets, heat conductive resins, etc. that utilize conduction. In order to effectively dissipate and cool the heat of the heat generation source, it is necessary to combine these heat dissipation and cooling methods and efficiently transfer the heat of the heat generation part to the heat dissipation and cooling part such as the circuit board, cooling fins, and heat sink. For that purpose, it is important to reduce the thermal resistance between the heat generating part and the heat radiating / cooling part.

発熱部材と放熱・冷却部材同士を単に接合しても、部材表面の凹凸のために層間の接合は点接触となり、結果として層間には熱伝導率の低い空気層(熱伝導率:0.02W/mK)が存在するため大きな熱抵抗が生じる。層間熱接合部材(Thermal Interface Material、以下TIMと略す)はこのような層間の熱抵抗を下げるために用いられ、金属同士や金属とセラミックなどの部材の間に挟持して使用される。この場合、TIM自体の熱伝導率が高い事と、部材とTIMとの間の界面での熱抵抗が小さい事が重要となる。なお本発明では熱接合される二つの部材を単に「部材」と表現する。 Even if the heat generating member and the heat radiating / cooling member are simply joined to each other, the bonding between the layers becomes point contact due to the unevenness of the surface of the member, and as a result, an air layer with low thermal conductivity (thermal conductivity: 0.02 W) / MK) is present, which causes a large thermal resistance. An interlayer thermal bonding member (Thermal Interface Material, hereinafter abbreviated as TIM) is used to reduce the thermal resistance between such interlayers, and is used by sandwiching it between metals or between a member such as a metal and a ceramic. In this case, it is important that the thermal conductivity of the TIM itself is high and that the thermal resistance at the interface between the member and the TIM is small. In the present invention, the two members that are thermally joined are simply referred to as "members".

界面での熱抵抗を小さくするためには、界面の接触面積を増大させることが必要で、そのために従来柔軟性のある高分子材料と高熱伝導性無機フィラーを混合したものが用いられて来た(高分子/無機複合体型TIM。以下、複合型TIMと略す)。複合型TIMによって界面は面接触となり、層間から空気層が除かれるために層間の熱抵抗を低減する事ができる。しかしながら、この様な複合型TIMには高熱伝導性実現のために無機フィラーの添加量を増加させると柔軟性が損なわれ界面の熱抵抗が増加するという問題がある。そのため複合型TIM自体の熱伝導度としては、通常品で1〜2W/mK、高熱伝導品でも5W/mK程度の特性しか実現されていないのが現状である。 In order to reduce the thermal resistance at the interface, it is necessary to increase the contact area of the interface, and for this purpose, a mixture of a flexible polymer material and a highly thermally conductive inorganic filler has been used. (Polymer / inorganic composite type TIM; hereinafter abbreviated as composite type TIM). The interface is in surface contact with the composite TIM, and the air layer is removed from the layers, so that the thermal resistance between the layers can be reduced. However, such a composite type TIM has a problem that if the amount of the inorganic filler added is increased in order to realize high thermal conductivity, the flexibility is impaired and the thermal resistance at the interface is increased. Therefore, the current situation is that the thermal conductivity of the composite TIM itself is only about 1 to 2 W / mK for the normal product and about 5 W / mK for the high thermal conductive product.

TIMの実用的な特性である熱抵抗値は、TIM自体の熱抵抗と界面での熱抵抗の和であり、複合体TIMにおける熱抵抗値は0.4〜4.0K・cm/W程度である。しかし、この熱抵抗値は接合面に加圧する圧力の大きさによって変わり、熱抵抗値を表示するには圧力の大きさを併記する必要がある。一般的にTIMには0.1MPa〜0.5MPaの力が加わるが、熱抵抗値の大きさはその様な圧力の大きさによって2〜4倍程度変化する。無論、この圧力依存性は小さい程好ましい。それは温度変化や振動などの外部要因によって熱接合部分への圧力が変わり、それによって熱抵抗値が変わる事は好ましくないためである。 The thermal resistance value, which is a practical characteristic of the TIM, is the sum of the thermal resistance of the TIM itself and the thermal resistance at the interface, and the thermal resistance value of the composite TIM is about 0.4 to 4.0 K · cm 2 / W. Is. However, this thermal resistance value changes depending on the magnitude of the pressure applied to the joint surface, and it is necessary to indicate the magnitude of the pressure in order to display the thermal resistance value. Generally, a force of 0.1 MPa to 0.5 MPa is applied to TIM, but the magnitude of the thermal resistance value changes about 2 to 4 times depending on the magnitude of such pressure. Of course, the smaller this pressure dependence is, the more preferable it is. This is because it is not preferable that the pressure on the thermal junction changes due to external factors such as temperature change and vibration, and the thermal resistance value changes accordingly.

また、熱抵抗値の値は実際に狭持される部材の表面の凹凸によっても影響される。従って、一般的な複合型TIMにおける熱抵抗(0.4〜4.0℃・cm/W)の値は、あくまでもほぼ鏡面と考えられる部材で狭持した場合の特性であり、凹凸を有する実用的な部材間で使用する場合にはその値よりも大きな値となる。実際の複合型TIMは狭持される部材の凹凸を考慮してTIMの厚さを厚くしてある、一般的な複合型TIMの厚さは0.5〜5mm程度である。これはTIMが加圧によって部材の凹凸部分に入り込み空気層を除く必要があるからである。そのため、実用的な部材間に複合体TIMを用いると、その熱抵抗値は鏡面部材に狭持した場合(カタログ値)の値の数倍(1.5〜5倍程度)になる事が多い。 Further, the value of the thermal resistance value is also affected by the unevenness of the surface of the member that is actually held narrow. Therefore, the value of thermal resistance (0.4 to 4.0 ° C. cm 2 / W) in a general composite TIM is a characteristic when the member is held narrowly with a member considered to be almost a mirror surface, and has irregularities. When used between practical members, the value is larger than that value. In the actual composite type TIM, the thickness of the TIM is increased in consideration of the unevenness of the member to be narrowed, and the thickness of the general composite type TIM is about 0.5 to 5 mm. This is because the TIM needs to enter the uneven portion of the member by pressurization and remove the air layer. Therefore, when a composite TIM is used between practical members, its thermal resistance value is often several times (about 1.5 to 5 times) the value when it is sandwiched between mirror surface members (catalog value). ..

複合型TIMでは柔軟性高分子材料としてアクリル樹脂、エポキシ樹脂、あるいはシリコン樹脂などの高分子が用いられるが、これらのマトリックス高分子を使用する限りにおいては150℃を越えるような厳しい高温での環境には耐えられない。例えば、複合型TIMを150℃の環境下での連続耐熱試験を行なうと、多くの場合にその熱抵抗値は大きく増加する事が知られている。すなわち、近年のマイクロプロセッサの高速化やLEDチップの高性能化に伴う発熱量の上昇、あるいは自動車のエンジン周り等150℃以上の厳しい熱環境での使用に耐えられ、しかも低熱抵抗である新たなTIMが強く要望されている。 In the composite TIM, polymers such as acrylic resin, epoxy resin, and silicone resin are used as the flexible polymer material, but as long as these matrix polymers are used, the environment at a severe high temperature exceeding 150 ° C. I can't stand it. For example, it is known that when a composite type TIM is subjected to a continuous heat resistance test in an environment of 150 ° C., its thermal resistance value increases significantly in many cases. In other words, it is a new product that can withstand the increase in heat generation due to the recent increase in the speed of microprocessors and the performance of LED chips, or the use in harsh thermal environments of 150 ° C or higher, such as around automobile engines, and has low thermal resistance. TIM is strongly requested.

さらに、温度変化が大きい様な部材間を熱接合する場合にはその部材の熱による膨張・収縮への対策が大きな課題となる。物質は一般に温度が上がると長さや体積が増加するが、その増加率を1℃毎の上昇率として表したのが熱膨張係数で単位は10−6/Kである。一例を挙げれば、銅:16.6、ニッケル:13.4、鉄11.8〜12.1、ステンレス(SUS410):10.4、石英:10.3、チタン:8.5、ジルコニア:8.8、アルミナ:5.4、超硬合金:5.0、クロム:4.9、タングステン4.5、CBN:0.2〜2.9、インバー:0.2〜2.0、などがある。TIMの視点から見れば、部材の温度が比較的低温である場合にはこの様な部材の熱膨張係数は問題とならない。しかしながら、150℃以上であるような厳しい熱環境下や温度差や温度変化が大きいような環境では2つの異なる部材の間の熱膨張係数の差に伴う膨張・収縮によってその接触状態が変化し熱抵抗特性が変わると言う問題が浮上する。一般的にはこの様な部材間の熱膨張係数の差に対応するためには複合体TIMの柔軟性物質の存在が必須と考えられているが、すでに述べた様に、一方で柔軟性を付与するための高分子は熱に対して弱いという矛盾する課題があるのである。 Further, in the case of heat-bonding between members having a large temperature change, countermeasures against expansion and contraction due to heat of the members become a big issue. Generally, the length and volume of a substance increase as the temperature rises, and the rate of increase is expressed as the rate of increase in 1 ° C. with the coefficient of thermal expansion, which is in units of 10-6 / K. For example, copper: 16.6, nickel: 13.4, iron 11.8 to 12.1, stainless steel (SUS410): 10.4, quartz: 10.3, titanium: 8.5, zirconia: 8 8.8, Alumina: 5.4, Cemented Carbide: 5.0, Chromium: 4.9, Titanium 4.5, CBN: 0.2 to 2.9, Invar: 0.2 to 2.0, etc. is there. From the point of view of TIM, the coefficient of thermal expansion of such a member does not matter when the temperature of the member is relatively low. However, in a harsh thermal environment such as 150 ° C or higher, or in an environment where there is a large temperature difference or temperature change, the contact state changes due to expansion and contraction due to the difference in the coefficient of thermal expansion between two different members, resulting in heat. The problem of changing resistance characteristics emerges. Generally, it is considered that the presence of a flexible substance of the composite TIM is indispensable in order to cope with such a difference in the coefficient of thermal expansion between the members, but as already mentioned, the flexibility is increased. There is a contradictory problem that the polymer to be applied is vulnerable to heat.

この様に部材の温度が150℃以上であって、しかも温度サイクルが繰り返し加わる場合には部材間の熱膨張係数の差が大きな問題となる。特に2つの異なる部材間の熱膨張係数の差が3×10−6K以上である様な場合にその影響は大きい。すなわち、少なくとも一方の部材の温度が150℃以上であり、部材間の熱膨張係数の差が3×10−6/K以上であるような部材間を安定に熱接合できる様なTIMは現在存在せず、その様なTIMが強く要望されている。 As described above, when the temperature of the member is 150 ° C. or higher and the temperature cycle is repeatedly applied, the difference in the coefficient of thermal expansion between the members becomes a big problem. The effect is particularly large when the difference in the coefficient of thermal expansion between two different members is 3 × 10 -6 K or more. That is, there is currently a TIM capable of stably heat-bonding members such that the temperature of at least one member is 150 ° C. or higher and the difference in thermal expansion coefficient between the members is 3 × 10 -6 / K or higher. Instead, such a TIM is strongly requested.

グラファイトはその優れた耐熱性、耐薬品性、高熱伝導性、高電気伝導性のため、構造材、補強材、摺動材、導電材、放熱シートなどとして、エネルギー、宇宙、医療など幅広い分野で利用され、工業材料として重要な位置を占めている。そのようなグラファイトの中でも、特殊な高分子を直接熱処理、炭素化・黒鉛化する方法(高分子焼成法)により得られたグラファイト膜をTIMとして利用し、薄いグラファイト膜のTIM(厚さ:10nm〜15μm、膜面方向の熱伝導率が500W/mk以上、膜面方向と厚さ方向の熱伝導率の異方性100以上)とすることで、優れた熱特性を得られることが開示されている。(特許文献1) Graphite has excellent heat resistance, chemical resistance, high thermal conductivity, and high electrical conductivity, so it can be used as a structural material, reinforcing material, sliding material, conductive material, heat dissipation sheet, etc. in a wide range of fields such as energy, space, and medicine. It is used and occupies an important position as an industrial material. Among such graphite, a graphite film obtained by a method of directly heat-treating a special polymer and carbonizing / graphitizing it (polymer firing method) is used as a TIM, and a thin graphite film TIM (thickness: 10 nm) is used. It is disclosed that excellent thermal characteristics can be obtained by setting the temperature to ~ 15 μm, the thermal conductivity in the film surface direction to 500 W / mk or more, and the anisotropy of the thermal conductivity in the film surface direction and the thickness direction to 100 or more). ing. (Patent Document 1)

特開2014−133669号公報Japanese Unexamined Patent Publication No. 2014-133669

本発明は、上記特許文献1に記載された発明をさらに改良し、さらに部材間の熱膨張係数が異なるような部材の間においても優れた熱接合を実現可能な層間熱接合方法、およびその層間熱接合方法を用いた冷却システムを提供する事を目的とする。 The present invention further improves the invention described in Patent Document 1, and further provides an interlayer thermal bonding method capable of realizing excellent thermal bonding even between members having different coefficients of thermal expansion between the members, and layers thereof. It is an object of the present invention to provide a cooling system using a thermal bonding method.

本発明者らは耐熱性を向上のため従来の複合型TIMに用いられてきた柔軟性高分子材料を用いない構成のTIMを考え、極めて耐熱性に優れ膜面方向によく配向したグラファイト膜をTIMとして用いる事を検討した。グラファイトはその構造に由来する潤滑性を有しており、その様な潤滑性はグラファイト層間の滑りによって生じる。すなわち、潤滑性を発現するためにはグラファイト層構造が良く発達した高品質・高配向性のグラファイトを用いる事が有効であると考えられ、面配向した(膜面方向にa−b面が配向するような高い配向性をもった)高品質グラファイト膜を部材の間に狭持する事で部材間の温度差や線熱膨張係数の差によって生じる歪を吸収できる可能性があると考察した。この様なグラファイトの潤滑特性はグラファイトの線熱膨張係数によって評価できる。高品質グラファイト結晶のa−b面方向の線熱膨張係数は1×10−6/K以下であり、一方、c軸方向の線熱膨張係数は32×10−6/K以下である。 In order to improve heat resistance, the present inventors have considered a TIM having a structure that does not use a flexible polymer material that has been used in conventional composite TIMs, and have created a graphite film that has extremely excellent heat resistance and is well oriented in the film surface direction. We considered using it as a TIM. Graphite has lubricity derived from its structure, and such lubricity is caused by slippage between graphite layers. That is, in order to exhibit lubricity, it is considered effective to use high-quality, highly oriented graphite with a well-developed graphite layer structure, and it is plane-oriented (the ab plane is oriented in the film surface direction). It was considered that by sandwiching a high-quality graphite film (with such high orientation) between the members, it is possible to absorb the strain caused by the temperature difference between the members and the difference in the linear thermal expansion coefficient. Such lubrication characteristics of graphite can be evaluated by the coefficient of linear thermal expansion of graphite. The linear thermal expansion coefficient in the ab plane direction of the high quality graphite crystal is 1 × 10 -6 / K or less, while the linear thermal expansion coefficient in the c-axis direction is 32 × 10 -6 / K or less.

