JP6627869B2 - Liquid crystal display device with touch panel and method of manufacturing the same - Google Patents

Liquid crystal display device with touch panel and method of manufacturing the same Download PDF

Info

Publication number
JP6627869B2
JP6627869B2 JP2017517841A JP2017517841A JP6627869B2 JP 6627869 B2 JP6627869 B2 JP 6627869B2 JP 2017517841 A JP2017517841 A JP 2017517841A JP 2017517841 A JP2017517841 A JP 2017517841A JP 6627869 B2 JP6627869 B2 JP 6627869B2
Authority
JP
Japan
Prior art keywords
group
touch panel
optical compensation
liquid crystal
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017517841A
Other languages
Japanese (ja)
Other versions
JPWO2016181756A1 (en
Inventor
里誌 森井
里誌 森井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPWO2016181756A1 publication Critical patent/JPWO2016181756A1/en
Application granted granted Critical
Publication of JP6627869B2 publication Critical patent/JP6627869B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Description

本発明はタッチパネル付き液晶表示装置及びその製造方法に関する。より詳しくは、正面コントラストに優れるタッチパネル付き液晶表示装置及びその製造方法に関する。   The present invention relates to a liquid crystal display device with a touch panel and a method for manufacturing the same. More specifically, the present invention relates to a liquid crystal display device with a touch panel having excellent front contrast and a method of manufacturing the same.

近年、タッチパネル搭載の液晶表示装置の普及が進み、今後も増えていくものと予想される。   In recent years, the spread of liquid crystal display devices equipped with a touch panel has progressed, and it is expected that the number will increase in the future.

例えば、タッチパネルに用いられる静電容量型タッチパネルモジュールは、透明な基板上に透明導電層(透明電極ともいう。)によるX方向に延びるX電極パターンが形成され、他の透明導電層によるY方向に延びるY電極パターンが形成されたものがある。タッチパネルの表面の指で触れることによりX電極パターンとY電極パターンが接触し、その位置での静電容量の変化を当該X及びY電極パターンにより検出している。   For example, in a capacitance type touch panel module used for a touch panel, an X electrode pattern extending in the X direction by a transparent conductive layer (also referred to as a transparent electrode) is formed on a transparent substrate, and in the Y direction by another transparent conductive layer. Some have an extended Y electrode pattern. When the finger on the surface of the touch panel touches the X electrode pattern and the Y electrode pattern, the change in capacitance at that position is detected by the X and Y electrode patterns.

このような2つの電極を有する透明導電層を偏光板及び液晶セルと組み合わせる構成として、例えば、アウトセル型タッチパネルモジュールなどがある。   As a configuration in which such a transparent conductive layer having two electrodes is combined with a polarizing plate and a liquid crystal cell, for example, there is an out-cell type touch panel module.

図1に従来のアウトセル型タッチパネルモジュールを具備するタッチパネル付き液晶表示装置の一例である模式図を示す。   FIG. 1 is a schematic view showing an example of a liquid crystal display device with a touch panel having a conventional out-cell touch panel module.

詳細は後述するが、液晶セルに隣接して、偏光子を2枚の保護フィルムで挟持した偏光板を配置し、その上に粘着層を介して、透明な基材フィルム上にITO(インジウム・スズ酸化物)等を含有する透明電極と当該透明電極を保護する保護層を形成したフィルムセンサー(タッチパネルモジュールともいう。)を設け、さらに粘着層を介してガラス又はアクリル板のような前面板と貼合される。   Although details will be described later, a polarizing plate in which a polarizer is sandwiched between two protective films is arranged adjacent to the liquid crystal cell, and an ITO (indium oxide) is formed on a transparent base film via an adhesive layer on the polarizing plate. A transparent electrode containing tin oxide) and a film sensor (also referred to as a touch panel module) formed with a protective layer for protecting the transparent electrode, and a front plate such as glass or an acrylic plate via an adhesive layer. Pasted.

このような構成の場合は、偏光板とフィルムセンサーがそれぞれ独立しているため、ある程度の厚さを有するタッチパネルとなる。   In such a configuration, since the polarizing plate and the film sensor are independent of each other, the touch panel has a certain thickness.

今後、表示装置の薄型化が進む中で、主要部材であるタッチパネルにも、更なる薄型化が求められている。   In the future, as display devices become thinner, further reduction in thickness of touch panels, which are main members, is required.

薄型の要求に応えるためのタッチパネル構成として、フィルムセンサーと偏光板の一体化が試みられており、アウトセル型に対して、いわゆるミッドセル型もしくはインナーセル型と呼ばれるタッチパネルモジュールがある(例えば、特許文献1及び特許文献2参照。)。これらの偏光板一体化型タッチパネルモジュールは、前記透明電極を偏光板の構成要素である光学補償フィルムや保護フィルム上に形成することで、部材の薄型化に対応するものである。   As a touch panel configuration for meeting the demand for thinness, integration of a film sensor and a polarizing plate has been attempted, and there is a so-called mid-cell type or inner-cell type touch panel module as opposed to an out-cell type (for example, Patent Document 1). And Patent Document 2.). These polarizing plate integrated type touch panel modules correspond to a reduction in thickness of members by forming the transparent electrode on an optical compensation film or a protective film which is a component of the polarizing plate.

一方、液晶表示装置の主要部材の1つとして、液晶セルが挙げられる。   On the other hand, one of the main members of the liquid crystal display device is a liquid crystal cell.

液晶セルは用いられる液晶分子に応じて、複数のタイプが存在するが、現在はVA(vertical alignment)モード及びIPS(in−plane switching)モードが主流となっている。一般的に、VAモードはIPSモードに比べて正面コントラストに優れていると言われている。これは、VAモード液晶分子は電界オフの場合に液晶分子が垂直に配向するため、黒表示時にバックライト光が視認側へ漏れることをより抑えられるからである。   There are a plurality of types of liquid crystal cells according to liquid crystal molecules to be used. At present, a VA (vertical alignment) mode and an IPS (in-plane switching) mode are mainly used. Generally, it is said that the VA mode is superior in the front contrast as compared with the IPS mode. This is because the liquid crystal molecules of the VA mode liquid crystal molecules are vertically aligned when the electric field is off, so that it is possible to further suppress the backlight light from leaking to the viewing side during black display.

本発明者は、前記いわゆるミッドセル型もしくはインナーセル型の偏光板一体型タッチパネルモジュールをVAモード型液晶表示セルに組み合わせたところ、IPSモード型液晶表示セルを用いた場合に対して予想されるような、正面コントラストの改善効果を得ることができなかった。   The present inventor combined the so-called mid-cell type or inner-cell type polarizing plate integrated touch panel module with a VA mode liquid crystal display cell. And the effect of improving the front contrast could not be obtained.

特開2011−81810号公報JP 2011-81810 A 特開2013−104847号公報JP 2013-104847 A

本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、正面コントラストに優れた、VAモード型液晶セルを具備するタッチパネル付き液晶表示装置及びその製造方法を提供することである。   The present invention has been made in view of the above-described problems and circumstances, and a problem to be solved is to provide a liquid crystal display device with a touch panel having a VA mode liquid crystal cell having excellent front contrast and a method of manufacturing the same. is there.

本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、VAモード型液晶セルの視認側に、透明導電層を有する偏光板一体型タッチパネルモジュールを具備するタッチパネル付き液晶表示装置であって、前記偏光板一体型タッチパネルモジュールが、前記VAモード型液晶セルから視認側に向かって、少なくとも一方の面に透明導電層を有する光学補償フィルム、偏光子及び保護フィルムをこの順に有し、前記光学補償フィルムのガラス転移温度Tgが特定の値以上であるときに、本発明の課題を解決できることを見出した。   In order to solve the above problems, the present inventor, in the course of studying the causes of the above problems, has a liquid crystal with a touch panel equipped with a polarizing plate integrated touch panel module having a transparent conductive layer on the viewing side of the VA mode liquid crystal cell. In the display device, the polarizing plate-integrated touch panel module includes an optical compensation film having a transparent conductive layer on at least one surface, a polarizer, and a protective film in this order from the VA mode liquid crystal cell toward a viewing side. And found that the object of the present invention can be solved when the glass transition temperature Tg of the optical compensation film is equal to or higher than a specific value.

すなわち、本発明に係る上記課題は、以下の手段により解決される。   That is, the above object according to the present invention is solved by the following means.

1.VAモード型液晶セルの視認側に、透明導電層を有する偏光板一体型タッチパネルモジュールを具備するタッチパネル付き液晶表示装置であって、
前記透明導電層を有する偏光板一体型タッチパネルモジュールが、
前記VAモード型液晶セルから視認側に向かって、少なくとも一方の面に透明導電層を有する光学補償フィルム、偏光子及び保護フィルムをこの順に有し、かつ、
前記光学補償フィルムのガラス転移温度Tgが155〜250℃の範囲内であることを特徴とするタッチパネル付き液晶表示装置。
1. A liquid crystal display device with a touch panel, comprising a polarizing plate-integrated touch panel module having a transparent conductive layer on the viewing side of a VA mode liquid crystal cell,
A polarizing plate integrated touch panel module having the transparent conductive layer,
An optical compensation film having a transparent conductive layer on at least one surface, a polarizer, and a protective film in this order from the VA mode liquid crystal cell toward the viewing side, and
A liquid crystal display device with a touch panel, wherein the glass transition temperature Tg of the optical compensation film is in the range of 155 to 250 ° C.

2.前記光学補償フィルムが、シクロオレフィン系樹脂、ポリイミド系樹脂又はポリアリレート系樹脂のいずれかを含有することを特徴とする第1項に記載のタッチパネル付き液晶表示装置。   2. 2. The liquid crystal display device with a touch panel according to claim 1, wherein the optical compensation film contains one of a cycloolefin-based resin, a polyimide-based resin, and a polyarylate-based resin.

3.前記光学補償フィルムが、150℃で1時間熱処理されたときの面内方向の位相差値Roの変動が、±3.0%の範囲内であり、厚さ方向の位相差値Rtの変動が±4.0%の範囲内であることを特徴とする第1項又は第2項に記載のタッチパネル付き液晶表示装置。   3. When the optical compensation film is heat-treated at 150 ° C. for 1 hour, the variation of the in-plane retardation value Ro is within ± 3.0%, and the variation of the thickness direction retardation value Rt is less than ± 3.0%. 3. The liquid crystal display device with a touch panel according to item 1 or 2, wherein the value is within a range of ± 4.0%.

4.前記光学補償フィルムの厚さが、10〜40μmの範囲内であることを特徴とする第1項から第3項までのいずれか一項に記載のタッチパネル付き液晶表示装置。   4. 4. The liquid crystal display device with a touch panel according to claim 1, wherein a thickness of the optical compensation film is in a range of 10 to 40 μm. 5.

5.前記光学補償フィルムが、位相差上昇剤として、下記一般式(3)で表される構造を有する含窒素複素環化合物を含有することを特徴とする第1項から第4項までのいずれか一項に記載のタッチパネル付き液晶表示装置。   5. 5. The optical compensation film according to any one of items 1 to 4, wherein the optical compensation film contains a nitrogen-containing heterocyclic compound having a structure represented by the following general formula (3) as a retardation increasing agent. A liquid crystal display device with a touch panel according to the above item.

Figure 0006627869
(式中Aはピラゾール環を表す。Ar及びArはそれぞれ芳香族炭化水素環又は芳香族複素環を表し、置換基を有してもよい。Rは水素原子、アルキル基、アシル基、スルホニル基、アルキルオキシカルボニル基、又はアリールオキシカルボニル基を表す。qは1又は2を表す。n及びmはそれぞれ1〜3の整数を表す。)
6.第1項から第5項までのいずれか一項に記載のタッチパネル付き液晶表示装置を製造するタッチパネル付き液晶表示装置の製造方法であって、
前記光学補償フィルムの少なくとも一方の面に前記透明導電層を形成した後、150℃以上で熱処理する工程と、
偏光子を前記透明導電層を形成した光学補償フィルムと保護フィルムとで挟持するように貼合して、偏光板一体型タッチパネルモジュールを作製する工程と、
前記偏光板一体型タッチパネルモジュールの前記光学補償フィルム側を前記VAモード型液晶セルに貼合する工程と、を備えることを特徴とするタッチパネル付き液晶表示装置の製造方法。
Figure 0006627869
(In the formula, A represents a pyrazole ring. Ar 1 and Ar 2 each represent an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and may have a substituent. R 1 is a hydrogen atom, an alkyl group, or an acyl group. , A sulfonyl group, an alkyloxycarbonyl group, or an aryloxycarbonyl group. Q represents 1 or 2. n and m each represent an integer of 1 to 3.)
6. A method for manufacturing a liquid crystal display device with a touch panel for manufacturing the liquid crystal display device with a touch panel according to any one of the first to fifth items,
After forming the transparent conductive layer on at least one surface of the optical compensation film, a step of heat treatment at 150 ° C. or more,
Laminating the polarizer so as to be sandwiched between the optically compensatory film and the protective film on which the transparent conductive layer is formed, and a step of producing a polarizing plate integrated type touch panel module,
Laminating the optical compensation film side of the polarizing plate-integrated touch panel module to the VA mode liquid crystal cell.

本発明の上記手段により、正面コントラストに優れた、VAモード型液晶セルを具備するタッチパネル付き液晶表示装置及びその製造方法を提供することができる。   By the above means of the present invention, it is possible to provide a liquid crystal display device with a touch panel having a VA mode liquid crystal cell having excellent front contrast and a method of manufacturing the same.

本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。   Although the mechanism of the effect or the mechanism of action of the present invention has not been clarified, it is speculated as follows.

一般的に、IPSモード型液晶セルの場合は、光学補償フィルムに位相差を有しない、すなわち面内方向の位相差値Ro及び厚さ方向の位相差値Rtがゼロ近傍のフィルムを使用することが望ましい。一方、VAモード型液晶セルの場合は、光学補償フィルムとしては前記位相差値Ro及びRtが高いフィルム、例えばRoが20〜70nmの範囲であり、Rtが70〜200nmの範囲の位相差フィルム使用することが望ましいとされている。   Generally, in the case of an IPS mode liquid crystal cell, a film having no retardation in the optical compensation film, that is, a film having a retardation value Ro in the in-plane direction and a retardation value Rt in the thickness direction near zero is used. Is desirable. On the other hand, in the case of a VA mode type liquid crystal cell, as the optical compensation film, a film having a high retardation value Ro and Rt, for example, a retardation film in which Ro is in the range of 20 to 70 nm and Rt is in the range of 70 to 200 nm is used. It is desirable to be.

このような位相差値の高いフィルムは、通常製造過程で延伸処理が施され、フィルムを構成するポリマー分子が高度に配向することで、当該位相差値を得ている。   Such a film having a high retardation value is usually subjected to a stretching treatment in a manufacturing process, and the polymer molecules constituting the film are highly oriented to obtain the retardation value.

前述のいわゆるミッドセル型もしくはインナーセル型と呼称される偏光板一体型タッチパネルモジュールを作製するために、前記光学補償フィルムに透明導電層を設ける際は、当該透明導電層を形成した後、導電層の低抵抗値化のために、熱処理(アニール処理ともいう。)が必要である。例えば、具体的には150℃で30分程度の加熱処理を行うが、これにより、前記光学補償フィルム中のポリマー分子の配向が乱れ、その結果必要とされる光学補償性能が不十分となり、正面コントラストが低下するものと推察される。   To provide a transparent conductive layer on the optical compensation film in order to produce a polarizing plate integrated type touch panel module called a so-called mid-cell type or inner-cell type, after forming the transparent conductive layer, the conductive layer Heat treatment (also referred to as annealing treatment) is required to reduce the resistance value. For example, specifically, a heat treatment at about 150 ° C. for about 30 minutes is performed, whereby the orientation of the polymer molecules in the optical compensation film is disturbed, and as a result, the required optical compensation performance becomes insufficient. It is assumed that the contrast is reduced.

本発明の構成によれば、上記現象に対応するため、ガラス転移点Tgが155℃以上である耐熱性を有する光学補償フィルムを用いることで、前記熱処理による位相差値変動を抑制し、VAモード型液晶固有の特徴である、優れた正面コントラストを達成できるものと推察される。   According to the configuration of the present invention, in order to cope with the above-described phenomenon, the use of a heat-resistant optical compensation film having a glass transition point Tg of 155 ° C. or more suppresses the retardation value fluctuation due to the heat treatment, and the VA mode It is presumed that excellent front contrast, which is a unique feature of the liquid crystal, can be achieved.

また、前述のようにタッチパネルの薄型化のために、光学補償フィルムも厚さ40μm以下である薄型化が要求される場合がある。その際、位相差値と膜厚は相反する関係にあるため、40μm以下の薄膜化の場合は、添加することによって位相差値を上昇することのできる添加剤(本願では、位相差上昇剤ともいう。)をフィルム中に加えることが有効である。本発明者は種々な位相差上昇剤を検討する中で、より優れた効果が得られる特定の構造を有する位相差上昇剤を見出した。この添加剤を加えることによって、前記熱処理時に、位相差上昇剤自体の配向が乱れ、当該化合物由来の位相差変動が起きることによって、フィルムを構成するポリマー分子由来の位相差変動を相殺することができ、薄膜であっても優れた位相差値及び熱処理変動耐性を実現できるものと推察される。   Further, as described above, in order to reduce the thickness of the touch panel, the optical compensation film may be required to have a thickness of 40 μm or less. At this time, since the retardation value and the film thickness are in a reciprocal relationship, in the case of a thin film having a thickness of 40 μm or less, an additive capable of increasing the retardation value by adding the additive (in this application, both of the retardation increasing agent). Is added to the film. The present inventors have studied various phase difference increasing agents, and have found a phase difference increasing agent having a specific structure capable of obtaining more excellent effects. By adding this additive, at the time of the heat treatment, the orientation of the phase difference increasing agent itself is disturbed, and the phase difference variation derived from the compound occurs, thereby canceling the phase difference variation derived from the polymer molecules constituting the film. It is presumed that excellent retardation value and heat treatment fluctuation resistance can be realized even with a thin film.

従来のアウトセル型タッチパネモジュールル付き液晶表示装置の構成の一例を示す模式図Schematic diagram showing an example of the configuration of a conventional liquid crystal display device with an out-cell touch panel module 本発明の偏光板一体型タッチパネルモジュールを具備するタッチパネル付き液晶表示装置の構成の一例を示す模式図Schematic diagram showing an example of the configuration of a liquid crystal display device with a touch panel including the polarizing plate integrated type touch panel module of the present invention. 本発明の偏光板一体型タッチパネルモジュールを具備するタッチパネル付き液晶表示装置の構成の別の一例を示す模式図The schematic diagram which shows another example of the structure of the liquid crystal display device with a touch panel provided with the polarizing plate integrated type touch panel module of this invention. 本発明の偏光板一体型タッチパネルモジュールを具備するタッチパネル付き液晶表示装置の構成の別の一例を示す模式図The schematic diagram which shows another example of the structure of the liquid crystal display device with a touch panel provided with the polarizing plate integrated type touch panel module of this invention. 本発明の偏光板一体型タッチパネルモジュールを具備するタッチパネル付き液晶表示装置の構成の別の一例を示す模式図The schematic diagram which shows another example of the structure of the liquid crystal display device with a touch panel provided with the polarizing plate integrated type touch panel module of this invention. 本発明の偏光板一体型タッチパネルモジュールを具備するタッチパネル付き液晶表示装置の構成の別の一例を示す模式図The schematic diagram which shows another example of the structure of the liquid crystal display device with a touch panel provided with the polarizing plate integrated type touch panel module of this invention.

本発明のタッチパネル付き液晶表示装置は、VAモード型液晶セルの視認側に、透明導電層を有する偏光板一体型タッチパネルモジュールを具備するタッチパネル付き液晶表示装置であって、前記透明導電層を有する偏光板一体型タッチパネルモジュールが、前記VAモード型液晶セルから視認側に向かって、少なくとも一方の面に透明導電層を有する光学補償フィルム、偏光子及び保護フィルムをこの順に有し、かつ、前記光学補償フィルムのガラス転移温度Tgが155〜250℃の範囲内であることを特徴とする。この特徴は、各請求項に係る発明に共通する技術的特徴である。   The liquid crystal display device with a touch panel according to the present invention is a liquid crystal display device with a touch panel including a polarizing plate integrated type touch panel module having a transparent conductive layer on the viewing side of a VA mode liquid crystal cell, wherein the polarized light having the transparent conductive layer is provided. A plate-integrated touch panel module has an optical compensation film, a polarizer, and a protective film having a transparent conductive layer on at least one surface in this order from the VA mode liquid crystal cell toward the viewing side, and the optical compensation The glass transition temperature Tg of the film is in the range of 155 to 250C. This feature is a technical feature common to the claimed inventions.

本発明の実施態様としては、本発明の効果発現の観点から、前記光学補償フィルムが、シクロオレフィン系樹脂、ポリイミド系樹脂又はポリアリレート系樹脂のいずれかを含有することが、前記光学補償フィルムのガラス転移温度Tgを満足する観点から、好ましい。   As an embodiment of the present invention, from the viewpoint of achieving the effects of the present invention, the optical compensation film may contain any of a cycloolefin-based resin, a polyimide-based resin, or a polyarylate-based resin, It is preferable from the viewpoint of satisfying the glass transition temperature Tg.

また、前記光学補償フィルムが、150℃で1時間熱処理されたときの面内方向の位相差値Roの変動が、±3.0%の範囲内であり、厚さ方向の位相差値Rtの変動が±4.0%の範囲内であることが、光学補償機能を十分に発現し、かつ、熱処理による位相差変動を抑制し、VAモード型液晶セルを用いたときの優れた正面コントラストを達成できる観点から、好ましい性能である。   Further, when the optical compensation film is heat-treated at 150 ° C. for 1 hour, the variation of the in-plane retardation value Ro is within a range of ± 3.0%, and the variation of the retardation value Rt in the thickness direction is less than ± 3.0%. When the variation is within the range of ± 4.0%, the optical compensation function is sufficiently exhibited, the phase difference variation due to the heat treatment is suppressed, and the excellent front contrast when using the VA mode liquid crystal cell is obtained. This is a preferable performance from the viewpoint of achievement.

また、前記光学補償フィルムの厚さが、10〜40μmの範囲内であることが、タッチパネルの薄型化に対して好ましい膜厚であり、その場合は、前記一般式(3)で表される構造を有する含窒素複素環化合物を含有することが、所望の位相差値を付与し、かつ熱処理に対する位相差変動をさらに抑制する観点から好ましい。   The thickness of the optical compensation film is preferably in the range of 10 to 40 μm, which is a preferable thickness for reducing the thickness of the touch panel. In this case, the structure represented by the general formula (3) is used. It is preferable to contain a nitrogen-containing heterocyclic compound having the following formula, from the viewpoint of imparting a desired retardation value and further suppressing a variation in retardation due to heat treatment.

本発明のタッチパネル付き液晶表示装置の製造方法は、前記光学補償フィルムの少なくとも一方の面に前記透明導電層を形成後、150℃以上で熱処理する工程と、偏光子を前記透明導電層を形成した光学補償フィルムと保護フィルムとで挟持するように貼合して、偏光板一体型タッチパネルモジュールを作製する工程と、前記偏光板一体型タッチパネルモジュールの前記光学補償フィルム側を前記VAモード型液晶セルに貼合する工程と、を備えることが好ましい。   The method for producing a liquid crystal display device with a touch panel according to the present invention includes, after forming the transparent conductive layer on at least one surface of the optical compensation film, a heat treatment at 150 ° C. or higher, and a polarizer formed with the transparent conductive layer. Affixing the optical compensation film and the protective film so as to be sandwiched therebetween, to produce a polarizing plate integrated touch panel module, and the optical compensation film side of the polarizing plate integrated touch panel module to the VA mode liquid crystal cell. And a step of bonding.

以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「〜」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。   Hereinafter, the present invention, its components, and embodiments and modes for carrying out the present invention will be described in detail. In addition, in this application, "-" is used in the meaning including the numerical value described before and after that as a lower limit and an upper limit.

≪本発明のタッチパネル付き液晶表示装置の概要≫
本発明のタッチパネル付き液晶表示装置は、VAモード型液晶セルの視認側に、透明導電層を有する偏光板一体型タッチパネルモジュールを具備するタッチパネル付き液晶表示装置であって、前記透明導電層を有する偏光板一体型タッチパネルモジュールが、
前記VAモード型液晶セルから視認側に向かって、少なくとも一方の面に透明導電層を有する光学補償フィルム、偏光子及び保護フィルムをこの順に有し、かつ、
前記光学補償フィルムのガラス転移温度Tgが155〜250℃の範囲内であることを特徴とする。
<< Outline of Liquid Crystal Display Device with Touch Panel of the Present Invention >>
The liquid crystal display device with a touch panel according to the present invention is a liquid crystal display device with a touch panel including a polarizing plate integrated type touch panel module having a transparent conductive layer on the viewing side of a VA mode liquid crystal cell, wherein the polarized light having the transparent conductive layer is provided. Board integrated type touch panel module,
An optical compensation film having a transparent conductive layer on at least one surface, a polarizer, and a protective film in this order from the VA mode liquid crystal cell toward the viewing side, and
The glass transition temperature Tg of the optical compensation film is in the range of 155 to 250C.

本発明のタッチパネル付き液晶表示装置は、前述のとおりVAモード型液晶表示セルを具備することが特徴であり、当該VAモード型液晶表示セルを採用することにより、従来のIPSモード型液晶表示セルを用いるタッチパネル付き液晶表示装置に比較して、正面コントラストを向上するものである。   The liquid crystal display device with a touch panel according to the present invention is characterized in that it has a VA mode liquid crystal display cell as described above. By adopting the VA mode liquid crystal display cell, a conventional IPS mode liquid crystal display cell can be obtained. This is to improve the front contrast as compared with the liquid crystal display device with a touch panel used.

前記光学報償フィルムのガラス転移温度Tgは、熱処理時の位相差値変動を抑制し、前記コントラストを向上する効果の観点から155℃以上であることが必要である。155℃未満であると透明導電層を形成した後の熱処理において、光学補償フィルムのポリマー分子の乱れによる位相差値の変動が生じ、光学補償機能が低下し、VAモード型液晶固有の特徴である優れた正面コントラストが得られない。   The glass transition temperature Tg of the optical compensation film needs to be 155 ° C. or higher from the viewpoint of suppressing the fluctuation of the retardation value during the heat treatment and improving the contrast. When the temperature is lower than 155 ° C., in the heat treatment after the formation of the transparent conductive layer, the phase difference value fluctuates due to the disorder of the polymer molecules of the optical compensation film, and the optical compensation function is reduced, which is a characteristic characteristic of the VA mode liquid crystal. Excellent front contrast cannot be obtained.

また、前記光学補償フィルムには光学的及び物理的な機能を向上する観点から種々な添加剤が添加されるが、それらを含有する状態で、前記ガラス転移温度の範囲を満たすことが必要である。例えば、可塑剤等を添加すると、その種類及び添加量によってはガラス転移温度が低下する場合もあり、設計上の留意点である。   Further, various additives are added to the optical compensation film from the viewpoint of improving optical and physical functions, and it is necessary to satisfy the range of the glass transition temperature in a state in which various additives are contained. . For example, when a plasticizer or the like is added, the glass transition temperature may decrease depending on the type and the amount of addition, which is a design consideration.

前記ガラス転移温度Tgは、JIS K−7121に従って、例えばセイコーインスツル(株)製の示差走査熱量計DSC220を用いて測定して、求めることができる。具体的な方法としては、試料フィルムを10mg程度を容器にセットし、窒素流量50ml/minの条件下で、20℃/minで室温から250℃まで昇温して10分間保持し(第1スキャン)、次に20℃/minの速度で30℃まで降温して10分間保持し(第2スキャン)、さらに20℃/minで250℃まで昇温し(第3スキャン)、DSC曲線を作成し、得られた第3スキャンのDSC曲線からガラス転移温度Tgを求める。   The glass transition temperature Tg can be determined by, for example, using a differential scanning calorimeter DSC220 manufactured by Seiko Instruments Inc. according to JIS K-7121. As a specific method, about 10 mg of a sample film is set in a container, and the temperature is raised from room temperature to 250 ° C. at a rate of 20 ° C./min under a nitrogen flow rate of 50 ml / min and held for 10 minutes (first scan). ) Then, the temperature was lowered to 30 ° C. at a rate of 20 ° C./min, held for 10 minutes (second scan), and further raised to 250 ° C. at 20 ° C./min (third scan) to prepare a DSC curve. The glass transition temperature Tg is determined from the obtained DSC curve of the third scan.

さらに前述のとおり、本発明に係る光学補償フィルムは熱処理時の位相差値変動をより抑制する目的で、前記一般式(3)で表される構造を有する位相差上昇剤を含有することが好ましい。   Further, as described above, the optical compensation film according to the present invention preferably contains a retardation increasing agent having a structure represented by the general formula (3) for the purpose of further suppressing a change in retardation value during heat treatment. .

本発明の検討の過程において、汎用の樹脂フィルムを種々検討した結果、ジアセチルセルロースフィルムは湿度による寸法変動が大きく、当該フィルム上に透明導電層を形成すると保存中に収縮や伸びが生じて電極の割れ等が生じ、使用が困難であった。また、PETフィルムは位相差が大きすぎてVAモード型液晶表示装置の光学補償フィルムとしては使用が困難であった。同様に、ポリカーボネート(PC)フィルムは光弾性係数が大きく同様にVAモード型液晶表示装置の光学補償フィルムとしては不適であった。さらにアクリル樹脂フィルムは、ガラス転移温度Tgが低く本発明の光学補償フィルムとしては、不適であった。   In the course of the study of the present invention, as a result of various studies of a general-purpose resin film, the diacetyl cellulose film has a large dimensional change due to humidity, and when a transparent conductive layer is formed on the film, shrinkage or elongation occurs during storage, and the electrode Cracks and the like occurred, and it was difficult to use. In addition, the PET film has too large a phase difference, and has been difficult to use as an optical compensation film of a VA mode liquid crystal display device. Similarly, the polycarbonate (PC) film has a large photoelastic coefficient and is similarly unsuitable as an optical compensation film for a VA mode liquid crystal display device. Further, the acrylic resin film had a low glass transition temperature Tg and was unsuitable as the optical compensation film of the present invention.

<本発明のタッチパネル付き液晶表示装置の構成>
本発明のタッチパネル付き液晶表示装置は、VAモード型液晶セルの視認側に、透明導電層を有する偏光板一体型タッチパネルモジュールを具備するタッチパネル付き液晶表示装置であって、前記透明導電層を有する偏光板一体型タッチパネルモジュールが、前記VAモード型液晶セルから視認側に向かって、少なくとも一方の面に透明導電層を有する光学補償フィルム、偏光子及び保護フィルムをこの順に有し、かつ、前記光学補償フィルムのガラス転移温度Tgが155〜250℃の範囲内であることを特徴とし、前記光学補償フィルムが、シクロオレフィン系樹脂、ポリイミド系樹脂又はポリアリレート系樹脂のいずれかを含有することが、耐熱性と位相差値の制御の観点から好ましい。
<Configuration of liquid crystal display device with touch panel of the present invention>
The liquid crystal display device with a touch panel according to the present invention is a liquid crystal display device with a touch panel including a polarizing plate integrated type touch panel module having a transparent conductive layer on the viewing side of a VA mode liquid crystal cell, wherein the polarized light having the transparent conductive layer is provided. A plate-integrated touch panel module has an optical compensation film, a polarizer, and a protective film having a transparent conductive layer on at least one surface in this order from the VA mode liquid crystal cell toward the viewing side, and the optical compensation The glass transition temperature Tg of the film is in the range of 155 to 250 ° C., wherein the optical compensation film contains a cycloolefin-based resin, a polyimide-based resin, or a polyarylate-based resin. It is preferable from the viewpoints of controllability and phase difference value.

本発明のタッチパネル付き液晶表示装置の構成を比較例の構成をまじえて図をもって説明する。   The configuration of the liquid crystal display device with a touch panel of the present invention will be described with reference to the drawings, together with the configuration of a comparative example.

図1は、従来のアウトセル型タッチパネルモジュールを具備するタッチパネル付き液晶表示装置の構成の一例を示す模式図である。   FIG. 1 is a schematic diagram showing an example of a configuration of a liquid crystal display device with a touch panel including a conventional out-cell touch panel module.

比較例であるタッチパネル付き液晶表示装置10は、液晶セル1の一方の面に偏光子2を保護フィルムT1及び光学補償フィルムT2で挟持した偏光板P1を有し、その上に導電層基材フィルム4の両面に透明導電層5と保護層6を有するタッチパネルモジュールTを粘着層3を介して前記偏光板P1に接着し、さらにタッチパネルモジュールTに粘着層3を介して前面板7を貼合する。前記液晶セル1の他方の面は、偏光子2を光学補償フィルムT3及び保護フィルムT4で挟持した偏光板P2を有する。偏光板P1側が視認側であり、偏光板P2側がバックライト側である。ここで一般的には前記液晶セル1はIPSモード型である。   A liquid crystal display device with a touch panel 10 as a comparative example has a polarizing plate P1 in which a polarizer 2 is sandwiched between a protective film T1 and an optical compensation film T2 on one surface of a liquid crystal cell 1, and a conductive layer base film thereon. 4, a touch panel module T having a transparent conductive layer 5 and a protective layer 6 on both surfaces is bonded to the polarizing plate P1 via an adhesive layer 3, and a front plate 7 is bonded to the touch panel module T via the adhesive layer 3. . The other surface of the liquid crystal cell 1 has a polarizing plate P2 in which a polarizer 2 is sandwiched between an optical compensation film T3 and a protective film T4. The polarizing plate P1 side is the viewing side, and the polarizing plate P2 side is the backlight side. Here, the liquid crystal cell 1 is generally of the IPS mode type.

図2は、本発明の偏光板一体型タッチパネルモジュールを具備するタッチパネル付き液晶表示装置の構成の一例を示す模式図である。   FIG. 2 is a schematic diagram illustrating an example of the configuration of a liquid crystal display device with a touch panel including the polarizing plate integrated touch panel module of the present invention.

本発明のタッチパネル付き液晶表示装置20は、液晶セル1の一方の面に保護フィルムT1及び光学補償フィルムT2で偏光子2を挟持した偏光板P1を有し、当該光学補償フィルムT2はその両面側に透明導電層5が形成されるいわゆるミッドセル型もしくはインナーセル型構造を有する偏光板一体型タッチパネルモジュールを具備する。このような構成にすることにより、アウトセル型に比較してタッチパネル付き液晶表示装置を薄型化することができる。それぞれのフィルムや層間の接着は適宜粘着層3を形成し行うことが好ましい。   The liquid crystal display device with a touch panel 20 of the present invention has a polarizing plate P1 in which a polarizer 2 is sandwiched between a protective film T1 and an optical compensation film T2 on one surface of a liquid crystal cell 1, and the optical compensation film T2 is on both sides thereof. A polarizer-integrated touch panel module having a so-called mid-cell or inner-cell structure in which a transparent conductive layer 5 is formed. With such a configuration, the liquid crystal display device with the touch panel can be made thinner than the out-cell type. It is preferable that the adhesion between the respective films and layers is performed by appropriately forming the adhesive layer 3.

前記液晶セル1の他方の面は、同様に偏光子2を光学補償フィルムT3及び保護フィルムT4で挟持した偏光板P2を有する。ここで前記液晶セル1はVAモード型である。   The other surface of the liquid crystal cell 1 similarly has a polarizing plate P2 in which a polarizer 2 is sandwiched between an optical compensation film T3 and a protective film T4. Here, the liquid crystal cell 1 is of a VA mode type.

また、上記は最小構成であり、各部材間に、機能性層(ハードコート層、中間層、帯電防止層、平滑化層、紫外線吸収層、カール防止層等)を必要によって設けてもよく、フィルムの保護層としてハードコート層を形成することや、帯電防止層を形成することは好ましい態様である。   Further, the above is the minimum configuration, and a functional layer (a hard coat layer, an intermediate layer, an antistatic layer, a smoothing layer, an ultraviolet absorbing layer, an anti-curl layer, and the like) may be provided between the members as necessary. Forming a hard coat layer as a protective layer of the film and forming an antistatic layer are preferred embodiments.

本発明に係る偏光板一体型タッチパネルモジュール全体の厚さは特に制限はないが、撓み防止、良好な抵抗値、取扱い性等の観点から7〜80μmの範囲内であることが好ましく、より好ましくは10〜60μmの範囲内である。   The thickness of the entire polarizing plate-integrated touch panel module according to the present invention is not particularly limited, but is preferably in the range of 7 to 80 μm, more preferably from the viewpoints of prevention of bending, good resistance value, handleability, and the like. It is in the range of 10 to 60 μm.

図3は、本発明の偏光板一体型タッチパネルモジュールを具備するタッチパネル付き液晶表示装置の構成の別の一例を示す模式図である。   FIG. 3 is a schematic diagram illustrating another example of the configuration of a liquid crystal display device with a touch panel including the polarizing plate integrated touch panel module of the present invention.

図3の構成では、透明導電層5を保護フィルムT1及び光学補償フィルムT2の上層としてそれぞれ形成する構成である。   In the configuration of FIG. 3, the transparent conductive layer 5 is formed as an upper layer of the protective film T1 and the optical compensation film T2.

図4は、本発明の偏光板一体型タッチパネルモジュールを具備するタッチパネル付き液晶表示装置の構成の別の一例を示す模式図である。   FIG. 4 is a schematic diagram showing another example of the configuration of a liquid crystal display device with a touch panel including the polarizing plate integrated touch panel module of the present invention.

図4の構成では、透明導電層5を保護フィルムT1の上層及び光学補償フィルムT2の下層としてそれぞれ形成する構成である。   In the configuration of FIG. 4, the transparent conductive layer 5 is formed as an upper layer of the protective film T1 and a lower layer of the optical compensation film T2.

図5は、本発明の偏光板一体型タッチパネルモジュールを具備するタッチパネル付き液晶表示装置の構成の別の一例を示す模式図である。   FIG. 5 is a schematic view showing another example of the configuration of a liquid crystal display device with a touch panel including the polarizing plate integrated touch panel module of the present invention.

図5の構成では、透明導電層5を一層として形成し、光学補償フィルムT2の下層に配置した構成である。この場合の透明導電層は、層中にX電極パターンとY電極パターンを絶縁層を介して有する構成であることが好ましい。   In the configuration of FIG. 5, the transparent conductive layer 5 is formed as a single layer, and is disposed below the optical compensation film T2. In this case, the transparent conductive layer preferably has a configuration in which the X electrode pattern and the Y electrode pattern are provided via an insulating layer.

図6は、本発明の偏光板一体型タッチパネルモジュールを具備するタッチパネル付き液晶表示装置の構成の別の一例を示す模式図である。   FIG. 6 is a schematic diagram showing another example of the configuration of the liquid crystal display device with a touch panel including the polarizing plate integrated touch panel module of the present invention.

図6の構成では、透明導電層5を一層として形成し、光学補償フィルムT2の上層に配置した構成である。同様に、この場合の透明導電層は、層中にX電極パターンとY電極パターンを絶縁層を介して有する構成である
以下、本発明の偏光板一体型タッチパネルモジュールを構成する各要素について詳細に説明する。
In the configuration of FIG. 6, the transparent conductive layer 5 is formed as a single layer, and is disposed above the optical compensation film T2. Similarly, the transparent conductive layer in this case has a configuration in which an X electrode pattern and a Y electrode pattern are interposed in the layer with an insulating layer interposed therebetween. Hereinafter, each element constituting the polarizing plate integrated touch panel module of the present invention will be described in detail. explain.

〔1〕光学補償フィルム
本発明に係る光学補償フィルムのガラス転移温度Tgは、155〜250℃の範囲内であり、Tgの下限としては155℃以上であることが必要である。光学補償フィルムは通常、樹脂、可塑剤、各種添加剤、及びマット剤などを含有するが、本発明ではでき上がりのフィルムとしてのガラス転移温度Tgが155℃以上であることを特徴とする。
[1] Optical Compensation Film The glass transition temperature Tg of the optical compensation film according to the present invention is in the range of 155 to 250 ° C., and the lower limit of Tg needs to be 155 ° C. or more. The optical compensation film usually contains a resin, a plasticizer, various additives, a matting agent, and the like, but the present invention is characterized in that the glass transition temperature Tg of the finished film is 155 ° C. or higher.

上記ガラス転移温度Tgは、フィルムが透明導電層を形成する際の熱処理に対して、位相差変動を抑制する観点から、155℃以上であることが必要であり、ガラス転移温度Tgの上限としては250℃以下である。Tgが250℃を超えると、内部応力の上昇にともなう密着性や耐クラック性の低下をきたすことがある。したがって本発明ではガラス転移温度Tgが250℃までの光学補償フィルムを対象としている。   The glass transition temperature Tg is required to be 155 ° C. or higher from the viewpoint of suppressing the phase difference fluctuation with respect to the heat treatment when the film forms the transparent conductive layer, and the upper limit of the glass transition temperature Tg is as follows. 250 ° C. or less. If the Tg exceeds 250 ° C., the adhesion and the crack resistance may decrease with an increase in the internal stress. Therefore, the present invention is directed to an optical compensation film having a glass transition temperature Tg of up to 250 ° C.

本発明に係る光学補償フィルムに用いられる好ましい樹脂は、樹脂単体としてのガラス転移温度Tgが155℃以上であることが好ましく、さらに位相差の発現性、安定性を考慮すると、中でもセルロースエステル系樹脂、シクロオレフィン系樹脂、ポリイミド系樹脂又はポリアリレート系樹脂のいずれかを含有することが好ましく、シクロオレフィン系樹脂、ポリイミド系樹脂又はポリアリレート系樹脂のいずれかを含有することがさらに好ましく、シクロオレフィン系樹脂を含有することが特に好ましい。   The preferred resin used in the optical compensation film according to the present invention preferably has a glass transition temperature Tg of a resin alone of 155 ° C. or higher, and in consideration of the development of phase difference and stability, among others, a cellulose ester resin Preferably, it contains any of cycloolefin resin, polyimide resin or polyarylate resin, more preferably contains any of cycloolefin resin, polyimide resin or polyarylate resin, cycloolefin It is particularly preferable to contain a system resin.

〔1.1〕セルロースエステル系樹脂
光学補償フィルムに含有されたときに、ガラス転移温度Tgが155℃以上であるセルロースエステル樹脂(以下、セルロースエステルともいう。)は、セルロースの低級脂肪酸エステルであることが好ましい。中でも位相差が出やすく湿度に対する寸法の安定性の観点から、セルロースアセテートプロピオネートやセルロースアセテートブチレート等の混合脂肪酸エステルを用いることが好ましい。
[1.1] Cellulose Ester Resin A cellulose ester resin having a glass transition temperature Tg of 155 ° C. or higher when contained in an optical compensation film (hereinafter, also referred to as a cellulose ester) is a lower fatty acid ester of cellulose. Is preferred. Above all, it is preferable to use a mixed fatty acid ester such as cellulose acetate propionate or cellulose acetate butyrate from the viewpoint of easily producing a phase difference and dimensional stability against humidity.

上記の中でも、特に好ましく用いられるセルロースの低級脂肪酸エステルはセルロースアセテートプロピオネート(本願ではCAPともいう。)である。   Among the above, the lower fatty acid ester of cellulose that is particularly preferably used is cellulose acetate propionate (also referred to as CAP in the present application).

セルロースアセテートプロピオネート及びセルロースアセテートブチレートは、炭素原子数2〜4のアシル基を置換基として有し、アセチル基の置換度をXとし、プロピオニル基又はブチリル基の置換度をYとした時、下記式(I)及び(II)を同時に満たすものが好ましい。   Cellulose acetate propionate and cellulose acetate butyrate have an acyl group having 2 to 4 carbon atoms as a substituent, the degree of substitution of an acetyl group is X, and the degree of substitution of a propionyl group or a butyryl group is Y And those satisfying the following formulas (I) and (II) at the same time are preferable.

式(I) 2.0≦X+Y≦3.0
式(II) 1.0≦X≦2.0かつ0.1≦Y≦1.0
であることが好ましい。
Formula (I) 2.0 ≦ X + Y ≦ 3.0
Formula (II) 1.0 ≦ X ≦ 2.0 and 0.1 ≦ Y ≦ 1.0
It is preferable that

上記アシル基の置換度の測定方法は、ASTM−D817−96に準じて測定することができる。   The method for measuring the degree of substitution of the acyl group can be measured according to ASTM-D817-96.

セルロースアセテートプロピオネート及びセルロースアセテートブチレートの分子量としては、数平均分子量(Mn)が100000以上180000未満、Mwは200000以上360000未満、Mw/Mnは、1.8〜2.0の範囲であることが好ましい。   As the molecular weight of cellulose acetate propionate and cellulose acetate butyrate, the number average molecular weight (Mn) is from 100,000 to less than 180,000, Mw is from 200,000 to less than 360,000, and Mw / Mn is from 1.8 to 2.0. Is preferred.

セルロースエステルの数平均分子量(Mn)及び分子量分布(Mw)は、高速液体クロマトグラフィーを用い測定できる。測定条件は以下のとおりである。   The number average molecular weight (Mn) and molecular weight distribution (Mw) of the cellulose ester can be measured using high performance liquid chromatography. The measurement conditions are as follows.

溶媒:ジクロロメタン
カラム:Shodex K806、K805、K803G
(昭和電工(株)製を3本接続して使用した)
カラム温度:25℃
試料濃度:0.1質量%
検出器:RI Model 504(GLサイエンス社製)
ポンプ:L6000(日立製作所(株)製)
流量:1.0ml/min
校正曲線:標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=500〜1000000迄の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いることが好ましい。
Solvent: dichloromethane Column: Shodex K806, K805, K803G
(Three Showa Denko KK products were connected and used.)
Column temperature: 25 ° C
Sample concentration: 0.1% by mass
Detector: RI Model 504 (GL Science)
Pump: L6000 (manufactured by Hitachi, Ltd.)
Flow rate: 1.0 ml / min
Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Corporation) Mw = 500 to 1,000,000 A calibration curve using 13 samples was used. The 13 samples are preferably used at substantially equal intervals.

〔1.2〕シクロオレフィン系樹脂
シクロオレフィン系樹脂としては、種々のシクロオレフィン単量体の重合体を用いることができるが、ノルボルネン骨格を有するシクロオレフィン単量体を単独重合又は共重合して得られる重合体を用いることが好ましい。
[1.2] Cycloolefin-based resin As the cycloolefin-based resin, polymers of various cycloolefin monomers can be used, and a cycloolefin monomer having a norbornene skeleton is homopolymerized or copolymerized. It is preferable to use the obtained polymer.

以下において、本発明で用いられるシクロオレフィン単量体の説明をする。   Hereinafter, the cycloolefin monomer used in the present invention will be described.

本発明に係るシクロオレフィン系樹脂は、下記一般式(A−1)及び(A−2)で表されるシクロオレフィン単量体から単独重合又は共重合して得られる重合体であることが好ましい。   The cycloolefin resin according to the present invention is preferably a polymer obtained by homopolymerization or copolymerization from cycloolefin monomers represented by the following general formulas (A-1) and (A-2). .

一般式(A−1)で表される構造を有するシクロオレフィン単量体を説明する。   The cycloolefin monomer having a structure represented by the general formula (A-1) will be described.

Figure 0006627869
(一般式(A−1)中、R〜Rは、それぞれ独立に水素原子又はハロゲン原子を表す。又は、酸素原子、窒素原子、イオウ原子若しくはケイ素原子を含む連結基を有していてもよい、置換又は非置換の炭素原子数1〜30の炭化水素基、若しくは極性基を表す。pは、0〜2の自然数を表す。)
上記極性基は、酸素、硫黄、窒素、ハロゲンなど電気陰性度の高い原子によって分極が生じている官能基のことをいう。上記極性基としては、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アミノ基、アミド基、シアノ基、ハロゲン原子などが挙げられ、これら極性基はメチレン基などの連結基を介して結合していてもよい。また、酸素原子、窒素原子、イオウ原子又はケイ素原子を含む連結基を有していてもよい置換又は非置換の炭素原子数1〜30の炭化水素基、例えばカルボニル基、エーテル基、シリルエーテル基、チオエーテル基、イミノ基など極性を有する2価の有機基が連結基となって結合している炭素原子数1〜30の炭化水素基なども極性基として挙げられる。これらの中では、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基又はアリールオキシカルボニル基が好ましく、特にアルコキシカルボニル基又はアリールオキシカルボニル基であることが、溶液製膜時の溶解性を確保する観点で好ましい。
Figure 0006627869
(In the general formula (A-1), R 1 to R 4 each independently represent a hydrogen atom or a halogen atom. Alternatively, R 1 to R 4 each have a linking group containing an oxygen atom, a nitrogen atom, a sulfur atom, or a silicon atom. Represents a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms, or a polar group. P represents a natural number of 0 to 2)
The polar group refers to a functional group in which polarization is caused by atoms having high electronegativity such as oxygen, sulfur, nitrogen, and halogen. Examples of the polar group include a carboxy group, a hydroxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an amino group, an amide group, a cyano group, a halogen atom, and the like.These polar groups are formed through a linking group such as a methylene group. They may be combined. Further, a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms which may have a linking group containing an oxygen atom, a nitrogen atom, a sulfur atom or a silicon atom, for example, a carbonyl group, an ether group, a silyl ether group And a hydrocarbon group having 1 to 30 carbon atoms to which a divalent organic group having polarity such as a thioether group and an imino group is bonded as a linking group. Among these, a carboxy group, a hydroxy group, an alkoxycarbonyl group, or an aryloxycarbonyl group is preferable, and an alkoxycarbonyl group or an aryloxycarbonyl group is particularly preferable from the viewpoint of securing solubility during solution film formation.

次に、一般式(A−2)で表されるシクロオレフィン単量体を説明する。   Next, the cycloolefin monomer represented by the general formula (A-2) will be described.

Figure 0006627869
(一般式(A−2)中、Rは、独立に水素原子、炭素数1〜5の炭化水素基、又は炭素数1〜5のアルキル基を有するアルキルシリル基を表す。Rは、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アミノ基、アミド基、シアノ基、フッ素原子、塩素原子、臭素原子、又はヨウ素原子を表す。pは、0〜2の整数を表す。)
本発明においては、一般式(A−2)で表されるように、置換基R及びRが片側炭素に置換されたシクロオレフィン単量体を用いることで、分子の対称性が崩れたためか溶媒揮発時の樹脂と添加剤同士の拡散運動を促進し、それに伴い添加剤の製膜フィルム表面への移動を促すことから、添加剤の偏在の観点から好ましい。
Figure 0006627869
(In the general formula (A-2), R 5 independently represents a hydrogen atom, a hydrocarbon group having 1 to 5 carbon atoms, or an alkylsilyl group having an alkyl group having 1 to 5 carbon atoms. R 6 represents Represents a carboxy group, a hydroxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an amino group, an amide group, a cyano group, a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom, and p represents an integer of 0 to 2. )
In the present invention, as represented by the general formula (A-2), by using a cycloolefin monomer in which the substituents R 5 and R 6 are substituted on one side carbon, the symmetry of the molecule is lost. This is preferable from the viewpoint of uneven distribution of the additive, because it promotes the diffusion movement between the resin and the additive when the solvent is volatilized, thereby promoting the movement of the additive to the surface of the film-forming film.

は、炭素数1〜3の炭化水素基、Rは、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基又はアリールオキシカルボニル基が好ましく、特にアルコキシカルボニル基又はアリールオキシカルボニル基であることが、溶液製膜時の溶解性を確保する観点でも好ましい。R 5 is a hydrocarbon group having 1 to 3 carbon atoms, and R 6 is preferably a carboxy group, a hydroxy group, an alkoxycarbonyl group or an aryloxycarbonyl group, and particularly preferably an alkoxycarbonyl group or an aryloxycarbonyl group. It is also preferable from the viewpoint of ensuring solubility during film formation.

以下に、本願における一般式(A−1)及び(A−2)の構造を具体的に示すが、以下の具体例によって限定されるものではない。   Hereinafter, the structures of the general formulas (A-1) and (A-2) in the present application are specifically shown, but are not limited to the following specific examples.

Figure 0006627869
Figure 0006627869

シクロオレフィン系樹脂としては、ノルボルネン骨格を有する前記一般式(A−1)及び(A−2)で表される構造を有するシクロオレフィン単量体を単独重合又は共重合して得られる重合体であり、例えば以下のものが挙げられる。
(1)シクロオレフィン単量体の開環重合体
(2)シクロオレフィン単量体と共重合性単量体との開環共重合体
(3)上記(1)又は(2)の開環(共)重合体の水素添加(共)重合体
(4)上記(1)又は(2)の開環(共)重合体をフリーデルクラフト反応により環化したのち、水素添加した(共)重合体
(5)シクロオレフィン単量体と不飽和二重結合含有化合物との飽和重合体
(6)シクロオレフィン系単量体の付加型(共)重合体及びその水素添加(共)重合体
(7)シクロオレフィン系単量体とメタクリレート、又はアクリレートとの交互共重合体
上記(1)〜(7)の重合体は、いずれも公知の方法、例えば特開2008−107534号公報や特開2005−227606号公報に記載の方法で得ることができる。例えば、上記(2)の開環共重合に用いられる触媒や溶媒は、例えば特開2008−107534号公報の段落0019〜0024に記載のものを使用できる。上記(3)及び(6)の水素添加に用いられる触媒は、例えば特開2008−107534号公報の段落0025〜0028に記載のものを使用できる。上記(4)のフリーデルクラフツ反応に用いられる酸性化合物は、例えば特開2008−107534号公報の段落0029に記載のものを使用できる。上記(5)〜(7)の付加重合に用いられる触媒は、例えば特開2005−227606号公報の段落0058〜0063に記載のものを使用できる。上記(7)の交互共重合反応は、例えば特開2005−227606号公報の段落0071及び0072に記載の方法で行うことができる。
The cycloolefin resin is a polymer obtained by homopolymerizing or copolymerizing a cycloolefin monomer having a structure represented by the general formulas (A-1) and (A-2) having a norbornene skeleton. There are, for example, the following.
(1) Ring-opening polymer of cycloolefin monomer (2) Ring-opening copolymer of cycloolefin monomer and copolymerizable monomer (3) Ring-opening polymer of the above (1) or (2) ( Hydrogenated (co) polymer of (co) polymer (4) The ring-opened (co) polymer of (1) or (2) is cyclized by Friedel-Crafts reaction and then hydrogenated (co) polymer (5) Saturated polymer of cycloolefin monomer and unsaturated double bond-containing compound (6) Addition (co) polymer of cycloolefin monomer and hydrogenated (co) polymer thereof (7) Alternating copolymer of cycloolefin-based monomer and methacrylate or acrylate Any of the above polymers (1) to (7) can be obtained by known methods, for example, JP-A-2008-107534 and JP-A-2005-227606. Can be obtained by the method described in Japanese Unexamined Patent Publication No. For example, as the catalyst and the solvent used for the ring-opening copolymerization of the above (2), for example, those described in paragraphs 0019 to 0024 of JP-A-2008-107534 can be used. As the catalyst used for the hydrogenation of (3) and (6), for example, those described in paragraphs 0025 to 0028 of JP-A-2008-107534 can be used. As the acidic compound used in the Friedel-Crafts reaction (4), for example, those described in paragraph 0029 of JP-A-2008-107534 can be used. As the catalyst used for the addition polymerization of the above (5) to (7), for example, those described in paragraphs 0058 to 0063 of JP-A-2005-227606 can be used. The alternating copolymerization reaction of the above (7) can be performed, for example, by the method described in paragraphs 0071 and 0072 of JP-A-2005-227606.

中でも、上記(1)〜(3)及び(5)の重合体が好ましく、上記(3)及び(5)の重合体がより好ましい。   Among them, the polymers (1) to (3) and (5) are preferable, and the polymers (3) and (5) are more preferable.

本発明に係る好ましいシクロオレフィン重合体としては、下記一般式(B−1)及び一般式(B−2)で表される構造単位を有するものが挙げられる。このようなシクロオレフィン系樹脂は、一般式(B−1)で表される構造単位のみ、一般式(B−2)で表される構造単位のみ、一般式(B−1)と一般式(B−2)のそれぞれの構造単位を含む共重合体でもよい。   Preferred cycloolefin polymers according to the present invention include those having structural units represented by the following general formulas (B-1) and (B-2). Such a cycloolefin-based resin has only the structural unit represented by the general formula (B-1), only the structural unit represented by the general formula (B-2), and the general formula (B-1) and the general formula (B-1). A copolymer containing each structural unit of B-2) may be used.

好ましくは、一般式(B−2)の構造体のみ、又は一般式(B−1)と一般式(B−2)の両者の構造単位を含む共重合体の樹脂である。得られるシクロオレフィン系樹脂のガラス転移温度が高くかつ透過率の高い優れたものとなる点で好ましい。   Preferably, it is a resin of a copolymer containing only a structural unit of the general formula (B-2) or a structural unit of both the general formulas (B-1) and (B-2). The obtained cycloolefin-based resin is preferable in that the glass transition temperature is high and the transmittance is excellent.

Figure 0006627869
(一般式(B−1)中、Xは、−CH=CH−で表される基又は式:−CHCH−で表される基である。R〜Rは、それぞれ独立に水素原子;ハロゲン原子;酸素、窒素、イオウ又はケイ素を含む連結基を有していてもよい置換又は非置換の炭素原子数1〜30の炭化水素基;又は極性基を表す。pは、0〜2の自然数を表す。)
Figure 0006627869
(一般式(B−2)中、Xは、−CH=CH−で表される基又は式:−CHCH−で表される基である。Rは、それぞれ独立に水素原子、炭素数1〜5の炭化水素基、又は炭素数1〜5のアルキル基を有するアルキルシリル基を表す。Rは、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アミノ基、アミド基、シアノ基、フッ素原子、塩素原子、臭素原子、又はヨウ素原子を表す。pは、0〜2の整数を表す。)
本明細書では、本願に係るシクロオレフィン系樹脂の製造方法等については、特開2008−107534号公報の記載を援用するものとし、その説明を省略する。
Figure 0006627869
(In the general formula (B-1), X is a group represented by —CH = CH— or a group represented by the formula: —CH 2 CH 2 —. R 1 to R 4 are each independently A hydrogen atom, a halogen atom, a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms which may have a linking group containing oxygen, nitrogen, sulfur or silicon; Represents a natural number of ~ 2.)
Figure 0006627869
(In the general formula (B-2), X is a group represented by —CH = CH— or a group represented by the formula: —CH 2 CH 2 —. R 5 is each independently a hydrogen atom, Represents a hydrocarbon group having 1 to 5 carbon atoms or an alkylsilyl group having an alkyl group having 1 to 5 carbon atoms, and R 6 represents a carboxy group, a hydroxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an amino group, an amide group. Represents a group, a cyano group, a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom, and p represents an integer of 0 to 2.)
In this specification, the description of JP-A-2008-107534 will be referred to for the method for producing the cycloolefin-based resin according to the present application, and the description thereof will be omitted.

シクロオレフィン系樹脂は1種単独で、又は2種以上を併用することができる。
本発明に係るシクロオレフィン系樹脂の好ましい分子量は、前記ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算の数平均分子量(Mn)は8000〜100000、さらに好ましくは10000〜80000、特に好ましくは12000〜50000であり、重量平均分子量(Mw)は20000〜300000、さらに好ましくは30000〜250000、特に好ましくは40000〜200000の範囲のものが好適である。
The cycloolefin resins can be used alone or in combination of two or more.
The preferred molecular weight of the cycloolefin resin according to the present invention is such that the number average molecular weight (Mn) in terms of polystyrene measured by the gel permeation chromatography (GPC) is 8,000 to 100,000, more preferably 10,000 to 80,000, and particularly preferably 12,000. And a weight average molecular weight (Mw) of 20,000 to 300,000, more preferably 30,000 to 250,000, particularly preferably 40,000 to 200,000.