この様な、部材の温度差や部材間の線熱膨張係数の差によって生じる歪を吸収する効果は、当然グラファイト膜の厚さが厚いほどその効果は大きいと考えられる。しかし、一方でTIMの厚さを厚くする事はバルク熱抵抗を大きくする事になるので好ましくない。したがって、薄くても歪の吸収効果がある様なグラファイト膜を開発する事が必要となる。しかし、一方で薄いグラファイト膜では先に述べた様に部材の凹凸に対応出来ないために界面の熱抵抗が大きくなる可能性があると考えられる。そのために、単に薄いグラファイト膜をTIMとして用いてもその界面熱抵抗値を小さく出来ないと予想さる。そこで、我々は薄くても優れた歪低減効果を持ち、さらに界面熱抵抗を低減できる様な手法を開発する事を目標にした。この様な相矛盾する条件を克服出来れば全く新しいTIMが開発出来る。 It is naturally considered that the thicker the graphite film, the greater the effect of absorbing the strain caused by the difference in the temperature of the members and the difference in the coefficient of linear thermal expansion between the members. However, on the other hand, increasing the thickness of the TIM is not preferable because it increases the bulk thermal resistance. Therefore, it is necessary to develop a graphite film that has a strain absorbing effect even if it is thin. However, on the other hand, it is considered that the thermal resistance at the interface may increase because the thin graphite film cannot cope with the unevenness of the member as described above. Therefore, it is expected that the interfacial thermal resistance value cannot be reduced by simply using a thin graphite film as the TIM. Therefore, we aimed to develop a method that has an excellent strain reduction effect even if it is thin and can further reduce the interfacial thermal resistance. If such contradictory conditions can be overcome, a completely new TIM can be developed.

本発明者らは歪低減効果が大きいと考えられる高品質グラファイト膜をTIMとして用い、その界面抵抗を小さくする事を種々検討した。その結果グラファイト膜の厚さ、膜の熱伝導度とその異方性、膜のシワ等の影響を詳細に検討し、特定のグラファイト膜に最適なシワを施す事で、少なくとも部材の一方が150℃以上であり、熱膨張係数が異なる様な部材間でも優れた熱接合が可能と成る事を発見し本発明を完成した。 The present inventors have studied various ways to reduce the interfacial resistance by using a high-quality graphite film, which is considered to have a large strain reducing effect, as a TIM. As a result, the effects of the thickness of the graphite film, the thermal conductivity and its anisotropy of the film, the wrinkles of the film, etc. were examined in detail, and by applying the optimum wrinkles to a specific graphite film, at least one of the members was 150. The present invention has been completed by discovering that excellent thermal bonding is possible even between members having different thermal expansion coefficients at ° C or higher.

すなわち、本発明の層間熱接合方法は熱膨張係数が相異なる2つの部材間に層間熱接合材接合部材が狭持された層間熱接合方法であって、層間熱接合材は厚さ200nm〜80μmのグラファイト膜を含み、グラファイト膜の密度は1.40g/cm3〜2.26g/cm3であり、グラファイト膜の面方向の熱伝導率は500W/mK〜2000W/mKである層間熱接合方法である。 That is, the interlayer thermal bonding method of the present invention is an interlayer thermal bonding method in which an interlayer thermal bonding member is sandwiched between two members having different coefficients of thermal expansion, and the interlayer thermal bonding material has a thickness of 200 nm to 80 μm. This is an interlayer thermal bonding method in which the density of the graphite film is 1.40 g / cm3 to 2.26 g / cm3, and the thermal conductivity of the graphite film in the plane direction is 500 W / mK to 2000 W / mK. ..

これは、(1)従来の複合型TIMに比べて薄いグラファイト膜を用いる事でそのバルク熱抵抗を小さく出来る事、(2)a−b面方向に優れた熱伝導特性を有するグラファイト膜を用いる事で多点接合効果(後述)が実現でき、さらにその様なグラファイト膜に最適なシワを設ける事で界面抵抗を極めて小さく出来る事、(3)部材間の熱膨張係数の差に由来する膨張・収縮を、グラファイトの潤滑性と熱膨張係数の異方性(а−b面方向とc軸方向の異方性)によって吸収できる事、(4)この様な熱接合では熱抵抗値の圧力依存性を小さくできる事、さらには(5)この様な熱接合特性は少なくとも一方の部材の温度が150℃以上で、部材間の熱膨張係数の差が大きくても安定して実現でき、厳しい連続耐熱評価試験や熱サイクル試験においても安定である、と言う新たな事実の発見によっている。 This is because (1) the bulk thermal resistance can be reduced by using a thinner graphite film as compared with the conventional composite TIM, and (2) a graphite film having excellent thermal conductivity characteristics in the ab plane direction is used. By doing so, the multi-point bonding effect (described later) can be realized, and by providing the optimum wrinkles on such a graphite film, the interfacial resistance can be made extremely small, and (3) expansion due to the difference in the coefficient of thermal expansion between the members. -Shrinkage can be absorbed by the lubricity of graphite and the anisotropy of the coefficient of thermal expansion (anisotropy in the а-b plane direction and the c-axis direction). The dependence can be reduced, and (5) such thermal bonding characteristics can be stably realized even if the temperature of at least one member is 150 ° C. or higher and the difference in the coefficient of thermal expansion between the members is large, which is severe. It is based on the discovery of a new fact that it is stable even in continuous heat resistance evaluation tests and thermal cycle tests.

また、グラファイト表面のシワ(Ra)が0.1μm〜10μmの範囲である事が好ましい。本発明において発現できる具体的な熱抵抗値の値は0.2MPaでの加圧時(荷重を加えた時)において3.0℃cm/W以下である。この熱抵抗値は複合型TIMの特性と同等であるが、本発明のTIMが極めて優れた耐久・耐熱性を有している事を考慮すると、極めて特徴のある有益な層間熱接合方法であると言える。 Further, it is preferable that the wrinkles (Ra) on the graphite surface are in the range of 0.1 μm to 10 μm. The specific value of the thermal resistance value that can be expressed in the present invention is 3.0 ° C. cm 2 / W or less when pressurized at 0.2 MPa (when a load is applied). This thermal resistance value is equivalent to the characteristics of the composite TIM, but considering that the TIM of the present invention has extremely excellent durability and heat resistance, it is an extremely characteristic and beneficial interlayer thermal bonding method. It can be said that.

また、本発明のグラファイトフィルムの膜面方向の平均線熱膨張係数(0℃〜200℃の間)は±5×10−6/K以下である事が好ましい。膜厚方向の線熱膨張係数は1×10−5/K以上である事が好ましいが、本発明のグラファイト膜は極めて薄いのでその値は熱接合特性に大きな影響を与えない。この様なグラファイトを用いる事で、0℃〜200℃の範囲での平均線熱膨張係数の差が3×10−6/K以上であるような二つの部材間であっても安定に熱接合する事が出来る。無論、平均線熱膨張係数の差が3×10−6/K以下の部材間で安定な熱接合が実現できる事は言うまでもない。 Further, the average linear thermal expansion coefficient (between 0 ° C. and 200 ° C.) of the graphite film of the present invention in the film surface direction is preferably ± 5 × 10 −6 / K or less. The coefficient of linear thermal expansion in the film thickness direction is preferably 1 × 10 -5 / K or more, but since the graphite film of the present invention is extremely thin, its value does not significantly affect the thermal bonding characteristics. By using such graphite, stable thermal bonding is performed even between two members whose average linear thermal expansion coefficient difference in the range of 0 ° C to 200 ° C is 3 × 10 -6 / K or more. You can do it. Needless to say, stable thermal bonding can be realized between members whose average coefficient of linear thermal expansion is 3 × 10 -6 / K or less.

優れた熱抵抗特性の実現には、そのTIMグラファイト膜の厚さや熱伝導率特性のみでなくグラファイトの表面のシワの大きさと均一性が重要である。本発明者らは、種々の検討の結果、グラファイト膜TIMは、狭持される前のグラファイトの表面粗さ(Ra)が0.1〜10μmの範囲である事が好ましい事が分かった。この様なグラファイト膜を用いる事で、0.2MPaの加圧時の熱抵抗値が3.0℃cm/W以下の特性が実現できるのみでなく、その圧力依存性を小さくする事ができる。圧力依存性の値は0.1MPaでの加圧時と0.5MPaでの加圧時の熱抵抗の差が3倍以内である。熱抵抗値の圧力依存性が極めて小さく、小さな加圧でも低い熱抵抗特性を示すという事は、機械的な強い締め付けを必要としない事を意味し、さらに機械的な締め付けが緩んだとしても、その熱抵抗がほとんど影響されないと言う実用上極めて有用な特性となる。 In order to realize excellent thermal resistance characteristics, not only the thickness and thermal conductivity characteristics of the TIM graphite film but also the size and uniformity of wrinkles on the surface of graphite are important. As a result of various studies, the present inventors have found that the graphite film TIM preferably has a surface roughness (Ra) of graphite in the range of 0.1 to 10 μm before being narrowed. By using such a graphite film, not only the characteristic that the thermal resistance value at the time of pressurizing 0.2 MPa is 3.0 ° C. cm 2 / W or less can be realized, but also the pressure dependence thereof can be reduced. .. The value of the pressure dependence is that the difference in thermal resistance between when pressurized at 0.1 MPa and when pressurized at 0.5 MPa is within 3 times. The fact that the pressure dependence of the thermal resistance value is extremely small and that it exhibits low thermal resistance characteristics even with a small pressurization means that strong mechanical tightening is not required, and even if the mechanical tightening is loosened, even if the mechanical tightening is loosened. It is a practically extremely useful property that its thermal resistance is hardly affected.

この様な本発明のTIMにより、少なくとも一方の部材の温度が150℃以上であり、部材間の熱膨張係数の差が3×10−6K以上である様な2つの部材間での安定した層間熱接合が可能となる、これはグラファイトが耐久性に優れた極めて安定な材料である事、グラファイトが潤滑性を持ちグラファイトのа−b面の熱膨張係数が小さく、c軸方向の熱膨張係数が大きいこと、さらにグラファイト表面に形成されたシワによって部材間の熱膨張係数の差に起因する歪みを緩和する事が出来ること、によっている。その結果本発明のグラファイトTIMは過酷な熱環境において好ましく用いる事ができる。本発明のTIMは150℃、240時間の連続耐熱評価試験や200℃−室温間の温度サイクル試験(96時間)において熱抵抗値の増加を20%以内にする事が出来る。なお、室温とは20℃のことを示す。 By such a TIM of the present invention, the temperature of at least one member is 150 ° C. or higher, and the difference in the coefficient of thermal expansion between the members is 3 × 10 -6 K or higher, which is stable between the two members. Interlayer thermal bonding is possible, because graphite is an extremely stable material with excellent durability, graphite has lubricity, the coefficient of thermal expansion of the а-b surface of graphite is small, and thermal expansion in the c-axis direction is possible. This is due to the fact that the coefficient is large and that the wrinkles formed on the graphite surface can alleviate the strain caused by the difference in the coefficient of thermal expansion between the members. As a result, the graphite TIM of the present invention can be preferably used in a harsh thermal environment. The TIM of the present invention can increase the thermal resistance value within 20% in a continuous heat resistance evaluation test at 150 ° C. for 240 hours and a temperature cycle test (96 hours) between 200 ° C. and room temperature. The room temperature means 20 ° C.

さらに、この熱接合方法は部材が凹凸を有するような場合にも適用する事が出来る。本発明で対応可能な部材の凹凸は、Ra表示で6.0μm以下の範囲であり、この様な部材の凹凸は現実的な多くの部材の表面凹凸に対応しているので本発明は有用な発明となる、。 Further, this heat bonding method can be applied even when the member has irregularities. The unevenness of the member that can be dealt with in the present invention is in the range of 6.0 μm or less in Ra display, and the unevenness of such a member corresponds to the surface unevenness of many realistic members, so that the present invention is useful. It becomes an invention ,.

本発明のグラファイトTIMを作製する方法は特に限定されないが、高分子膜を炭素化、黒鉛化する工程によって製造されることが好ましい。 The method for producing the graphite TIM of the present invention is not particularly limited, but it is preferably produced by the steps of carbonizing and graphitizing the polymer film.

本発明における最適なシワ(粗度)を付与する方法は特に限定されないが、前記炭素化、黒鉛化の少なくとも1つの処理工程で、高分子膜、炭素化膜、またはグラファイト膜を複数の点で保持し、加圧しつつ熱処理する事が好ましい。さらに、前記炭素化、黒鉛化の少なくとも1つの処理工程で、高分子膜、炭素化膜、又はグラファイト膜の少なくともいずれかの膜の片方の面と、表面粗さRaが0.1μm以上、10μm以下であるスペーサーを積層し、加圧しつつ熱処理することが好ましい。この時のスペーサーについては必要な凹凸と耐久性、耐熱性をもつものであれば特に限定されないが、スペーサーが炭素繊維またはグラファイト繊維等の炭素材料からなるフェルトである事は、好ましいスペーサーの一例である。 The method for imparting optimum wrinkles (roughness) in the present invention is not particularly limited, but the polymer film, the carbonized film, or the graphite film is formed at a plurality of points in at least one treatment step of carbonization and graphitization. It is preferable to heat-treat while holding and pressurizing. Further, in at least one of the carbonization and graphitization treatment steps, one surface of at least one of the polymer film, the carbonized film, and the graphite film and the surface roughness Ra is 0.1 μm or more and 10 μm. It is preferable that the following spacers are laminated and heat-treated while pressurizing. The spacer at this time is not particularly limited as long as it has the necessary unevenness, durability, and heat resistance, but it is an example of a preferable spacer that the spacer is felt made of a carbon material such as carbon fiber or graphite fiber. is there.

前記、高分子原料の種類については特に限定されないが、縮合系芳香族高分子である事が好ましい。さらに、前記縮合系芳香族高分子が、300nm〜125μmの範囲の厚さの芳香族ポリイミド膜であり、ポリイミド膜を2400℃以上の温度で熱処理する事が好ましい。 The type of the polymer raw material is not particularly limited, but a condensed aromatic polymer is preferable. Further, the condensed aromatic polymer is an aromatic polyimide film having a thickness in the range of 300 nm to 125 μm, and it is preferable to heat-treat the polyimide film at a temperature of 2400 ° C. or higher.