本発明に係るシクロオレフィン系樹脂のガラス転移温度(Tg)としては、通常、110℃以上、好ましくは110〜350℃、さらに好ましくは120〜250℃、特に好ましくは120〜220℃である。Tgが110℃以上の場合が、高温条件下での使用、又はコーティング、印刷などの二次加工により変形が起こりにくいため好ましい。
一方、Tgが350℃以下とすることで、成形加工が困難になる場合を回避し、成形加工時の熱によって樹脂が劣化する可能性を抑制することができる。
シクロオレフィン系樹脂には、本発明の効果を損なわない範囲で、例えば特開平9−221577号公報、特開平10−287732号公報に記載されている、特定の炭化水素系樹脂、又は公知の熱可塑性樹脂、熱可塑性エラストマー、ゴム質重合体、有機微粒子、無機微粒子などを配合してもよく、特定の波長分散剤、可塑剤、酸化防止剤、剥離促進剤、ゴム粒子、紫外線吸収剤などの添加剤を含んでもよい。
また、シクロオレフィン系樹脂は、市販品を好ましく用いることができ、市販品の例としては、JSR(株)からアートン(ARTON:登録商標)G、アートンF、アートンR、及びアートンRXという商品名で発売されており、これらを使用することができる。
The glass transition temperature (Tg) of the cycloolefin resin according to the present invention is usually 110 ° C. or higher, preferably 110 to 350 ° C., more preferably 120 to 250 ° C., and particularly preferably 120 to 220 ° C. A case where Tg is 110 ° C. or higher is preferable because deformation is unlikely to occur due to use under high-temperature conditions or secondary processing such as coating and printing.
On the other hand, by setting the Tg to 350 ° C. or lower, it is possible to avoid the case where the molding process becomes difficult, and to suppress the possibility that the resin is deteriorated by heat during the molding process.
As long as the effects of the present invention are not impaired, specific hydrocarbon-based resins described in, for example, JP-A-9-221577 and JP-A-10-287732, or known heats may be used as the cycloolefin-based resin. Plastic resins, thermoplastic elastomers, rubbery polymers, organic fine particles, inorganic fine particles, etc. may be blended, specific wavelength dispersants, plasticizers, antioxidants, peeling accelerators, rubber particles, ultraviolet absorbers and the like It may contain additives.
Commercial products can be preferably used as the cycloolefin-based resin. Examples of the commercial products include trade names of ARTON (registered trademark) G, ARTON F, ARTON R, and ARTON RX from JSR Corporation. And can be used.

〔1.3〕ポリイミド系樹脂
本発明に係るポリイミド系樹脂は、ポリイミド前駆体を化学イミド化することにより得られる下記式(P1)で表されるポリイミド系樹脂であることが好ましい。
[1.3] Polyimide resin The polyimide resin according to the present invention is preferably a polyimide resin represented by the following formula (P1) obtained by chemically imidizing a polyimide precursor.

Figure 0006627869
Figure 0006627869

[ポリイミド前駆体の重合]
本発明で用いる式(P1)で表される構造を有するポリイミド前駆体の製造方法の一例について以下に示す。
[Polymerization of polyimide precursor]
An example of a method for producing a polyimide precursor having a structure represented by the formula (P1) used in the present invention will be described below.

まず、重合容器中にジアミンである2,2′―ビス(トリフルオロメチル)−4,4′−ジアミノビフェニル(TFMB)を重合溶媒に溶解する。このジアミン溶液に対して、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン酸二無水物(6FDA)の粉末を徐々に添加し、メカニカルスターラーを用い、−20〜100℃の範囲で、好ましくは20〜60℃の範囲で1〜72時間撹拌する。TFMB、6FDAを用いることで可視光の透過性、溶解性が向上する。ジアミンのモル数とテトラカルボン酸二無水物のモル数は実質的に等モルで仕込まれる。また重合の際の全モノマー濃度は5〜40質量%、好ましくは10〜30質量%である。このモノマー濃度範囲で重合を行うことにより均一で高重合度のポリイミド前駆体溶液を得ることができる。 上記モノマー濃度範囲よりも低濃度で重合を行うと、ポリイミド前駆体の重合度が十分高くならず、最終的に得られるポリイミド系樹脂膜が脆弱になる恐れがあり、好ましくない。   First, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl (TFMB) as a diamine is dissolved in a polymerization solvent in a polymerization vessel. To this diamine solution, a powder of 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropanoic acid dianhydride (6FDA) was gradually added, and a mechanical stirrer was used. Stir in the range, preferably in the range of 20-60 ° C for 1-72 hours. By using TFMB and 6FDA, the transmittance and solubility of visible light are improved. The number of moles of the diamine and the number of moles of the tetracarboxylic dianhydride are substantially equimolar. The total monomer concentration during the polymerization is 5 to 40% by mass, preferably 10 to 30% by mass. By performing polymerization in this monomer concentration range, a polyimide precursor solution having a uniform and high degree of polymerization can be obtained. If the polymerization is carried out at a concentration lower than the above monomer concentration range, the degree of polymerization of the polyimide precursor will not be sufficiently high, and the polyimide resin film finally obtained may be fragile, which is not preferable.

重合溶媒としては特に限定されないが、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド、N,N−ジメチルホルムアミド、N−メチル−2−ピロリドン、ヘキサメチルホスホルアミド、ジメチルスルホオキシド、γ−ブチロラクトン、1,3−ジメチル−2−イミダゾリジノン、1,2−ジメトキシエタン-ビス(2−メトキシエチル)
エーテル、テロラヒドロフラン、1,4−ジオキサン、ピコリン、ピリジン、アセトン、クロロホルム、トルエン、キシレン等の非プロトン性溶媒及び、フェノール、o−クレゾール、m−クレゾール、p−クレゾール、o−クロロフェノール、m−クロロフェノール、p−クロロフェノール等のプロトン性溶媒が使用可能である。またこれらの溶媒は単独でも、2種類以上混合して用いてもよい。
Although the polymerization solvent is not particularly limited, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, hexamethylphosphoramide, dimethylsulfoxide, γ- Butyrolactone, 1,3-dimethyl-2-imidazolidinone, 1,2-dimethoxyethane-bis (2-methoxyethyl)
Aprotic solvents such as ether, terahydrofuran, 1,4-dioxane, picoline, pyridine, acetone, chloroform, toluene, xylene, and phenol, o-cresol, m-cresol, p-cresol, o-chlorophenol; Protic solvents such as m-chlorophenol and p-chlorophenol can be used. These solvents may be used alone or as a mixture of two or more.

[ポリイミド系樹脂の製造方法]
式(P1)で表されるポリイミド系樹脂は、上記の方法で得られたポリイミド前駆体の脱水閉環反応(イミド化反応)により製造することができる。イミド化反応には、得られるポリイミド系樹脂がより優れた寸法安定性を示す化学イミド化を用いる。化学イミド化は、有機酸の酸無水物と有機3級アミンからなる脱水環化剤(化学イミド化剤)を用いて行うことができる。例えば、ポリイミド前駆体ワニスをそのまま用いるか若しくは溶媒で適度に希釈後、これに脱水環化試剤を投入し、0〜100℃、好ましくは20〜60℃で0.5〜48時間撹拌することで容易にイミド化することができる。
[Production method of polyimide resin]
The polyimide resin represented by the formula (P1) can be produced by a dehydration ring closure reaction (imidation reaction) of the polyimide precursor obtained by the above method. For the imidization reaction, a chemical imidization in which the obtained polyimide resin shows more excellent dimensional stability is used. Chemical imidization can be carried out using a dehydrating cyclizing agent (chemical imidizing agent) comprising an acid anhydride of an organic acid and an organic tertiary amine. For example, the polyimide precursor varnish may be used as it is or after being appropriately diluted with a solvent, a dehydration cyclization reagent may be added thereto, and the mixture is stirred at 0 to 100 ° C, preferably at 20 to 60 ° C for 0.5 to 48 hours. It can be easily imidized.

その際に使用される有機酸の酸無水物としては、特に限定されず、無水酢酸、無水プロピオン酸、無水マレイン酸、無水フタル酸等が使用可能であるが、コスト及び後処理のしやすさの観点から無水酢酸が好適に用いられる。また有機3級アミンとしては特に限定されず、ピリジン、1,5−ジメチルピリジン、β−ピコリン、γ−ピコリン、ルチジン、イソキノリン、トリエチルアミン、N,N−ジメチルアニリン等が使用可能である。   The acid anhydride of the organic acid used at that time is not particularly limited, and acetic anhydride, propionic anhydride, maleic anhydride, phthalic anhydride and the like can be used, but the cost and the ease of post-treatment are possible. From the viewpoint of acetic acid, acetic anhydride is preferably used. The organic tertiary amine is not particularly limited, and pyridine, 1,5-dimethylpyridine, β-picoline, γ-picoline, lutidine, isoquinoline, triethylamine, N, N-dimethylaniline and the like can be used.

化学イミド化反応の際、脱水環化試薬中の酸無水物の使用量は、ポリイミド前駆体の理論脱水量の1〜10倍モルの範囲であることが好ましく、脱水環化試薬中の塩基性触媒の使用量は酸無水物に対して0.1〜2倍モルの範囲であることが好ましい。これらの範囲外で化学イミド化を行うとイミド化反応が完結しなかったり、反応溶液中にイミド化が未完結のポリイミド系樹脂が析出してやはりイミド化が不十分となる恐れがある。   At the time of the chemical imidization reaction, the amount of the acid anhydride used in the dehydration cyclization reagent is preferably in the range of 1 to 10 times mol of the theoretical dehydration amount of the polyimide precursor, The amount of the catalyst used is preferably in the range of 0.1 to 2 moles per mole of the acid anhydride. If the chemical imidization is performed outside these ranges, the imidization reaction may not be completed or the imidization may be insufficient due to the precipitation of a polyimide-based resin in which the imidization is not completed in the reaction solution.

イミド化完了後、反応溶液をそのままコーティングに用いることができ、又は、反応溶液を大量の貧溶媒中に滴下、又は、貧溶媒を反応溶液に添加して、ポリイミド系樹脂を析出・洗浄して反応溶媒や、化学イミド化の場合は過剰な化学イミド化剤を除去した後、減圧乾燥してポリイミド系樹脂の粉末を得ることができる。使用可能な貧溶媒としては、ポリイミド系樹脂を溶解しなければよく、特に限定されないが、反応溶媒や化学イミド化剤との親和性及び乾燥による除去のしやすさの観点から水、メタノール、エタノール、n−プロパノール、イソプロパノール等が好適に用いられる。   After completion of imidation, the reaction solution can be used as it is for coating, or the reaction solution is dropped into a large amount of poor solvent, or the poor solvent is added to the reaction solution to precipitate and wash the polyimide resin. After removing the reaction solvent and, in the case of chemical imidization, an excess of the chemical imidizing agent, drying under reduced pressure can give a polyimide resin powder. Usable poor solvents are not particularly limited as long as they do not dissolve the polyimide resin, and are not particularly limited, but water, methanol, and ethanol are preferred from the viewpoint of affinity with a reaction solvent or a chemical imidizing agent and ease of removal by drying. , N-propanol, isopropanol and the like are preferably used.

ポリイミド系樹脂の重量平均分子量は、特に制限されるものではないが、5000〜2000000であることが好ましく、10000〜1000000であることがさらに好ましく、50000〜500000であることがさらに好ましい。重量平均分子量が5000以上であると、フィルムとした場合に十分な強度が得られ、また寸法安定性が向上する傾向があるため、十分な寸法安定性が得られる。一方、2000000以下であると溶液粘度が高くなりすぎず、取扱いやすい。なお、上記重量平均分子量は、サイズ排除クロマトグラフィー(SEC)によるポリエチレングリコール換算の値のことをいう。   The weight average molecular weight of the polyimide resin is not particularly limited, but is preferably 5,000 to 2,000,000, more preferably 10,000 to 1,000,000, and still more preferably 50,000 to 500,000. When the weight average molecular weight is 5,000 or more, sufficient strength is obtained when the film is formed, and dimensional stability tends to be improved, so that sufficient dimensional stability is obtained. On the other hand, if it is 2,000,000 or less, the solution viscosity does not become too high, and it is easy to handle. In addition, the said weight average molecular weight means the value of polyethylene glycol conversion by size exclusion chromatography (SEC).

〔1.3〕ポリアリレート系樹脂
本発明に係るポリアリレート系樹脂は、ビスフェノール残基及び芳香族ジカルボン酸残基を含むポリアリレート系樹脂であることが好ましい。
ビスフェノール残基は、一般式(P2)で表される構造を有する。
[1.3] Polyarylate resin The polyarylate resin according to the present invention is preferably a polyarylate resin containing a bisphenol residue and an aromatic dicarboxylic acid residue.
The bisphenol residue has a structure represented by the general formula (P2).

Figure 0006627869
Figure 0006627869

一般式(P2)中、Xは、フッ素原子を含有する二価基であることが必要である。一般式(P2)中のXを、フッ素原子を含有する二価基とすることで、耐熱性、ならびに可視光線領域及びそれよりも短波長領域(紫外線領域)の光透過性に優れているとともに、従来よりも優れた難燃性を有し、かつ紫外線による黄変が抑制されるポリアリレート樹脂が得られる。Xがフッ素原子を含有しない二価基であると、難燃性が低下し、紫外線の照射により黄変が生じ、光線透過率が低下する。   In the general formula (P2), X needs to be a divalent group containing a fluorine atom. By making X in the general formula (P2) a divalent group containing a fluorine atom, it is excellent in heat resistance and light transmittance in a visible light region and a shorter wavelength region (ultraviolet region). Thus, a polyarylate resin having better flame retardancy than the conventional one and suppressing yellowing due to ultraviolet rays can be obtained. When X is a divalent group containing no fluorine atom, flame retardancy is reduced, yellowing is caused by irradiation with ultraviolet rays, and light transmittance is reduced.

フッ素原子を含有する二価基は、例えば、一般式(P2a)で表される。   The divalent group containing a fluorine atom is represented by, for example, a general formula (P2a).

Figure 0006627869
Figure 0006627869

一般式(P2a)中、R1a及びR2aは、独立して、トリフルオロメチル基(CF基)、ジフルオロメチル基(CFH基)、モノフルオロメチル基(CHF基)、又はフッ素原子である。これらの中でも、R1a及びR2aが、トリフルオロメチル基であることが好ましい。
及びRは、一般式(P2)中のベンゼン環に結合する置換基を表す。
In the general formula (P2a), R 1a and R 2a are each independently a trifluoromethyl group (CF 3 group), a difluoromethyl group (CF 2 H group), a monofluoromethyl group (CH 2 F group), or It is a fluorine atom. Among them, R 1a and R 2a are preferably a trifluoromethyl group.
R 1 and R 2 represent a substituent bonded to the benzene ring in the general formula (P2).

一般式(P2)で表される構造を与えるビスフェノールを工業的に入手し易い、又は合成し易いことから、一般式(P2)中、R及びRは、独立して、炭素数が1〜6の炭化水素基、ハロゲン化アルキル基又はハロゲン原子である。これらの中でも、塩素原子、臭素原子、メチル基、エチル基、フェニル基、シクロヘキシル基が好ましく、臭素原子、メチル基がより好ましい。
p及びqは、それぞれベンゼン環に結合する置換基R及びRの数を表し、独立して、0〜4の整数である。例えば、p及びqが0の場合、一般式(P2)中におけるベンゼン環に結合するすべての水素原子がR及びRに置換されていないことを表す。pが2〜4の場合、複数のRは、互いに同じ置換基でもよく、異なる置換基でもよい。qが2〜4の場合、複数のRは、互いに同じ置換基でもよく、異なる置換基でもよい。一般式(P2)で表される構造を与えるビスフェノールを工業的に入手し易い、又は合成し易いことから、p及びqは0であるのが好ましい。
In the general formula (P2), R 1 and R 2 each independently have 1 carbon atom because bisphenol giving the structure represented by the general formula (P2) is easily available industrially or easily synthesized. To 6 hydrocarbon groups, halogenated alkyl groups or halogen atoms. Among these, a chlorine atom, a bromine atom, a methyl group, an ethyl group, a phenyl group and a cyclohexyl group are preferred, and a bromine atom and a methyl group are more preferred.
p and q each represent the number of substituents R 1 and R 2 bonded to the benzene ring, and are each independently an integer of 0 to 4. For example, when p and q are 0, it indicates that all hydrogen atoms bonded to the benzene ring in the general formula (P2) are not substituted with R 1 and R 2 . When p is 2 to 4, a plurality of R 1 may be the same substituent or different substituents. When q is 2 to 4, a plurality of R 2 may be the same substituent or different substituents. It is preferable that p and q are 0 because bisphenol giving the structure represented by the general formula (P2) is industrially easily available or easily synthesized.

一般式(P2)で表される構造を与えるビスフェノールとしては、例えば、2,2−ビス(4−ヒドロキシフェニル)ヘキサフルオロプロパン〔BisAF〕、2,2−ビス(3,5−ジメチル−4−ヒドロキシフェニル)ヘキサフルオロプロパン、2,2−ビス(テトラメチル−4−ヒドロキシフェニル)ヘキサフルオロプロパンが挙げられる。工業的に入手し易いことから、これらの中でも、BisAFが好ましい。BisAFを用いる場合、一般式(P2)において、p=0、q=0、X=−C(CF−である。Examples of the bisphenol giving the structure represented by the general formula (P2) include 2,2-bis (4-hydroxyphenyl) hexafluoropropane [BisAF] and 2,2-bis (3,5-dimethyl-4- (Hydroxyphenyl) hexafluoropropane and 2,2-bis (tetramethyl-4-hydroxyphenyl) hexafluoropropane. Of these, BisAF is preferred because of its industrial availability. When BisAF is used, in the general formula (P2), p = 0, q = 0, and X = —C (CF 3 ) 2 —.

本発明においては、ビスフェノール残基は、本発明の効果を損なわない範囲で、一般式(P2)の構造を与えるビスフェノール以外のビスフェノールの残基を含んでいてもよい。そのような残基を与えるビスフェノールとしては、例えば、2,2−ビス(4−ヒドロキシフェニル)プロパン〔BisA〕、2,2−ビス(3−メチル−4−ヒドロキシフェニル)プロパン〔BisC〕、9,9−ビス(3−メチル−4−ヒドロキシフェニル)フルオレン〔BCF〕、2,2−ビス(3,5−ジメチル−4−ヒドロキシフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)エタン、1,1−ビス(3,5−ジメチル−4−ヒドロキシフェニル)エタン、1,1−ビス(3−メチル−4−ヒドロキシフェニル)エタン、ビス(4−ヒドロキシフェニル)メタン、ビス(3,5−ジメチル−4−ヒドロキシフェニル)メタン、ビス(3−メチル−4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)ヘキサン、1,1−ビス(3,5−ジメチル−4−ヒドロキシフェニル)ヘキサンが挙げられる。   In the present invention, the bisphenol residue may include a bisphenol residue other than the bisphenol that gives the structure of the general formula (P2) as long as the effects of the present invention are not impaired. Examples of bisphenols that provide such a residue include 2,2-bis (4-hydroxyphenyl) propane [BisA], 2,2-bis (3-methyl-4-hydroxyphenyl) propane [BisC], 9 , 9-bis (3-methyl-4-hydroxyphenyl) fluorene [BCF], 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, 1,1-bis (4-hydroxyphenyl)- 1-phenylethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) ethane, 1,1-bis (3,5-dimethyl-4-hydroxyphenyl) ethane, 1,1-bis (3-methyl-4-hydroxyphenyl) ethane, bis (4-hydroxyphenyl) methane, bis (3,5-dimethyl) 4-hydroxyphenyl) methane, bis (3-methyl-4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) hexane, 1,1-bis (3,5-dimethyl-4-hydroxyphenyl) Hexane is mentioned.

ポリアリレート樹脂に高い難燃性を付与し、紫外線による黄変をより抑制するためには、ポリアリレート樹脂中に存在するビスフェノール残基全体のうち、一般式(P2)で表されるビスフェノール残基が占める割合が、50〜100モル%であるのが好ましく、80〜100モル%であるのがより好ましく、100モル%であるのがさらに好ましい。   In order to impart high flame retardancy to the polyarylate resin and further suppress yellowing due to ultraviolet rays, of the entire bisphenol residue present in the polyarylate resin, the bisphenol residue represented by the general formula (P2) Is preferably 50 to 100 mol%, more preferably 80 to 100 mol%, and even more preferably 100 mol%.

芳香族ジカルボン酸残基は、一般式(P3)で表される構造を有することが好ましい。一般式(P2)で表される構造とともに、一般式(P3)で表される構造を有することで、優れた、耐熱性、難燃性、ならびに可視光線領域及びそれよりも短波長領域(紫外線領域)の光透過性と、紫外線による黄変の抑制とを同時に実現することができる。芳香族ジカルボン酸残基が一般式(P2)の構造を有しない場合、短波長領域(紫外線領域)の光透過性が低下したり、紫外線により黄変し易くなったりする。例えば、芳香族ジカルボン酸に、一般式(P3)で示されない構造を与えるテレフタル酸のみを用いる場合、ポリアリレート樹脂は、短波長領域(紫外線領域)の光透過性が低下し、紫外線により黄変し易くなる。   The aromatic dicarboxylic acid residue preferably has a structure represented by the general formula (P3). By having the structure represented by the general formula (P3) together with the structure represented by the general formula (P2), excellent heat resistance, flame retardancy, visible light region and shorter wavelength region (ultraviolet light region) Region) and the suppression of yellowing due to ultraviolet rays can be realized at the same time. When the aromatic dicarboxylic acid residue does not have the structure of the general formula (P2), light transmittance in a short wavelength region (ultraviolet region) is reduced, or yellowing is easily caused by ultraviolet rays. For example, when only terephthalic acid which gives a structure not represented by the general formula (P3) is used as the aromatic dicarboxylic acid, the polyallylate resin has a reduced light transmittance in a short wavelength region (ultraviolet region) and yellows due to ultraviolet rays. Easier to do.

Figure 0006627869
Figure 0006627869

一般式(P3)中、R及びRは、一般式(P3)中のベンゼン環に結合する置換基を表す。In the general formula (P3), R 3 and R 4 represent a substituent bonded to the benzene ring in the general formula (P3).

一般式(P3)で表される構造を与える芳香族ジカルボン酸を工業的に入手し易い、又は合成し易いことから、R及びRは、独立して、炭素数が1〜6の炭化水素基、ハロゲン化アルキル基又はハロゲン原子である。これらの中でも、塩素、臭素、メチル基、エチル基、フェニル基、シクロヘキシル基が好ましく、臭素、メチル基がより好ましい。
r及びsは、ベンゼン環に結合する置換基の数を表し、独立して、0〜4の整数である。例えば、r及びsが0の場合、一般式(P2)中におけるベンゼン環に結合するすべての水素原子がR及びRに置換されていないことを表す。rが2〜4の場合、複数のRは、互いに同じ置換基でもよく、異なる置換基でもよい。sが2〜4の場合、複数のRは、互いに同じ置換基でもよく、異なる置換基でもよい。
Since the aromatic dicarboxylic acid giving the structure represented by the general formula (P3) is industrially easily available or easily synthesized, R 3 and R 4 are each independently a carbon having 1 to 6 carbon atoms. It is a hydrogen group, a halogenated alkyl group or a halogen atom. Among these, chlorine, bromine, a methyl group, an ethyl group, a phenyl group, and a cyclohexyl group are preferable, and a bromine and a methyl group are more preferable.
r and s represent the number of substituents bonded to the benzene ring, and are each independently an integer of 0 to 4. For example, when r and s are 0, it indicates that all hydrogen atoms bonded to the benzene ring in the general formula (P2) are not substituted with R 3 and R 4 . When r is 2 to 4, a plurality of R 3 may be the same substituent or different substituents. When s is 2 to 4, a plurality of R 4 may be the same substituent or different substituents.

一般式(P3)で表される構造を与える芳香族ジカルボン酸としては、例えば、ジフェニルエーテル−2,2′−ジカルボン酸、ジフェニルエーテル−2,3’−ジカルボン酸、ジフェニルエーテル−2,4′−ジカルボン酸、ジフェニルエーテル−3,3′−ジカルボン酸、ジフェニルエーテル−3,4′−ジカルボン酸、ジフェニルエーテル−4,4′−ジカルボン酸が挙げられる。工業的に入手しやすいことから、これらの中でも、ジフェニルエーテル−4,4′−ジカルボン酸が好ましい。ジフェニルエーテル−4,4′−ジカルボン酸を用いる場合、一般式(P3)において、r=0、s=0である。   Examples of the aromatic dicarboxylic acid giving the structure represented by the general formula (P3) include diphenyl ether-2,2'-dicarboxylic acid, diphenyl ether-2,3'-dicarboxylic acid, and diphenyl ether-2,4'-dicarboxylic acid And diphenyl ether-3,3'-dicarboxylic acid, diphenyl ether-3,4'-dicarboxylic acid, and diphenyl ether-4,4'-dicarboxylic acid. Of these, diphenyl ether-4,4'-dicarboxylic acid is preferred among them because it is industrially available. When diphenyl ether-4,4'-dicarboxylic acid is used, r = 0 and s = 0 in the general formula (P3).

本発明においては、芳香族ジカルボン酸残基は、本発明の効果を損なわない範囲で、一般式(P3)の構造を与える芳香族ジカルボン酸以外の芳香族ジカルボン酸の残基を含んでいてもよい。そのような残基を与える芳香族ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、オルトフタル酸が挙げられ、中でも、イソフタル酸が好ましい。イソフタル酸を併用することにより、紫外線による黄変を抑制することができる。   In the present invention, the aromatic dicarboxylic acid residue may include an aromatic dicarboxylic acid residue other than the aromatic dicarboxylic acid giving the structure of the general formula (P3) as long as the effects of the present invention are not impaired. Good. Examples of the aromatic dicarboxylic acid giving such a residue include terephthalic acid, isophthalic acid, and orthophthalic acid, and among them, isophthalic acid is preferable. By using isophthalic acid in combination, yellowing due to ultraviolet rays can be suppressed.

紫外線による黄変をより抑制するためには、ポリアリレート樹脂中に存在する芳香族ジカルボン酸残基全体のうち、一般式(P3)で表される構造を有する芳香族ジカルボン酸残基(イソフタル酸残基を含む場合には、一般式(P3)で表される構造を有する芳香族ジカルボン酸残基とイソフタル酸残基の合計)が占める割合が、35〜100モル%であることが好ましく、50〜100モル%であることがより好ましく、80〜100モル%であることがさらに好ましく、100モル%であることが最も好ましい。   In order to further suppress yellowing due to ultraviolet rays, of the entire aromatic dicarboxylic acid residues present in the polyarylate resin, an aromatic dicarboxylic acid residue having a structure represented by the general formula (P3) (isophthalic acid) In the case of containing a residue, the proportion occupied by the aromatic dicarboxylic acid residue having the structure represented by the general formula (P3) and the isophthalic acid residue) is preferably 35 to 100 mol%, The content is more preferably 50 to 100 mol%, further preferably 80 to 100 mol%, and most preferably 100 mol%.

ポリアリレート樹脂の引張破断伸びの観点から、ポリアリレート樹脂中に存在する芳香族ジカルボン酸残基全体のうち、一般式(P3)で表される構造を有する芳香族ジカルボン酸残基が占める割合が、35〜100モル%であることが好ましく、100モル%であることがより好ましい。   From the viewpoint of tensile elongation at break of the polyarylate resin, the proportion of the aromatic dicarboxylic acid residues having the structure represented by the general formula (P3) in the entire aromatic dicarboxylic acid residues present in the polyarylate resin is , Preferably from 35 to 100 mol%, more preferably 100 mol%.

本発明に係るポリアリレート樹脂は、その分子の末端を封止するための末端基を含むのが好ましい。分子の末端が封止されると、ポリアリレート樹脂の酸価が低減され、光線により分解され難くなる。酸価を小さくすることができる点で、末端基は、一価フェノール残基、一価酸クロライド残基、一価アルコール残基、及び/又は一価カルボン酸残基であるのが好ましく、一価フェノール残基及び一価アルコール残基であるのがより好ましい。   The polyarylate resin according to the present invention preferably contains a terminal group for closing the terminal of the molecule. When the terminal of the molecule is sealed, the acid value of the polyarylate resin is reduced, and the polyallylate resin is hardly decomposed by light. The terminal group is preferably a monohydric phenol residue, a monohydric acid chloride residue, a monohydric alcohol residue, and / or a monohydric carboxylic acid residue in that the acid value can be reduced. More preferably, they are a phenolic residue and a monohydric alcohol residue.

本発明においては、本発明の効果を損なわない範囲で、ポリアリレート樹脂に、脂肪族ジオールの残基、脂環族ジオールの残基、脂肪族ジカルボン酸の残基、脂環族ジカルボン酸の残基を含んでいてもよい。脂肪族ジオールとしては、例えば、エチレングリコール、プロピレングリコールが挙げられる。脂環族ジオールとしては、例えば、1,4−シクロヘキサンジオール、1,3−シクロヘキサンジオール、1,2−シクロヘキサンジオールが挙げられる。脂肪族ジカルボン酸としては、例えば、アジピン酸、セバシン酸が挙げられる。脂環族ジカルボン酸としては、例えば、1,4−シクロヘキサンジカルボン酸、1,3−シクロヘキサンジカルボン酸、1,2−シクロヘキサンジカルボン酸が挙げられる。   In the present invention, a residue of an aliphatic diol, a residue of an alicyclic diol, a residue of an aliphatic dicarboxylic acid, and a residue of an alicyclic dicarboxylic acid are added to the polyarylate resin within a range that does not impair the effects of the present invention. It may contain a group. Examples of the aliphatic diol include ethylene glycol and propylene glycol. Examples of the alicyclic diol include 1,4-cyclohexanediol, 1,3-cyclohexanediol, and 1,2-cyclohexanediol. Examples of the aliphatic dicarboxylic acid include adipic acid and sebacic acid. Examples of the alicyclic dicarboxylic acid include 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, and 1,2-cyclohexanedicarboxylic acid.

本発明に係るポリアリレート樹脂の製造方法としては、界面重合法や溶液重合法等の有機溶媒中で反応させる方法、又は溶融重合等の溶融状態で反応させる方法が挙げられる。重合性や得られる樹脂の外観の点から、有機溶媒中での反応、特に低温での反応が可能な界面重合法を用いるのが好ましい。   Examples of the method for producing the polyarylate resin according to the present invention include a method of reacting in an organic solvent such as an interfacial polymerization method and a solution polymerization method, and a method of reacting in a molten state such as melt polymerization. From the viewpoint of the polymerizability and the appearance of the obtained resin, it is preferable to use an interfacial polymerization method which allows a reaction in an organic solvent, particularly a reaction at a low temperature.

高い引張破断伸びが得られることから、ポリアリレート系樹脂の重量平均分子量は、12000以上とすることが好ましく、50000以上とすることがより好ましい。   In order to obtain a high tensile elongation at break, the weight average molecular weight of the polyarylate resin is preferably 12,000 or more, more preferably 50,000 or more.

〔2〕位相差上昇剤
本願でいう位相差上昇剤とは、光学補償フィルムに用いる樹脂100質量部に対して当該化合物を3質量部含有した光学補償フィルムの厚さ方向の位相差値Rt(23℃・55%RH、波長590nmで測定。)が、未添加の光学補償フィルムと比べて1.1倍以上の値を示す機能を有する化合物をいう。
[2] Retardation raising agent The retardation raising agent referred to in the present application is a retardation value Rt (3) in the thickness direction of an optical compensation film containing 3 parts by mass of the compound with respect to 100 parts by mass of the resin used for the optical compensation film. (Measured at 23 ° C./55% RH, wavelength 590 nm)) is a compound having a function of exhibiting a value of 1.1 times or more as compared with an optical compensation film not added.

本発明に係る位相差上昇剤は、特に制限されるものではなく、例えば従来よく知られている、特開2006−113239号公報段落〔0143〕〜〔0179〕に記載の芳香族環を有する円盤状化合物(1,3,5−トリアジン系化合物等)、特開2006−113239号公報段落〔0106〕〜〔0112〕記載の棒状化合物、特開2012−214682号公報段落〔0118〕〜〔0133〕記載のピリミジン系化合物、特開2011−140637号公報段落〔0022〕〜〔0028〕記載のエポキシエステル化合物等、国際公開2012/014571号段落〔0044〕〜〔0058〕記載のポリエステル化合物等を用いることができる。   The phase difference increasing agent according to the present invention is not particularly limited, and is, for example, a well-known disk having an aromatic ring described in JP-A-2006-113239, paragraphs [0143] to [0179]. Compounds (1,3,5-triazine-based compounds, etc.), rod-like compounds described in paragraphs [0106] to [0112] of JP-A-2006-113239, paragraphs [0118] to [0133] of JP-A-2012-214682. Use of the pyrimidine compounds described in paragraphs [0022] to [0028] of JP-A-2011-140637, and the polyester compounds described in paragraphs [0044] to [0058] of WO2012 / 014571. Can be.

本発明に係る位相差上昇剤に求められる特性としては、樹脂との相溶性に優れること、フィルムを薄膜化したときに位相差発現性に優れること、また耐析出性に優れること、高湿度下において水分の出入りに伴う位相差値変動耐性に優れることなどが挙げられるが、当該位相差上昇剤を加えることによって、前記熱処理時に、位相差上昇剤自体の配向が乱れ、当該化合物由来の位相差変動が起きることによって、フィルムを構成するポリマー分子由来の位相差変動を相殺できることが好ましい。   The properties required for the retardation enhancer according to the present invention include: excellent compatibility with the resin, excellent retardation manifestation when the film is thinned, excellent precipitation resistance, and high humidity. In the heat treatment, during the heat treatment, the orientation of the phase difference increasing agent itself is disturbed, and the phase difference derived from the compound is added. It is preferable that the fluctuation can offset the phase difference fluctuation derived from the polymer molecules constituting the film.

このような観点から下記含窒素複素環化合物を位相差上昇剤として用いることが好ましい。   From such a viewpoint, it is preferable to use the following nitrogen-containing heterocyclic compound as a retardation increasing agent.

〔含窒素複素環化合物〕
本発明に係る位相差上昇剤は、下記一般式(1)で表される構造を有する含窒素複素環化合物であることが好ましい。
(Nitrogen-containing heterocyclic compound)
The retardation increasing agent according to the present invention is preferably a nitrogen-containing heterocyclic compound having a structure represented by the following general formula (1).

本発明に係る含窒素複素環化合物は、特に下記一般式(1)で表される構造を有する含窒素複素環化合物のうち、ピロール環、ピラゾール環、トリアゾール環、又はイミダゾール環を有する含窒素複素環化合物であることが、位相差上昇機能と熱処理時における樹脂分子の配向に好ましい相互作用を及ぼす観点から、好ましい。   The nitrogen-containing heterocyclic compound according to the present invention is a nitrogen-containing heterocyclic compound having a pyrrole ring, a pyrazole ring, a triazole ring, or an imidazole ring, among nitrogen-containing heterocyclic compounds having a structure represented by the following general formula (1). A ring compound is preferable from the viewpoint of exerting a favorable interaction on the phase difference increasing function and the orientation of the resin molecules during the heat treatment.

〈一般式(1)で表される構造を有する化合物〉

Figure 0006627869
<Compound having structure represented by general formula (1)>
Figure 0006627869

前記一般式(1)において、A、A及びBは、それぞれ独立に、アルキル基(メチル基、エチル基、n−プロピル基、イソプロピル基、tert−ブチル基、n−オクチル基、2−エチヘキシル基等)、シクロアルキル基(シクロヘキシル基、シクロペンチル基、4−n−ドデシルシクロヘキシル基等)、芳香族炭化水素環又は芳香族複素環を表す。この中で、芳香族炭化水素環又は芳香族複素環が好ましく、特に、5員若しくは6員の芳香族炭化水素環又は芳香族複素環であることが好ましい。In the general formula (1), A 1 , A 2 and B each independently represent an alkyl group (methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, n-octyl group, 2- A cycloalkyl group (cyclohexyl group, cyclopentyl group, 4-n-dodecylcyclohexyl group, etc.), an aromatic hydrocarbon ring or an aromatic heterocyclic ring. Among them, an aromatic hydrocarbon ring or an aromatic heterocyclic ring is preferable, and a 5- or 6-membered aromatic hydrocarbon ring or an aromatic heterocyclic ring is particularly preferable.

5員若しくは6員の芳香族炭化水素環又は芳香族複素環の構造に制限はないが、例えば、ベンゼン環、ピロール環、ピラゾール環、イミダゾール環、1,2,3−トリアゾール環、1,2,4−トリアゾール環、テトラゾール環、フラン環、オキサゾール環、イソオキサゾール環、オキサジアゾール環、イソオキサジアゾール環、チオフェン環、チアゾール環、イソチアゾール環、チアジアゾール環、イソチアジアゾール環等が挙げられる。   The structure of the 5- or 6-membered aromatic hydrocarbon ring or aromatic heterocyclic ring is not limited, and examples thereof include a benzene ring, a pyrrole ring, a pyrazole ring, an imidazole ring, a 1,2,3-triazole ring, , 4-triazole ring, tetrazole ring, furan ring, oxazole ring, isoxazole ring, oxadiazole ring, isoxadiazole ring, thiophene ring, thiazole ring, isothiazole ring, thiadiazole ring, isothiadiazole ring and the like. .

、A及びBで表される5員若しくは6員の芳香族炭化水素環又は芳香族複素環は、置換基を有していてもよく、当該置換基としては、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、アルキル基(メチル基、エチル基、n−プロピル基、イソプロピル基、tert−ブチル基、n−オクチル基、2−エチルヘキシル基等)、シクロアルキル基(シクロヘキシル基、シクロペンチル基、4−n−ドデシルシクロヘキシル基等)、アルケニル基(ビニル基、アリル基等)、シクロアルケニル基(2−シクロペンテン−1−イル、2−シクロヘキセン−1−イル基等)、アルキニル基(エチニル基、プロパルギル基等)、芳香族炭化水素環基(フェニル基、p−トリル基、ナフチル基等)、芳香族複素環基(2−ピロール基、2−フリル基、2−チエニル基、ピロール基、イミダゾリル基、オキサゾリル基、チアゾリル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、2−ベンゾチアゾリル基、ピラゾリノン基、ピリジル基、ピリジノン基、2−ピリミジニル基、トリアジン基、ピラゾール基、1,2,3−トリアゾール基、1,2,4−トリアゾール基、オキサゾール基、イソオキサゾール基、1,2,4−オキサジアゾール基、1,3,4−オキサジアゾール基、チアゾール基、イソチアゾール基、1,2,4−チオジアゾール基、1,3,4−チアジアゾール基等)、シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基、アルコキシ基(メトキシ基、エトキシ基、イソプロポキシ基、tert−ブトキシ基、n−オクチルオキシ基、2−メトキシエトキシ基等)、アリールオキシ基(フェノキシ基、2−メチルフェノキシ基、4−tert−ブチルフェノキシ基、3−ニトロフェノキシ基、2−テトラデカノイルアミノフェノキシ基等)、アシルオキシ基(ホルミルオキシ基、アセチルオキシ基、ピバロイルオキシ基、ステアロイルオキシ基、ベンゾイルオキシ基、p−メトキシフェニルカルボニルオキシ基等)、アミノ基(アミノ基、メチルアミノ基、ジメチルアミノ基、アニリノ基、N−メチル−アニリノ基、ジフェニルアミノ基等)、アシルアミノ基(ホルミルアミノ基、アセチルアミノ基、ピバロイルアミノ基、ラウロイルアミノ基、ベンゾイルアミノ基等)、アルキル及びアリールスルホニルアミノ基(メチルスルホニルアミノ基、ブチルスルホニルアミノ基、フェニルスルホニルアミノ基、2,3,5−トリクロロフェニルスルホニルアミノ基、p−メチルフェニルスルホニルアミノ基等)、メルカプト基、アルキルチオ基(メチルチオ基、エチルチオ基、n−ヘキサデシルチオ基等)、アリールチオ基(フェニルチオ基、p−クロロフェニルチオ基、m−メトキシフェニルチオ基等)、スルファモイル基(N−エチルスルファモイル基、N−(3−ドデシルオキシプロピル)スルファモイル基、N,N−ジメチルスルファモイル基、N−アセチルスルファモイル基、N−ベンゾイルスルファモイル基、N−(N´−フェニルカルバモイル)スルファモイル基等)、スルホ基、アシル基(アセチル基、ピバロイルベンゾイル基等)、カルバモイル基(カルバモイル基、N−メチルカルバモイル基、N,N−ジメチルカルバモイル基、N,N−ジ−n−オクチルカルバモイル基、N−(メチルスルホニル)カルバモイル基等)等の各基が挙げられる。The 5- or 6-membered aromatic hydrocarbon ring or aromatic heterocyclic ring represented by A 1 , A 2 and B may have a substituent. As the substituent, for example, a halogen atom ( Fluorine atom, chlorine atom, bromine atom, iodine atom, etc., alkyl group (methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, n-octyl group, 2-ethylhexyl group, etc.), cycloalkyl Group (cyclohexyl group, cyclopentyl group, 4-n-dodecylcyclohexyl group, etc.), alkenyl group (vinyl group, allyl group, etc.), cycloalkenyl group (2-cyclopenten-1-yl, 2-cyclohexen-1-yl group, etc.) ), Alkynyl group (ethynyl group, propargyl group, etc.), aromatic hydrocarbon ring group (phenyl group, p-tolyl group, naphthyl group, etc.), aromatic heterocyclic group (2 Pyrrole, 2-furyl, 2-thienyl, pyrrole, imidazolyl, oxazolyl, thiazolyl, benzimidazolyl, benzoxazolyl, 2-benzothiazolyl, pyrazolinone, pyridyl, pyridinone, 2- Pyrimidinyl group, triazine group, pyrazole group, 1,2,3-triazole group, 1,2,4-triazole group, oxazole group, isoxazole group, 1,2,4-oxadiazole group, 1,3,4 -Oxadiazole group, thiazole group, isothiazole group, 1,2,4-thiodiazole group, 1,3,4-thiadiazole group, etc.), cyano group, hydroxy group, nitro group, carboxy group, alkoxy group (methoxy group) Ethoxy group, isopropoxy group, tert-butoxy group, n-octyloxy group, 2-meth An oxyoxy group, an aryloxy group (a phenoxy group, a 2-methylphenoxy group, a 4-tert-butylphenoxy group, a 3-nitrophenoxy group, a 2-tetradecanoylaminophenoxy group, etc.), an acyloxy group (a formyloxy group, Acetyloxy group, pivaloyloxy group, stearoyloxy group, benzoyloxy group, p-methoxyphenylcarbonyloxy group, etc., amino group (amino group, methylamino group, dimethylamino group, anilino group, N-methyl-anilino group, diphenyl) Amino), acylamino (formylamino, acetylamino, pivaloylamino, lauroylamino, benzoylamino, etc.), alkyl and arylsulfonylamino (methylsulfonylamino, butylsulfonylamino, phenyl) Sulfonylamino group, 2,3,5-trichlorophenylsulfonylamino group, p-methylphenylsulfonylamino group, etc., mercapto group, alkylthio group (methylthio group, ethylthio group, n-hexadecylthio group, etc.), arylthio group (phenylthio group) , P-chlorophenylthio group, m-methoxyphenylthio group, etc.), sulfamoyl group (N-ethylsulfamoyl group, N- (3-dodecyloxypropyl) sulfamoyl group, N, N-dimethylsulfamoyl group, N -Acetylsulfamoyl group, N-benzoylsulfamoyl group, N- (N'-phenylcarbamoyl) sulfamoyl group, etc.), sulfo group, acyl group (acetyl group, pivaloylbenzoyl group, etc.), carbamoyl group (carbamoyl group) Group, N-methylcarbamoyl group, N, N-di Chi-carbamoyl, N, N-di -n- octylcarbamoyl group, and each group such as N- (methylsulfonyl) carbamoyl group).

前記一般式(1)において、A、A及びBは、ベンゼン環、ピロール環、ピラゾール環、イミダゾール環、1,2,3−トリアゾール環又は1,2,4−トリアゾール環を表すことが、光学特性の変動効果に優れ、かつ耐久性に優れた光学補償フィルムが得られるために好ましい。In the general formula (1), A 1 , A 2 and B may represent a benzene ring, a pyrrole ring, a pyrazole ring, an imidazole ring, a 1,2,3-triazole ring or a 1,2,4-triazole ring. It is preferable because an optical compensatory film having an excellent effect of changing optical characteristics and having excellent durability can be obtained.

前記一般式(1)において、T及びTは、それぞれ独立に、ピロール環、ピラゾール環、イミダゾール環、1,2,3−トリアゾール環又は1,2,4−トリアゾール環を表す。これらの中で、ピラゾール環、トリアゾール環又はイミダゾール環であることが、熱処理時における位相差の変動抑制効果に特に優れ、かつ耐久性に優れた樹脂組成物が得られるために好ましく、ピラゾール環であることが特に好ましい。T及びT2で表されるピラゾール環、1,2,3−トリアゾール環又は1,2,4−トリアゾール環、イミダゾール環は、互変異性体であってもよい。ピロール環、ピラゾール環、イミダゾール環、1,2,3−トリアゾール環又は1,2,4−トリアゾール環の具体的な構造を下記に示す。In the general formula (1), T 1 and T 2 each independently represent a pyrrole ring, a pyrazole ring, an imidazole ring, a 1,2,3-triazole ring or a 1,2,4-triazole ring. Among these, a pyrazole ring, a triazole ring or an imidazole ring are particularly excellent in the effect of suppressing a change in retardation during heat treatment, and are preferable because a resin composition having excellent durability is obtained. It is particularly preferred that there is. The pyrazole ring, 1,2,3-triazole ring or 1,2,4-triazole ring or imidazole ring represented by T 1 and T2 may be a tautomer. Specific structures of a pyrrole ring, a pyrazole ring, an imidazole ring, a 1,2,3-triazole ring or a 1,2,4-triazole ring are shown below.

Figure 0006627869
Figure 0006627869

式中、※は一般式(1)におけるL、L、L又はLとの結合位置を表す。Rは水素原子又は非芳香族置換基を表す。Rで表される非芳香族置換基としては、前記一般式(1)におけるAが有してもよい置換基のうちの非芳香族置換基と同様の基を挙げることができる。Rで表される置換基が芳香族基を有する置換基の場合、AとT又はBとTがねじれやすくなり、A、B及びTが樹脂との相互作用を形成できなくなるため、光学的特性の変動を抑制することが難しい。光学的特性の変動抑制効果を高めるためには、Rは水素原子、炭素数1〜5のアルキル基又は炭素数1〜5のアシル基であることが好ましく、水素原子であることが特に好ましい。In the formula, * represents a bonding position to L 1 , L 2 , L 3 or L 4 in the general formula (1). R 5 represents a hydrogen atom or a non-aromatic substituent. Examples of the non-aromatic substituent represented by R 5 include the same groups as the non-aromatic substituents among the substituents that A 1 may have in the general formula (1). When the substituent represented by R 5 is a substituent having an aromatic group, A 1 and T 1 or B and T 1 are easily twisted, and A 1 , B and T 1 can form an interaction with the resin. Therefore, it is difficult to suppress a change in optical characteristics. In order to enhance the effect of suppressing fluctuations in optical properties, R 5 is preferably a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or an acyl group having 1 to 5 carbon atoms, and particularly preferably a hydrogen atom. .

前記一般式(1)において、T及びTは置換基を有してもよく、当該置換基としては、前記一般式(1)におけるA及びAが有してもよい置換基と同様の基を挙げることができる。In the general formula (1), T 1 and T 2 may have a substituent. Examples of the substituent include a substituent that A 1 and A 2 in the general formula (1) may have. Similar groups can be mentioned.

前記一般式(1)において、L、L、L及びLは、それぞれ独立に、単結合又は、2価の連結基を表し、2個以下の原子を介して、5員若しくは6員の芳香族炭化水素環又は芳香族複素環が連結されている。2個以下の原子を介してとは、連結基を構成する原子のうち連結される置換基間に存在する最小の原子数を表す。連結原子数2個以下の2価の連結基としては、特に制限はないが、アルキレン基、アルケニレン基、アルキニレン基、O、(C=O)、NR、S、(O=S=O)からなる群より選ばれる2価の連結基であるか、それらを2個組み合わせた連結基を表す。Rは、水素原子又は置換基を表す。Rで表される置換基の例には、アルキル基(メチル基、エチル基、n−プロピル基、イソプロピル基、tert−ブチル基、n−オクチル基、2−エチルヘキシル基等)、シクロアルキル基(シクロヘキシル基、シクロペンチル基、4−n−ドデシルシクロヘキシル基等)、芳香族炭化水素環基(フェニル基、p−トリル基、ナフチル基等)、芳香族複素環基(2−フリル基、2−チエニル基、2−ピリミジニル基、2−ベンゾチアゾリル基、2−ピリジル基等)、シアノ基等が含まれる。L、L、L及びLで表される2価の連結基は置換基を有してもよく、置換基としては特に制限はないが、例えば、前記一般式(1)におけるA及びAが有してもよい置換基と同様の基を挙げることができる。In the general formula (1), L 1 , L 2 , L 3, and L 4 each independently represent a single bond or a divalent linking group, and are 5-membered or 6-membered via 2 or less atoms. Membered aromatic hydrocarbon rings or aromatic heterocycles are connected. The term “via two or less atoms” means the minimum number of atoms existing between the connected substituents among the atoms constituting the connecting group. The divalent linking group having 2 or less linking atoms is not particularly limited, but includes an alkylene group, an alkenylene group, an alkynylene group, O, (C = O), NR, S, and (O = S = O). A divalent linking group selected from the group consisting of: or a combination of two divalent linking groups. R represents a hydrogen atom or a substituent. Examples of the substituent represented by R include an alkyl group (methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, n-octyl group, 2-ethylhexyl group, etc.), a cycloalkyl group ( Cyclohexyl group, cyclopentyl group, 4-n-dodecylcyclohexyl group, etc.), aromatic hydrocarbon ring group (phenyl group, p-tolyl group, naphthyl group, etc.), aromatic heterocyclic group (2-furyl group, 2-thienyl group) Group, 2-pyrimidinyl group, 2-benzothiazolyl group, 2-pyridyl group and the like), cyano group and the like. The divalent linking group represented by L 1 , L 2 , L 3 and L 4 may have a substituent, and the substituent is not particularly limited. For example, A in the general formula (1) Examples include the same groups as the substituents that 1 and A 2 may have.

前記一般式(1)において、L、L、L及びLは、前記一般式(1)で表される構造を有する化合物の平面性が高くなることで、樹脂との相互作用が強くなり、光学的特性の変動が抑制されるため、単結合又は、O、(C=O)−O、O−(C=O)、(C=O)−NR又はNR−(C=O)であることが好ましく、単結合であることがより好ましい。In the general formula (1), L 1 , L 2 , L 3, and L 4 have an increased interaction with the resin because the compound having the structure represented by the general formula (1) has higher planarity. Since it becomes stronger and fluctuations in optical characteristics are suppressed, a single bond or O, (C = O) -O, O- (C = O), (C = O) -NR or NR- (C = O ), And more preferably a single bond.

前記一般式(1)において、nは0〜5の整数を表す。nが2以上の整数を表すとき、前記一般式(1)における複数のA、T、L、Lは同じであってもよく、異なっていてもよい。nが大きい程、前記一般式(1)で表される構造を有する化合物と樹脂との相互作用が強くなることで光学的特性の変動抑制効果が優れ、nが小さいほど、樹脂との相溶性が優れる。このため、nは1〜3の整数であることが好ましく、1又は2の整数であることがより好ましい。In the general formula (1), n represents an integer of 0 to 5. When n represents an integer of 2 or more, a plurality of A 2 , T 2 , L 3 , and L 4 in the general formula (1) may be the same or different. The larger the value of n, the stronger the interaction between the compound having the structure represented by the general formula (1) and the resin, and the better the effect of suppressing fluctuations in optical characteristics. The smaller the value of n, the more compatible the resin. Is excellent. For this reason, n is preferably an integer of 1 to 3, and more preferably 1 or 2.

〈一般式(2)で表される構造を有する化合物〉
一般式(1)で表される構造を有する化合物は、一般式(2)で表される構造を有する化合物であることが好ましい。
<Compound having structure represented by general formula (2)>
The compound having a structure represented by the general formula (1) is preferably a compound having a structure represented by the general formula (2).

Figure 0006627869
Figure 0006627869

(式中、A、A、T、T、L、L、L及びLは、それぞれ前記一般式(1)におけるA、A、T、T、L、L、L及びLと同義である。A及びTは、それぞれ一般式(1)におけるA及びTと同様の基を表す。L及びLは、前記一般式(1)におけるLと同様の基を表す。mは0〜4の整数を表す。)
mが小さい方が樹脂との相溶性に優れるため、mは0〜2の整数であることが好ましく、0〜1の整数であることがより好ましい。
(In the formula, A 1 , A 2 , T 1 , T 2 , L 1 , L 2 , L 3 and L 4 are respectively A 1 , A 2 , T 1 , T 2 , L 2 in the general formula (1). 1, L 2, L 3 and .A 3 and T 3 L 4 as synonymous, the .L 5 and L 6 represent the same group as a 1 and T 1, respectively, in the general formula (1), the general Represents the same group as L 1 in Formula (1), and m represents an integer of 0 to 4.)
m is preferably an integer of 0 to 2, and more preferably an integer of 0 to 1, since the smaller the value of m, the better the compatibility with the resin.

〈一般式(1.1)で表される構造を有する化合物〉
一般式(1)で表される構造を有する化合物は、下記一般式(1.1)で表される構造を有するトリアゾール化合物であることが好ましい。
<Compound having structure represented by general formula (1.1)>
The compound having a structure represented by the general formula (1) is preferably a triazole compound having a structure represented by the following general formula (1.1).

Figure 0006627869
Figure 0006627869

(式中、A、B、L及びLは、上記一般式(1)におけるA、B、L及びLと同様の基を表す。kは、1〜4の整数を表す。Tは、1,2,4−トリアゾール環を表す。)
さらに、上記一般式(1.1)で表される構造を有するトリアゾール化合物は、下記一般式(1.2)で表される構造を有するトリアゾール化合物であることが好ましい。
(Wherein, A 1, B, L 1 and L 2, .k representing the A 1, B, the same group as L 1 and L 2 in formula (1) represents an integer of 1 to 4 .T 1 represents a 1,2,4-triazole ring.)
Further, the triazole compound having a structure represented by the general formula (1.1) is preferably a triazole compound having a structure represented by the following general formula (1.2).

Figure 0006627869
Figure 0006627869

(式中、Zは、下記一般式(1.2a)の構造を表す。qは、2〜3の整数を表す。少なくとも二つのZは、ベンゼン環に置換された少なくとも一つのZに対してオルト位又はメタ位に結合する。)

Figure 0006627869
(In the formula, Z represents a structure of the following general formula (1.2a). Q represents an integer of 2 to 3. At least two Zs represent at least one Z substituted with a benzene ring. Bonds to the ortho or meta position.)
Figure 0006627869

(式中、R10は水素原子、アルキル基又はアルコキシ基を表す。pは1〜5の整数を表す。*はベンゼン環との結合位置を表す。Tは1,2,4−トリアゾール環を表す。)
前記一般式(1)、(2)、(1.1)又は(1.2)で表される構造を有する化合物は、水和物、溶媒和物若しくは塩を形成してもよい。なお、本発明において、水和物は有機溶媒を含んでいてもよく、また溶媒和物は水を含んでいてもよい。即ち、「水和物」及び「溶媒和物」には、水と有機溶媒のいずれも含む混合溶媒和物が含まれる。塩としては、無機又は有機酸で形成された酸付加塩が含まれる。無機酸の例として、ハロゲン化水素酸(塩酸、臭化水素酸など)、硫酸、リン酸などが含まれ、またこれらに限定されない。また、有機酸の例には、酢酸、トリフルオロ酢酸、プロピオン酸、酪酸、シュウ酸、クエン酸、安息香酸、アルキルスルホン酸(メタンスルホン酸など)、アリルスルホン酸(ベンゼンスルホン酸、4−トルエンスルホン酸、1,5−ナフタレンジスルホン酸など)などが挙げられ、またこれらに限定されない。これらのうち好ましくは、塩酸塩、酢酸塩、プロピオン酸塩、酪酸塩である。
(In the formula, R 10 represents a hydrogen atom, an alkyl group or an alkoxy group. P represents an integer of 1 to 5. * represents a bonding position with a benzene ring. T 1 represents a 1,2,4-triazole ring. Represents.)
The compound having the structure represented by the general formula (1), (2), (1.1) or (1.2) may form a hydrate, a solvate or a salt. In the present invention, the hydrate may contain an organic solvent, and the solvate may contain water. That is, “hydrate” and “solvate” include mixed solvates containing both water and organic solvents. Salts include acid addition salts formed with inorganic or organic acids. Examples of inorganic acids include, but are not limited to, hydrohalic acids (such as hydrochloric acid, hydrobromic acid), sulfuric acid, phosphoric acid, and the like. Examples of organic acids include acetic acid, trifluoroacetic acid, propionic acid, butyric acid, oxalic acid, citric acid, benzoic acid, alkylsulfonic acid (such as methanesulfonic acid), and allylsulfonic acid (benzenesulfonic acid, 4-toluene). Sulfonic acid, 1,5-naphthalenedisulfonic acid, etc.), and the like, but is not limited thereto. Of these, hydrochloride, acetate, propionate and butyrate are preferred.

塩の例としては、親化合物に存在する酸性部分が、金属イオン(例えばアルカリ金属塩、例えばナトリウム又はカリウム塩、アルカリ土類金属塩、例えばカルシウム又はマグネシウム塩、アンモニウム塩アルカリ金属イオン、アルカリ土類金属イオン、又はアルミニウムイオンなど)により置換されるか、又は有機塩基(エタノールアミン、ジエタノールアミン、トリエタノールアミン、モルホリン、ピペリジン、など)と調整されたときに形成される塩が挙げられ、またこれらに限定されない。これらのうち好ましくはナトリウム塩、カリウム塩である。   Examples of salts include those in which the acidic moiety present in the parent compound is a metal ion (eg, an alkali metal salt, such as a sodium or potassium salt, an alkaline earth metal salt, such as a calcium or magnesium salt, an ammonium salt, an alkali metal ion, an alkaline earth metal salt). And salts formed when adjusted with an organic base (ethanolamine, diethanolamine, triethanolamine, morpholine, piperidine, etc.) by a metal ion or an aluminum ion, and the like. Not limited. Of these, sodium salts and potassium salts are preferred.

溶媒和物が含む溶媒の例には、一般的な有機溶剤のいずれも含まれる。具体的には、アルコール(例、メタノール、エタノール、2−プロパノール、1−ブタノール、1−メトキシ−2−プロパノール、t−ブタノール)、エステル(例、酢酸エチル)、炭化水素(例、トルエン、ヘキサン、ヘプタン)、エーテル(例、テトラヒドロフラン)、ニトリル(例、アセトニトリル)、ケトン(アセトン)などが挙げられる。好ましくは、アルコール(例、メタノール、エタノール、2−プロパノール、1−ブタノール、1−メトキシ−2−プロパノール、t−ブタノール)の溶媒和物である。これらの溶媒は、前記化合物の合成時に用いられる反応溶媒であっても、合成後の晶析精製の際に用いられる溶媒であってもよく、又はこれらの混合であってもよい。   Examples of the solvent contained in the solvate include any of common organic solvents. Specifically, alcohols (eg, methanol, ethanol, 2-propanol, 1-butanol, 1-methoxy-2-propanol, t-butanol), esters (eg, ethyl acetate), hydrocarbons (eg, toluene, hexane) , Heptane), ether (eg, tetrahydrofuran), nitrile (eg, acetonitrile), ketone (acetone) and the like. Preferably, it is a solvate of an alcohol (eg, methanol, ethanol, 2-propanol, 1-butanol, 1-methoxy-2-propanol, t-butanol). These solvents may be reaction solvents used in the synthesis of the compound, solvents used in crystallization purification after synthesis, or a mixture thereof.