すなわち上記課題を解決し得た本発明は以下の通りである。
(1)熱膨張係数が相異なる2つの部材の間に層間熱接合部材が狭持された層間熱接合方法であって、層間熱接合部材は厚さ200nm〜80μmのグラファイト膜を含み、グラファイト膜の密度は1.40g/cm3〜2.26g/cm3であり、グラファイト膜の面方向の熱伝導率は500W/mK〜2000W/mKであり、また、
前記2つの部材の0℃〜200℃の間の平均線熱膨張係数の差が3×10 -6 /K以上であり、さらに、
前記グラファイト膜の0℃〜200℃での面方向の平均線熱膨張係数は−5×10 -6 〜+5×10 -6 /Kである層間熱接合方法。
)2つの部材の間に狭持される前におけるグラファイト膜の表面の算術平均粗さRaは0.1μm〜10μmである(1)に記載の層間熱接合方法。
)0.2MPaの荷重を加えたときの熱抵抗値が3.0℃cm2/W以下である(1)、又は(2)に記載の層間熱接合方法。
)0.1MPaの荷重を加えたときの熱抵抗値(R0.1P)と0.5MPaの荷重を加えたときの熱抵抗値(R0.5P)の比であるR0.1P/R0.5Pが1.0〜3.0である(1)〜(3)のいずれか1つに記載の層間熱接合方法。
)150℃、240時間の連続耐熱評価試験の後における熱抵抗値(R240H)が、該連続耐熱評価試験の前における熱抵抗値(R0H)の1.0〜1.2倍である(1)〜(3)のいずれか1つに記載の層間熱接合方法。
)96時間連続の2時間置きの200℃と室温間の温度サイクル評価試験の後における熱抵抗値(R96H)が、該温度サイクル評価試験の前における熱抵抗値(R0H)の1.0〜1.2倍である(1)〜(3)のいずれか1つに記載の層間熱接合方法。
)(1)〜()のいずれか1つに記載の層間熱接合方法を用いた冷却システム。
That is, the present invention that has solved the above problems is as follows.
(1) An interlayer thermal bonding method in which an interlayer thermal bonding member is sandwiched between two members having different thermal expansion coefficients. The interlayer thermal bonding member contains a graphite film having a thickness of 200 nm to 80 μm, and is a graphite film. the density was 1.40g / cm 3 ~2.26g / cm 3 , the thermal conductivity in the plane direction of the graphite film Ri 500W / mK~2000W / mK der, also,
The difference in the average coefficient of linear thermal expansion between 0 ° C. and 200 ° C. of the two members is 3 × 10 -6 / K or more, and further.
0 ° C. to 200 DEG average linear thermal expansion coefficient in a plane direction at ° C. is -5 × 10 -6 ~ + 5 × 10 -6 / K der Ru interlayer heat bonding method of the graphite film.
( 2 ) The interlayer thermal bonding method according to (1), wherein the arithmetic average roughness Ra of the surface of the graphite film before being sandwiched between the two members is 0.1 μm to 10 μm.
( 3 ) The interlayer thermal bonding method according to (1) or (2) , wherein the thermal resistance value when a load of 0.2 MPa is applied is 3.0 ° C. cm 2 / W or less.
(4) R 0.1P / R 0.5 is the ratio of the thermal resistance value when a load is applied to 0.1 MPa (R 0.1P) and thermal resistance when applying a load of 0.5 MPa (R 0.5P) The interlayer thermal bonding method according to any one of (1) to (3), wherein P is 1.0 to 3.0.
( 5 ) The thermal resistance value (R 240H ) after the continuous heat resistance evaluation test at 150 ° C. for 240 hours is 1.0 to 1.2 times the thermal resistance value (R 0H ) before the continuous heat resistance evaluation test. The interlayer thermal bonding method according to any one of (1) to (3).
( 6 ) The thermal resistance value (R 96H ) after the temperature cycle evaluation test between 200 ° C. and room temperature every two hours for 96 hours continuously is 1 of the thermal resistance value (R 0H) before the temperature cycle evaluation test. The interlayer thermal bonding method according to any one of (1) to (3), which is 0 to 1.2 times.
( 7 ) A cooling system using the interlayer thermal bonding method according to any one of (1) to ( 6).

本発明によれば、従来の複合型TIMでは全く不可能であった、少なくとも一方の部材の温度が150℃以上である環境で使用が可能な熱接合、冷却システムが実現できる。本発明の熱接合方法・冷却システムは、線熱膨張係数が異なり、凹凸を有する実用的な部在間の熱接合に好ましく用いる事ができ、150℃、240時間の連続耐熱評価試験や200℃−室温間の温度サイクル評価試験(96時間)において熱抵抗値の増加を20%以下とする事が出来る。 According to the present invention, it is possible to realize a thermal bonding and cooling system that can be used in an environment where the temperature of at least one member is 150 ° C. or higher, which was completely impossible with the conventional composite TIM. The thermal bonding method / cooling system of the present invention has a different coefficient of linear thermal expansion and can be preferably used for thermal bonding between practical parts having irregularities, such as a continuous heat resistance evaluation test at 150 ° C. and 240 hours and 200 ° C. In the temperature cycle evaluation test (96 hours) between −room temperature, the increase in thermal resistance value can be 20% or less.

本発明のグラファイト膜のシワの状況を示す断面模式図。(a)は大きなシワを有するグラファイト膜の断面イメージ図、(b)は適当な大きさのシワを有するグラファイト膜断面のイメージ図、(c)はシワのほとんどないグラファイト膜断面のイメージ図。The cross-sectional schematic diagram which shows the state of the wrinkle of the graphite film of this invention. (A) is a cross-sectional image of a graphite film having large wrinkles, (b) is an image of a cross-sectional view of a graphite film having wrinkles of an appropriate size, and (c) is an image of a cross-sectional view of a graphite film having almost no wrinkles. 本発明のグラファイト膜のシワの状況を示す実際の例。(a)大きなシワが存在するグラファイト膜、(b)適当な大きさのシワが存在するグラファイト膜、(c)シワのほとんど無いグラファイト膜。An actual example showing the state of wrinkles in the graphite film of the present invention. (A) Graphite film with large wrinkles, (b) Graphite film with appropriate size wrinkles, (c) Graphite film with almost no wrinkles. 本発明のグラファイト膜(膜厚2.6μm)の断面SEM写真。適度で均一なシワが形成されたグラファイト膜の例。Cross-sectional SEM photograph of the graphite film (thickness 2.6 μm) of the present invention. An example of a graphite film with moderate and uniform wrinkles. 平面基板で被処理膜を挟んでプレスする本発明のグラファイトTIMの作製方法の一例を示す概略図。The schematic diagram which shows an example of the manufacturing method of the graphite TIM of this invention which presses by sandwiching the film to be processed with a flat substrate. グラファイト膜の表面粗さ(算術平均粗さRa)の測定方法と測定位置(5箇所の黒い太線)のイメージ図。ただし、5αは約50mm角のグラファイト膜の各辺の中点、5βは5箇所の線分5aの中点、5γはグラファイト膜の重心である。5箇所の線分5aの方向に表面粗さ(算術平均粗さRa)の測定を行う。Image of the measurement method and measurement position (thick black lines at 5 points) of the surface roughness (arithmetic mean roughness Ra) of the graphite film. However, 5α is the midpoint of each side of the graphite film of about 50 mm square, 5β is the midpoint of the five line segments 5a, and 5γ is the center of gravity of the graphite film. The surface roughness (arithmetic mean roughness Ra) is measured in the direction of the line segment 5a at five points. 熱膨張係数の異なる部材間の熱抵抗測定法。6aは第一の部材、6bはグラファイトTIM(層間熱接合部材)、6cは第二の部材、6dは重し、6eは加熱源である。また■(黒い四角)は温度測定場所である。A method for measuring thermal resistance between members with different coefficients of thermal expansion. 6a is the first member, 6b is the graphite TIM (interlayer heat bonding member), 6c is the second member, 6d is the weight, and 6e is the heating source. Also, ■ (black square) is the temperature measurement location. グラファイトTIMの耐熱特性の評価方法。7aは第一の部材、7bはグラファイトTIM(層間熱接合部材)、7cは第二の部材、7dはシリコングリース、7eは重しである。第一の部材、第二の部材の材質を変えて評価を行なう。(A)は熱抵抗測定方法、(B)は耐熱性試験、温度サイクル評価試験の方法。A method for evaluating the heat resistant properties of graphite TIM. 7a is the first member, 7b is the graphite TIM (interlayer thermal bonding member), 7c is the second member, 7d is the silicon grease, and 7e is the weight. The evaluation is performed by changing the materials of the first member and the second member. (A) is a method for measuring thermal resistance, and (B) is a method for heat resistance test and temperature cycle evaluation test.

以下、本発明の実施の形態について詳細に説明する。なお、本明細書中に記載された学術文献および特許文献の全ては、本明細書中に参考として援用される。また、本明細書では特記しない限り、数値範囲を表す「A〜B」は、「A以上(Aを含みかつAより大きい)B以下(Bを含みかつBより小さい)」を意味する。 Hereinafter, embodiments of the present invention will be described in detail. All academic and patent documents described in this specification are incorporated herein by reference. Further, unless otherwise specified in the present specification, "A to B" representing a numerical range means "A or more (including A and larger than A) and B or less (including B and smaller than B)".

(A)グラファイト膜
本発明においてグラファイト膜の厚さは200nm以上、80μm以下の範囲である。厚さは300nm以上がより好ましく、400nm以上である事が最も好ましい。また、本発明のグラファイト膜は70μm以下であることがより好ましく、60μm以下がさらに好ましく、50μm以下であるが特に好ましい。80μmを超えると、バルク熱抵抗が大きくなるという問題がある。一方、200nm未満の厚さでは自立膜としての取り扱いが極めて困難となるという課題がある。200nm〜80μmの範囲の厚さであれば、3.0℃cm/W以下の優れた熱抵抗特性が実現できる。この特性は従来の複合体TIMと同等以上の特性であり、さらに圧倒的に優れた耐熱性、耐久性を有する。
(A) Graphite film In the present invention, the thickness of the graphite film is in the range of 200 nm or more and 80 μm or less. The thickness is more preferably 300 nm or more, and most preferably 400 nm or more. Further, the graphite film of the present invention is more preferably 70 μm or less, further preferably 60 μm or less, and particularly preferably 50 μm or less. If it exceeds 80 μm, there is a problem that the bulk thermal resistance increases. On the other hand, if the thickness is less than 200 nm, there is a problem that it becomes extremely difficult to handle as a self-supporting film. If the thickness is in the range of 200 nm to 80 μm , excellent thermal resistance characteristics of 3.0 ° C. cm 2 / W or less can be realized. This characteristic is equal to or higher than that of the conventional composite TIM, and further has overwhelmingly excellent heat resistance and durability.

本特許で得られるTIM(層間熱接合部材)としての熱抵抗特性を、本発明者らの先願特許(特許文献1)で得られているグラファイトTIMの熱抵抗特性と比較・議論する。先願特許の結果では、厚さ18nm〜13μmの範囲のグラファイト膜において、1.0Kgf/cmでの加圧時の特性として0.98〜0.33℃cm/Wの特性が得られている。(注:本特許においては加圧する荷重の大きさをMPaで記載している。1.0Kgf/cmの荷重は、ほぼ0.1MPaに等しい。)しかしながら、これらの特性はあくまでも熱抵抗測定装置による鏡面研磨された電極面間での特性である。従って、この様な特性値は凹凸を有する実用的な部材間に適用した場合には実現されず、実際に凹凸のある部材間に適用するとその熱抵抗特性は変化する。この時の熱抵抗値は大きな凹凸を持つ部材間で用いるほど大きくなり、しばしば従来の複合型TIMの特性よりも悪くなる。一方、本発明のTIMによって達成される熱抵抗値は3.0℃cm/W以下であり、この特性は複合型TIMの特性と同等以上の優れた値である。 The thermal resistance characteristics of the TIM (interlayer thermal bonding member) obtained in this patent will be compared and discussed with the thermal resistance characteristics of the graphite TIM obtained in the prior patent of the present inventors (Patent Document 1). According to the results of the prior patent, in a graphite film having a thickness in the range of 18 nm to 13 μm, a characteristic of 0.98 to 0.33 ° C. cm 2 / W was obtained as a characteristic when pressurized at 1.0 kgf / cm 2. ing. (Note: In this patent, the magnitude of the load to be pressurized is described in MPa. The load of 1.0 Kgf / cm 2 is approximately equal to 0.1 MPa.) However, these characteristics are only the thermal resistance measuring device. It is a characteristic between the electrode surfaces that have been mirror-polished by. Therefore, such a characteristic value is not realized when it is applied between practical members having irregularities, and its thermal resistance characteristic changes when it is actually applied between members having irregularities. The thermal resistance value at this time becomes larger as it is used between members having large irregularities, and is often worse than the characteristics of the conventional composite TIM. On the other hand, the thermal resistance value achieved by the TIM of the present invention is 3.0 ° C. cm 2 / W or less, and this characteristic is an excellent value equal to or higher than the characteristic of the composite TIM.

本発明のグラファイト膜は密度が1.40〜2.26g/cmの範囲であり、膜面方向の熱伝導率が500W/mK以上である。この様な特性によりバルク熱抵抗を小さくできる。密度は1.50〜2.26g/cmの範囲である事はより好ましく、1.60〜2.26g/cmの範囲である事は最も好ましい。なお、密度2.26g/cmは空気層を全く含まないグラファイトの密度であり、グラファイト膜中に空気層が含まれるかどうかはグラファイト膜の密度を測定することで確認できる。空気層の熱伝導率はきわめて低いのでグラファイト膜の内部に空気層が存在しないことが望ましく、密度の条件は空気層の存在を知る目安となる。 The graphite film of the present invention has a density in the range of 1.40 to 2.26 g / cm 3 , and has a thermal conductivity in the film surface direction of 500 W / mK or more. Due to such characteristics, the bulk thermal resistance can be reduced. It is more preferably a density in the range of 1.50~2.26g / cm 3, it is most preferred in the range of 1.60~2.26g / cm 3. The density of 2.26 g / cm 3 is the density of graphite that does not contain an air layer at all, and whether or not the graphite film contains an air layer can be confirmed by measuring the density of the graphite film. Since the thermal conductivity of the air layer is extremely low, it is desirable that the air layer does not exist inside the graphite film, and the density condition is a guide for knowing the existence of the air layer.

また、フィルム面方向の熱伝導率は500W/mK以上2000W/mK以下である。600W/mK以上である事はより好ましく、800W/mK以上である事はさらに好ましく、1000W/mK以上である事は最も好ましい。膜面方向の熱伝導度は大きい方が好ましいが、グラファトの場合а−b面方向の最大値は2000W/mKである事が知られている。この様に本発明においてフィルム面方向の熱伝導度が大きい事が重要である理由は次の様に説明できる。すなわち、グラファイト膜TIMにおいては部材との接合は基本的には点接合であるが、ある接合点から流入した熱はグラファイト膜面方向の熱伝導度が極めて大きいためグラファイト膜TIMの中で速やかに広がり、結果的には多くの接合点から反対側の部材に流れることができる。すなわち、高いフィルム面方向の熱伝導度は実際の接合点よりも、実質的に多くの接合点と接触しているのと同じ効果を持つ。この様な効果は膜面方向の熱伝導度が大きいほど大きいので、膜面方向の熱伝導度が低熱抵抗特性実現のために重要と考えられるのである。この様な膜面方向の熱伝導度がTIM特性の向上に重要である事は本発明によって初めて明らかになった事実である。 The thermal conductivity in the film surface direction is 500 W / mK or more and 2000 W / mK or less. It is more preferably 600 W / mK or more, further preferably 800 W / mK or more, and most preferably 1000 W / mK or more. It is preferable that the thermal conductivity in the film surface direction is large, but in the case of graphat, it is known that the maximum value in the а−b surface direction is 2000 W / mK. As described above, the reason why it is important that the thermal conductivity in the film surface direction is large in the present invention can be explained as follows. That is, in the graphite film TIM, the bonding with the member is basically a point bonding, but the heat flowing in from a certain bonding point has extremely high thermal conductivity in the graphite film surface direction, so that the heat is quickly formed in the graphite film TIM. It spreads and can eventually flow from many junctions to the opposite member. That is, the high thermal conductivity in the film plane direction has the same effect as contacting substantially more joint points than the actual joint points. Since such an effect increases as the thermal conductivity in the film surface direction increases, it is considered that the thermal conductivity in the film surface direction is important for realizing low thermal resistance characteristics. It is a fact clarified for the first time by the present invention that such thermal conductivity in the film surface direction is important for improving the TIM characteristics.