また、2種類以上の溶媒を同時に含んでもよいし、水と溶媒を含む形(例えば、水とアルコール(例えば、メタノール、エタノール、t−ブタノールなど)など)であってもよい。   Further, two or more kinds of solvents may be simultaneously contained, or a form containing water and a solvent (for example, water and an alcohol (for example, methanol, ethanol, t-butanol, etc.)) may be used.

なお、前記一般式(1)、(2)、(1.1)又は(1.2)で表される構造を有する化合物を、水や溶媒、塩を含まない形態で添加しても、本発明における光学補償フィルム中において、水和物、溶媒和物又は塩を形成してもよい。   In addition, even if the compound having the structure represented by the general formula (1), (2), (1.1) or (1.2) is added in a form not containing water, a solvent or a salt, Hydrates, solvates or salts may be formed in the optical compensation film of the invention.

前記一般式(1)、(2)、(1.1)又は(1.2)で表される構造を有する化合物の分子量は特に制限はないが、小さいほど樹脂との相溶性に優れ、大きいほど環境湿度の変化に対する光学値の変動抑制効果が高いため、150〜2000の範囲であることが好ましく、200〜1500であることがより好ましく、300〜1000の範囲であることがより好ましい。   The molecular weight of the compound having the structure represented by the general formula (1), (2), (1.1) or (1.2) is not particularly limited, but the smaller the molecular weight, the better the compatibility with the resin and the larger. As the effect of suppressing the change of the optical value with respect to the change of the environmental humidity is higher, the range is preferably from 150 to 2,000, more preferably from 200 to 1500, and even more preferably from 300 to 1,000.

さらに、本発明に係る含窒素複素環化合物は、下記一般式(3)で表される構造を有する化合物であることが特に好ましい。   Further, the nitrogen-containing heterocyclic compound according to the present invention is particularly preferably a compound having a structure represented by the following general formula (3).

Figure 0006627869
(式中Aはピラゾール環を表す。Ar及びArはそれぞれ芳香族炭化水素環又は芳香族複素環を表し、置換基を有してもよい。Rは水素原子、アルキル基、アシル基、スルホニル基、アルキルオキシカルボニル基、又はアリールオキシカルボニル基を表す。qは1又は2を表す。n及びmはそれぞれ1〜3の整数を表す。)
Ar及びArで表される芳香族炭化水素環又は芳香族複素環は、それぞれ一般式(1)で挙げた5員若しくは6員の芳香族炭化水素環又は芳香族複素環であることが好ましい。また、Ar及びArの置換基としては、前記一般式(1)で表される構造を有する化合物で示したのと同様な置換基が挙げられる。
Figure 0006627869
(In the formula, A represents a pyrazole ring. Ar 1 and Ar 2 each represent an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and may have a substituent. R 1 is a hydrogen atom, an alkyl group, or an acyl group. , A sulfonyl group, an alkyloxycarbonyl group, or an aryloxycarbonyl group. Q represents 1 or 2. n and m each represent an integer of 1 to 3.)
The aromatic hydrocarbon ring or aromatic heterocyclic ring represented by Ar 1 and Ar 2 may be the 5- or 6-membered aromatic hydrocarbon ring or aromatic heterocyclic ring described in the general formula (1), respectively. preferable. Examples of the substituent for Ar 1 and Ar 2 include the same substituents as those described for the compound having the structure represented by the general formula (1).

の具体例としては、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、アルキル基(メチル基、エチル基、n−プロピル基、イソプロピル基、tert−ブチル基、n−オクチル基、2−エチルヘキシル基等)、アシル基(アセチル基、ピバロイルベンゾイル基等)、スルホニル基(例えば、メチルスルホニル基、エチルスルホニル基等)、アルキルオキシカルボニル基(例えば、メトキシカルボニル基)、アリールオキシカルボニル基(例えば、フェノキシカルボニル基等)等が挙げられる。Specific examples of R 1 include a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), an alkyl group (methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, n-octyl) Group, 2-ethylhexyl group, etc.), acyl group (acetyl group, pivaloylbenzoyl group, etc.), sulfonyl group (eg, methylsulfonyl group, ethylsulfonyl group, etc.), alkyloxycarbonyl group (eg, methoxycarbonyl group), And an aryloxycarbonyl group (for example, a phenoxycarbonyl group and the like).

qは1又は2を表し、n及びmは1〜3の整数を表す。   q represents 1 or 2, and n and m represent an integer of 1 to 3.

本発明に用いられる5員若しくは6員の芳香族炭化水素環又は芳香族複素環を有する化合物は、中でも前記一般式(1)、(2)、(1.1)、(1.2)で表される構造を有する化合物が好ましく、さらに一般式(3)で表される構造を有する化合物であることがより好ましい。本発明で用いることができる前記5員若しくは6員の芳香族炭化水素環又は芳香族複素環を有する化合物は、国際公開第2014/109350号の段落[0140]〜段落[0214]に記載の化合物を具体例として挙げることができる。なお、本発明は当該具体例によって何ら限定されることはない。また、具体例は互変異性体であってもよく、水和物、溶媒和物又は塩を形成していてもよい。   The compound having a 5- or 6-membered aromatic hydrocarbon ring or aromatic heterocyclic ring used in the present invention is preferably a compound represented by the above general formula (1), (2), (1.1) or (1.2). A compound having a structure represented by the formula is preferable, and a compound having a structure represented by the general formula (3) is more preferable. The compound having a 5- or 6-membered aromatic hydrocarbon ring or aromatic heterocyclic ring that can be used in the present invention is a compound described in paragraphs [0140] to [0214] of WO 2014/109350. Can be mentioned as a specific example. Note that the present invention is not limited by the specific examples. Further, specific examples may be tautomers, and may form hydrates, solvates or salts.

前記具体例で挙げた化合物の合成方法も、同様に国際公開第2014/109350号の段落[0215]〜[0239]を参照することができる。   Similarly, for the method of synthesizing the compounds mentioned in the specific examples, paragraphs [0215] to [0239] of WO 2014/109350 can be referred to.

〈一般式(1)〜(3)で表される構造を有する化合物の使用方法について〉
本発明に係る前記一般式(1)〜(3)で表される構造を有する化合物は、適宜量を調整して光学補償フィルムに含有することができるが、添加量としては光学補償フィルム中に、0.1〜10質量%含むことが好ましく、特に、1〜5質量%含むことが好ましく、2〜5質量%含むことが特に好ましい。添加量は樹脂の種類、当該化合物の種類によって異なるものであるが、本発明の光学補償フィルムが所望の位相差値を示す添加量によって最適値を決定することができる。この範囲内であれば、本発明の光学補償フィルムの機械強度を損なうことなく、熱処理時も位相差変動を低減することができる。
<How to Use Compounds Having Structures Represented by General Formulas (1) to (3)>
The compound having the structure represented by the general formulas (1) to (3) according to the present invention can be contained in the optical compensation film by appropriately adjusting the amount thereof. , Preferably 0.1 to 10% by mass, particularly preferably 1 to 5% by mass, particularly preferably 2 to 5% by mass. The addition amount varies depending on the type of the resin and the type of the compound, but the optimum value can be determined by the addition amount at which the optical compensation film of the present invention exhibits a desired retardation value. Within this range, the phase difference fluctuation can be reduced even during the heat treatment without impairing the mechanical strength of the optical compensation film of the present invention.

また、前記一般式(1)〜(3)で表される構造を有する化合物の添加方法としては、光学補償フィルムを形成する樹脂に粉体で添加しても良く、溶媒に溶解した後、光学補償フィルムを形成する樹脂に添加しても良い。   As a method for adding the compound having the structure represented by the general formulas (1) to (3), the compound may be added as a powder to the resin forming the optical compensation film. You may add to the resin which forms a compensation film.

〔3〕その他の添加剤
本発明に係る光学補償フィルムには、前記添加剤以外に可塑剤、酸化防止剤、マット剤、光安定剤、光学異方性制御剤、帯電防止剤、剥離剤などを含んでもよい。以下に主要な添加剤の詳細を記す。
[3] Other additives In addition to the additives, the optical compensation film according to the present invention includes a plasticizer, an antioxidant, a matting agent, a light stabilizer, an optical anisotropy controlling agent, an antistatic agent, a release agent, and the like. May be included. The details of the main additives are described below.

[可塑剤]
可塑剤とは、一般的には高分子中に添加することによって脆弱性を改良したり、溶融粘度を低下させたり、柔軟性を付与したりする効果のある添加剤であるが、添加することによって光学補償フィルムのガラス転移温度Tgを低下させる場合があるため、光学補償フィルムのガラス転移温度Tgを本発明の範囲内に制御する範囲で用いることが好ましい。
[Plasticizer]
A plasticizer is an additive that generally has the effect of improving brittleness, lowering the melt viscosity, or imparting flexibility by being added to a polymer. In some cases, the glass transition temperature Tg of the optical compensation film may be lowered, so that the glass transition temperature Tg of the optical compensation film is preferably used within a range that is controlled within the range of the present invention.

本発明において可塑剤として、公知のフタル酸エステル系、脂肪酸エステル系、トリメリット酸エステル系、リン酸エステル系、ポリエステル系、糖エステル系、アクリル系ポリマー等の可塑剤を用いることができる。   In the present invention, as the plasticizer, known plasticizers such as phthalate ester, fatty acid ester, trimellitate, phosphate, polyester, sugar ester, and acrylic polymers can be used.

可塑剤の添加量は、樹脂に対して0.1〜10質量%の範囲内であることが好ましく、0.5〜5質量%の範囲内であることがさらに好ましい。   The amount of the plasticizer added is preferably in the range of 0.1 to 10% by mass, more preferably in the range of 0.5 to 5% by mass, based on the resin.

[紫外線吸収剤]
本発明に係る光学補償フィルムは、紫外線吸収剤を含有することができる。
[UV absorber]
The optical compensation film according to the present invention can contain an ultraviolet absorber.

紫外線吸収剤としては、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物等を挙げることができるが、着色の少ないベンゾトリアゾール系化合物が好ましい。また、特開平10−182621号公報、特開平8−337574号公報に記載の紫外線吸収剤、特開平6−148430号公報に記載の高分子紫外線吸収剤も好ましく用いられる。   Examples of the ultraviolet absorber include, for example, oxybenzophenone-based compounds, benzotriazole-based compounds, salicylate-based compounds, benzophenone-based compounds, cyanoacrylate-based compounds, nickel complex-based compounds, etc. Compounds are preferred. Further, ultraviolet absorbers described in JP-A-10-182621 and JP-A-8-337574, and polymer ultraviolet absorbers described in JP-A-6-148430 are also preferably used.

本発明に用いられる紫外線吸収剤としては、偏光子や液晶表示セルの劣化防止の観点から、波長370nm以下の紫外線の吸収能に優れ、かつ液晶表示セルの表示性の観点から、波長400nm以上の可視光の吸収が少ない特性を備えていることが好ましい。   As the ultraviolet absorber used in the present invention, from the viewpoint of preventing deterioration of the polarizer and the liquid crystal display cell, it is excellent in the ability to absorb ultraviolet light having a wavelength of 370 nm or less, and from the viewpoint of displayability of the liquid crystal display cell, has a wavelength of 400 nm or more. It is preferable to have a characteristic of less absorption of visible light.

紫外線吸収剤の添加量は、樹脂に対して0.1〜5質量%の範囲内であることが好ましく、0.5〜5質量%の範囲内であることがさらに好ましい。   The amount of the ultraviolet absorber added is preferably in the range of 0.1 to 5% by mass, more preferably in the range of 0.5 to 5% by mass, based on the resin.

本発明に有用なベンゾトリアゾール系紫外線吸収剤としては、例えば、2−(2′−ヒドロキシ−5′−メチルフェニル)ベンゾトリアゾール、2−(2′−ヒドロキシ−3′,5′−ジ−t−ブチルフェニル)ベンゾトリアゾール、2−(2′−ヒドロキシ−3′−t−ブチル−5′−メチルフェニル)ベンゾトリアゾール、2−(2′−ヒドロキシ−3′,5′−ジ−t−ブチルフェニル)−5−クロロベンゾトリアゾール、2−[2′−ヒドロキシ−3′−(3″,4″,5″,6″−テトラヒドロフタルイミドメチル)−5′−メチルフェニル]ベンゾトリアゾール、2,2−メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール]、2−(2′−ヒドロキシ−3′−t−ブチル−5′−メチルフェニル)−5−クロロベンゾトリアゾール、2−(2H−ベンゾトリアゾール−2−イル)−6−(直鎖及び側鎖ドデシル)−4−メチルフェノール、オクチル−3−[3−t−ブチル−4−ヒドロキシ−5−(クロロ−2H−ベンゾトリアゾール−2−イル)フェニル]プロピオネートと2−エチルヘキシル−3−[3−t−ブチル−4−ヒドロキシ−5−(5−クロロ−2H−ベンゾトリアゾール−2−イル)フェニル]プロピオネートの混合物等を挙げることができるが、これらに限定されない。   Examples of the benzotriazole-based ultraviolet absorber useful in the present invention include 2- (2'-hydroxy-5'-methylphenyl) benzotriazole and 2- (2'-hydroxy-3 ', 5'-di-t. -Butylphenyl) benzotriazole, 2- (2'-hydroxy-3'-t-butyl-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-t-butyl Phenyl) -5-chlorobenzotriazole, 2- [2'-hydroxy-3 '-(3 ", 4", 5 ", 6" -tetrahydrophthalimidomethyl) -5'-methylphenyl] benzotriazole, 2,2 -Methylenebis [4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol], 2- (2'-hydroxy-3 -T-butyl-5'-methylphenyl) -5-chlorobenzotriazole, 2- (2H-benzotriazol-2-yl) -6- (linear and side chain dodecyl) -4-methylphenol, octyl-3 -[3-tert-butyl-4-hydroxy-5- (chloro-2H-benzotriazol-2-yl) phenyl] propionate and 2-ethylhexyl-3- [3-tert-butyl-4-hydroxy-5- ( 5-chloro-2H-benzotriazol-2-yl) phenyl] propionate, but is not limited thereto.

また、市販品として、「チヌビン(TINUVIN)928」、「チヌビン(TINUVIN)171」、「チヌビン(TINUVIN)326」、「チヌビン(TINUVIN)328」(以上、商品名、BASFジャパン社製)を好ましく使用できる。   As commercial products, “Tinuvin (TINUVIN) 928”, “Tinuvin (TINUVIN) 171”, “Tinuvin (TINUVIN) 326”, and “Tinuvin (TINUVIN) 328” (all trade names, manufactured by BASF Japan) are preferable. Can be used.

[酸化防止剤]
酸化防止剤は、例えば、光学補償フィルム中の残留溶媒のハロゲンやリン酸系可塑剤のリン酸等により光学補償フィルムが分解するのを遅らせたり、防いだりする役割を有するので、フィルム中に含有させることが好ましい。
[Antioxidant]
The antioxidant has a role of delaying or preventing the optical compensation film from being decomposed by, for example, a halogen in a residual solvent in the optical compensation film or phosphoric acid in a phosphoric acid-based plasticizer. Preferably.

このような酸化防止剤としては、ヒンダードフェノール系の化合物が好ましく用いられ、例えば、2,6−ジ−t−ブチル−p−クレゾール、ペンタエリスリチル−テトラキス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール−ビス〔3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート〕、1,6−ヘキサンジオール−ビス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−t−ブチルアニリノ)−1,3,5−トリアジン、2,2−チオ−ジエチレンビス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、N,N′−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロシンナマミド)、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−イソシアヌレート等を挙げることができる。   As such an antioxidant, a hindered phenol compound is preferably used. For example, 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis [3- (3,5-di- -T-butyl-4-hydroxyphenyl) propionate], triethylene glycol-bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3 -(3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino)- 1,3,5-triazine, 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], octa Sil-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, N, N'-hexamethylenebis (3,5-di-tert-butyl-4-hydroxy-hydrocinnamamide) 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, tris- (3,5-di-tert-butyl-4-hydroxy) Benzyl) -isocyanurate and the like.

特に、2,6−ジ−t−ブチル−p−クレゾール、ペンタエリスリチル−テトラキス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール−ビス〔3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート〕が好ましい。また、例えば、N,N′−ビス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニル〕ヒドラジン等のヒドラジン系の金属不活性剤やトリス(2,4−ジ−t−ブチルフェニル)フォスファイト等のリン系加工安定剤を併用してもよい。   Particularly, 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], triethylene glycol-bis [3 -(3-t-butyl-5-methyl-4-hydroxyphenyl) propionate] is preferred. Further, for example, a hydrazine-based metal deactivator such as N, N'-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] hydrazine or tris (2,4-di- A phosphorus-based processing stabilizer such as (t-butylphenyl) phosphite may be used in combination.

酸化防止剤の添加量は、樹脂に対して0.1〜5質量%の範囲内であることが好ましく、0.5〜3質量%の範囲内であることがさらに好ましい。   The amount of the antioxidant added is preferably in the range of 0.1 to 5% by mass, more preferably 0.5 to 3% by mass, based on the resin.

[マット剤]
本発明に係る光学補償フィルムには、作製されたフィルムがハンドリングされる際に、傷が付いたり、搬送性が悪化することを防止するために、マット剤として、微粒子を添加することも好ましい。
[Mat agent]
It is also preferable to add fine particles as a matting agent to the optical compensation film according to the present invention in order to prevent scratches and deterioration of transportability when the produced film is handled.

微粒子としては、無機化合物の微粒子や樹脂の微粒子が挙げられる。無機化合物の微粒子の例として、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウム等を挙げることができる。微粒子はケイ素を含むものが、濁度が低くなる点で好ましく、特に二酸化ケイ素が好ましい。   Examples of the fine particles include fine particles of an inorganic compound and fine particles of a resin. Examples of inorganic compound fine particles include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, and silicate. Examples include magnesium and calcium phosphate. Fine particles containing silicon are preferred in that turbidity is reduced, and silicon dioxide is particularly preferred.

微粒子の一次粒子の平均粒径は、5〜400nmの範囲内が好ましく、さらに好ましいのは10〜300nmの範囲内である。これらは主に粒径0.05〜0.3μmの範囲内の2次凝集体として含有されていてもよく、平均粒径80〜400nmの範囲内の粒子であれば凝集せずに一次粒子として含まれていることも好ましい。   The average primary particle size of the fine particles is preferably in the range of 5 to 400 nm, and more preferably in the range of 10 to 300 nm. These may be mainly contained as secondary aggregates having a particle size in the range of 0.05 to 0.3 μm, and as primary particles without aggregating as long as the particles have an average particle size in the range of 80 to 400 nm. It is also preferred that they are included.

フィルム中のこれらの微粒子の含有量は、0.01〜1質量%の範囲内であることが好ましく、特に0.05〜0.5質量%の範囲内であることが好ましい。   The content of these fine particles in the film is preferably in the range of 0.01 to 1% by mass, and particularly preferably in the range of 0.05 to 0.5% by mass.

例えば、二酸化ケイ素の微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル株式会社製)の商品名で市販されており、使用することができる。   For example, fine particles of silicon dioxide are commercially available under the trade names of Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 (all manufactured by Nippon Aerosil Co., Ltd.) and used. Can be.

酸化ジルコニウムの微粒子は、例えば、アエロジルR976及びR811(以上日本アエロジル株式会社製)の商品名で市販されており、使用することができる。   Fine particles of zirconium oxide are commercially available under the trade name of Aerosil R976 and R811 (all manufactured by Nippon Aerosil Co., Ltd.) and can be used.

樹脂の微粒子の例として、シリコーン樹脂、フッ素樹脂及びアクリル樹脂を挙げることができる。シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(以上東芝シリコーン株式会社製)の商品名で市販されており、使用することができる。   Examples of resin fine particles include silicone resin, fluorine resin and acrylic resin. Silicone resins are preferred, and those having a three-dimensional network structure are particularly preferred. For example, trade names of Tospearl 103, 105, 108, 120, 145, 3120 and 240 (all manufactured by Toshiba Silicone Co., Ltd.) And can be used.

これらの中でもアエロジル812、アエロジルR972Vが、フィルムのヘイズを低く保ちながら、摩擦係数を下げる効果が大きいため特に好ましく用いられる。   Of these, Aerosil 812 and Aerosil R972V are particularly preferably used because they have a large effect of lowering the coefficient of friction while keeping the haze of the film low.

本発明に係る光学補償フィルムにおいては、少なくとも一方の面の動摩擦係数が0.2〜1.0の範囲内であることが好ましい。   In the optical compensation film according to the present invention, the dynamic friction coefficient of at least one surface is preferably in the range of 0.2 to 1.0.

〔4〕光学補償フィルムの製造方法
本発明に係る光学補償フィルムの製造方法として、シクロオレフィン系樹脂を用いた例で説明する。
[4] Production method of optical compensation film The production method of the optical compensation film according to the present invention will be described by way of an example using a cycloolefin-based resin.

〔4.1〕溶液流延製膜法
本発明の光学補償フィルムの製造方法は、溶液流延製膜法(以下、溶液流延法ともいう。)で行うことが好ましく、公知の方法を適宜採用することができる。
[4.1] Solution casting film production method The method for producing the optical compensation film of the present invention is preferably carried out by a solution casting film production method (hereinafter, also referred to as a solution casting method), and a known method is appropriately employed. Can be adopted.

溶液流延法に用いられる溶媒としては、例えば、クロロホルム、ジクロロメタンなどの塩素系溶媒;トルエン、キシレン、ベンゼン、及びこれらの混合溶媒などの芳香族系溶媒;メタノール、エタノール、イソプロパノール、n−ブタノール、2−ブタノールなどのアルコール系溶媒;メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、ジメチルホルムアミド、ジメチルスルホキシド、ジオキサン、シクロヘキサノン、テトラヒドロフラン、アセトン、メチルエチルケトン(MEK)、酢酸エチル、ジエチルエーテル;などが挙げられる。これら溶剤は1種のみ用いてもよいし、2種以上を併用してもよい。   As the solvent used in the solution casting method, for example, a chlorinated solvent such as chloroform and dichloromethane; an aromatic solvent such as toluene, xylene, benzene, and a mixed solvent thereof; methanol, ethanol, isopropanol, n-butanol, Alcohol solvents such as 2-butanol; methyl cellosolve, ethyl cellosolve, butyl cellosolve, dimethylformamide, dimethyl sulfoxide, dioxane, cyclohexanone, tetrahydrofuran, acetone, methyl ethyl ketone (MEK), ethyl acetate, diethyl ether; These solvents may be used alone or in combination of two or more.

本発明に用いられる溶媒は、良溶媒と貧溶媒の混合溶媒であることが好ましく、当該良溶媒は、例えば、塩素系有機溶媒としては、ジクロロメタン、非塩素系有機溶媒としては、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、メチルエチルケトン、テトラヒドロフラン、1,3−ジオキソラン、1,4−ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2−トリフルオロエタノール、2,2,3,3−ヘキサフルオロ−1−プロパノール、1,3−ジフルオロ−2−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−メチル−2−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール、2,2,3,3,3−ペンタフルオロ−1−プロパノール、ニトロエタン、メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、sec−ブタノール、tert−ブタノール等が挙げられ、中でもジクロロメタンであることが好ましい。   The solvent used in the present invention is preferably a mixed solvent of a good solvent and a poor solvent, and the good solvent is, for example, dichloromethane as a chlorinated organic solvent, methyl acetate or acetic acid as a non-chlorinated organic solvent. Ethyl, amyl acetate, acetone, methyl ethyl ketone, tetrahydrofuran, 1,3-dioxolan, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1 -Propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro -2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, methanol, ethanol, n- Propanol, iso- propanol, n- butanol, sec- butanol, tert- butanol and the like, it is preferable among them is dichloromethane.

貧溶媒はアルコール系溶媒であることが好ましく、当該アルコール系溶媒が、メタノール、エタノール及びブタノールから選択されることが、剥離性を改善し、高速度流延を可能にする観点から好ましい。   The poor solvent is preferably an alcohol-based solvent, and the alcohol-based solvent is preferably selected from methanol, ethanol, and butanol from the viewpoint of improving peelability and enabling high-speed casting.

本発明では、混合溶媒であれば、前記良溶媒を溶媒全体量に対して55質量%以上を用いることが好ましく、より好ましくは70質量%以上、更に好ましくは80質量%以上用いることである。   In the present invention, if it is a mixed solvent, the good solvent is preferably used in an amount of 55% by mass or more based on the total amount of the solvent, more preferably 70% by mass or more, and further preferably 80% by mass or more.

溶液流延法にて光学補償フィルムを製膜する場合は、例えば前記シクロオレフィン系樹脂及び一般式(3)で表される構造を有する化合物と溶媒を含むドープを調製し、当該ドープを支持体上に流延する。   When the optical compensation film is formed by the solution casting method, for example, a dope containing the cycloolefin-based resin and the compound having the structure represented by the general formula (3) and a solvent is prepared, and the dope is used as a support. Cast on top.

すなわち、少なくともシクロオレフィン系樹脂及び一般式(3)で表される構造を有する化合物を溶解させてドープを調製する工程、ドープをベルト状又はドラム状の金属支持体上に流延する工程、流延したドープをウェブとして乾燥する工程、金属支持体から剥離する工程、延伸又は幅保持する工程、さらに乾燥する工程、仕上がったフィルムを巻き取る工程を有することが好ましい。   That is, a step of preparing a dope by dissolving at least a cycloolefin resin and a compound having a structure represented by the general formula (3), a step of casting the dope on a belt-shaped or drum-shaped metal support, It is preferable to include a step of drying the stretched dope as a web, a step of peeling the dope from the metal support, a step of stretching or maintaining the width, a step of drying, and a step of winding the finished film.

溶液流延法では、ドープ中のシクロオレフィン系樹脂の濃度は、濃度が高い方が金属支持体に流延した後の乾燥負荷が低減できて好ましいが、シクロオレフィン系樹脂の濃度が高すぎると濾過時の負荷が増えて、濾過精度が悪くなる。これらを両立する濃度としては、10〜35質量%が好ましく、さらに好ましくは、15〜25質量%である。流延(キャスト)工程における金属支持体は、表面を鏡面仕上げしたものが好ましく、金属支持体としては、ステンレススティールベルト又は鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。   In the solution casting method, the concentration of the cycloolefin-based resin in the dope is preferably such that the higher the concentration, the lower the drying load after casting on the metal support is, but the higher the concentration of the cycloolefin-based resin is. The load at the time of filtration increases, and filtration accuracy deteriorates. The concentration for satisfying both is preferably 10 to 35% by mass, and more preferably 15 to 25% by mass. The metal support in the casting step is preferably one whose surface is mirror-finished. As the metal support, a stainless steel belt or a drum whose surface is plated with a casting is preferably used.

キャストの幅は1〜4mとすることができる。流延工程の金属支持体の表面温度は0〜100℃で適宜決定され、5〜30℃がさらに好ましく、溶媒が沸騰して発泡しない温度以下に設定される。温度が高い方がウェブの乾燥速度が速くできるので好ましいが、余り高すぎるとウェブが発泡したり、平面性が劣化したりする場合がある。   The width of the cast can be 1-4 m. The surface temperature of the metal support in the casting step is appropriately determined at 0 to 100 ° C, more preferably 5 to 30 ° C, and is set to a temperature at which the solvent does not boil and foam. A higher temperature is preferred because the drying speed of the web can be increased. However, if the temperature is too high, the web may foam or the flatness may deteriorate.

または、冷却することによってウェブをゲル化させて残留溶剤を多く含んだ状態でドラムから剥離することも好ましい方法である。金属支持体の温度を制御する方法は特に制限されないが、温風又は冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。温水を用いる方が熱の伝達が効率的に行われるため、金属支持体の温度が一定になるまでの時間が短く好ましい。   Alternatively, it is also a preferable method to gel the web by cooling and to peel the web from the drum in a state containing a large amount of residual solvent. The method of controlling the temperature of the metal support is not particularly limited, and includes a method of blowing hot air or cold air, and a method of bringing hot water into contact with the back side of the metal support. It is preferable to use hot water since the time required for the temperature of the metal support to become constant is short because heat is transferred more efficiently.

温風を用いる場合は溶剤の蒸発潜熱によるウェブの温度低下を考慮して、溶剤の沸点以上の温風を使用しつつ、発泡も防ぎながら目的の温度よりも高い温度の風を使う場合がある。   When using hot air, in consideration of the temperature drop of the web due to the latent heat of evaporation of the solvent, while using hot air above the boiling point of the solvent, air may be used at a temperature higher than the target temperature while preventing foaming. .

特に、流延から剥離するまでの間で支持体の温度及び乾燥風の温度を変更し、効率的に乾燥を行うことが好ましい。   In particular, it is preferable to change the temperature of the support and the temperature of the drying air during the period from the casting to the peeling to efficiently perform the drying.

光学補償フィルムが良好な平面性を示すためには、金属支持体からウェブを剥離する際の残留溶剤量は10〜150質量%が好ましく、さらに好ましくは20〜40質量%又は60〜130質量%であり、特に好ましくは、20〜30質量%又は70〜120質量%である。   In order for the optical compensation film to show good flatness, the amount of the residual solvent when the web is peeled off from the metal support is preferably from 10 to 150% by mass, more preferably from 20 to 40% by mass or from 60 to 130% by mass. And particularly preferably 20 to 30% by mass or 70 to 120% by mass.

残留溶剤量は下記式で定義される。   The residual solvent amount is defined by the following equation.

残留溶剤量(質量%)={(M−N)/N}×100
なお、Mはウェブ又はフィルムを製造中又は製造後の任意の時点で採取した試料の質量で、NはMを115℃で1時間の加熱後の質量である。
Residual solvent amount (% by mass) = {(M−N) / N} × 100
Here, M is the mass of the sample collected at any time during or after the production of the web or film, and N is the mass after heating M at 115 ° C. for 1 hour.

また、光学フィルムの乾燥工程においては、ウェブを金属支持体より剥離し、さらに乾燥し、残留溶剤量を1質量%以下にすることが好ましく、さらに好ましくは0.1質量%以下であり、特に好ましくは0〜0.01質量%以下である。   Further, in the drying step of the optical film, the web is peeled off from the metal support, and further dried, so that the residual solvent amount is preferably 1% by mass or less, more preferably 0.1% by mass or less, particularly preferably 0.1% by mass or less. Preferably it is 0 to 0.01% by mass or less.

フィルム乾燥工程では一般にローラー乾燥方式(上下に配置した多数のローラーにウェブを交互に通し乾燥させる方式)やテンター方式でウェブを搬送させながら乾燥する方式が採られる。   In the film drying process, a roller drying method (a method in which the web is alternately passed through a number of rollers arranged vertically and drying) or a method in which the web is dried while being conveyed by a tenter method is employed.

本発明に係る光学補償フィルムは、フィルムの平滑性や位相差の調整を行う観点から、延伸することが好ましい。   The optical compensation film according to the present invention is preferably stretched from the viewpoint of adjusting the smoothness and retardation of the film.

本発明に係る光学フィルムの製造方法においては、長手方向及び/又は幅手方向、若しくは斜め方向に延伸することが好ましい。   In the method for producing an optical film according to the present invention, it is preferable that the film is stretched in the longitudinal direction and / or the width direction or the oblique direction.

延伸操作は多段階に分割して実施しても良い。また、二軸延伸を行う場合には同時二軸延伸を行っても良いし、段階的に実施しても良い。この場合、段階的とは、例えば、延伸方向の異なる延伸を順次行うことも可能であるし、同一方向の延伸を多段階に分割し、かつ異なる方向の延伸をそのいずれかの段階に加えることも可能である。   The stretching operation may be performed in multiple stages. When performing biaxial stretching, simultaneous biaxial stretching may be performed or stepwise may be performed. In this case, stepwise means, for example, that stretching in different stretching directions can be performed sequentially, or that stretching in the same direction is divided into multiple stages and stretching in different directions is added to any of the stages. Is also possible.

すなわち、例えば、次のような延伸ステップも可能である:
・長手方向に延伸→幅手方向に延伸→長手方向に延伸→長手方向に延伸
・幅手方向に延伸→幅手方向に延伸→長手方向に延伸→長手方向に延伸
また、同時二軸延伸には、一方向に延伸し、もう一方を、張力を緩和して収縮する場合も含まれる。
Thus, for example, the following stretching steps are also possible:
・ Stretching in the longitudinal direction → stretching in the width direction → stretching in the longitudinal direction → stretching in the longitudinal direction ・ Stretching in the width direction → stretching in the width direction → stretching in the longitudinal direction → stretching in the longitudinal direction This includes the case where the film is stretched in one direction and the other is contracted by relaxing the tension.

延伸開始時の残留溶媒量は2〜50質量%の範囲内であることが好ましい。   The residual solvent amount at the start of stretching is preferably in the range of 2 to 50% by mass.

当該残留溶媒量は、2質量%以上であれば、膜厚偏差が小さくなり、平面性の観点から好ましく、50質量%以内であれば、表面の凹凸が減り、平面性が向上し好ましい。   When the amount of the residual solvent is 2% by mass or more, the film thickness deviation is small, and it is preferable from the viewpoint of flatness. When the amount is 50% by mass or less, the unevenness on the surface is reduced and the flatness is improved.

本発明に係る光学補償フィルムの製造方法においては、延伸後の膜厚が所望の範囲になるように長手方向及び/又は幅手方向に、好ましくは幅手方向に延伸しても良い。樹脂の種類によって異なるが、フィルムのガラス転移点Tgのうち最も低いTgをTgL、最も高いTgをTgHとしたときに、(TgL−200℃)〜(TgH+50℃)の温度範囲で延伸することが好ましい。上記温度範囲で延伸すると、延伸応力を低下できるのでヘイズが低くなる。また、破断の発生を抑制し、平面性、フィルム自身の着色性に優れたシクロオレフィン系樹脂を含有する光学補償フィルムが得られる。延伸温度は、(TgL−150℃)〜(TgH+40℃)の範囲で行うことがより好ましい。   In the method for producing an optical compensation film according to the present invention, the film may be stretched in the longitudinal direction and / or the width direction, preferably in the width direction, so that the film thickness after stretching is in a desired range. Although it depends on the type of resin, when the lowest Tg of the glass transition point Tg of the film is TgL and the highest Tg is TgH, the film can be stretched in a temperature range of (TgL−200 ° C.) to (TgH + 50 ° C.). preferable. When the film is stretched in the above temperature range, the haze is reduced because the stretching stress can be reduced. Further, an optical compensation film containing a cycloolefin-based resin which suppresses the occurrence of breakage and is excellent in flatness and coloring property of the film itself can be obtained. The stretching temperature is more preferably in the range of (TgL-150 ° C) to (TgH + 40 ° C).

本発明に係る光学補償フィルムの製造方法では、支持体から剥離された自己支持性を有するフィルムを、延伸ローラーで走行速度を規制することにより長手方向に延伸することができる。長手方向の延伸倍率は、30〜250℃の温度範囲で1.03〜2.00倍が好ましく、より好ましくは1.10〜1.80倍、更に好ましくは1.20〜1.60倍である。   In the method for producing an optical compensation film according to the present invention, the self-supporting film peeled from the support can be stretched in the longitudinal direction by regulating the running speed with a stretching roller. The stretching ratio in the longitudinal direction is preferably from 1.03 to 2.00 times, more preferably from 1.10 to 1.80 times, still more preferably from 1.20 to 1.60 times in a temperature range of 30 to 250 ° C. is there.

幅手方向に延伸するには、例えば、特開昭62−46625号公報に記載されているような乾燥全処理又は一部の処理を幅方向にクリップ又はピンでフィルムの幅両端を幅保持しつつ乾燥させる方法(テンター方式と呼ばれる。)、中でも、クリップを用いるテンター方式が好ましく用いられる。   In order to stretch in the width direction, for example, the entire drying process or a part of the process as described in JP-A-62-46625 is carried out by holding both ends of the film width in the width direction with clips or pins. A method of drying while drying (referred to as a tenter method), in particular, a tenter method using a clip is preferably used.

長手方向に延伸されたフィルム又は未延伸のフィルムは、クリップに幅方向両端部を把持された状態にてテンターへ導入され、テンタークリップとともに走行しながら、幅方向へ延伸されることが好ましい。幅方向の延伸倍率は、特に限定されないが、30〜300℃の温度範囲で1.03〜2.00倍が好ましく、より好ましくは1.10〜1.80倍、更に好ましくは1.20〜1.60倍である。   It is preferable that the film stretched in the longitudinal direction or the unstretched film is introduced into the tenter with both ends in the width direction being gripped by the clip, and is stretched in the width direction while traveling with the tenter clip. The stretching ratio in the width direction is not particularly limited, but is preferably 1.03 to 2.00 times, more preferably 1.10 to 1.80 times, and further preferably 1.20 to 20 times in a temperature range of 30 to 300 ° C. It is 1.60 times.

幅手方向への延伸に際し、フィルム幅手方向に50〜1000%/minの延伸速度で延伸することが、フィルムの平面性を向上する観点から、好ましい。   In stretching in the width direction, it is preferable to stretch the film in the width direction at a stretching speed of 50 to 1000% / min from the viewpoint of improving the flatness of the film.

延伸速度は50%/min以上であれば、平面性が向上し、またフィルムを高速で処理することができるため、生産適性の観点で好ましく、1000%/min以内であれば、フィルムが破断することなく処理することができ、好ましい。   When the stretching speed is 50% / min or more, the flatness is improved, and the film can be processed at a high speed. Therefore, it is preferable from the viewpoint of production suitability. It can be processed without any problem, which is preferable.

より好ましい延伸速度は、100〜500%/minの範囲内である。延伸速度は下記式によって定義される。   A more preferred stretching speed is in the range of 100 to 500% / min. The stretching speed is defined by the following equation.

延伸速度(%/min)=[(d/d)−1]×100(%)/t
(上記式において、dは延伸後の樹脂フィルムの前記延伸方向の幅寸法であり、dは延伸前の樹脂フィルムの前記延伸方向の幅寸法であり、tは延伸に要する時間(min)である。)
延伸工程では、通常、延伸した後、保持・緩和が行われる。すなわち、本工程は、フィルムを延伸する延伸段階、フィルムを延伸状態で保持する保持段階及びフィルムを延伸した方向に緩和する緩和段階をこれらの順序で行うことが好ましい。保持段階では、延伸段階で達成された延伸倍率での延伸を、延伸段階における延伸温度で保持する。緩和段階では、延伸段階における延伸を保持段階で保持した後、延伸のための張力を解除することによって、延伸を緩和する。緩和段階は、延伸段階における延伸温度以下で行えば良い。
Stretching speed (% / min) = [(d 1 / d 2 ) −1] × 100 (%) / t
(In the above formula, d 1 is the width of the resin film after stretching in the stretching direction, d 2 is the width of the resin film before stretching in the stretching direction, and t is the time required for stretching (min). Is.)
In the stretching step, holding and relaxing are usually performed after stretching. That is, in this step, it is preferable to perform a stretching step of stretching the film, a holding step of holding the film in a stretched state, and a relaxation step of relaxing the film in the stretching direction in this order. In the holding step, the stretching at the stretching ratio achieved in the stretching step is held at the stretching temperature in the stretching step. In the relaxation stage, after the stretching in the stretching stage is held in the holding stage, the stretching is released by releasing the tension for stretching. The relaxation step may be performed at a stretching temperature or lower in the stretching step.

また、斜め方向に延伸する場合は、特開2005−321543号公報及び特開2013−120208号公報を参照することができる。   When the film is stretched in an oblique direction, JP-A-2005-321543 and JP-A-2013-120208 can be referred to.

次いで、延伸後のフィルムを加熱して乾燥させる。熱風等によりフィルムを加熱する場合、使用済みの熱風(溶媒を含んだエアーや濡れ込みエアー)を排気できるノズルを設置して、使用済み熱風の混入を防ぐ手段も好ましく用いられる。熱風温度は、40〜350℃の範囲がより好ましい。また、乾燥時間は5秒〜30分程度が好ましく、10秒〜15分がより好ましい。   Next, the stretched film is dried by heating. When the film is heated by hot air or the like, a means for preventing used hot air from being mixed is preferably used by installing a nozzle capable of exhausting used hot air (air containing a solvent or wetting air). The hot air temperature is more preferably in the range of 40 to 350 ° C. The drying time is preferably about 5 seconds to 30 minutes, more preferably 10 seconds to 15 minutes.

また、加熱乾燥手段は熱風に制限されず、例えば、赤外線、加熱ローラー、マイクロ波等を用いることができる。簡便さの観点からは、千鳥状に配置したローラーでフィルムを搬送しながら、熱風等で乾燥を行うことが好ましい。乾燥温度は残留溶媒量、搬送における伸縮率等を考慮して、40〜350℃の範囲がより好ましい。   The heating and drying means is not limited to hot air, and for example, an infrared ray, a heating roller, a microwave, or the like can be used. From the viewpoint of simplicity, it is preferable to perform drying with hot air or the like while transporting the film with the rollers arranged in a staggered manner. The drying temperature is more preferably in the range of 40 to 350 ° C. in consideration of the amount of the residual solvent, the expansion and contraction rate in conveyance, and the like.

乾燥工程においては、残留溶媒量が0.5質量%以下になるまで、フィルムを乾燥することが好ましい。   In the drying step, the film is preferably dried until the amount of the residual solvent becomes 0.5% by mass or less.

巻取り工程は、得られたフィルムを巻き取って室温まで冷却する工程である。巻取り機は、一般的に使用されているもので良く、例えば、定テンション法、定トルク法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等の巻取り方法で巻き取ることができる。   The winding step is a step of winding the obtained film and cooling it to room temperature. The winding machine may be a generally used one, and can be wound by a winding method such as a constant tension method, a constant torque method, a taper tension method, and a program tension control method with constant internal stress.

本発明に係る光学補償フィルムの厚さは、使用目的によって異なるが、通常5〜500μmの範囲であり、10〜150μmの範囲が好ましく、液晶表示装置用には10〜80μmであることが好ましく、最近の薄型化を考慮すると10〜40μmの範囲であることが、特に好ましい。   The thickness of the optical compensation film according to the present invention varies depending on the purpose of use, but is usually in the range of 5 to 500 μm, preferably 10 to 150 μm, and more preferably 10 to 80 μm for a liquid crystal display device. In consideration of recent thinning, the thickness is particularly preferably in the range of 10 to 40 μm.

光学補償フィルムを40μm以下の薄膜化するにあたり、一般的には、位相差フィルムの性能を維持するために位相差上昇剤等の添加剤の含有量を増す必要があり、添加剤のブリードアウトが問題となるが、本発明に係る一般式(3)で表される構造を有する化合物は、耐ブリードアウト性に優れるため、薄膜化が可能である。   In reducing the thickness of the optical compensation film to 40 μm or less, it is generally necessary to increase the content of an additive such as a retardation increasing agent in order to maintain the performance of the retardation film. Although there is a problem, the compound having a structure represented by the general formula (3) according to the present invention is excellent in bleed-out resistance and can be formed into a thin film.

フィルム厚さの調製は、所望の厚さになるように、ドープ中に含まれる固形分濃度、ダイの口金のスリット間隙、ダイからの押し出し圧力、金属支持体速度等を調節すればよい。以上のようにして得られた透明樹脂フィルムの幅は0.5〜4mの範囲が好ましく、より好ましくは0.6〜3mの範囲、さらに好ましくは0.8〜2.5mである。長さは1ロールあたり100〜10000mの範囲で巻き取るのが好ましく、より好ましくは500〜9000mの範囲であり、さらに好ましくは1000〜8000mの範囲である。   The thickness of the film may be adjusted by adjusting the concentration of the solids contained in the dope, the slit gap between the die caps, the extrusion pressure from the die, the speed of the metal support, and the like so as to obtain the desired thickness. The width of the transparent resin film obtained as described above is preferably in the range of 0.5 to 4 m, more preferably in the range of 0.6 to 3 m, and even more preferably 0.8 to 2.5 m. The length is preferably wound in the range of 100 to 10,000 m per roll, more preferably in the range of 500 to 9000 m, and still more preferably in the range of 1000 to 8000 m.

本発明に係る光学補償フィルムは使用するポリマー構造、添加剤の種類及び添加量、延伸倍率、剥離時の残留揮発分などの工程条件を適宜調節することで所望の光学特性を実現することができる。   The optical compensation film according to the present invention can realize desired optical characteristics by appropriately adjusting the process conditions such as the polymer structure to be used, the type and amount of the additive, the stretching ratio, and the residual volatile content at the time of peeling. .

本発明に係る光学補償フィルムは、延伸処理又は好ましくは位相差上昇剤を含有させて延伸処理を行うことにより所望の位相差値を有する。面内位相差値Ro、及び厚さ方向の位相差値Rtは自動複屈折率計アクソスキャン(Axo Scan Mueller Matrix Polarimeter:アクソメトリックス社製)を用いて、23℃・55%RHの環境下、590nmの波長において、三次元屈折率測定を行い、得られた屈折率n、n、nから算出することができる。The optical compensation film according to the present invention has a desired retardation value by performing a stretching treatment or preferably a stretching treatment in which a retardation increasing agent is contained. The in-plane retardation value Ro and the retardation value Rt in the thickness direction were measured using an automatic birefringence meter Axoscan (Axo Scan Mueller Matrix Polarimeter: manufactured by Axometrics) under an environment of 23 ° C. and 55% RH. at a wavelength of 590 nm, subjected to three-dimensional refractive index measured, resulting refractive indices n x, n y, it can be calculated from n z.

本発明に係る光学補償フィルムは、下記式(i)及び(ii)で表される、光学補償フィルムの面内方向の位相差値Roが40〜60nmの範囲内であり、膜厚方向の位相差値Rtが110〜140nmの範囲内であることが、VA型液晶表示装置に具備された場合に、視野角やコントラスト等の視認性を向上する観点から好ましい。光学補償フィルムは、少なくとも前記幅手方向に延伸率を調整しながら延伸することで、上記位相差値の範囲内に調整することができる。   In the optical compensation film according to the present invention, the retardation value Ro in the in-plane direction of the optical compensation film represented by the following formulas (i) and (ii) is in the range of 40 to 60 nm, It is preferable that the retardation value Rt be in the range of 110 to 140 nm from the viewpoint of improving the visibility such as the viewing angle and the contrast when the VA type liquid crystal display device is provided. The optical compensation film can be adjusted within the range of the above retardation value by stretching while adjusting the stretching ratio at least in the width direction.

式(i):Ro=(n−n)×d(nm)
式(ii):Rt={(n+n)/2−n}×d(nm)
〔式(i)及び式(ii)において、nは、フィルムの面内方向において屈折率が最大になる方向xにおける屈折率を表す。nは、フィルムの面内方向において、前記方向xと直交する方向yにおける屈折率を表す。nは、フィルムの厚さ方向zにおける屈折率を表す。dは、フィルムの厚さ(nm)を表す。〕
また、本発明に係る光学補償フィルムは、150℃で1時間熱処理されたときの面内方向の位相差値Roの変動が、±3.0%の範囲内であり、厚さ方向の位相差値Rtの変動が±4.0%の範囲内であることが好ましい。
Formula (i): Ro = (n x -n y) × d (nm)
Formula (ii): Rt = {( n x + n y) / 2-n z} × d (nm)
In [Equation (i) and Formula (ii), n x represents a refractive index in the direction x in which the refractive index is maximized in the plane direction of the film. n y, in-plane direction of the film, the refractive index in the direction y perpendicular to the direction x. nz represents the refractive index in the thickness direction z of the film. d represents the thickness (nm) of the film. ]
Further, in the optical compensation film according to the present invention, the fluctuation of the in-plane retardation value Ro when heat-treated at 150 ° C. for one hour is within ± 3.0%, and the retardation in the thickness direction is within ± 3.0%. It is preferable that the variation of the value Rt be within a range of ± 4.0%.

当該熱処理はフィルム試料をオーブン等恒温槽内に150℃で1時間放置する前後での位相差値の変動を下記式で求めることができる。   In the heat treatment, the change in the phase difference value before and after the film sample is left at 150 ° C. for 1 hour in a thermostat such as an oven can be obtained by the following equation.

位相差値Ro又はRtの変動={(熱処理後のRo値又はRt値−熱処理前のRo値又はRt値)/(熱処理前のRo値又はRt値)}×100(%)
光学補償フィルムの上記熱処理によるRo値の変動及びRt値の変動を前記範囲内に制御するには、本発明に係る樹脂の選択及び前記位相差上昇剤の添加(種類、添加量)を組み合わせることが有効な方法であり、適宜組み合わせて調整することによって達成することができる。
Fluctuation of phase difference value Ro or Rt = {(Ro value or Rt value after heat treatment-Ro value or Rt value before heat treatment) / (Ro value or Rt value before heat treatment)} × 100 (%)
In order to control the fluctuation of the Ro value and the fluctuation of the Rt value of the optical compensation film due to the above-mentioned heat treatment within the above-mentioned ranges, a combination of the selection of the resin according to the present invention and the addition (type and amount) of the phase difference increasing agent is used. Is an effective method, and can be achieved by appropriately adjusting the combination.

〔4.2〕溶融流延製膜法
本発明の光学補償フィルムの製造方法は、溶融流延製膜法(以下、溶融流延法ともいう。)で行うこともできる。
[4.2] Melt casting film forming method The method for producing the optical compensation film of the present invention can also be performed by a melt casting film forming method (hereinafter, also referred to as a melt casting method).

本発明に係る光学補償フィルムを溶融流延法により製造する場合について説明する。   The case where the optical compensation film according to the present invention is manufactured by a melt casting method will be described.

[溶融ペレット製造工程]
溶融押出に用いる、樹脂を含む組成物は、通常あらかじめ混錬してペレット化しておくことが好ましい。
[Molten pellet production process]
It is preferable that the resin-containing composition used for melt extrusion is usually kneaded and pelletized in advance.

ペレット化は、公知の方法でよく、例えば、乾燥した樹脂と添加剤をフィーダーで押出機に供給し1軸や2軸の押出機を用いて混錬し、ダイからストランド状に押出し、水冷又は空冷し、カッティングすることでできる。   Pelletization may be performed by a known method. For example, a dried resin and an additive are supplied to an extruder by a feeder, kneaded using a single-screw or twin-screw extruder, extruded from a die into a strand, water-cooled or It can be done by air cooling and cutting.

原材料は、押出する前に乾燥しておくことが原材料の分解を防止する上で重要である。特に樹脂は吸湿しやすい場合があるので、除湿熱風乾燥機や真空乾燥機で70〜140℃で3時間以上乾燥し、水分率を200ppm以下、更に100ppm以下にしておくことが好ましい。   It is important that the raw materials are dried before extrusion in order to prevent decomposition of the raw materials. In particular, since the resin may easily absorb moisture, it is preferable to dry the resin at 70 to 140 ° C. for 3 hours or more with a dehumidifying hot air drier or a vacuum drier to keep the water content to 200 ppm or less, further 100 ppm or less.

添加剤は、押出機に供給押出機合しておいてもよいし、それぞれ個別のフィーダーで供給してもよい。酸化防止剤等少量の添加剤は、均一に混合するため、こと前に混合しておくことが好ましい。   The additives may be supplied to an extruder in a feed extruder or may be supplied by individual feeders. A small amount of an additive such as an antioxidant is preferably mixed beforehand in order to mix uniformly.

酸化防止剤の混合は、固体同士で混合してもよいし、必要により、酸化防止剤を溶剤に溶解しておき、熱可塑性樹脂に含浸させて混合してもよく、又は噴霧して混合してもよい。   The mixing of the antioxidant may be performed by mixing the solids together, or, if necessary, dissolving the antioxidant in a solvent and impregnating and mixing the thermoplastic resin, or by spraying and mixing. You may.

真空ナウターミキサーなどが乾燥と混合を同時にできるので好ましい。また、フィーダー部やダイからの出口など空気と触れる場合は、除湿空気や除湿したNガスなどの雰囲気下にすることが好ましい。A vacuum Nauta mixer or the like is preferable because drying and mixing can be performed simultaneously. In addition, when contacting air such as a feeder portion or an outlet from a die, it is preferable to use an atmosphere such as dehumidified air or dehumidified N 2 gas.

押出機は、せん断力を抑え、樹脂が劣化(分子量低下、着色、ゲル生成等)しないようにペレット化可能でなるべく低温で加工することが好ましい。例えば、2軸押出機の場合、深溝タイプのスクリューを用いて、同方向に回転させることが好ましい。混錬の均一性から、噛み合いタイプが好ましい。   The extruder is preferably processed at a temperature as low as possible so that the extruder can suppress the shearing force and pelletize the resin so as not to deteriorate (molecular weight reduction, coloring, gel formation, etc.). For example, in the case of a twin-screw extruder, it is preferable to rotate in the same direction using a deep groove type screw. The meshing type is preferable from the viewpoint of uniformity of kneading.

以上のようにして得られたペレットを用いてフィルム製膜を行う。ペレット化せず、原材料の粉末をそのままフィーダーで押出機に供給し、そのままフィルム製膜することも可能である。   Film formation is performed using the pellets obtained as described above. Instead of pelletizing, the raw material powder can be directly supplied to an extruder by a feeder, and a film can be formed as it is.

[溶融混合物をダイから冷却ローラーへ押し出す工程]
まず、作製したペレットを1軸や2軸タイプの押出機を用いて、押し出す際の溶融温度Tmを200〜300℃程度とし、リーフディスクタイプのフィルターなどでろ過し異物を除去した後、Tダイからフィルム状に共押出し、冷却ローラー上で固化し、弾性タッチローラーと押圧しながら流延する。
[Step of extruding molten mixture from die to cooling roller]
First, the prepared pellets are extruded using a single-screw or twin-screw extruder to a melting temperature Tm of about 200 to 300 ° C., and are filtered with a leaf disk type filter or the like to remove foreign substances. From the film, solidified on a cooling roller, and cast while pressing against an elastic touch roller.

供給ホッパーから押出機へ導入する際は真空下又は減圧下や不活性ガス雰囲気下にして酸化分解等を防止することが好ましい。なお、Tmは、押出機のダイ出口部分の温度である。   When introducing into the extruder from the supply hopper, it is preferable to prevent the oxidative decomposition and the like under a vacuum or reduced pressure or in an inert gas atmosphere. In addition, Tm is the temperature of the die exit part of the extruder.

ダイに傷や可塑剤の凝結物等の異物が付着するとスジ状の欠陥が発生する場合がある。このような欠陥のことをダイラインとも呼ぶが、ダイライン等の表面の欠陥を小さくするためには、押出機からダイまでの配管には樹脂の滞留部が極力少なくなるような構造にすることが好ましい。ダイの内部やリップにキズ等が極力無いものを用いることが好ましい。   When a foreign matter such as a scratch or a condensate of a plasticizer adheres to the die, a streak-like defect may occur. Such a defect is also referred to as a die line, but in order to reduce surface defects such as a die line, it is preferable that the piping from the extruder to the die has a structure in which the stagnation portion of the resin is as small as possible. . It is preferable to use a die or a lip with as little scratches as possible.

押出機やダイなどの溶融樹脂と接触する内面は、表面粗さを小さくしたり、表面エネルギーの低い材質を用いるなどして、溶融樹脂が付着し難い表面加工が施されていることが好ましい。具体的には、ハードクロムメッキやセラミック溶射したものを表面粗さ0.2S以下となるように研磨したものが挙げられる。   It is preferable that the inner surface of the extruder, the die, or the like that comes into contact with the molten resin is subjected to a surface treatment such that the molten resin does not easily adhere to the surface by reducing the surface roughness or using a material having a low surface energy. Concretely, hard chromium plating or ceramic sprayed is polished to a surface roughness of 0.2 S or less.

冷却ローラーには特に制限はないが、高剛性の金属ローラーで内部に温度制御可能な熱媒体又は冷媒体が流れるような構造を備えるローラーであり、大きさは限定されないが、溶融押し出されたフィルムを冷却するのに十分な大きさであればよく、通常冷却ローラーの直径は100mmから1m程度である。   Although there is no particular limitation on the cooling roller, it is a roller having a structure in which a heat medium or a coolant capable of controlling the temperature flows inside with a high-rigidity metal roller, and the size is not limited, but a melt-extruded film. It is sufficient that the cooling roller has a size sufficient to cool the roller, and the diameter of the cooling roller is usually about 100 mm to 1 m.

冷却ローラーの表面材質は、炭素鋼、ステンレス、アルミニウム、チタンなどが挙げられる。更に表面の硬度を上げたり、樹脂との剥離性を改良するため、ハードクロムメッキや、ニッケルメッキ、非晶質クロムメッキなどや、セラミック溶射等の表面処理を施すことが好ましい。   Examples of the surface material of the cooling roller include carbon steel, stainless steel, aluminum, and titanium. In order to further increase the hardness of the surface and improve the releasability from the resin, it is preferable to apply a surface treatment such as hard chrome plating, nickel plating, amorphous chromium plating, or ceramic spraying.

冷却ローラー表面の表面粗さは、Raで0.1μm以下とすることが好ましく、更に0.05μm以下とすることが好ましい。ローラー表面が平滑であるほど、得られるフィルムの表面も平滑にできるのである。もちろん表面加工した表面は更に研磨し上述した表面粗さとすることが好ましい。   The surface roughness of the cooling roller surface is preferably 0.1 μm or less in Ra, and more preferably 0.05 μm or less. The smoother the roller surface, the smoother the surface of the resulting film. Of course, it is preferable that the surface processed surface is further polished to have the above-described surface roughness.

弾性タッチローラーとしては、特開平03−124425号公報、特開平08−224772号公報、特開平07−100960号公報、特開平10−272676号公報、WO97/028950号、特開平11−235747号公報、特開2002−36332号公報、特開2005−172940号公報や特開2005−280217号公報に記載されているような表面が薄膜金属スリーブ被覆シリコンゴムローラーを使用することができる。   Examples of the elastic touch roller include JP-A-03-124425, JP-A-08-224772, JP-A-07-100960, JP-A-10-272676, WO97 / 028950, and JP-A-11-235747. And a silicone rubber roller coated with a thin film metal sleeve as described in JP-A-2002-36332, JP-A-2005-172940 and JP-A-2005-280217.

冷却ローラーからフィルムを剥離する際は、張力を制御してフィルムの変形を防止することが好ましい。   When peeling the film from the cooling roller, it is preferable to control the tension to prevent deformation of the film.

上記剥離以降の工程は前記溶液流延法と同様である。   The steps after the peeling are the same as those in the solution casting method.

〔5〕タッチパネルモジュール
本発明に係るタッチパネルモジュールは、本発明に係る光学補償フィルム上に透明導電層を形成することが特徴であるが、透明電極パターンの形状はタッチパネルモジュール(例えば、静電容量方式タッチパネルモジュール)として良好に動作するパターンであれば特に限定はされないが、例えば、特表2011−511357号公報、特開2010−164938号公報、特開2008−310550号公報、特表2003−511799号公報、特表2010−541109号公報に記載のパターンが挙げられる。
[5] Touch Panel Module The touch panel module according to the present invention is characterized in that a transparent conductive layer is formed on the optical compensation film according to the present invention. There is no particular limitation as long as it is a pattern that operates well as a touch panel module. For example, JP-A-2011-511357, JP-A-2010-164938, JP-A-2008-310550, and JP-A-2003-511799. And Japanese Patent Application Publication No. 2010-541109.

本発明に係るタッチパネルモジュールは、基本的に光学補償フィルム上に形成されるX軸又はY軸にパターン化された透明導電性層と、当該光学補償フィルム又は他の保護フィルム上に形成されるY軸又はX軸にパターン化された透明導電性層を重ね合わせ、適宜粘着層を用いて偏光子、保護フィルム等を積層させ、必要であれば最表面にカバーガラスを設けることで作製できる。さらに、前記タッチパネルをVAモード型液晶表示装置と組み合わせることで、本発明のタッチパネル付き液晶表示装置を作製できる。   The touch panel module according to the present invention basically includes a transparent conductive layer patterned on the X axis or the Y axis formed on the optical compensation film, and a Y layer formed on the optical compensation film or another protective film. The transparent conductive layer patterned on the axis or the X axis is laminated, a polarizer, a protective film, and the like are laminated using an appropriate adhesive layer, and a cover glass is provided on the outermost surface if necessary. Further, by combining the touch panel with a VA mode liquid crystal display device, a liquid crystal display device with a touch panel of the present invention can be manufactured.