さらに、本発明のグラファイトTIMの0℃〜200℃の範囲のフィルム面方向の平均線熱膨張係数は±5×10−6/K以内である事が好ましい。±4×10−6/K以内である事はより好ましく、±3×10−6/K以内である事はさらに好ましく、±2×10−6/K以内である事は最も好ましい。この様な平均熱膨張係数を持つグラファイトを用いる事で、0℃〜200℃の間の平均線熱膨張係数の差が3×10−6/K以上であるような2つの部材間の安定した熱接合が可能と成る。 Further, the average linear thermal expansion coefficient of the graphite TIM of the present invention in the range of 0 ° C. to 200 ° C. in the film surface direction is preferably within ± 5 × 10-6 / K. It is more preferably within ± 4 × 10-6 / K, further preferably within ± 3 × 10-6 / K, and most preferably within ± 2 × 10-6 / K. By using graphite having such an average coefficient of thermal expansion, the difference between the average coefficient of linear thermal expansion between 0 ° C. and 200 ° C. is stable between two members such that the difference is 3 × 10 -6 / K or more. Thermal bonding is possible.

また、本発明のグラファイトTIMは狭持される前のグラファイトの表面算術平均粗さ(Ra)が0.1μm〜10μmの範囲である事が好ましい。この表面の算術粗さRaの値は界面熱抵抗を小さくし、3.0℃cm/W以下の熱抵抗特性を実現するために好ましい。Raの値が0.1μm〜10μmの範囲とは、本発明のグラファイト膜の厚さの範囲である200nm〜80μmの場合に規定される数値であるが、さらに詳しく、厚さに対するシワの許容範囲を表すためには厚さを考慮して表面の算術平均粗さRaを考える事が好ましい。この様な観点から検討した結果、より好ましいRaの範囲は、最も薄い200nmの場合には0.1μm〜4μmの範囲、最も厚い80μmの場合には0.4μm〜10μmの範囲である事が分かった。以上の様に、本発明の層間熱接合部材は、実用的な取り扱いや製造が可能な厚さが200nm〜80μmのグラファイト膜を有し、大きな膜面方向の熱伝導度、最適な表面粗さを持つ事で界面熱抵抗小さくし、3.0℃cm/W以下の優れた熱抵抗特性を実現できる。さらに、最適な表面粗さと適当な線熱膨張係数を持つ事で異なる膨張係数を有する部材間の安定な層間熱接合方法を実現できる。 Further, in the graphite TIM of the present invention, it is preferable that the surface arithmetic mean roughness (Ra) of graphite before being narrowed is in the range of 0.1 μm to 10 μm. The value of the arithmetic roughness Ra of this surface is preferable in order to reduce the interfacial thermal resistance and to realize the thermal resistance characteristic of 3.0 ° C. cm 2 / W or less. The Ra value in the range of 0.1 μm to 10 μm is a numerical value defined in the case of 200 nm to 80 μm, which is the range of the thickness of the graphite film of the present invention. It is preferable to consider the arithmetic mean roughness Ra of the surface in consideration of the thickness. As a result of examination from such a viewpoint, it was found that the more preferable range of Ra is the range of 0.1 μm to 4 μm in the case of the thinnest 200 nm and the range of 0.4 μm to 10 μm in the case of the thickest 80 μm. It was. As described above, the interlayer thermal bonding member of the present invention has a graphite film having a thickness of 200 nm to 80 μm that can be practically handled and manufactured, and has a large thermal conductivity in the film surface direction and an optimum surface roughness. By having, the interfacial thermal resistance can be reduced and excellent thermal resistance characteristics of 3.0 ° C. cm 2 / W or less can be realized. Further, by having an optimum surface roughness and an appropriate linear thermal expansion coefficient, a stable interlayer thermal bonding method between members having different expansion coefficients can be realized.

(B)高分子膜の製造方法
グラファイト膜の製造方法は特に限定されないが、例えば、高分子フィルムを熱処理する方法によって得ることができる。高分子フィルムとしては、芳香族高分子である事が好ましい。中でも、ポリアミド、ポリイミド、ポリキノキサリン、ポリオキサジアゾール、ポリベンズイミダゾール、ポリベンズオキサゾール、ポリベンズチアゾール、ポリキナゾリンジオン、ポリベンゾオキサジノン、ポリキナゾロン、ベンズイミダゾベンゾフェナントロリンラダーポリマー、およびこれらの誘導体から選択される少なくとも一種であることが好ましい。
(B) Method for Producing Polymer Film The method for producing a graphite film is not particularly limited, but it can be obtained, for example, by a method of heat-treating a polymer film. The polymer film is preferably an aromatic polymer. Among them, polyamide, polyimide, polyquinoxaline, polyoxadiazole, polybenzimidazole, polybenzoxazole, polybenzthiazole, polyquinazolinedione, polybenzoxazineone, polyquinazoline, benzimidazolone benzophenanthroline ladder polymer, and derivatives thereof. It is preferable that it is at least one kind.

上記高分子フィルムの中でも、グラファイトに転化させることができるという点から芳香族ポリイミドフィルムが好ましい。また、芳香族ポリイミドフィルムの中でも、高品質グラファイトへの転化がより容易であるという点から、分子構造およびその高次構造が制御され、配向性に優れたフィルムが好ましい。芳香族ポリイミドフィルムは、既知の手法で作製する事ができる。例えば、ポリイミド前駆体であるポリアミド酸の有機溶剤溶液をエンドレスベルト、ステンレスドラムなどの支持体上に流延し、乾燥・イミド化させることにより製造することができる。イミド化させる方法は特に限定されず、前駆体であるポリアミド酸を加熱でイミド転化する熱キュア法、ポリアミド酸に無水酢酸等の酸無水物に代表される脱水剤や、ピコリン、キノリン、イソキノリン、ピリジン等の第3級アミン類をイミド化促進剤として用い、イミド転化するケミカルキュア法を挙げることができる。また、蒸着重合法によって、ポリイミド薄膜を作製する事も出来る。 Among the above polymer films, an aromatic polyimide film is preferable because it can be converted to graphite. Further, among aromatic polyimide films, a film having a controlled molecular structure and its higher-order structure and having excellent orientation is preferable because it is easier to convert to high-quality graphite. The aromatic polyimide film can be produced by a known method. For example, it can be produced by casting an organic solvent solution of polyamic acid, which is a polyimide precursor, on a support such as an endless belt or a stainless steel drum, and drying and imidizing the solution. The method for imidization is not particularly limited, and a thermal cure method in which the precursor polyamic acid is converted to an imide by heating, a dehydrating agent typified by an acid anhydride such as acetic anhydride, picolin, quinoline, isoquinoline, etc. Examples include a chemical cure method for imid conversion using a tertiary amine such as pyridine as an imidization accelerator. In addition, a polyimide thin film can be produced by a vapor deposition polymerization method.

ケミカルキュア法によるフィルムの具体的な製造法としては、以下の方法が挙げられる。まず、ポリアミド酸溶液に、化学量論以上の脱水剤と触媒量のイミド化促進剤を加え、支持板やPET等の有機フィルム、ドラム又はエンドレスベルト等の支持体上に流延又は塗布して膜状とし、有機溶媒を蒸発させることにより自己支持性を有する膜を得る。次いで、これを更に加熱して乾燥させつつイミド化させ、ポリイミド重合体からなるポリイミドフィルムを得る。加熱の際の温度は、150℃から550℃の範囲の温度が好ましい。加熱の際の昇温速度には特に制限はないが、連続的もしくは断続的に、徐々に加熱して最高温度が上記の温度になるようにするのが好ましい。さらに、ポリイミドの製造工程中に、収縮を防止するためにフィルムを固定したり、延伸したりする工程を含む事が好ましい。この様な処理によって配向性を高くする事ができる。 Specific methods for producing a film by the chemical cure method include the following methods. First, a dehydrating agent having a stoichiometry or higher and an imidization accelerator having a catalytic amount are added to the polyamic acid solution, and the solution is cast or applied onto an organic film such as a support plate or PET, or a support such as a drum or an endless belt. A film having a self-supporting property is obtained by forming a film and evaporating an organic solvent. Next, this is further heated and dried while being imidized to obtain a polyimide film made of a polyimide polymer. The temperature at the time of heating is preferably a temperature in the range of 150 ° C. to 550 ° C. The rate of temperature rise during heating is not particularly limited, but it is preferable to gradually or intermittently heat the temperature so that the maximum temperature reaches the above temperature. Further, it is preferable to include a step of fixing or stretching the film in order to prevent shrinkage in the process of manufacturing the polyimide. By such a treatment, the orientation can be increased.

なお、最終的に得られるグラファイト膜の厚さは、一般に出発高分子フィルムの種類によって異なるが、芳香族ポリイミドの場合、元の高分子フィルムの厚さの60〜40%程度となる事が多い。従って、最終的に厚さ200nm〜80μmのグラファイト膜を得るためには、出発高分子フィルムの厚さはおよそ300nm〜125μmの範囲であることが好ましい。 The thickness of the graphite film finally obtained varies depending on the type of the starting polymer film, but in the case of aromatic polyimide, it is often about 60 to 40% of the thickness of the original polymer film. .. Therefore, in order to finally obtain a graphite film having a thickness of 200 nm to 80 μm, the thickness of the starting polymer film is preferably in the range of about 300 nm to 125 μm.

(C)グラファイト膜の製造方法
本発明のグラファイト膜TIMの製造方法は特に限定されないが、上記高分子膜の炭素化、黒鉛化によって作製する事は好ましい。ここでは、高分子フィルムの炭素化・黒鉛化の手法について述べる。この様な炭素化、黒鉛化の工程は同一炉で連続して実施しても良く、別々の炉で実施しても良い。炭素化の方法としては特に限定されず、例えば出発物質である高分子フィルムを不活性ガス中、あるいは真空中で予備加熱し、炭素化を行う。不活性ガスは、窒素、アルゴンあるいはアルゴンと窒素の混合ガスが好ましく用いられる。予備加熱は通常600〜1000℃程度の温度で行う。予備加熱の段階では出発高分子フィルムの配向性が失われないように、フィルムの破壊が起きない程度の面方向の張力を加える事が有効である。
(C) Method for Producing Graphite Film The method for producing the graphite film TIM of the present invention is not particularly limited, but it is preferably produced by carbonization or graphitization of the polymer film. Here, a method for carbonizing and graphitizing a polymer film will be described. Such carbonization and graphitization steps may be continuously carried out in the same furnace, or may be carried out in separate furnaces. The method of carbonization is not particularly limited, and for example, the polymer film as a starting material is preheated in an inert gas or in a vacuum to carry out carbonization. As the inert gas, nitrogen, argon or a mixed gas of argon and nitrogen is preferably used. Preheating is usually performed at a temperature of about 600 to 1000 ° C. At the stage of preheating, it is effective to apply tension in the plane direction to the extent that the film does not break so that the orientation of the starting polymer film is not lost.

黒鉛化の方法としては特に限定されず、例えば上記の方法で炭素化されたフィルムを高温炉内にセットし、黒鉛化を行なう。黒鉛化は不活性ガス中で行なうが、不活性ガスとしてはアルゴンが最も適当であり、アルゴンに少量のヘリウムを加えても良い。処理温度は高ければ高いほど良質のグラファイトに転化でき、2400℃以上が好ましく、2600℃以上がより好ましく、2800℃以上である事は最も好ましい。 The method of graphitization is not particularly limited, and for example, the film carbonized by the above method is set in a high-temperature furnace to perform graphitization. Graphitization is carried out in an inert gas, but argon is the most suitable inert gas, and a small amount of helium may be added to argon. The higher the treatment temperature, the higher the quality of graphite that can be converted, preferably 2400 ° C. or higher, more preferably 2600 ° C. or higher, and most preferably 2800 ° C. or higher.

(D)最適なシワの形状と評価
ポリイミドなどの高分子膜からグラファイト膜を作製する場合、炭素化時に膜面方向の寸法は元の高分子膜の75〜85%程度にまで炭素化膜が収縮することが多い。また、炭素化時及び黒鉛化時の膜の収縮・膨張を自然に任せた場合には、最終的に得られるグラファイト膜の膜面方向の寸法は、元の高分子膜の寸法の85〜95%程度となることが多い。この様な炭素化、黒鉛化の工程での伸縮によって得られるグラファイト膜にはシワが発生する。図1にはグラファイト膜に発生するシワの状況を示す断面模式図を示した。上記の様な一般的な手法で作製する場合には、発生するシワの大きさを制御する事は不可能で、(a)に示したような大きなシワが発生する場合や、(c)に示したようなシワのほとんど無い場合が起きる。また、場合によっては部分的に大きなシワが発生し、部分的にシワの無い部分が存在する様な不均一なシワとなる場合もある。検討の結果こうしたグラファイト膜のシワがTIMの特性に影響を与え、優れた熱接合特性を実現するためにはシワの大きさやシワを制御する事が好ましい。制御された大きさのシワを有するグラファイト膜を作製するためには製造方法に新たな工夫を加える必要がある
(D) Optimal wrinkle shape and evaluation When a graphite film is prepared from a polymer film such as polyimide, the carbonized film has a dimension in the film surface direction of about 75 to 85% of the original polymer film at the time of carbonization. Often contracts. In addition, when the shrinkage and expansion of the film during carbonization and graphitization are left to nature, the finally obtained graphite film in the film surface direction is 85 to 95, which is the size of the original polymer film. It is often about%. Wrinkles occur in the graphite film obtained by expansion and contraction in the steps of carbonization and graphitization. FIG. 1 shows a schematic cross-sectional view showing the state of wrinkles generated in the graphite film. When it is produced by the above general method, it is impossible to control the size of the wrinkles that occur, and when large wrinkles as shown in (a) occur or in (c). There are cases where there are almost no wrinkles as shown. Further, in some cases, large wrinkles may be partially generated, resulting in non-uniform wrinkles such that there are partially wrinkle-free parts. As a result of the examination, such wrinkles of the graphite film affect the characteristics of TIM, and it is preferable to control the size and wrinkles of the wrinkles in order to realize excellent thermal bonding characteristics. In order to produce a graphite film with controlled size wrinkles, it is necessary to add new ideas to the manufacturing method.

図2はグラファイト膜のシワのイメージ図である。(a)は均一で大きなシワが存在するグラファイト膜の例、(b)は均一で低熱接合実現のために最適な大きさのシワが存在するグラファイト膜の例、(c)はシワのほとんど無いグラファイト膜である。(a)(b)(c)は図1で示した概略断面のイメージ図の実際のグラファイト膜の表面写真の例であり、それぞれ図1の(a)(b)(c)に対応している。 FIG. 2 is an image diagram of wrinkles in a graphite film. (A) is an example of a graphite film having uniform and large wrinkles, (b) is an example of a graphite film having uniform and optimally sized wrinkles for realizing low thermal bonding, and (c) is an example of a graphite film having almost no wrinkles. It is a graphite film. (A), (b), and (c) are examples of actual surface photographs of the graphite film in the image diagram of the schematic cross section shown in FIG. 1, and correspond to (a), (b), and (c) of FIG. 1, respectively. ..

図3は図2(c)に示した最適なシワを有する本発明のグラファイト膜(膜厚2.6μm)の断面SEM写真である。 FIG. 3 is a cross-sectional SEM photograph of the graphite film (film thickness 2.6 μm) of the present invention having the optimum wrinkles shown in FIG. 2 (c).

以上の様に本発明のグラファイト膜TIMでは図2(c)あるいは図3に示すような適度な範囲に制御する事が望ましいが、その様なシワを実現する方法は従来知られていなかった。そのため、適度なシワを付与するには新たなシワ付与方法を開発すること、シワを適当な数値で規定する必要があった。 As described above, in the graphite film TIM of the present invention, it is desirable to control the graphite film TIM within an appropriate range as shown in FIG. 2 (c) or FIG. 3, but a method for realizing such wrinkles has not been known conventionally. Therefore, in order to give appropriate wrinkles, it was necessary to develop a new wrinkle giving method and to specify wrinkles with appropriate numerical values.

シワの大きさは、算術平均表面粗さRaで表現することができ、触針式表面粗さ計、レーザー顕微鏡等の光学的方法、STM(Scanning Tunneling Microscope)、AFM(Atomic Force Microscope)等の方法により決定できる。これらに関する規定としては、例えばJIS B0601−2001を適用または準用できる。本発明においてはシワの大きさをこのRa表示によって規定する。 The size of wrinkles can be expressed by the arithmetic mean surface roughness Ra, such as a stylus type surface roughness meter, an optical method such as a laser microscope, STM (Scanning Tunneling Microscope), AFM (Atomic Force Microscope), etc. It can be determined by the method. As the provisions relating to these, for example, JIS B0601-2001 can be applied or applied mutatis mutandis. In the present invention, the size of wrinkles is defined by this Ra display.

さらに本発明者らはシワの大きさのみでなく、そのシワが均一である事も低熱抵抗特性の安定な実現に好ましい事を見出した。シワの均一性は原理的には複数箇所の算術平均粗さRaを測定した時の各箇所の値(Ra)の、全複数箇所での測定結果から求まるRaの平均値(Rave)に対する比、(Ra/Rave)を取れば良い事になるが、一定面積のすべての個所のRaを測定する事は不可能であり、シワを定量的に記載する事は難しい。そのため、我々は図5に示した方法でシワの均一性の定量化を行なった。まず、試料となるグラファイト膜を約50mm角に切断し、図5の黒線に示した5ヶ所の線分方向に表面粗さRaを測定した。ここで、5αは約50mm角のグラファイト膜の各辺の中点、5βは5箇所の黒い線分の中点であり、5γは約50mm角のグラファイト膜の重心である。その結果このような方法で測定した場合には本発明の優れた熱抵抗特性を実現するためには(Ra/Rave)の比率が0.2〜5.0の範囲である事が好ましい事が分かった。ただし、本発明で規定されたシワの均一性を評価する指標である(Ra/Rave)の値はあくまで図5に記載した方法で測定した場合の値であり、この方法以外の方法で測定した(Ra/Rave)の値が0.2〜5.0の範囲を外れたとしても、それが本発明の範囲を逸脱する事を意味しない。 Furthermore, the present inventors have found that not only the size of wrinkles but also the uniform wrinkles are preferable for the stable realization of low thermal resistance characteristics. In principle, the uniformity of wrinkles is the ratio of the value (Ra) of each location when the arithmetic average roughness Ra of multiple locations is measured to the average value (Rave) of Ra obtained from the measurement results at all multiple locations. (Ra / Rave) may be taken, but it is impossible to measure Ra at all points in a certain area, and it is difficult to quantitatively describe wrinkles. Therefore, we quantified the uniformity of wrinkles by the method shown in FIG. First, a graphite film as a sample was cut into a square of about 50 mm, and the surface roughness Ra was measured in the direction of the five line segments shown by the black line in FIG. Here, 5α is the midpoint of each side of the graphite film of about 50 mm square, 5β is the midpoint of five black line segments, and 5γ is the center of gravity of the graphite film of about 50 mm square. As a result, when measured by such a method, it is preferable that the ratio of (Ra / Rave) is in the range of 0.2 to 5.0 in order to realize the excellent thermal resistance characteristics of the present invention. Do you get it. However, the value of (Ra / Rave), which is an index for evaluating the uniformity of wrinkles specified in the present invention, is only the value when measured by the method shown in FIG. 5, and was measured by a method other than this method. Even if the value of (Ra / Rave) deviates from the range of 0.2 to 5.0, it does not mean that it deviates from the range of the present invention.

(E)最適なシワの形成方法
本発明の適度な大きさのRaを持つシワの形成方法については特に制限はないが、従来の高分子膜からグラファイト膜を製造する方法では、適切なシワを形成することは困難である。先に述べた様に、高分子膜として芳香族ポリイミドを用いて炭素化する場合、炭素化時に膜面方向の寸法は元の高分子膜の75〜85%程度にまで炭素化膜が収縮することが多い。また、炭素化時及び黒鉛化時の膜の収縮・膨張を自然に任せた場合には、最終的に得られるグラファイト膜の膜面方向の寸法は、元の高分子膜の寸法の85〜95%程度となることが多い。こうした自然の収縮・膨張のために、グラファイト膜のシワの大きさを最適に制御する事が出来ない。
(E) Optimal wrinkle forming method The method for forming wrinkles having an appropriate size of Ra in the present invention is not particularly limited, but the conventional method for producing a graphite film from a polymer film produces appropriate wrinkles. It is difficult to form. As described above, when carbonization is performed using an aromatic polyimide as the polymer film, the carbonized film shrinks to about 75 to 85% of the original polymer film in the direction of the film surface during carbonization. Often. In addition, when the shrinkage and expansion of the film during carbonization and graphitization are left to nature, the finally obtained graphite film in the film surface direction is 85 to 95, which is the size of the original polymer film. It is often about%. Due to such natural contraction and expansion, the size of wrinkles in the graphite film cannot be optimally controlled.

本発明者らは、炭素化工程又はグラファイト工程の少なくとも一つの工程で、適切な大きさの凹凸を有するスペーサーを、高分子膜、炭素化膜、グラファイト膜などの試料の少なくとも片面と積層し、これを平滑な冶具で挟んで両側から適切な圧力で加圧しつつ、炭素化温度、黒鉛化温度で処理すれば適度なシワを形成できることを見出し、本発明を完成した。図4にはプレスによるグラファイト膜のシワ形成のための模式図を示した。4aはグラファイト膜、4bはスペーサー、4cはプレス冶具である。 In at least one step of the carbonization step or the graphite step, the present inventors laminate a spacer having an unevenness of an appropriate size with at least one side of a sample such as a polymer film, a carbonized film, or a graphite film. The present invention has been completed by finding that an appropriate wrinkle can be formed by sandwiching this with a smooth jig and pressurizing it from both sides with an appropriate pressure and treating it at a carbonization temperature and a graphitization temperature. FIG. 4 shows a schematic diagram for forming wrinkles in the graphite film by pressing. 4a is a graphite film, 4b is a spacer, and 4c is a press jig.

本発明では、スペーサーを用いたプレス処理によって収縮や膨張を制御して、適切なシワを形成するが、具体的には高分子膜、炭素化膜、又はグラファイト膜のいずれかの両面に、適切な大きさの凹凸を有するスペーサーを積層し、これを平滑なプレス板で挟んで両側から適切な圧力でプレスしつつ、炭素化温度、黒鉛化温度で処理する。これによって、適切なシワの形成が可能となる。なお炭素化は高分子膜に対して実施する処理であり、黒鉛化は炭素化膜に対して実施する処理である。また、必要に応じて再黒鉛化処理を行なっても良い。再黒鉛化はグラファイト膜に対して実施する処理である。高分子膜を炭素化した後、黒鉛化する場合、炭素化及び黒鉛化の片方で前記プレス処理を行ってもよく、両方で処理を行ってもよい。 In the present invention, shrinkage and expansion are controlled by a press treatment using a spacer to form appropriate wrinkles, and specifically, it is suitable for both sides of a polymer film, a carbonized film, or a graphite film. Spacers having irregularities of various sizes are laminated, sandwiched between smooth press plates, pressed from both sides at an appropriate pressure, and treated at a carbonization temperature and a graphitization temperature. This allows the formation of appropriate wrinkles. The carbonization is a treatment performed on the polymer film, and the graphitization is a treatment performed on the carbonized film. Moreover, you may perform regraphitization treatment if necessary. Regraphitization is a process performed on a graphite film. When the polymer film is carbonized and then graphitized, the press treatment may be performed by either carbonization or graphitization, or both treatments may be performed.

被処理膜のプレスに用いる前記プレス板、およびスペーサーの材質は、高温の処理温度に対する耐久性を有する限り特に限定されないが、一般的にはカーボン材料や黒鉛系材料が好ましい。例えば、等方性黒鉛であるCIP(Cold Isotropic Press:冷間静水圧プレス)製や、グラッシーカーボン製の基板を用いることができる。 The material of the press plate and the spacer used for pressing the film to be treated is not particularly limited as long as it has durability against a high treatment temperature, but a carbon material or a graphite-based material is generally preferable. For example, a substrate made of isotropic graphite CIP (Cold Isotropic Press) or glassy carbon can be used.

本発明で用いられるスペーサーは適当な大きさの凹凸を持っており、スペーサーの表面粗さ(Ra)は、10μm以下である事が好ましく、8μm以下、より好ましくは5μm以下である。また、スペーサーの表面粗さは0.1μmである事が好ましく、0.2μm以上、より好ましくは0.4μm以上である。 The spacer used in the present invention has irregularities of an appropriate size, and the surface roughness (Ra) of the spacer is preferably 10 μm or less, preferably 8 μm or less, and more preferably 5 μm or less. The surface roughness of the spacer is preferably 0.1 μm or more, more preferably 0.2 μm or more, and more preferably 0.4 μm or more.

プレス条件は、スペーサー形状、被処理物の種類(高分子膜、炭化膜、グラファイト膜)、厚さなどの様々な要因が複雑にからみあうため一義的に決定することは困難であるが、下記条件の範囲内で設定すればよい。すなわち高分子膜は炭化の工程で縮み、黒鉛化の工程で伸びるために、加圧の力が強すぎると収縮の工程でフィルムが細かく割れてしまう。また、黒鉛化の過程で不均一なしわが発生する。一方、加圧の圧力が小さすぎる場合にはスペーサーの凹凸をグラファイト膜の凹凸として反映出来なくなる。したがって、加圧の仕方は炭素化、黒鉛化で均一な圧力ではなく、それぞれの伸び、縮みを考慮してその大きさを変える事が好ましい。 It is difficult to unambiguously determine the press conditions because various factors such as the shape of the spacer, the type of object to be treated (polymer film, carbonized film, graphite film), and thickness are intricately entwined. It may be set within the range of. That is, since the polymer film shrinks in the carbonization process and stretches in the graphitization process, if the pressurizing force is too strong, the film will be finely cracked in the shrinkage process. In addition, non-uniform wrinkles occur in the process of graphitization. On the other hand, if the pressurizing pressure is too small, the unevenness of the spacer cannot be reflected as the unevenness of the graphite film. Therefore, the method of pressurization is not a uniform pressure for carbonization and graphitization, but it is preferable to change the size in consideration of expansion and contraction of each.

連続的に加圧するか、あるいは断続的に加圧するかによらず。例えばプレスの圧力は、1gf/cm2以上、2000gf/cm2以下の範囲から適宜設定できる。プレス圧力は、2gf/cm2以上、5gf/cm2以上、10gf/cm2以上とすることが好ましい。また1000gf/cm2以下、600gf/cm2以下、400gf/cm2以下とすることが好ましい。 Regardless of whether it is continuously pressurized or intermittently pressurized. For example, the press pressure can be appropriately set from the range of 1 gf / cm 2 or more and 2000 gf / cm 2 or less. Pressing pressure, 2 gf / cm 2 or more, 5 gf / cm 2 or more, it is preferable to 10 gf / cm 2 or more. The 1000 gf / cm 2 or less, 600 gf / cm 2 or less, it is preferable to 400 gf / cm 2 or less.

プレス時間は諸条件に応じて短時間から長時間の範囲で適宜設定され、複数回のプレスを行ってもよい。ただし、黒鉛化時のプレスでは、早い段階でプレスを終了するのでなく、最高温度に到達するまでプレスを継続することが望ましい。黒鉛化処理時には、最高温度になるまでグラファイト膜の膜面方向の寸法が伸びるので、早い段階でプレスを終えると、その後の伸びによって不均一なシワが形成されてしまう恐れがある。また黒鉛化時のプレスでは、グラファイト膜の伸びが開始してからプレスを開始することが望ましい。グラファイト膜の伸び開始前の段階からプレスを開始すると、グラファイト膜の伸びを大きく抑制してしまい、かえって不均一なシワを発生させる恐れがある。黒鉛化時のプレスのタイミングは、例えば、2200℃以上、好ましくは2400℃以上、より好ましくは2600℃以上になった段階でプレスを開始し、最高到達温度までプレスを継続することが望ましい。さらには本発明では、短時間のプレスを繰り返して最高温度付近でもプレスを行ってもよい。プレスの圧力、時間、タイミングなどの細部は、適宜、最適化すればよい。 The press time is appropriately set in the range of a short time to a long time according to various conditions, and a plurality of presses may be performed. However, in the graphitization press, it is desirable to continue the press until the maximum temperature is reached, rather than ending the press at an early stage. During the graphitization treatment, the dimension of the graphite film in the film surface direction grows until the maximum temperature is reached. Therefore, if the pressing is finished at an early stage, uneven wrinkles may be formed due to the subsequent stretching. Further, in the press at the time of graphitization, it is desirable to start the press after the growth of the graphite film starts. If the pressing is started from the stage before the start of elongation of the graphite film, the elongation of the graphite film is greatly suppressed, and there is a risk of causing non-uniform wrinkles. As for the timing of pressing at the time of graphitization, it is desirable to start the pressing at a stage of, for example, 2200 ° C. or higher, preferably 2400 ° C. or higher, more preferably 2600 ° C. or higher, and continue the pressing to the maximum temperature reached. Further, in the present invention, the pressing may be repeated for a short time and pressed even near the maximum temperature. Details such as press pressure, time, and timing may be optimized as appropriate.

プレス手段は、機械的圧力制御が可能なプレス手段(プレス機構)であってもよく、プレス板の自重を利用したもの、又はプレス板の上に黒鉛製やカーボン製の重石を置いたものなどのように非機械的手段であってもよい。非機械的手段は、炭素化中、黒鉛化中に、終始一定の弱い加重を加える事に適しており、グラファイト膜に適度な高さのシワを形成する事ができ、好ましい。 The pressing means may be a pressing means (press mechanism) capable of mechanical pressure control, such as one using the weight of the press plate itself, or one in which a graphite or carbon weight stone is placed on the press plate. It may be a non-mechanical means such as. The non-mechanical means is suitable for applying a constant weak load from beginning to end during carbonization and graphitization, and can form wrinkles of an appropriate height on the graphite film, which is preferable.