〔5.1〕透明導電層
本発明に係る透明導電層は、透明導電層のシート抵抗値として0.01〜150Ω/□の範囲内であることが好ましい。より好ましくは、透明導電層の抵抗値が0.1〜100Ω/□の範囲内である。透明導電層の抵抗値が0.01Ω/□以上であると、高温、高湿等の環境変動に耐久性が得られ、抵抗値が150Ω/□以下であると、カールを抑制できる観点から好ましい。
[5.1] Transparent conductive layer The transparent conductive layer according to the present invention preferably has a sheet resistance of the transparent conductive layer in the range of 0.01 to 150 Ω / □. More preferably, the resistance value of the transparent conductive layer is in the range of 0.1 to 100 Ω / □. When the resistance value of the transparent conductive layer is 0.01 Ω / □ or more, durability against environmental changes such as high temperature and high humidity is obtained, and when the resistance value is 150 Ω / □ or less, it is preferable from the viewpoint of curling suppression. .

[透明導電材料]
本発明に係る透明導電層は、上記抵抗値を満たすものであれば材料に特に制限はないが、ITO(インジウム−スズ酸化物)又はIZO(インジウム−亜鉛酸化物)などの透明導電材料を用いることが好ましく、特に導電性、透明性の観点からITOが用いることが好ましい。ITOを用いる透明導電層は、塗布法、インクジェット法、コーティング法、ディップ法などのウェットプロセスを用いる方法や、蒸着法(抵抗加熱、EB法など)、スパッタ法、CVD法などのドライプロセスを用いる方法などが挙げられるが、蒸着法により形成することが好ましい。
[Transparent conductive material]
The material of the transparent conductive layer according to the present invention is not particularly limited as long as the material satisfies the above-mentioned resistance value, but a transparent conductive material such as ITO (indium-tin oxide) or IZO (indium-zinc oxide) is used. It is particularly preferable to use ITO from the viewpoint of conductivity and transparency. For the transparent conductive layer using ITO, a method using a wet process such as a coating method, an inkjet method, a coating method, or a dip method, or a dry process such as an evaporation method (resistance heating, an EB method), a sputtering method, or a CVD method is used. Although a method is mentioned, it is preferable to form by an evaporation method.

透明導電層の形成後は、当該透明導電層の抵抗値を下げるために、熱処理(アニールともいう。)を行うことが好ましい。加熱温度は150〜250℃の範囲であり、加熱時間は1〜60分の範囲である。透明導電層を支持する基材の構成や特性によって条件は最適化すればよいが、基材にシクロオレフィン系樹脂を用いる場合は、加熱温度は150〜180℃の範囲、加熱時間は5〜30分の範囲であることが好ましい。   After the formation of the transparent conductive layer, heat treatment (also referred to as annealing) is preferably performed to reduce the resistance value of the transparent conductive layer. The heating temperature is in the range of 150 to 250C, and the heating time is in the range of 1 to 60 minutes. Conditions may be optimized depending on the configuration and characteristics of the substrate that supports the transparent conductive layer. However, when a cycloolefin-based resin is used as the substrate, the heating temperature is in the range of 150 to 180 ° C., and the heating time is 5 to 30. Minutes.

[金属ナノワイヤー]
また、金属細線(金属ナノワイヤー、金属メッシュ)からなる透明導電層を用いることも好ましい。
[Metal nanowire]
It is also preferable to use a transparent conductive layer made of a thin metal wire (metal nanowire, metal mesh).

金属ナノワイヤーとは、材質が金属であり、形状が針状又は糸状であり、径がナノメートルサイズの導電物質をいう。金属ナノワイヤーは直線状であってもよく、曲線状であってもよい。金属ナノワイヤーで構成された透明導電層を用いれば、金属ナノワイヤーが網の目状となることにより、少量の金属ナノワイヤーであっても良好な電気伝導経路を形成することができ、電気抵抗の小さい透明導電層を得ることができる。さらに、金属ナノワイヤーが網の目状となることにより、網の目の隙間に開口部を形成して、光透過率の高い透明導電フィルムを得ることができる。   The metal nanowire refers to a conductive material having a material of metal, a needle-like or thread-like shape, and a nanometer-size diameter. The metal nanowire may be straight or curved. If a transparent conductive layer composed of metal nanowires is used, the metal nanowires form a mesh, so that even a small amount of metal nanowires can form a good electric conduction path, and the electric resistance can be improved. A transparent conductive layer having a small particle size can be obtained. Furthermore, since the metal nanowires have a mesh shape, an opening is formed in a gap between the meshes, so that a transparent conductive film having high light transmittance can be obtained.

上記金属ナノワイヤーの太さdと長さLとの比(アスペクト比:L/d)は、好ましくは10〜100000の範囲内であり、より好ましくは50〜100000の範囲内であり、特に好ましくは100〜10000の範囲内である。このようにアスペクト比の大きい金属ナノワイヤーを用いれば、金属ナノワイヤーが良好に交差して、少量の金属ナノワイヤーにより高い導電性を発現させることができる。その結果、光透過率の高い透明導電フィルムを得ることができる。   The ratio (aspect ratio: L / d) of the thickness d to the length L of the metal nanowire is preferably in the range of 10 to 100,000, more preferably in the range of 50 to 100,000, and particularly preferably. Is in the range of 100 to 10,000. When the metal nanowires having a large aspect ratio are used, the metal nanowires can intersect favorably, and a small amount of the metal nanowires can exhibit high conductivity. As a result, a transparent conductive film having high light transmittance can be obtained.

なお、本明細書において、「金属ナノワイヤーの太さ」とは、金属ナノワイヤーの断面が円状である場合はその直径を意味し、楕円状である場合はその短径を意味し、多角形である場合は最も長い対角線を意味する。金属ナノワイヤーの太さ及び長さは、走査型電子顕微鏡又は透過型電子顕微鏡によって確認することができる。   In the present specification, the “thickness of the metal nanowire” means the diameter when the cross section of the metal nanowire is circular, and means the minor axis when the cross section is elliptical, and If it is square, it means the longest diagonal. The thickness and length of the metal nanowire can be confirmed by a scanning electron microscope or a transmission electron microscope.

上記金属ナノワイヤーの太さは、好ましくは500nm未満であり、より好ましくは200nm未満であり、特に好ましくは10〜100nmの範囲内であり、最も好ましくは10〜50nmの範囲内である。このような範囲であれば、光透過率の高い透明導電層を形成することができる。   The thickness of the metal nanowire is preferably less than 500 nm, more preferably less than 200 nm, particularly preferably in the range of 10 to 100 nm, and most preferably in the range of 10 to 50 nm. Within such a range, a transparent conductive layer having high light transmittance can be formed.

上記金属ナノワイヤーの長さは、好ましくは2.5〜1000μmの範囲内であり、より好ましくは10〜500μmの範囲内であり、特に好ましくは20〜100μmの範囲内である。このような範囲であれば、導電性の高い透明導電層を得ることができる。   The length of the metal nanowire is preferably in the range of 2.5 to 1000 μm, more preferably in the range of 10 to 500 μm, and particularly preferably in the range of 20 to 100 μm. Within such a range, a transparent conductive layer having high conductivity can be obtained.

上記金属ナノワイヤーを構成する金属としては、導電性の高い金属である限り、任意の適切な金属が用いられ得る。上記金属ナノワイヤーを構成する金属としては、例えば、銀、金、銅、ニッケル等が挙げられる。また、これらの金属にメッキ処理(例えば、金メッキ処理)を行った材料を用いてもよい。中でも好ましくは、導電性の観点から、銀又は銅である。   Any appropriate metal can be used as the metal constituting the metal nanowire as long as the metal has high conductivity. Examples of the metal constituting the metal nanowire include silver, gold, copper, and nickel. Further, a material obtained by plating (for example, gold plating) on these metals may be used. Among them, silver or copper is preferable from the viewpoint of conductivity.

上記金属ナノワイヤーの製造方法としては、任意の適切な方法が採用され得る。例えば溶液中で硝酸銀を還元する方法、前駆体表面にプローブの先端部から印可電圧又は電流を作用させ、プローブ先端部で金属ナノワイヤーを引き出し、前記金属ナノワイヤーを連続的に形成する方法等が挙げられる。溶液中で硝酸銀を還元する方法においては、エチレングリコール等のポリオール、及びポリビニルピロリドンの存在下で、硝酸銀等の銀塩の液相還元することにより、銀ナノワイヤーが合成され得る。   Any appropriate method can be adopted as a method for producing the metal nanowire. For example, a method of reducing silver nitrate in a solution, a method of applying an applied voltage or current to the precursor surface from the tip of the probe, extracting a metal nanowire at the tip of the probe, and continuously forming the metal nanowire, etc. No. In the method of reducing silver nitrate in a solution, a silver nanowire can be synthesized by performing a liquid phase reduction of a silver salt such as silver nitrate in the presence of a polyol such as ethylene glycol and polyvinylpyrrolidone.

均一サイズの銀ナノワイヤーは、例えば、Xia,Y.etal.,Chem.Mater.(2002)、14、4736−4745 、Xia, Y.etal., Nano letters(2003)3(7)、955−960 に記載される方法に準じて、大量生産が可能である。   Silver nanowires of uniform size are described, for example, in Xia, Y .; et al. Chem. Mater. (2002), 14, 4736-4745, Xia, Y .; et al. , Nano letters (2003) 3 (7), 955-960.

上記透明導電層は、本発明に係る光学補償フィルム又は保護フィルム上に、上記金属ナノワイヤーを含む透明導電層形成用組成物を塗工することにより形成することができる。より具体的には、溶媒中に上記金属ナノワイヤーを分散させた分散液(透明導電層形成用組成物)を、前記光学補償フィルム又は保護フィルム上に塗布した後、塗布層を乾燥させて、透明導電層を形成することができる。   The transparent conductive layer can be formed by applying the composition for forming a transparent conductive layer containing the metal nanowires on the optical compensation film or the protective film according to the present invention. More specifically, after applying the dispersion liquid (the composition for forming a transparent conductive layer) obtained by dispersing the metal nanowires in a solvent on the optical compensation film or the protective film, the applied layer is dried, A transparent conductive layer can be formed.

上記溶媒としては、水、アルコール系溶媒、ケトン系溶媒、エーテル系溶媒、炭化水素系溶媒、芳香族系溶媒等が挙げられる。環境負荷低減の観点から、水を用いることが好ましい。   Examples of the solvent include water, alcohol solvents, ketone solvents, ether solvents, hydrocarbon solvents, aromatic solvents, and the like. From the viewpoint of reducing environmental load, it is preferable to use water.

上記金属ナノワイヤーを含む透明導電層形成用組成物中の金属ナノワイヤーの分散濃度は、好ましくは0.1〜1質量%の範囲内である。このような範囲であれば、導電性及び光透過性に優れる透明導電層を形成することができる。   The dispersion concentration of the metal nanowires in the composition for forming a transparent conductive layer containing the metal nanowires is preferably in the range of 0.1 to 1% by mass. Within such a range, a transparent conductive layer having excellent conductivity and light transmittance can be formed.

上記金属ナノワイヤーを含む透明導電層形成用組成物は、目的に応じて任意の適切な添加剤をさらに含有し得る。上記添加剤としては、例えば、金属ナノワイヤーの腐食を防止する腐食防止材、金属ナノワイヤーの凝集を防止する界面活性剤等が挙げられる。使用される添加剤の種類、数及び量は、目的に応じて適切に設定され得る。また、前記透明導電層形成用組成物は、本発明の効果が得られる限り、必要に応じて、任意の適切なバインダー樹脂を含み得る。   The composition for forming a transparent conductive layer including the metal nanowires may further contain any appropriate additive depending on the purpose. Examples of the additive include a corrosion inhibitor for preventing corrosion of the metal nanowire, a surfactant for preventing aggregation of the metal nanowire, and the like. The type, number and amount of the additives used can be appropriately set according to the purpose. In addition, the composition for forming a transparent conductive layer may include any appropriate binder resin, if necessary, as long as the effects of the present invention can be obtained.

上記金属ナノワイヤーを含む透明導電層形成用組成物の塗布方法としては、任意の適切な方法が採用され得る。塗布方法としては、例えば、スプレーコート、バーコート、ロールコート、ダイコート、インクジェットコート、スクリーンコート、ディップコート、凸版印刷法、凹版印刷法、グラビア印刷法等が挙げられる。   Any appropriate method can be adopted as a method of applying the composition for forming a transparent conductive layer containing the metal nanowires. Examples of the coating method include spray coating, bar coating, roll coating, die coating, inkjet coating, screen coating, dip coating, letterpress printing, intaglio printing, and gravure printing.

塗布層の乾燥方法としては、任意の適切な乾燥方法(例えば、自然乾燥、送風乾燥、加熱乾燥)が採用され得る。例えば、加熱乾燥の場合には、乾燥温度は代表的には100〜200℃の範囲内であり、乾燥時間は代表的には1〜10分の範囲内である。   As a method for drying the coating layer, any appropriate drying method (for example, natural drying, blast drying, and heat drying) can be adopted. For example, in the case of heat drying, the drying temperature is typically in the range of 100 to 200 ° C., and the drying time is typically in the range of 1 to 10 minutes.

乾燥後は、同様に透明導電層の抵抗値を下げるために、熱処理(アニールともいう。)を行うことが好ましい。加熱温度は150〜250℃の範囲であり、加熱時間は1〜60分の範囲である。透明導電層を支持する基材の構成や特性によって条件は最適化すればよいが、基材にシクロオレフィン系樹脂を用いる場合は、加熱温度は150〜180℃の範囲、加熱時間は5〜30分の範囲であることが好ましい。   After drying, heat treatment (also referred to as annealing) is preferably performed in order to lower the resistance value of the transparent conductive layer. The heating temperature is in the range of 150 to 250C, and the heating time is in the range of 1 to 60 minutes. Conditions may be optimized depending on the configuration and characteristics of the substrate that supports the transparent conductive layer. However, when a cycloolefin-based resin is used as the substrate, the heating temperature is in the range of 150 to 180 ° C., and the heating time is 5 to 30. Minutes.

上記透明導電層が金属ナノワイヤーを含む場合、前記透明導電層の厚さは、好ましくは0.01〜10μmの範囲内であり、より好ましくは0.05〜3μmの範囲内であり、特に好ましくは0.1〜1μmの範囲内である。このような範囲であれば、導電性及び光透過性に優れる透明導電層を得ることができる。   When the transparent conductive layer contains metal nanowires, the thickness of the transparent conductive layer is preferably in the range of 0.01 to 10 μm, more preferably in the range of 0.05 to 3 μm, and particularly preferably. Is in the range of 0.1 to 1 μm. Within such a range, a transparent conductive layer having excellent conductivity and light transmittance can be obtained.

上記透明導電層が金属ナノワイヤーを含む場合、前記透明導電層の全光線透過率は、好ましくは85%以上であり、より好ましくは90%以上であり、さらに好ましくは95%以上である。   When the transparent conductive layer includes metal nanowires, the total light transmittance of the transparent conductive layer is preferably 85% or more, more preferably 90% or more, and further preferably 95% or more.

[金属メッシュ]
金属メッシュを含む透明導電層は、上記透明基材上に、金属細線が格子状のパターンに形成されてなる。上記金属メッシュを構成する金属としては、導電性の高い金属である限り、任意の適切な金属が用いられ得る。上記金属メッシュを構成する金属としては、例えば、銀、金、銅、ニッケル等が挙げられる。また、これらの金属にメッキ処理(例えば、金メッキ処理)を行った材料を用いてもよい。中でも好ましくは銅であり、マイグレーション現象が起こりにくく、打鍵時の断線抑制の観点からも好ましい。
[Metal mesh]
The transparent conductive layer including the metal mesh is formed by forming fine metal wires in a lattice pattern on the transparent substrate. Any appropriate metal can be used as the metal constituting the metal mesh as long as the metal has high conductivity. Examples of the metal constituting the metal mesh include silver, gold, copper, nickel and the like. Further, a material obtained by plating (for example, gold plating) on these metals may be used. Among them, copper is preferable, and the migration phenomenon does not easily occur, and is also preferable from the viewpoint of suppressing disconnection at the time of keying.

金属メッシュを含む透明導電層は、任意の適切な方法により形成させることができる。前記透明導電層は、例えば、銀塩を含む感光性組成物(透明導電層形成用組成物)を上記積層体上に塗布し、その後、露光処理及び現像処理を行い、金属細線を所定のパターンに形成することにより得ることができる。また、前記透明導電層は、金属微粒子を含むペースト(透明導電層形成用組成物)を所定のパターンに印刷して得ることもできる。   The transparent conductive layer including the metal mesh can be formed by any appropriate method. For the transparent conductive layer, for example, a photosensitive composition containing silver salt (a composition for forming a transparent conductive layer) is applied on the laminate, and thereafter, an exposure treatment and a development treatment are performed to form a thin metal wire into a predetermined pattern. Can be obtained. Further, the transparent conductive layer can also be obtained by printing a paste containing fine metal particles (composition for forming a transparent conductive layer) in a predetermined pattern.

このような透明導電層及びその形成方法の詳細は、例えば、特開2012−18634号公報に記載されており、その記載は本明細書に参考として援用される。また、金属メッシュから構成される透明導電層及びその形成方法の別の例としては、特開2003−331654号公報に記載の透明導電層及びその形成方法が挙げられる。   The details of such a transparent conductive layer and a method for forming the same are described in, for example, JP-A-2012-18634, and the description is incorporated herein by reference. Another example of a transparent conductive layer formed of a metal mesh and a method of forming the same include the transparent conductive layer described in JP-A-2003-331654 and a method of forming the same.

上記透明導電層が金属メッシュを含む場合、前記透明導電層の厚さは、好ましくは0.1〜30μmの範囲内であり、より好ましくは0.1〜9μmの範囲内である。   When the transparent conductive layer includes a metal mesh, the thickness of the transparent conductive layer is preferably in the range of 0.1 to 30 μm, and more preferably in the range of 0.1 to 9 μm.

上記透明導電層が金属メッシュを含む場合、前記透明導電層の透過率は、好ましくは80%以上であり、より好ましくは85%以上であり、さらに好ましくは90%以上である。   When the transparent conductive layer includes a metal mesh, the transmittance of the transparent conductive layer is preferably 80% or more, more preferably 85% or more, and further preferably 90% or more.

〔5.2〕粘着層
本発明に用いられる粘着層は粘着剤を含有し、当該粘着剤は熱硬化性樹脂や紫外線(UV)硬化性樹脂、又は化学的硬化性樹脂を含有し、光学的に透明であることはもとより、適度な粘弾性や粘着特性を示すものが好ましい。
[5.2] Pressure-sensitive adhesive layer The pressure-sensitive adhesive layer used in the present invention contains a pressure-sensitive adhesive, and the pressure-sensitive adhesive contains a thermosetting resin, an ultraviolet (UV) curable resin, or a chemically curable resin. In addition to those that are not only transparent, but also exhibit appropriate viscoelasticity and adhesive properties.

具体的な粘着剤としては、アクリル系共重合体やエポキシ系樹脂、ポリウレタン、シリコーン系ポリマー、ポリエーテル、ブチラール系樹脂、ポリアミド系樹脂、ポリビニルアルコール系樹脂、合成ゴムなどの接着剤もしくは粘着剤等を挙げることができる。本発明では、熱硬化法、光硬化法、化学反応等により膜形成させ、硬化せしめる粘着剤であることが好ましく、なかでも、アクリル系共重合体、エポキシ系樹脂は、最も粘着物性を制御しやすく、かつ透明性や耐候性、耐久性などに優れていて好ましく用いることができる。   Specific adhesives include adhesives or adhesives such as acrylic copolymers, epoxy resins, polyurethanes, silicone polymers, polyethers, butyral resins, polyamide resins, polyvinyl alcohol resins, and synthetic rubbers. Can be mentioned. In the present invention, a thermosetting method, a photocuring method, a film formed by a chemical reaction, etc., is preferably an adhesive which is cured, and among them, an acrylic copolymer and an epoxy resin most control adhesive properties. It is easy to use and excellent in transparency, weather resistance, durability and the like, and can be preferably used.

上記粘着剤は1液型であっても良いし、使用前に2液以上を混合して使用する型であっても良い。また上記粘着剤は有機溶剤を媒体とする溶剤系であってもよいし、水を主成分とする媒体であるエマルジョン型、コロイド分散液型、水溶液型などの水系であってもよいし、無溶剤型であってもよい。上記粘着剤液の濃度は、粘着後の膜厚、塗布機、塗布条件等により適宜決定されれば良く、通常は0.1〜50質量%である。   The pressure-sensitive adhesive may be a one-component type or a type in which two or more components are mixed before use. The pressure-sensitive adhesive may be a solvent system using an organic solvent as a medium, or may be a water system such as an emulsion type, a colloid dispersion liquid type, or an aqueous solution type, which is a medium containing water as a main component. It may be a solvent type. The concentration of the pressure-sensitive adhesive liquid may be appropriately determined depending on the film thickness after adhesion, a coating machine, coating conditions, and the like, and is usually 0.1 to 50% by mass.

粘着層の厚さは0.1〜100μmの範囲で適宜形成することができ、0.5〜50μmであることが好ましく、0.5〜30μmであることが特に好ましい。塗布を行う場合、粘着剤は、25℃での粘度が一般に1000〜6000mPa/secであり、好ましくは2000〜4000mPa/sec、例えば3000〜4000mPa/secである。ここで、粘度は、例えば、トキメック(東京計器)社のB型粘度計BH IIを用い、静置後、ローターを30秒間回転させて読み取った値である。完全に硬化した後の接着剤樹脂のヤング率(E)は、好ましくは1〜100MPa、例えば5〜20MPaである。   The thickness of the adhesive layer can be appropriately formed in the range of 0.1 to 100 μm, preferably 0.5 to 50 μm, and particularly preferably 0.5 to 30 μm. When applying, the adhesive has a viscosity at 25 ° C. of generally 1000 to 6000 mPa / sec, preferably 2000 to 4000 mPa / sec, for example 3000 to 4000 mPa / sec. Here, the viscosity is a value obtained by, for example, using a B-type viscometer BH II manufactured by Tokimec (Tokyo Keiki) Co., Ltd. and rotating the rotor for 30 seconds after standing still. The Young's modulus (E) of the adhesive resin after completely cured is preferably 1 to 100 MPa, for example, 5 to 20 MPa.

アクリル系粘着剤としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸2−エチルブチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸デシル等の炭素数1〜20アクリル酸アルキルエステルの一種又は二種以上と、前記アクリル酸アルキルエステルと共重合可能な(メタ)アクリル酸、イタコン酸、マレイン酸、無水マレイン酸、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸4−ヒドロキシブチル等の官能基モノマーとの共重合体に、イソシアネート系架橋剤、エポキシ系架橋剤、アジリジン系架橋剤、金属キレート系架橋剤等の架橋剤を反応させたものが挙げられる。   Examples of the acrylic adhesive include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, n-hexyl (meth) acrylate, and (meth) acrylic. One or more alkyl acrylates having 1 to 20 carbon atoms such as 2-ethylbutyl acid, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, decyl (meth) acrylate, and the alkyl acrylate Copolymerization with functional group monomers such as (meth) acrylic acid, itaconic acid, maleic acid, maleic anhydride, 2-hydroxyethyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate copolymerizable with esters. In combination, isocyanate-based crosslinking agent, epoxy-based crosslinking agent, aziridine-based crosslinking agent, metal chelate-based crosslinking agent, etc. Include those obtained by reacting a crosslinking agent.

エポキシ系樹脂粘着剤としては、紫外線光硬化性のエポキシ樹脂をシリコーンエラストマーで変性し、沈降シリカを無機充填材として加えた樹脂組成物を挙げることができ、例えば、Edmund Optics社の「NORLAND光学接着剤NOA68」や、ソニーケミカル&インフォメーションデバイス社の「光学弾性樹脂(Super View Resin)」を用いることができる。   Examples of the epoxy resin pressure-sensitive adhesive include a resin composition obtained by modifying an ultraviolet light-curable epoxy resin with a silicone elastomer and adding precipitated silica as an inorganic filler. For example, "Norland Optical Bonding" manufactured by Edmund Optics Inc. Agent NOA68 "or" Optical elastic resin (Super View Resin) "manufactured by Sony Chemical & Information Device Co., Ltd. can be used.

前記粘着剤の光硬化促進のため、更に光重合開始剤を含有させることが好ましい。光重合開始剤の配合量としては、質量比で、光重合開始剤:粘着剤=20:100〜0.01:100で含有することが好ましい。   In order to promote the photocuring of the pressure-sensitive adhesive, it is preferable to further include a photopolymerization initiator. As the compounding amount of the photopolymerization initiator, it is preferable to include the photopolymerization initiator: adhesive = 20: 100 to 0.01: 100 in mass ratio.

光重合開始剤としては、具体的には、アルキルフェノン系、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーケトン、α−アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることができるが、特にこれらに限定されるものではない。これらは市販のものを使用してもよく、例えば、BASFジャパン(株)製のイルガキュア184、イルガキュア907、イルガキュア651などが好ましい例示として挙げられる。   Specific examples of the photopolymerization initiator include, but are not limited to, alkylphenones, acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, α-amyloxime ester, thioxanthone, and derivatives thereof. Not something. These may be commercially available ones, and preferred examples include Irgacure 184, Irgacure 907, and Irgacure 651 manufactured by BASF Japan K.K.

粘着層を設ける方法としては、上記粘着剤含有組成物を塗布により設けることが好ましく、例えば、バーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法、カーテンコート法、インクジェット法などの従来公知の方法が挙げられる。   As a method for forming the adhesive layer, it is preferable to apply the above-mentioned adhesive-containing composition by coating, for example, a bar coating method, a knife coating method, a roll coating method, a blade coating method, a die coating method, a gravure coating method, a curtain coating method And a conventionally known method such as an ink jet method.

熱硬化の場合は、乾燥機内で80℃以上の加熱を加えることが好ましく、加熱時間は適宜設定される。   In the case of heat curing, it is preferable to apply heating at 80 ° C. or higher in a dryer, and the heating time is appropriately set.

UV硬化処理の光源としては、紫外線を発生する光源であれば制限なく使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。   As the light source for the UV curing treatment, any light source that generates ultraviolet light can be used without limitation. For example, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, and the like can be used.

照射条件はそれぞれのランプによって異なるが、活性線の照射量は、通常50〜1000mJ/cm、好ましくは50〜300mJ/cmである。またUV硬化後の加熱処理温度としては80℃以上が好ましい。Irradiation conditions vary depending on each lamp, but the irradiation amount of the active ray is usually 50 to 1000 mJ / cm 2 , preferably 50 to 300 mJ / cm 2 . The heat treatment temperature after UV curing is preferably 80 ° C. or higher.

また、粘着層を設けた後、他の部材と貼合されるまでは表面に剥離シートが積層されることが好ましい。   Further, after the adhesive layer is provided, it is preferable that a release sheet is laminated on the surface until the adhesive sheet is bonded to another member.

剥離シートは、種々の剥離シートを使用できるが、代表的には剥離性を表面に有する基材シートから構成される。基材シートとしては、ポリエステル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリカーボネート樹脂などのフィルムや、これらのフィルムに填料などの充填剤を配合したフィルムや合成紙などが挙げられる。また、グラシン紙、クレーコート紙、上質紙などの紙基材が挙げられる。   Although various release sheets can be used as the release sheet, it is typically composed of a substrate sheet having a releasable surface. Examples of the base sheet include films of polyester resin, polyethylene resin, polypropylene resin, polystyrene resin, polycarbonate resin, and the like, and films and synthetic paper in which a filler such as a filler is blended with these films. Further, paper base materials such as glassine paper, clay-coated paper, and high-quality paper can be used.

〔6〕偏光板
本発明に係る偏光板は、VAモード型液晶セルから視認側に向かって、少なくとも一方の面に前記透明導電層を有する光学補償フィルム、偏光子及び保護フィルムをこの順に有している。
[6] Polarizing plate The polarizing plate according to the present invention has an optical compensation film, a polarizer, and a protective film having the transparent conductive layer on at least one surface in this order from the VA mode liquid crystal cell toward the viewing side. ing.

〔6.1〕偏光子
偏光子は、一定方向の偏波面の光だけを通す素子であり、その例には、ポリビニルアルコール系偏光フィルムが含まれる。
[6.1] Polarizer The polarizer is an element that transmits only light having a polarization plane in a certain direction, and examples thereof include a polyvinyl alcohol-based polarizing film.

ポリビニルアルコール系偏光フィルムには、ポリビニルアルコール系フィルムにヨウ素を染色させたものと、二色性染料を染色させたものとがある。   Polyvinyl alcohol-based polarizing films include those obtained by dyeing a polyvinyl alcohol-based film with iodine and those obtained by dyeing a dichroic dye.

偏光子は、ポリビニルアルコールフィルムを一軸延伸した後、染色するか又はポリビニルアルコールフィルムを染色した後、一軸延伸して、好ましくはホウ素化合物で耐久性処理をさらに行って得ることができる。   The polarizer can be obtained by uniaxially stretching the polyvinyl alcohol film and then dyeing, or dyeing the polyvinyl alcohol film and then uniaxially stretching, and preferably further performing a durability treatment with a boron compound.

偏光子の膜厚は、5〜30μmの範囲内が好ましく、5〜15μmの範囲内であることがより好ましい。   The thickness of the polarizer is preferably in the range of 5 to 30 μm, and more preferably in the range of 5 to 15 μm.