スペーサーとしては、処理温度とプレス圧に対する耐久性を兼ね備えたものであれば特に制限はないが、例えば、紛体状粒子や繊維状物質から作製されたフィルムや織物が含まれる。紛体状粒子として、グラッシーカーボン粒子、黒鉛粒子、黒鉛鱗片、繊維状物質とし炭素繊維やグラファイ繊維炭素系・黒鉛系の粒子、又は繊維は好ましく用いられる。 The spacer is not particularly limited as long as it has durability against a processing temperature and a press pressure, and includes, for example, a film or a woven fabric made of powdery particles or a fibrous substance. As the powdery particles, glassy carbon particles, graphite particles, graphite scales, carbon fibers as fibrous substances, carbon-based / graphite-based particles of graphite fibers, or fibers are preferably used.

フィルム状や織物状に成型されたスペーサー表面の粗度(凹凸)は作製されるグラファイト膜の凹凸形成に大きな影響を与えるが、スペーサー表面の粗度とグラファイト膜の表面粗度の大きさは必ずしも一致しない。それはスペーサー表面の凹凸が場合によってはグラファイト膜を点で支える役目を果たすためであると考えられる。 The roughness (unevenness) of the surface of the spacer molded into a film or woven fabric has a great influence on the unevenness formation of the graphite film to be produced, but the roughness of the spacer surface and the surface roughness of the graphite film are not necessarily large. It does not match. It is considered that this is because the unevenness of the spacer surface serves to support the graphite film at points in some cases.

さらに、プレス冶具の表面に凹凸を設け、この凹凸をスペーサーとして利用してもよい。この場合、プレス冶具表面のサンドペーパー、サンドブラスト、研磨材などによる研磨により、プレス板表面に一定の形状や表面粗さを持たせることが好ましい。この様な目的にため、プレス冶具として表面を一定の程度に均一に粗化したCIP材製やグラッシーカーボン製のプレス板を用いてもよい。さらに炭素繊維を高温でプレスして、炭素繊維を表面に固着させたCIP材製やグラッシーカーボン製のプレス板を用いることも好ましい。 Further, the surface of the press jig may be provided with irregularities, and the irregularities may be used as a spacer. In this case, it is preferable that the surface of the press jig has a certain shape and surface roughness by polishing with sandpaper, sandblast, an abrasive, or the like. For such a purpose, a press plate made of CIP material or glassy carbon whose surface is uniformly roughened to a certain degree may be used as the press jig. Further, it is also preferable to use a press plate made of CIP material or glassy carbon in which the carbon fibers are pressed at a high temperature and the carbon fibers are fixed to the surface.

以上述べた、グラファイト膜TIMに最適な粗度を設ける各種手法は製造プロセスに応じて適宜選択すればよく、下記に示す実施例の内容に制限されるものではない。さらに本発明のグラファイトTIM膜の製造方法は、多数枚を重ねて一度に焼成できるため生産性に優れる。また、被処理膜の厚さが本発明の範囲の様に極めて薄く、物理的に破れやすい場合でも適用可能である。この様な、本発明のグラファイトTIM膜の製造方法によれば適切な大きさのシワを形成でき算術平均粗さ(Ra)を適切な範囲に制御できる。 The various methods for providing the optimum roughness of the graphite film TIM as described above may be appropriately selected according to the manufacturing process, and are not limited to the contents of the examples shown below. Further, the method for producing a graphite TIM film of the present invention is excellent in productivity because a large number of sheets can be stacked and fired at one time. Further, it can be applied even when the thickness of the film to be treated is extremely thin as in the range of the present invention and is physically easily torn. According to the method for producing a graphite TIM film of the present invention as described above, wrinkles having an appropriate size can be formed and the arithmetic mean roughness (Ra) can be controlled within an appropriate range.

(F)層間熱接合方法
本発明のTIMを用いた層間熱接合方法は、熱接合する部材間に本発明のTIMを狭持する工程を含む。本発明のTIMを層間に狭持させることにより、熱発生源あるいは熱発生源と熱的に接合された部材から、それ以下の温度である第二の部材へ熱を伝える層間熱接合を行うことができる。グラファイト膜は熱源に近い部材と熱源から遠い部材の間に挟持され、グラファイト膜とそれぞれの部材は直接接触している。
(F) Interlayer Thermal Bonding Method The interlayer thermal bonding method using the TIM of the present invention includes a step of sandwiching the TIM of the present invention between the members to be thermally bonded. By sandwiching the TIM of the present invention between layers, interlayer thermal bonding is performed to transfer heat from a heat generation source or a member thermally bonded to the heat generation source to a second member having a temperature lower than that. Can be done. The graphite film is sandwiched between a member close to the heat source and a member far from the heat source, and the graphite film and each member are in direct contact with each other.

優れた耐熱性の層間熱接合を実現するためグラファイト膜のみで層間を熱接合することが好ましい。接着層を介さずに層間熱接合を実現する方法として、単に機械的な圧力で固定しても良い。機械的に、ビスやネジ、あるいはバネ等によってか締める事は直接熱接合のため有効であり好ましい。しかしながら、本発明の特徴である低圧力下で低熱抵抗が実現できる点や熱抵抗の圧力依存性が小さい事を考慮すれば、必ずしも強くか締める必要なく、万が一か締める圧力が変化した場合でもその影響が小さいために、実用的には極めて有効な層間熱接合が実現できる。この様な手法によって少なくとも一方の温度が150℃以上である様な部材間の熱接合が可能と成る。 In order to realize heat-resistant interlayer thermal bonding, it is preferable to heat-bond the layers only with a graphite film. As a method of realizing thermal bonding between layers without using an adhesive layer, it may be fixed by simply mechanical pressure. Mechanically tightening with screws, screws, springs, etc. is effective and preferable for direct thermal bonding. However, considering that low thermal resistance can be realized under low pressure, which is a feature of the present invention, and that the pressure dependence of thermal resistance is small, it is not always necessary to tighten strongly, and even if the tightening pressure changes. Since the influence is small, it is possible to realize a practically extremely effective interlayer thermal bonding. By such a method, thermal bonding between members having at least one temperature of 150 ° C. or higher becomes possible.

この様にして形成された熱接合は、接合部材が相異なる熱膨張係数を有し、その差が大きい場合や部材間の温度差が大きい場合に有効である。本発明のグラファイトの膜面方向の平均線熱膨張係数(0℃〜200℃間)は±5×10−6/K以下であり、さらにグラファイト膜はその層構造に基づく潤滑性を有しているので、2つの部材間の平均線熱膨張係数の差が3×10−6/K以上である様な場合でも安定な熱接合が可能である。 The thermal bonding formed in this way is effective when the bonding members have different coefficients of thermal expansion and the difference is large or the temperature difference between the members is large. The average coefficient of linear thermal expansion (between 0 ° C and 200 ° C) of graphite in the film surface direction of the present invention is ± 5 × 10-6 / K or less, and the graphite film has lubricity based on its layer structure. Therefore, stable thermal bonding is possible even when the difference in the coefficient of linear thermal expansion between the two members is 3 × 10 -6 / K or more.

この様にして形成された熱接合は接合部の温度変化が大きく変化する様な場合にも有効である。例えば、使用時には150℃以上となるが、未使用時には室温となるような部分の熱接合に効果を発揮する。この様な方法での熱接合により、例えば150℃での240時間の連続耐熱評価試験において、その熱接合特性が20%以上変化しないような熱接合が可能と成る。また、例えば200℃−室温間の連続(2時間おき、96時間)の温度サイクル評価試験においてもその熱接合特性が20%以上変化しないような熱接合が可能と成る。この様なすぐれた耐熱性を有する熱接合方法は今までに知られていない。 The thermal junction formed in this way is also effective when the temperature change of the junction portion changes significantly. For example, it is effective for thermal bonding of a portion where the temperature is 150 ° C. or higher when used but is room temperature when not in use. Thermal bonding by such a method enables thermal bonding in which the thermal bonding characteristics do not change by 20% or more in, for example, a continuous heat resistance evaluation test at 150 ° C. for 240 hours. Further, for example, even in a continuous temperature cycle evaluation test between 200 ° C. and room temperature (every 2 hours, 96 hours), thermal bonding is possible so that the thermal bonding characteristics do not change by 20% or more. A heat bonding method having such excellent heat resistance has not been known so far.

従って、本発明の熱接合方法は、特に高温の環境や温度差が大きい環境下で使用する場合には優れた方法となる。特に、熱接合部材の少なくとも一方の温度が150℃以上である場合には極めて有効な接合方法であり、LEDやパワー半導体、あるいは自動車のエンジン周りなどの過酷な環境においてその有効性を発揮する事ができる。 Therefore, the thermal bonding method of the present invention is an excellent method especially when used in a high temperature environment or an environment with a large temperature difference. In particular, it is an extremely effective joining method when the temperature of at least one of the heat joining members is 150 ° C. or higher, and it is effective in a harsh environment such as an LED, a power semiconductor, or around an automobile engine. Can be done.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは本発明の技術的範囲に包含される。
<物性測定方法>
最初に、下記実施例における物性の測定法について以下に示す。
(1)グラファイト膜の厚さ
50×50mmに切り出したグラファイト膜の任意の5箇所の厚さを接触式厚さ計にて測定し、その平均値をグラファイト膜の厚さとした。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by the following Examples, and is carried out with appropriate modifications to the extent that it can be adapted to the gist of the above and the following. It is also possible, and they are within the technical scope of the invention.
<Measurement method of physical properties>
First, the method for measuring the physical properties in the following examples is shown below.
(1) Thickness of Graphite Film 50 × 50 mm The thickness of the graphite film cut out into 2 was measured at arbitrary 5 points with a contact type thickness gauge, and the average value was taken as the thickness of the graphite film.

(2)グラファイト膜の密度
グラファイト膜の密度は乾式自動密度計アキュピックII 1340(株式会社 島津製作所製)を用いて測定した。50×50mmに切り出した5枚のグラファイト膜について、1枚ずつ密度を測定し、その平均値を密度とした。
(2) Density of graphite film The density of graphite film was measured using a dry automatic densitometer Accupic II 1340 (manufactured by Shimadzu Corporation). The densities of five graphite films cut into 50 × 50 mm 2 were measured one by one, and the average value was taken as the density.

(3)グラファイト膜の熱伝導度
グラファイトフィルムの熱拡散率は、周期加熱法による熱拡散率測定装置(アルバック理工(株)社「LaserPit」装置)を用いて、25℃、真空下(10-2Pa程度)、10Hzの周波数を用いて測定した。これはレーザー加熱の点から一定距離だけ離れた点に熱電対を取り付け、その温度変化を測定する方法である。熱伝導率(W/mK)は、熱拡散率(m2/s)と密度(kg/m3)と比熱(798kJ/(kg・K))を掛け合わせることによって算出した。
(3) the thermal diffusivity of the thermal conductivity of the graphite film of the graphite film, using a thermal diffusivity measuring apparatus due to the periodic heating method (ULVAC-RIKO Co. "LaserPit" device), 25 ° C., under vacuum (10 - (Approximately 2 Pa), the measurement was performed using a frequency of 10 Hz. This is a method in which a thermocouple is attached at a point separated from the point of laser heating by a certain distance and the temperature change is measured. The thermal conductivity (W / mK) was calculated by multiplying the thermal diffusivity (m 2 / s), the density (kg / m 3 ) and the specific heat (798 kJ / (kg · K)).

(4)グラファイト膜の算術平均粗さRa
グラファイト膜の表面粗さ(算術平均粗さ)Raは、JIS B 0601に基づき、表面粗さ測定機Surfcom DX((株)東京精密製)を使用し、室温雰囲気下で値を測定した。測定は5cm角の正方形のグラファイト膜を用い、表面粗さRaの測定箇所は、図5の線分5aで示した5箇所である。基準長さの決定は、JIS B 0633に従い、送り速度0.05mm/秒で描いたチャートから基準長さLの部分を切り取り、その切り取り部分の中心線をX軸、縦方向をY軸として、粗さ曲線Y=f(X)で表したとき、次の式(1)で得られる値をμmで表したものが算術平均粗さRaである。グラファイト膜の5箇所(5つの線分5aの中央部分5β)にてそれぞれRaの値を求め、さらにその平均値を求め、これをグラファイト膜の算術平均粗さRaとした。
(4) Arithmetic mean roughness Ra of graphite film
The surface roughness (arithmetic mean roughness) Ra of the graphite film was measured in a room temperature atmosphere using a surface roughness measuring machine Surfcom DX (manufactured by Tokyo Precision Co., Ltd.) based on JIS B 0601. A 5 cm square graphite film was used for the measurement, and the surface roughness Ra was measured at the five points shown by the line segment 5a in FIG. To determine the reference length, cut out the part of the reference length L from the chart drawn at a feed rate of 0.05 mm / sec according to JIS B 0633, and set the center line of the cut out part as the X-axis and the vertical direction as the Y-axis. When expressed by the roughness curve Y = f (X), the arithmetic mean roughness Ra is the value obtained by the following equation (1) expressed in μm. The value of Ra was obtained at each of the five points of the graphite film (the central portion 5β of the five line segments 5a), and the average value was further obtained, which was used as the arithmetic mean roughness Ra of the graphite film.

Figure 0006847686
Figure 0006847686

(5)グラファイト膜のRa/Rave比の算出
選択されたグラファイト膜について、5箇所の算術平均粗さRaを測定した時の各箇所の値(Ra)の、全複数箇所での測定結果から求まるRaの平均値(Rave)に対する比、(Ra/Rave)を求め、その値を膜内ばらつきとした。
(5) Calculation of Ra / Rave ratio of graphite film Obtained from the measurement results of all the values (Ra) of each point when the arithmetic mean roughness Ra of 5 places is measured for the selected graphite film. The ratio of Ra to the average value (Rave), (Ra / Rave), was determined, and the value was defined as the intramembrane variation.

(6)熱抵抗特性の測定
本発明のグラファイトTIMの熱抵抗測定は、日立テクノロジーアンドサービス製精密熱抵抗測定装置を用いて行なった。本測定装置は精密な熱抵抗測定が可能な装置であって、その誤差は±0.002℃cm/Wである。試料寸法は10×10mm.荷重は10〜50N(0.1MPa〜0.5MPaに相当)の範囲、測定温度は60℃である。具体的には、まず界面温度が60℃になる様に加えるワット数(W)を調節し、測定は温度変化が一定になった後10回測定し、その平均値を測定値とした。上記は標準的な熱抵抗値の測定方法であるが、上記熱抵抗測定装置の測定ロッドの材質は銅であり接合面は鏡面仕上げされている。そのため、実用的な部材とは材質および表面凹凸の状態が異なっている。そこで、我々は、まず代表的な部材としてアルミナ、および銅のロッドを作製し熱抵抗値を測定した。またその表面粗度を測定し、必要に応じて表面を研磨してその表面粗度を変化させた。測定方法は上記標準的な熱抵抗測定法と同じである。
(6) Measurement of Thermal Resistance Characteristics The thermal resistance of the graphite TIM of the present invention was measured using a precision thermal resistance measuring device manufactured by Hitachi Technology and Service. This measuring device is a device capable of precise thermal resistance measurement, and the error is ± 0.002 ° C. cm 2 / W. Sample dimensions are 10 x 10 mm 2 . The load is in the range of 10 to 50 N (corresponding to 0.1 MPa to 0.5 MPa), and the measurement temperature is 60 ° C. Specifically, first, the wattage (W) to be added was adjusted so that the interface temperature became 60 ° C., and the measurement was performed 10 times after the temperature change became constant, and the average value was used as the measured value. The above is a standard method for measuring a thermal resistance value, but the material of the measuring rod of the thermal resistance measuring device is copper, and the joint surface is mirror-finished. Therefore, the material and the state of surface irregularities are different from those of practical members. Therefore, we first made alumina and copper rods as typical members and measured the thermal resistance value. Moreover, the surface roughness was measured, and if necessary, the surface was polished to change the surface roughness. The measuring method is the same as the above standard thermal resistance measuring method.

(7)連続耐熱評価試験、温度サイクル評価試験
連続耐熱評価試験、温度サイクル評価試験は図7に示した方法で行なった。連続耐熱評価試験の条件は150℃、240時間、空気中での連続試験である。試験の手順は次の通りである。まず、図7(A)の7aの下面、7cの上面にシリコングリース7dを塗布して ユニット(7a−7b−7c)の熱抵抗値を0.2MPaの圧力を加圧して測定する。次にシリコングリースを除去し、このユニット(B)に重し(0.2MPaの荷重に相当するステンレスブロック )を乗せ、ユニット全体を150℃の炉に投入し240時間加熱する。加熱後重しを除き、再び(a)の下面、(c)の上面にシリコングリースを塗布して熱抵抗値を測定した。加熱前後の熱抵抗値を比較しその変化率を計算した。また温度サイクル評価試験は、200℃−室温間の熱サイクルを2時間置きに行なうものであり、まず、上記方法で熱抵抗値を測定した後、200℃に温度設定した炉に上記ユニットを投入し、2時間後に室温に取り出す。室温で2時間経過後、再び200℃の炉に投入するという操作を繰り返した。この様な操作を96時間連続して行い、試験前後の熱抵抗値を比較しその変化率を計算した。
(7) Continuous heat resistance evaluation test, temperature cycle evaluation test The continuous heat resistance evaluation test and temperature cycle evaluation test were carried out by the method shown in FIG. The condition of the continuous heat resistance evaluation test is a continuous test in air at 150 ° C. for 240 hours. The test procedure is as follows. First, silicon grease 7d is applied to the lower surface of 7a and the upper surface of 7c in FIG. 7A, and the thermal resistance value of the unit (7a-7b-7c) is measured by applying a pressure of 0.2 MPa. Next, the silicon grease is removed, a weight (stainless steel block corresponding to a load of 0.2 MPa) is placed on this unit (B), and the entire unit is put into a furnace at 150 ° C. and heated for 240 hours. After heating, the weight was removed, silicon grease was applied again to the lower surface of (a) and the upper surface of (c), and the thermal resistance value was measured. The thermal resistance values before and after heating were compared and the rate of change was calculated. In the temperature cycle evaluation test, a heat cycle between 200 ° C. and room temperature is performed every 2 hours. First, the thermal resistance value is measured by the above method, and then the unit is put into a furnace whose temperature is set to 200 ° C. Then, take it out to room temperature after 2 hours. After 2 hours at room temperature, the operation of putting the mixture into the furnace at 200 ° C. was repeated. Such an operation was continuously performed for 96 hours, the thermal resistance values before and after the test were compared, and the rate of change was calculated.

(8)実施例、比較例に用いた試料の作製
以下に、実施例、比較例に用いた厚さの、シワの状況が異なるグラファイト膜の標準的な作製方法について記載する。尚、ここでは厚さ、焼成条件が同じものは同じアルファベット(A,B・・・など)で表示し、シワの状況の異なる試料を、A−1,A−2・・・、などの添え数字で記載している。
(8) Preparation of Samples Used in Examples and Comparative Examples The following describes a standard method for preparing graphite films having different thicknesses and wrinkles used in Examples and Comparative Examples. Here, those with the same thickness and firing conditions are displayed with the same alphabet (A, B ..., etc.), and samples with different wrinkle conditions are accompanied by A-1, A-2, etc. It is described by numbers.

ピロメリット酸二無水物、4,4’−ジアミノジフェニルエーテル、及び、p−フェニレンジアミン(モル比で4/3/1)から調製したポリアミド酸の18重量%のDMF溶液100gに、無水酢酸20gとイソキノリン10gからなる硬化剤を混合、攪拌し、遠心分離による脱泡の後、アルミ箔上に流延塗布した。攪拌から脱泡までは0℃に冷却しながら行った。このアルミ箔とポリアミド酸溶液の積層体を120℃で150秒間加熱し、自己支持性を有するゲルフィルムを得た。このゲルフィルムをアルミ箔から剥がし、フレームに固定した。このゲルフィルムを300℃、400℃、500℃で各30秒間加熱して100〜200℃の平均線熱膨張係数1.6×10−5cm/cm/℃、複屈折率0.14で、厚さの異なるポリイミドフィルムを製造した。 Acetic anhydride 20 g in 100 g of a 18 wt% DMF solution of polyamic acid prepared from pyromellitic dianhydride, 4,4'-diaminodiphenyl ether, and p-phenylenediamine (4/3/1 in molar ratio). A curing agent consisting of 10 g of isoquinolin was mixed, stirred, defoamed by centrifugation, and then cast and coated on an aluminum foil. The process from stirring to defoaming was performed while cooling to 0 ° C. The laminate of the aluminum foil and the polyamic acid solution was heated at 120 ° C. for 150 seconds to obtain a self-supporting gel film. This gel film was peeled off from the aluminum foil and fixed to the frame. This gel film was heated at 300 ° C., 400 ° C., and 500 ° C. for 30 seconds each to have an average linear thermal expansion coefficient of 1.6 × 10-5 cm / cm / ° C. and a birefringence of 0.14 at 100 to 200 ° C. Polyimide films with different thicknesses were manufactured.

得られたポリイミドフィルムを、電気炉を用いて窒素ガス中、10℃/分の速度で1000℃まで昇温し、1000℃で1時間保って予備処理した。次に、得られた炭素化フィルムを表面粗度Ra値が異なるグラファイト繊維フェルトからなるスペーサーに挟み、これを表面研磨したグラファイトブロックの間に配置し、グラファイトヒーター炉にセットした。20℃/分の昇温速度で2900℃まで昇温、最高温度で10分間保持し、その後40℃/分の速度で降温した。黒鉛化処理はアルゴン雰囲気でおこなった。この時、サンプルには50gf/cmとなる様に荷重を加えた。炭素化フィルムをそれぞれ表面粗度の異なるRa値を持つグラファイト繊維フェルトからなるスペーサーに挟み、これを表面研磨したグラファイトブロックの間に配置し、グラファイトヒーター炉にセットしてグラファイト膜を作製した。 The obtained polyimide film was heated to 1000 ° C. in nitrogen gas at a rate of 10 ° C./min using an electric furnace, and kept at 1000 ° C. for 1 hour for pretreatment. Next, the obtained carbonized film was sandwiched between spacers made of graphite fiber felt having different surface roughness Ra values, placed between graphite blocks whose surface was polished, and set in a graphite heater furnace. The temperature was raised to 2900 ° C. at a heating rate of 20 ° C./min, held at the maximum temperature for 10 minutes, and then lowered at a rate of 40 ° C./min. The graphitization treatment was performed in an argon atmosphere. At this time, a load was applied to the sample so as to be 50 gf / cm 2. The carbonized film was sandwiched between spacers made of graphite fiber felt having different surface roughness Ra values, placed between the surface-polished graphite blocks, and set in a graphite heater furnace to prepare a graphite film.

作製したグラファイト膜の厚さ、フィルム面方向の熱伝導度、フィルム面方向の平均線熱膨張係数(0℃〜200℃の間)、密度、Ra、はそれぞれ以下の通りである。
(A−1)厚さ:100μm、熱伝導度:800W/mK、線熱膨張係数:2.6×10−6/K、密度:1.4g/cm、Ra:5μm
(B−1)厚さ:80μm、熱伝導度:1000W/mK、線熱膨張係数:1.2×10−6/K、密度:1.8g/cm、Ra:0.4μm
(B−2)厚さ:80μm、熱伝導度:1000W/mK、線熱膨張係数:1.2×10−6/K、密度:1.8g/cm、Ra:2μm
(B−3)厚さ:80μm、熱伝導度:1000W/mK、線熱膨張係数:1.6×10−6/K、密度:1.8g/cm、Ra:6μm
(C−1)厚さ:48μm、熱伝導度:1300W/mK、線熱膨張係数:1.0×10−6/K、密度:2.0g/cm、Ra:6μm
(D−1)厚さ:20μm、熱伝導度:1580W/mK、線熱膨張係数:1.2×10−6/K、密度:2.1g/cm、Ra:2μm
(E−1)厚さ:8.1μm、熱伝導度:1780W/mK、線熱膨張係数:1.2×10−6/K、密度:2.1g/cm、Ra:2.4μm
(F−1)厚さ:2.2μm、熱伝導度:1800W/mK、線熱膨張係数:1.0×10−6/K、密度:2.2g/cm、Ra:5.5μm
(G−1)厚さ:1.0μm、熱伝導度:1780W/mK、線熱膨張係数:0.9×10−6/K、密度:2.1g/cm、Ra:3.3μm
(H−1)厚さ:0.4μm、熱伝導度:1800W/mK、線熱膨張係数:0.9×10−6/K、密度:1.9g/cm、Ra:0.8μm
(I−1)厚さ:0.2μm、熱伝導度:1710W/mK、線熱膨張係数:3.2×10−6/K、密度:1.9g/cm、Ra:4μm
(I−2)厚さ:0.2μm、熱伝導度:1710W/mK、線熱膨張係数:1.4×10−6/K、密度:1.9g/cm、Ra:0.03μm
(I−3)厚さ:0.2μm、熱伝導度:1710W/mK、線熱膨張係数:4.2×10−6/K、密度:1.9g/cm、Ra:12μm
(J−1)厚さ:0.1μm、熱伝導度:1580W/mK、線熱膨張係数:5.2×10−6/K、密度:1.9g/cm、Ra:5μm
The thickness of the produced graphite film, the thermal conductivity in the film surface direction, the average linear thermal expansion coefficient (between 0 ° C. and 200 ° C.) in the film surface direction, the density, and Ra are as follows.
(A-1) Thickness: 100 μm, Thermal conductivity: 800 W / mK, Coefficient of linear thermal expansion: 2.6 × 10-6 / K, Density: 1.4 g / cm 3 , Ra: 5 μm
(B-1) Thickness: 80 μm, Thermal conductivity: 1000 W / mK, Coefficient of linear thermal expansion: 1.2 × 10-6 / K, Density: 1.8 g / cm 3 , Ra: 0.4 μm
(B-2) Thickness: 80 μm, Thermal conductivity: 1000 W / mK, Coefficient of linear thermal expansion: 1.2 × 10-6 / K, Density: 1.8 g / cm 3 , Ra: 2 μm
(B-3) Thickness: 80 μm, Thermal conductivity: 1000 W / mK, Coefficient of linear thermal expansion: 1.6 × 10-6 / K, Density: 1.8 g / cm 3 , Ra: 6 μm
(C-1) Thickness: 48 μm, Thermal conductivity: 1300 W / mK, Coefficient of linear thermal expansion: 1.0 × 10-6 / K, Density: 2.0 g / cm 3 , Ra: 6 μm
(D-1) Thickness: 20 μm, Thermal conductivity: 1580 W / mK, Coefficient of linear thermal expansion: 1.2 × 10-6 / K, Density: 2.1 g / cm 3 , Ra: 2 μm
(E-1) Thickness: 8.1 μm, Thermal conductivity: 1780 W / mK, Coefficient of linear thermal expansion: 1.2 × 10-6 / K, Density: 2.1 g / cm 3 , Ra: 2.4 μm
(F-1) Thickness: 2.2 μm, Thermal conductivity: 1800 W / mK, Coefficient of linear thermal expansion: 1.0 × 10-6 / K, Density: 2.2 g / cm 3 , Ra: 5.5 μm
(G-1) Thickness: 1.0 μm, Thermal conductivity: 1780 W / mK, Coefficient of linear thermal expansion: 0.9 × 10-6 / K, Density: 2.1 g / cm 3 , Ra: 3.3 μm
(H-1) Thickness: 0.4 μm, Thermal conductivity: 1800 W / mK, Linear thermal expansion coefficient: 0.9 × 10-6 / K, Density: 1.9 g / cm 3 , Ra: 0.8 μm
(I-1) Thickness: 0.2 μm, Thermal conductivity: 1710 W / mK, Coefficient of linear thermal expansion: 3.2 × 10-6 / K, Density: 1.9 g / cm 3 , Ra: 4 μm
(I-2) Thickness: 0.2 μm, Thermal conductivity: 1710 W / mK, Coefficient of linear thermal expansion: 1.4 × 10-6 / K, Density: 1.9 g / cm 3 , Ra: 0.03 μm
(I-3) Thickness: 0.2 μm, Thermal conductivity: 1710 W / mK, Coefficient of linear thermal expansion: 4.2 × 10-6 / K, Density: 1.9 g / cm 3 , Ra: 12 μm
(J-1) Thickness: 0.1 μm, Thermal conductivity: 1580 W / mK, Coefficient of linear thermal expansion: 5.2 × 10-6 / K, Density: 1.9 g / cm 3 , Ra: 5 μm

[実施例1〜10]
上記(B)〜(I)の10種類の試料を図6に示した方法で、銅(熱膨張係数:16.6×10−6/K、表面粗度:Ra=0.4μm)、およびアルミナ(熱膨張係数:5.4×10−6/K、表面粗度:Ra=2.3μm)の部材間に狭持してその熱抵抗値を測定した。
[Examples 1 to 10]
The 10 types of samples (B) to (I) above were prepared by the method shown in FIG. 6 for copper (coefficient of thermal expansion: 16.6 × 10-6 / K, surface roughness: Ra = 0.4 μm) and. The thermal resistance value was measured by sandwiching it between members of alumina (coefficient of thermal expansion: 5.4 × 10-6 / K, surface roughness: Ra = 2.3 μm).

Figure 0006847686
Figure 0006847686

この結果から、前記2つの部材間に狭持される層間熱接合部材が、厚さ200nm〜80μm、密度が1.40〜2.26g/cmの範囲のグラファイトフィルムであり、フィルム面方向の熱伝導率が500W/mK以上であれば、異なる熱膨張係数を有する(この場合には銅とアルミナ)2つの部材間で優れた熱抵抗特性(20℃における、0.2MPaの加圧時の熱抵抗値を3.0℃cm/W以下、その圧力依存性(R0.1P/R0.5Pの比)を3.0以下)を実現できる事が分かった。この様な熱接合特性を実現するためには狭持される前のグラファイト膜の線熱膨張係数が±5×10−6/K以下、その表面粗度(Ra)が0.1μm〜10μmの範囲である事が好ましい。 From this result, the interlayer thermal bonding member sandwiched between the two members is a graphite film having a thickness of 200 nm to 80 μm and a density of 1.40 to 2.26 g / cm 3 in the film surface direction. When the thermal conductivity is 500 W / mK or more, excellent thermal resistance characteristics between two members having different coefficients of thermal expansion (copper and alumina in this case) (at the time of pressurization of 0.2 MPa at 20 ° C.) It was found that a thermal resistance value of 3.0 ° C. cm 2 / W or less and a pressure dependence ( ratio of R 0.1P / R 0.5P ) of 3.0 or less can be realized. In order to realize such thermal bonding characteristics, the linear thermal expansion coefficient of the graphite film before being narrowed is ± 5 × 10-6 / K or less, and its surface roughness (Ra) is 0.1 μm to 10 μm. It is preferably in the range.

[比較例1〜4]
(A−1)(I−2)(I−3)(J−1)の4種類の試料を実施例1〜8と同じ部材間に虚狭持してその熱抵抗値を測定し、それらの結果を表2に示した。これらの試料の内(A−1)(J−1)はその厚さが本発明の範囲を外れている。(I−2)(I−3)の厚さは本発明の範囲にあるシワの範囲が本発明の範囲を外れるものである。
[Comparative Examples 1 to 4]
The four types of samples (A-1), (I-2), (I-3), and (J-1) were held between the same members as in Examples 1 to 8 and their thermal resistance values were measured. The results of are shown in Table 2. The thickness of (A-1) and (J-1) of these samples is outside the scope of the present invention. The thicknesses of (I-2) and (I-3) are such that the range of wrinkles within the scope of the present invention is outside the scope of the present invention.

Figure 0006847686
Figure 0006847686

この様なグラファイトフィルムにおいては、20℃における、0.2MPaの加圧時の熱抵抗値を3.0℃cm/W以下にする事は出来なかった。また、A−1の試料においては圧力依存性を3以内にする事ができなかった。 In such a graphite film, the thermal resistance value at 20 ° C. at the time of pressurization of 0.2 MPa could not be set to 3.0 ° C. cm 2 / W or less. Moreover, in the sample of A-1, the pressure dependence could not be set to 3 or less.

[実施例11〜20]
図7に記載した方法でグラファイト膜C‐1を用いて、熱膨張係数の異なる2つの部材間の熱接合特性の耐熱性評価試験を行った。実験は第一の部材7aと第二の部材−7cの間に層間熱接合材7bを挟み、第一の部材7aの下面、第二の部材7bの上面にシリコングリースを塗布して、ユニット(7a−7b−7c)全体の熱抵抗値は日立テクノロジーアンドサービス製精密熱抵抗測定装置を用いて(荷重:0.2MPa)測定を行なった。次にシリコングリースを除去し、ユニット(7a−7b−7c)に重し(0.2MPaの荷重に相当するステンレスブロック )を乗せ全体を150℃、240時間加熱した。加熱後重しを除き、再び7aの下面、7cの上面にシリコングリースを塗布して熱抵 抗値を測定した。加熱前後の熱抵抗値を比較しその変化率を計算した。実験結果を表3にしめす。その結果、前記2つの部材の熱膨張係数の差が3×10−6K以上であっても良好な熱接合が可能である事が分かった。無論、熱膨張係数の差が3×10−6K以下である部材間の熱接合は問題なく実施できる事は言うまでもない。
[Examples 11 to 20]
Using the graphite film C-1 by the method shown in FIG. 7, a heat resistance evaluation test of the thermal bonding characteristics between two members having different coefficients of thermal expansion was performed. In the experiment, the interlayer thermal bonding material 7b was sandwiched between the first member 7a and the second member-7c, and silicon grease was applied to the lower surface of the first member 7a and the upper surface of the second member 7b to form a unit ( 7a-7b-7c) The overall thermal resistance value was measured using a precision thermal resistance measuring device manufactured by Hitachi Technology and Service (load: 0.2 MPa). Next, the silicon grease was removed, a weight (stainless steel block corresponding to a load of 0.2 MPa) was placed on the unit (7a-7b-7c), and the whole was heated at 150 ° C. for 240 hours. After heating, the weight was removed, silicon grease was applied to the lower surface of 7a and the upper surface of 7c again, and the heat resistance value was measured. The thermal resistance values before and after heating were compared and the rate of change was calculated. The experimental results are shown in Table 3. As a result, it was found that good thermal bonding is possible even when the difference in the coefficient of thermal expansion of the two members is 3 × 10 -6 K or more. Needless to say, thermal bonding between members having a difference in coefficient of thermal expansion of 3 × 10-6 K or less can be carried out without any problem.

Figure 0006847686
Figure 0006847686

上記方法で作製したユニットを用いて、室温−200℃の間での温度サイクル評価試験(2時間置き)を96時間連続で行ない、その結果を表3に示した。この様な耐熱評価試験の結果、本発明のグラファイトTIMを用いれば、この様な耐久試験においてその熱接合特性を20%以内(1.2倍以内)に抑える事が出来る。なお、上記の150℃、240時間の耐熱性評価試験、室温−200℃間の温度サイクル評価試験によってグラファイト膜(C−1)の電気伝導度、熱伝導度は全く変化しない事が確認されており、上記のTIMとしての熱抵抗特性の変化は界面熱抵抗の変化であると結論する事ができる。また、耐熱評価試験後の熱抵抗値は測定時の加圧力を変える事によって測定前の値に戻す事が出来、界面抵抗値が再生可能である事が分かった。この事は本発明の実用上の大きな利点となる。 Using the unit prepared by the above method, a temperature cycle evaluation test (every 2 hours) was carried out continuously for 96 hours between room temperature and −200 ° C., and the results are shown in Table 3. As a result of such a heat resistance evaluation test, if the graphite TIM of the present invention is used, its thermal bonding characteristics can be suppressed to 20% or less (1.2 times or less) in such a durability test. It was confirmed by the above-mentioned heat resistance evaluation test at 150 ° C. and 240 hours and the temperature cycle evaluation test between room temperature and 200 ° C. that the electrical conductivity and thermal conductivity of the graphite film (C-1) did not change at all. Therefore, it can be concluded that the above-mentioned change in thermal resistance characteristics as TIM is a change in interfacial thermal resistance. Further, it was found that the thermal resistance value after the heat resistance evaluation test can be returned to the value before the measurement by changing the pressing force at the time of measurement, and the interfacial resistance value can be regenerated. This is a great practical advantage of the present invention.

以上のべた層間熱接合方法は各種の冷却システムの要となる熱接合部分に広範囲に使用する事ができる。例えば、高温となるCPUを冷却するための装置、エンジン冷却用システムを含む車体冷却システム、吸気冷却システム、エアフィンクーラー冷却システム、ガス冷却システム、キルン冷却システム、などの冷却システムに用いられる。 The above-mentioned solid interlayer heat bonding method can be widely used in the heat bonding portion which is the key to various cooling systems. For example, it is used in a cooling system such as a device for cooling a CPU that becomes hot, a vehicle body cooling system including an engine cooling system, an intake air cooling system, an air fin cooler cooling system, a gas cooling system, and a kiln cooling system.

4a グラファイト膜
4b スペーサー
4c プレス冶具
5a 線分
5α 各辺の中点
5β 線分の中点
5γ 重心
6a 第一の部材
6b 層間熱接合部材
6c 第二の部材
6d 重し
6e 加熱源
7a 第一の部材
7b 層間熱接合部材
7c 第二の部材
7d シリコングリース
7e 重し
4a Graphite film 4b Spacer 4c Press jig 5a Line segment 5α Midpoint of each side 5β Midpoint of line segment 5γ Center of gravity 6a First member 6b Interlayer heat bonding member 6c Second member 6d Weight 6e Heat source 7a First Member 7b Interlayer heat bonding member 7c Second member 7d Silicon grease 7e Weight

Claims (7)

熱膨張係数が相異なる2つの部材の間に層間熱接合部材が狭持された層間熱接合方法であって、
前記層間熱接合部材は厚さ200nm〜80μmのグラファイト膜を含み、
該グラファイト膜の密度は1.40g/cm3〜2.26g/cm3であり、
該グラファイト膜の面方向の熱伝導率は500W/mK〜2000W/mKであり、また、
前記2つの部材の0℃〜200℃の間の平均線熱膨張係数の差が3×10 -6 /K以上であり、さらに、
前記グラファイト膜の0℃〜200℃での面方向の平均線熱膨張係数は−5×10 -6 〜+5×10 -6 /Kである層間熱接合方法。
This is an interlayer thermal bonding method in which an interlayer thermal bonding member is sandwiched between two members having different coefficients of thermal expansion.
The interlayer thermal bonding member contains a graphite film having a thickness of 200 nm to 80 μm, and contains a graphite film.
Density of the graphite film was 1.40g / cm 3 ~2.26g / cm 3 ,
Thermal conductivity in the plane direction of the graphite film is Ri 500W / mK~2000W / mK der, also,
The difference in the average coefficient of linear thermal expansion between 0 ° C. and 200 ° C. of the two members is 3 × 10 -6 / K or more, and further.
0 ° C. to 200 DEG average linear thermal expansion coefficient in a plane direction at ° C. is -5 × 10 -6 ~ + 5 × 10 -6 / K der Ru interlayer heat bonding method of the graphite film.
前記2つの部材の間に狭持される前におけるグラファイト膜の表面の算術平均粗さRaは0.1μm〜10μmである請求項1に記載の層間熱接合方法。 The interlayer thermal bonding method according to claim 1, wherein the arithmetic average roughness Ra of the surface of the graphite film before being sandwiched between the two members is 0.1 μm to 10 μm. 0.2MPaの荷重を加えたときの熱抵抗値が3.0℃cm2/W以下である請求項1、又は2に記載の層間熱接合方法。 The interlayer thermal bonding method according to claim 1 or 2 , wherein the thermal resistance value when a load of 0.2 MPa is applied is 3.0 ° C. cm 2 / W or less. 0.1MPaの荷重を加えたときの熱抵抗値(R0.1P)と0.5MPaの荷重を加えたときの熱抵抗値(R0.5P)の比であるR0.1P/R0.5Pが1.0〜3.0である請求項1〜3のいずれか1項に記載の層間熱接合方法。 Thermal resistance when subjected to a load of 0.1 MPa (R 0.1P) as the ratio of the thermal resistance (R 0.5P) when a load is applied to 0.5MPa R 0.1P / R 0.5P 1 The interlayer thermal bonding method according to any one of claims 1 to 3, which is 0 to 3.0. 150℃、240時間の連続耐熱評価試験の後における熱抵抗値(R240H)が、該連続耐熱評価試験の前における熱抵抗値(R0H)の1.0〜1.2倍である請求項1〜3のいずれか1項に記載の層間熱接合方法。 Claim that the thermal resistance value (R 240H) after the continuous heat resistance evaluation test at 150 ° C. for 240 hours is 1.0 to 1.2 times the thermal resistance value (R 0H ) before the continuous heat resistance evaluation test. The interlayer thermal bonding method according to any one of 1 to 3. 96時間連続の2時間置きの200℃と室温間の温度サイクル評価試験の後における熱抵抗値(R96H)が、該温度サイクル評価試験の前における熱抵抗値(R0H)の1.0〜1.2倍である請求項1〜3のいずれか1項に記載の層間熱接合方法。 The thermal resistance value (R 96H ) after the temperature cycle evaluation test between 200 ° C. and room temperature every two hours for 96 hours continuously is 1.0 to 1.0 of the thermal resistance value (R 0H) before the temperature cycle evaluation test. The interlayer thermal bonding method according to any one of claims 1 to 3, which is 1.2 times. 請求項1〜のいずれか1項に記載の層間熱接合方法を用いた冷却システム。 A cooling system using the interlayer thermal bonding method according to any one of claims 1 to 6.
JP2017017694A 2017-02-02 2017-02-02 Interlayer heat bonding method, cooling system Active JP6847686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017017694A JP6847686B2 (en) 2017-02-02 2017-02-02 Interlayer heat bonding method, cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017017694A JP6847686B2 (en) 2017-02-02 2017-02-02 Interlayer heat bonding method, cooling system

Publications (2)

Publication Number Publication Date
JP2018125456A JP2018125456A (en) 2018-08-09
JP6847686B2 true JP6847686B2 (en) 2021-03-24

Family

ID=63110474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017017694A Active JP6847686B2 (en) 2017-02-02 2017-02-02 Interlayer heat bonding method, cooling system

Country Status (1)

Country Link
JP (1) JP6847686B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110411769B (en) * 2019-07-19 2020-12-04 北京空天技术研究所 Structural thermal examination test device with pretightening force adjustment function

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327081A (en) * 2006-06-06 2007-12-20 Toyota Central Res & Dev Lab Inc Adhesion method, semiconductor device manufacturing method, and semiconductor device
JP5329135B2 (en) * 2008-06-20 2013-10-30 株式会社カネカ Graphite composite film
JP6043188B2 (en) * 2013-01-08 2016-12-14 株式会社カネカ Interlayer thermal connection member and interlayer thermal connection method
JP6594639B2 (en) * 2015-02-12 2019-10-23 株式会社カネカ High thermal conductive heat dissipation substrate and manufacturing method thereof

Also Published As

Publication number Publication date
JP2018125456A (en) 2018-08-09

Similar Documents

Publication Publication Date Title
JP7181093B2 (en) Interlayer Thermal Bonding Member, Interlayer Thermal Bonding Method, and Method for Manufacturing Interlayer Thermal Bonding Member
JP6043188B2 (en) Interlayer thermal connection member and interlayer thermal connection method
JP4659827B2 (en) Method for producing graphite film
JP6814267B2 (en) Graphite sheet, high thermal conductivity heat dissipation substrate, and method for manufacturing graphite sheet
JP4617396B2 (en) Graphite film and graphite composite film
JP5438882B2 (en) Graphite film with excellent folding characteristics
JP2008024571A (en) Graphite film and method for manufacturing graphite film
JP6108389B2 (en) Interlayer thermal connection member and interlayer thermal connection method
US20190039908A1 (en) Graphite film and graphite tape
JP5121396B2 (en) Graphite film and method for producing the same
JP7022706B2 (en) Layered thermal bonding member, interlayer thermal bonding method, manufacturing method of interlayer thermal bonding member
JP6847686B2 (en) Interlayer heat bonding method, cooling system
JP5830500B2 (en) Method for producing graphite film
JP2010195609A (en) Graphite film and method for producing graphite film
JP2004299919A (en) Graphite and method for producing the same
JP6552935B2 (en) Interlayer thermal bonding material and cooling system for power semiconductors
JP7075899B2 (en) Layered thermal bonding member, interlayer thermal bonding method, manufacturing method of interlayer thermal bonding member
JP6800034B2 (en) Interlayer bonding part, interlayer thermal bonding member, interlayer thermal bonding method, and method for manufacturing interlayer thermal bonding member
JP2010189244A (en) Graphite block and graphite-oriented thermal conductive sheet
CN115011315A (en) Preparation and application of flexible electronic biomass/polyimide-based heat-dissipation material film
JP2009266982A (en) Heating structure and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210303

R150 Certificate of patent or registration of utility model

Ref document number: 6847686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250