ポリビニルアルコールフィルムとしては、特開2003−248123号公報、特開2003−342322号公報等に記載のエチレン単位の含有量1〜4モル%、重合度2000〜4000、ケン化度99.0〜99.99モル%のエチレン変性ポリビニルアルコールが好ましく用いられる。また、特開2011−100161号公報、特許第4691205号公報、特許第4804589号公報に記載の方法で、偏光子を作製し本発明の基材フィルムと貼り合わせて偏光板を作製することが好ましい。   Examples of the polyvinyl alcohol film include an ethylene unit content of 1 to 4 mol%, a degree of polymerization of 2000 to 4000, and a degree of saponification of 99.0 to 99 described in JP-A-2003-248123 and JP-A-2003-342322. .99 mol% of ethylene-modified polyvinyl alcohol is preferably used. In addition, it is preferable to produce a polarizer and bond it to the base film of the present invention to produce a polarizing plate by the methods described in JP-A-2011-100161, JP-A-46991205, and JP-A-4804589. .

〔6.2〕保護フィルム
偏光子の光学補償フィルムを貼合した面とは反対側に配置されるフィルムは、偏光子の保護フィルムとして機能するフィルムであることが好ましい。
[6.2] Protective film It is preferable that the film disposed on the side of the polarizer opposite to the surface where the optical compensation film is bonded is a film that functions as a protective film for the polarizer.

このような保護フィルムとしては、前記光学補償フィルムを用いてもよいが、例えば、市販のセルロースエステルフィルム(例えば、コニカミノルタタックKC8UX、KC5UX、KC4UX、KC8UCR3、KC4SR、KC4BR、KC4CR、KC4DR、KC4FR、KC4KR、KC8UY、KC6UY、KC4UY、KC4UE、KC8UE、KC8UY−HA、KC2UA、KC4UA、KC6UAKC、2UAH、KC4UAH、KC6UAH、以上コニカミノルタ(株)製、フジタックT40UZ、フジタックT60UZ、フジタックT80UZ、フジタックTD80UL、フジタックTD60UL、フジタックTD40UL、フジタックR02、フジタックR06、以上富士フイルム(株)製)を好ましく用いることができる。   As such a protective film, the above-mentioned optical compensation film may be used. KC4UZT, Fujitsu UZT80 FUJITAC TD40UL, FUJITAC R02, FUJITAC R06, manufactured by FUJIFILM Corporation. Can.

また、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート等の樹脂フィルム、ポリアリレート、ポリエーテルスルホン、ポリスルホン、フルオレン環変性ポリカーボネート、脂環変性ポリカーボネート、アクリロイル化合物等の樹脂フィルムが挙げられる。これら樹脂基材のうち、コストや入手の容易性の点では、ポリエチレンテレフタレート(略称:PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(略称:PEN)、ポリカーボネート(略称:PC)等のフィルムが可撓性の樹脂基材として好ましく用いられる。   In addition, resin films such as polyethylene terephthalate, polyethylene naphthalate, and polycarbonate, and resin films such as polyarylate, polyether sulfone, polysulfone, fluorene ring-modified polycarbonate, alicyclic modified polycarbonate, and acryloyl compound can be given. Among these resin substrates, films such as polyethylene terephthalate (abbreviation: PET), polybutylene terephthalate, polyethylene naphthalate (abbreviation: PEN), and polycarbonate (abbreviation: PC) are flexible in terms of cost and availability. It is preferably used as a resinous base material.

保護フィルムの厚さは、特に制限されないが、10〜200μm程度とすることができ、好ましくは10〜100μmの範囲内であり、より好ましくは10〜70μmの範囲内である。   The thickness of the protective film is not particularly limited, but can be about 10 to 200 μm, preferably in the range of 10 to 100 μm, and more preferably in the range of 10 to 70 μm.

〔6.3〕偏光板の作製方法
偏光板の作製は、本発明に係る光学補償フィルム及び保護フィルムを完全ケン化型ポリビニルアルコール水溶液(水糊)又は前記粘着剤を用いて偏光子に貼り合わせることが好ましい。本発明に係る光学補償フィルムは液晶表示装置において、偏光子の液晶セル側に設けられることが好ましい。
[6.3] Manufacturing method of polarizing plate For manufacturing a polarizing plate, the optical compensation film and the protective film according to the present invention are bonded to a polarizer using a completely saponified polyvinyl alcohol aqueous solution (water glue) or the adhesive. Is preferred. In the liquid crystal display device, the optical compensation film according to the present invention is preferably provided on the liquid crystal cell side of the polarizer.

貼り合わせる際の前処理工程としては、光学補償フィルムや保護フィルムの偏光子との接着面に易接着処理を行うことが好ましく、当該易接着処理としては、ケン化処理、コロナ処理及びプラズマ処理等が挙げられる。   As a pretreatment step for bonding, it is preferable to perform an easy-adhesion treatment on the surface of the optical compensation film or the protective film that adheres to the polarizer, such as a saponification treatment, a corona treatment, and a plasma treatment. Is mentioned.

〔7〕その他の層
本発明に係る偏光板一体型タッチパネルモジュールは、必要に応じて、任意にその他の層を備えることができる。上記その他の層としては、例えば、ハードコート層、帯電防止層、アンチグレア層、反射防止層、カラーフィルター層等が挙げられる。
[7] Other Layers The polarizing plate-integrated touch panel module according to the present invention may optionally include other layers as necessary. Examples of the other layers include a hard coat layer, an antistatic layer, an antiglare layer, an antireflection layer, and a color filter layer.

ハードコート層は、視認側の保護層に耐傷性を向上するために形成することや、透明導電層を形成する際の保護層として光学補償フィルム表面に形成することもできる。当該ハードコート層は、紫外線硬化型ウレタンアクリレート系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、又は紫外線硬化型エポキシ樹脂等を含有することが好ましく、中でも紫外線硬化型アクリレート系樹脂を含有することが好ましい。   The hard coat layer may be formed on the protective layer on the viewing side to improve the scratch resistance, or may be formed on the surface of the optical compensation film as a protective layer when forming the transparent conductive layer. The hard coat layer may contain an ultraviolet-curable urethane acrylate resin, an ultraviolet-curable polyester acrylate-based resin, an ultraviolet-curable epoxy acrylate-based resin, an ultraviolet-curable polyol acrylate-based resin, or an ultraviolet-curable epoxy resin. It is particularly preferable to contain an ultraviolet curable acrylate resin.

帯電防止層は、帯電防止層を形成した際に、シート抵抗値を1×1011Ω/□以下、好ましくは1×1010Ω/□以下、さらに好ましくは1×10Ω/□以下とすることができる材料を含む層である。帯電防止剤としては、金属酸化物、界面活性剤型帯電防止剤、シリコーン系帯電防止剤、有機ホウ酸系帯電防止剤、高分子系帯電防止剤、帯電防止ポリマー材料等が挙げられ、公知の共役系ポリマー、イオン性ポリマー及び導電性ポリマー等を用いることができる。The antistatic layer has a sheet resistance of 1 × 10 11 Ω / □ or less, preferably 1 × 10 10 Ω / □ or less, more preferably 1 × 10 9 Ω / □ or less when the antistatic layer is formed. A layer containing a material that can be Examples of the antistatic agent include metal oxides, surfactant-type antistatic agents, silicone-based antistatic agents, organic boric acid-based antistatic agents, polymer-based antistatic agents, and antistatic polymer materials. Conjugated polymers, ionic polymers, conductive polymers, and the like can be used.

〔8〕液晶表示装置
本発明のタッチパネル付き液晶表示装置は、VAモード(MVA、PVA)型液晶を用いることが特徴であり、VAモードの利点である正面コントラストに優れるタッチパネル付き液晶表示装置を提供することができる。VAモード型液晶については、公知のものを制限なく使用することができる。
[8] Liquid crystal display device The liquid crystal display device with a touch panel of the present invention is characterized by using a VA mode (MVA, PVA) type liquid crystal, and provides a liquid crystal display device with a touch panel that is superior in front contrast, which is an advantage of the VA mode. can do. As the VA mode liquid crystal, a known liquid crystal can be used without limitation.

液晶表示装置には、通常視認側の偏光板とバックライト側の偏光板の2枚の偏光板が粘着層を介して液晶セルに貼合されて用いられるが、本発明に係る光学補償フィルムを具備した偏光板は視認側に配置されて、偏光板一体型タッチパネルモジュールとして機能する。   In a liquid crystal display device, usually, two polarizing plates, a polarizing plate on a viewing side and a polarizing plate on a backlight side, are used by being bonded to a liquid crystal cell via an adhesive layer, and the optical compensation film according to the present invention is used. The provided polarizing plate is arranged on the viewing side and functions as a polarizing plate integrated touch panel module.

一方、バックライト側の偏光板は液晶セル側から、光学補償フィルム、偏光子及び保護フィルムの順に積層された偏光板であることが好ましく、光学補償フィルムとしては本発明の光学補償フィルム又は他の光学補償フィルムを用いることが好ましい。他の光学補償フィルムとしては、前述の市販のセルロースエステルフィルムから選択されて好ましく用いることができる。また、保護フィルムも同様に前述の市販のセルロースエステルフィルムから選択されて好ましく用いることができ、さらにポリエステルフィルム、アクリルフィルム、又はポリカーボネートフィルム等を用いることができる。   On the other hand, the polarizing plate on the backlight side is preferably a polarizing plate in which an optical compensation film, a polarizer and a protective film are laminated in this order from the liquid crystal cell side, and the optical compensation film is the optical compensation film of the present invention or another. It is preferable to use an optical compensation film. As other optical compensation films, those selected from the above-mentioned commercially available cellulose ester films can be preferably used. Similarly, the protective film is similarly selected from the above-mentioned commercially available cellulose ester films and can be preferably used. Further, a polyester film, an acrylic film, a polycarbonate film, or the like can be used.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。   Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto. In the examples, “parts” or “%” is used, but “parts by weight” or “% by weight” is used unless otherwise specified.

実施例1
実施例に用いるセルロースエステル系樹脂、シクロオレフィン系樹脂、ポリイミド系樹脂、ポリアリレート系樹脂及びアクリル系樹脂として、下記に挙げる樹脂を用いた。
Example 1
The following resins were used as the cellulose ester resin, cycloolefin resin, polyimide resin, polyarylate resin and acrylic resin used in the examples.

[樹脂]
シクロオレフィン系樹脂(COP):ARTON G7810、JSR(株)製
セルロースアセテートプロピオネート(CAP):アセチル基置換度1.5、プロピオニル基置換度1.0、総アシル基置換度2.5、重量平均分子量25万)
ポリイミド系樹脂(PI):下記方法にてポリイミド系樹脂を合成した。
[resin]
Cycloolefin resin (COP): ARTON G7810, cellulose acetate propionate (CAP) manufactured by JSR Corporation: acetyl group substitution degree 1.5, propionyl group substitution degree 1.0, total acyl group substitution degree 2.5, Weight average molecular weight 250,000)
Polyimide resin (PI): A polyimide resin was synthesized by the following method.

〈ポリイミド樹脂A:式(P1)で表される構造を有するポリイミド〉
(ポリイミド前駆体の重合)
反応容器としてステンレス製セパラブルフラスコを備え、該セパラブルフラスコ内の撹拌装置として2枚のパドル翼を備え、冷却装置として20.9kJ/minの冷却能力を持つ装置を備えた反応装置を用いてポリアミック酸を製造した。重合反応中は水分の混入を防ぐために、シリカゲル中を通過させて脱水を行った窒素ガスを0.05L/minで流して重合反応を行った。
<Polyimide resin A: polyimide having a structure represented by formula (P1)>
(Polymerization of polyimide precursor)
Using a reaction apparatus equipped with a stainless steel separable flask as a reaction vessel, two paddle blades as a stirring device in the separable flask, and a device having a cooling capacity of 20.9 kJ / min as a cooling device. Polyamic acid was produced. During the polymerization reaction, a nitrogen gas which had been dehydrated by passing through silica gel was flowed at 0.05 L / min in order to prevent water from being mixed, thereby performing the polymerization reaction.

上記セパラブルフラスコに、重合溶媒としてN,N−ジメチルホルムアミド(DMF)223.5gを仕込み、これに、トリフルオリメチルベンゼン(TFMB)を40.0g(0.125モル)溶解する。この溶液に、1,1,1,3,3,3−ヘキサフルオロ−2,2−ジ(3,4−ジカルボキシフェニル)プロパン二無水物(6FDA)を55.5g(0.125モル)添加・撹拌して完全に溶解させた。完全に溶解した後、撹拌して重合粘度を80Pa・sまで上昇させた。ポリアミック酸溶液の粘度は、23℃に保温された水溶液中で1時間保温し、その時の粘度をB型粘度計で、ローターはNo.7を回転数は4rpmで測定を行った。なお、この反応溶液における芳香族ジアミン化合物及び芳香族テトラカルボン酸二無水物の仕込み濃度は、全反応液に対して30質量%となっている。   223.5 g of N, N-dimethylformamide (DMF) as a polymerization solvent is charged into the separable flask, and 40.0 g (0.125 mol) of trifluoromethylbenzene (TFMB) is dissolved therein. 55.5 g (0.125 mol) of 1,1,1,3,3,3-hexafluoro-2,2-di (3,4-dicarboxyphenyl) propane dianhydride (6FDA) was added to this solution. The mixture was added and stirred to completely dissolve. After complete dissolution, the mixture was stirred to increase the polymerization viscosity to 80 Pa · s. The viscosity of the polyamic acid solution was kept for 1 hour in an aqueous solution kept at 23 ° C., and the viscosity at that time was measured with a B-type viscometer. 7 was measured at a rotation speed of 4 rpm. The concentration of the aromatic diamine compound and the aromatic tetracarboxylic dianhydride in the reaction solution was 30% by mass based on the total reaction solution.

(ポリイミド樹脂への化学イミド化)
上記溶液にDMFを加え固形分濃度を15質量%とし、イミド化促進剤としてピリジン(pkBH+;5.17)を60g(イミド化促進剤/ポリアミック酸中アミド基のモル比=3)添加して、完全に分散させる。分散させた溶液中に無水酢酸を1分間に1gの速度で30.6g(脱水剤/ポリアミック酸中アミド基のモル比=1.2)を添加してさらに30分間撹拌した。撹拌後に内部温度を100℃に上昇させて5時間過熱撹拌を行った。
(Chemical imidization to polyimide resin)
DMF was added to the above solution to a solid content concentration of 15% by mass, and 60 g of pyridine (pkBH +; 5.17) was added as an imidization accelerator (molar ratio of imidization accelerator / amide group in polyamic acid = 3). Disperse completely. 30.6 g of acetic anhydride (molar ratio of dehydrating agent / amide group in polyamic acid = 1.2) was added to the dispersed solution at a rate of 1 g per minute, and the mixture was further stirred for 30 minutes. After the stirring, the internal temperature was raised to 100 ° C., and the mixture was heated and stirred for 5 hours.

(ポリイミド樹脂の抽出)
ポリイミド樹脂の溶液を穴の直径が約5mmのロートに入れて、5Lのメタノール中に垂らして抽出を行った。抽出時、メタノールを1500回転以上に回転した撹拌羽で高速に撹拌しながら抽出を行った。垂らしたポリイミド溶液の直径はメタノール界面付近で1mm以下になるように、ロートとメタノールの液面の間の高さを調節しながら繊維状になるようにメタノール溶液中に垂らした、溶液中でポリイミド樹脂は、繊維状になる場合もあるが、撹拌を続けることで溶液中に一度繊維状になったものが分解されて5mm以下の繊維に溶液中で分断される。
(Extraction of polyimide resin)
The solution of the polyimide resin was put into a funnel having a hole diameter of about 5 mm, and was dropped in 5 L of methanol for extraction. At the time of extraction, extraction was performed while stirring methanol at high speed with a stirring blade rotated at 1500 rpm or more. The diameter of the suspended polyimide solution is 1 mm or less near the methanol interface, and the height is adjusted between the funnel and the liquid surface of methanol. The resin may be in a fibrous form, but by continuing stirring, the fibrous once in the solution is decomposed and cut into fibers of 5 mm or less in the solution.

分断された樹脂固形分溶液中に、更に、5Lのメタノールを添加して完全に固形分を抽出して取り出して固形分をソックスレー抽出装置でイソプロパノールにより洗浄を行った後に、真空乾燥装置で100℃ に加熱乾燥して、ポリイミド樹脂として取り出した。重量平均分子量は10万であった。   Further, 5 L of methanol was added to the separated resin solid content solution to completely extract and take out the solid content, and the solid content was washed with isopropanol in a Soxhlet extractor, and then 100 ° C. in a vacuum dryer. And dried as a polyimide resin. The weight average molecular weight was 100,000.

ポリアリレート系樹脂(PA):下記方法にてポリアリレート系樹脂を合成した。   Polyarylate resin (PA): A polyarylate resin was synthesized by the following method.

攪拌装置を備えた反応容器中にて、ビスフェノール成分として2,2−ビス(4−ヒドロキシフェニル)ヘキサフルオロプロパン〔BisAF〕の100質量部と、末端封止剤としてp-tert-ブチルフェノール〔PTBP〕の1.34質量部と、アルカリとして水酸化ナトリウム〔NaOH〕の25.4質量部と、重合触媒としてトリ−n−ブチルベンジルアンモニウムクロリド〔TBBAC〕の50質量%水溶液の1.28質量部と、酸化防止剤としてハイドロサルファイトナトリウムの0.5質量部とを、水1750質量部に溶解させた(水相)。   In a reaction vessel equipped with a stirrer, 100 parts by mass of 2,2-bis (4-hydroxyphenyl) hexafluoropropane [BisAF] as a bisphenol component and p-tert-butylphenol [PTBP] as a terminal blocking agent 1.34 parts by weight of sodium hydroxide, 25.4 parts by weight of sodium hydroxide [NaOH] as an alkali, and 1.28 parts by weight of a 50% by weight aqueous solution of tri-n-butylbenzylammonium chloride [TBBAC] as a polymerization catalyst. And 0.5 parts by mass of sodium hydrosulfite as an antioxidant were dissolved in 1750 parts by mass of water (aqueous phase).

また、これとは別に、ジクロロメタン1200質量部に、芳香族ジカルボン酸成分としてジフェニルエーテル−4,4′−ジカルボン酸クロリド〔DEDC〕の89.1質量部を溶解させた(有機相)。   Separately, 89.1 parts by mass of diphenyl ether-4,4'-dicarboxylic acid chloride [DEDC] as an aromatic dicarboxylic acid component was dissolved in 1200 parts by mass of dichloromethane (organic phase).

水相をあらかじめ攪拌しておき、有機相を水相中に強攪拌下で添加し、15℃で2時間、界面重合反応させた。モル比は、BisAF:DEDC:PTBP:TBBAC:NaOH=98.5:100.0:3.0:0.68:210とした。   The aqueous phase was previously stirred, and the organic phase was added to the aqueous phase with vigorous stirring, and an interfacial polymerization reaction was performed at 15 ° C. for 2 hours. The molar ratio was BisAF: DEDC: PTBP: TBBAC: NaOH = 98.5: 100.0: 3.0: 0.68: 210.

その後、攪拌を停止し、水相と有機相をデカンテーションして分離した。水相を除去した後、ジクロロメタン500質量部と、純水2000質量部と、酢酸2質量部とを有機相に添加して反応を停止させ、15℃で30分間攪拌した。その後、有機相を純水で10回洗浄し、有機相をメタノール中に添加してポリマーを沈殿させた。沈殿させたポリマーを濾過し、乾燥し、重量平均分子量11万のポリアリレート樹脂を得た。   Thereafter, the stirring was stopped, and the aqueous phase and the organic phase were decanted and separated. After removing the aqueous phase, 500 parts by mass of dichloromethane, 2000 parts by mass of pure water, and 2 parts by mass of acetic acid were added to the organic phase to stop the reaction, followed by stirring at 15 ° C. for 30 minutes. Thereafter, the organic phase was washed ten times with pure water, and the organic phase was added to methanol to precipitate a polymer. The precipitated polymer was filtered and dried to obtain a polyarylate resin having a weight average molecular weight of 110,000.

トリアセチルセルロース(TAC):アセチル基置換度2.85、重量平均分子量25万)
アクリル系樹脂(Ac):ダイヤナールBR85(三菱レイヨン社製、重量平均分子量:28万)
[添加剤]
添加剤として、位相差上昇剤 化合物A1〜化合物A5、ポリエステル系可塑剤B1及びアクリル系樹脂B2は、下記化合物を用いた。
Triacetyl cellulose (TAC): acetyl group substitution degree 2.85, weight average molecular weight 250,000)
Acrylic resin (Ac): Diamond BR85 (manufactured by Mitsubishi Rayon Co., weight average molecular weight: 280,000)
[Additive]
As the additives, the following compounds were used as the retardation increasing compounds Compound A1 to Compound A5, polyester plasticizer B1 and acrylic resin B2.

Figure 0006627869
Figure 0006627869

ポリエステル系可塑剤B1:下記手順にてポリエステル系可塑剤を合成した。   Polyester plasticizer B1: A polyester plasticizer was synthesized by the following procedure.

エチレングリコール180g、無水フタル酸278g、アジピン酸91g、安息香酸610g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中230℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応のエチレングリコールを減圧留去することにより、ポリエステル系可塑剤B1を得た。酸価0.20、数平均分子量450であった。   180 g of ethylene glycol, 278 g of phthalic anhydride, 91 g of adipic acid, 610 g of benzoic acid, and 0.191 g of tetraisopropyl titanate as an esterification catalyst were placed in a 2 L four-necked flask equipped with a thermometer, a stirrer, and a cooling tube for cooling. The temperature is gradually increased while stirring in a nitrogen stream until the temperature reaches 230 ° C. A dehydration condensation reaction was performed while observing the degree of polymerization. After the reaction was completed, unreacted ethylene glycol was distilled off under reduced pressure at 200 ° C. to obtain a polyester plasticizer B1. The acid value was 0.20 and the number average molecular weight was 450.

アクリル系樹脂B2:下記手順にてアクリル系樹脂を合成した。   Acrylic resin B2: An acrylic resin was synthesized by the following procedure.

撹拌機を備えた内容積40リットルのSUS製重合反応装置に、脱イオン水24リットルを入れ、分散安定剤としてアニオン系高分子化合物水溶液30g、分散安定助剤として硫酸ナトリウム36gを加え撹拌・溶解させた。また、別の撹拌機を備えた容器に、メチルメタクリレート(MMA)とアクリロイルモルホリン(ACMO)を、MMAが73.1質量%、ACMOが22.4質量%となるように(トータルでの仕込みモル比がMMA/ACMO=70/30となるように)投入し、単量体混合物に重合開始剤として2,2′−アゾビスイソブチロニトリル12g、連鎖移動剤としてn−オクチルメルカプタン24g、離型剤としてステアリルアルコール24gを加え撹拌・溶解させた。このようにして得られた重合開始剤、連鎖移動剤及び離形剤を溶解した単量体混合物を、上述した撹拌機を備えた内容積40リットルのSUS製重合反応装置(脱イオン水、分散安定剤及び分散安定助剤を収容する)に投入し、窒素置換しながら175rpmで15分間撹拌した。その後、80℃に加温して重合を開始させ、重合発熱ピーク終了後、115℃で10分間の熱処理を行い、重合を完結させた。得られたビーズ状重合体を濾過、水洗し、80℃で24hr乾燥し、重量平均分子量6万のメチルメタクリレート(MMA)とアクリロイルモルホリン(ACMO)のアクリル系樹脂B2を得た。   24 liters of deionized water is placed in a 40 liter polymerization reactor made of SUS equipped with a stirrer, and 30 g of an aqueous solution of an anionic polymer compound as a dispersion stabilizer and 36 g of sodium sulfate as a dispersion stabilizing aid are added and stirred and dissolved. I let it. In a vessel equipped with another stirrer, methyl methacrylate (MMA) and acryloyl morpholine (ACMO) were added so that MMA was 73.1% by mass and ACMO was 22.4% by mass (total charged moles). (MMA / ACMO = 70/30), and 12 g of 2,2'-azobisisobutyronitrile as a polymerization initiator, 24 g of n-octyl mercaptan as a chain transfer agent, and 24 g of stearyl alcohol was added as a mold agent and stirred and dissolved. The thus obtained monomer mixture in which the polymerization initiator, the chain transfer agent and the release agent are dissolved is mixed with a 40-liter SUS polymerization reactor (deionized water, dispersion (Containing a stabilizer and a dispersion stabilizing assistant), and stirred at 175 rpm for 15 minutes while replacing with nitrogen. Thereafter, the mixture was heated to 80 ° C. to start polymerization, and after the peak of the exothermic polymerization was completed, a heat treatment was performed at 115 ° C. for 10 minutes to complete the polymerization. The obtained bead polymer was filtered, washed with water, and dried at 80 ° C. for 24 hours to obtain an acrylic resin B2 of methyl methacrylate (MMA) and acryloylmorpholine (ACMO) having a weight average molecular weight of 60,000.

実施例1
<光学補償フィルム101の作製>
(微粒子添加液の調製)
微粒子(アエロジルR812:日本アエロジル株式会社製、一次平均粒子
径:7nm、見掛け比重50g/L) 4質量部
ジクロロメタン 48質量部
エタノール 48質量部
以上をディゾルバーで50分間撹拌混合した後、マントンゴーリンで分散を行った。
Example 1
<Preparation of optical compensation film 101>
(Preparation of fine particle addition liquid)
Fine particles (Aerosil R812: manufactured by Nippon Aerosil Co., Ltd., primary average particle size: 7 nm, apparent specific gravity 50 g / L) 4 parts by mass Dichloromethane 48 parts by mass Ethanol 48 parts by mass After stirring and mixing with a dissolver for 50 minutes, and then dispersing with Manton-Gaulin. Was done.

さらに、二次粒子の粒径が所定の大きさとなるようにアトライターにて分散を行った。これを日本精線(株)製のファインメットNFで濾過し、微粒子添加液を調製した。   Further, dispersion was performed with an attritor so that the particle size of the secondary particles became a predetermined size. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a liquid containing fine particles.

次いで、下記組成の主ドープ1を調製した。まず加圧溶解タンクにジクロロメタンを400kg/minの流量とエタノールを20kg/minの流量で添加した。溶媒の添加開始から3分後に、前記加圧溶解タンクに、シクロオレフィン系樹脂(COP)を200kg/minの流量で撹拌しながら投入した。次いで、溶媒投入開始後5分後に、微粒子添加液を投入して、これを80℃に加熱し、撹拌しながら、完全に溶解した。加熱温度は室温から5℃/minで昇温し、30分間で溶解した後、3℃/minで降温した。   Next, a main dope 1 having the following composition was prepared. First, dichloromethane was added to the pressure dissolution tank at a flow rate of 400 kg / min and ethanol at a flow rate of 20 kg / min. Three minutes after the start of the addition of the solvent, the cycloolefin-based resin (COP) was charged into the pressure dissolution tank with stirring at a flow rate of 200 kg / min. Next, 5 minutes after the start of the introduction of the solvent, the liquid for adding fine particles was introduced, heated to 80 ° C., and completely dissolved while stirring. The heating temperature was increased from room temperature at 5 ° C./min, dissolved for 30 minutes, and then decreased at 3 ° C./min.

ドープ粘度は10000CPであり、含水率は0.50%であった。これを安積濾紙(株)製の安積濾紙No.244(濾過精度0.005mm)を使用して濾過流量300L/m・h、濾圧1.0×10Paにて濾過し、主ドープ1を調製した。The dope viscosity was 10,000 CP, and the water content was 0.50%. This is Azumi Filter Paper No. Using 244 (filtration accuracy 0.005 mm) at a filtration flow rate of 300 L / m 2 · h and a filtration pressure of 1.0 × 10 6 Pa, main dope 1 was prepared.

〈主ドープ1の組成〉
シクロオレフィン系樹脂(COP):ARTON G7810、JSR(
株)製 100質量部
ジクロロメタン 200質量部
エタノール 10質量部
微粒子添加液 3質量部
次いで、無端ベルト流延装置を用い、上記ドープを温度33℃、1500mm幅でステンレスベルト支持体上に均一に流延した。ステンレスベルトの温度は30℃に制御した。
<Composition of main dope 1>
Cycloolefin resin (COP): ARTON G7810, JSR (
Co., Ltd. 100 parts by mass Dichloromethane 200 parts by mass Ethanol 10 parts by mass Fine particle additive liquid 3 parts by mass Then, using an endless belt casting device, the above dope is uniformly cast on a stainless steel belt support at a temperature of 33 ° C. and 1500 mm width. did. The temperature of the stainless steel belt was controlled at 30 ° C.

ステンレスベルト支持体上で、流延(キャスト)したフィルム中の残留溶媒量が75%になるまで溶媒を蒸発させ、次いで剥離張力130N/mで、ステンレスベルト支持体上から剥離した。   The solvent was evaporated on the stainless belt support until the residual solvent amount in the cast film became 75%, and then the film was peeled off from the stainless belt support at a peel tension of 130 N / m.

剥離したシクロオレフィン系樹脂フィルムを、160℃の熱をかけながらテンターを用いて幅手方向に20%延伸した。延伸開始時の残留溶媒は15%であった。次いで、乾燥ゾーンを多数のローラーで搬送させながら乾燥を終了させた。乾燥温度は130℃で、搬送張力は100N/mとした。乾燥後、1.5m幅にスリットし、フィルム両端に幅10mm、高さ10μmのナーリング加工を施し、ロール状に巻き取り、乾燥膜厚45μmの光学補償フィルム101を得た。   The peeled cycloolefin-based resin film was stretched 20% in the width direction using a tenter while applying heat at 160 ° C. The residual solvent at the start of stretching was 15%. Next, the drying was completed while being conveyed by a number of rollers in the drying zone. The drying temperature was 130 ° C., and the transport tension was 100 N / m. After drying, the film was slit to a width of 1.5 m, knurling was applied to both ends of the film at a width of 10 mm and a height of 10 μm, and the film was wound into a roll to obtain an optical compensation film 101 having a dry film thickness of 45 μm.

<光学補償フィルム102の作製>
光学補償フィルム101の作製において、下記主ドープ2を調製して用い、膜厚を10μmにした以外は同様にして光学補償フィルム102を作製した。
<Preparation of optical compensation film 102>
In the production of the optical compensation film 101, the following main dope 2 was prepared and used, and an optical compensation film 102 was produced in the same manner except that the film thickness was 10 μm.

〈主ドープ2の組成〉
シクロオレフィン系樹脂(COP):ARTON G7810、JSR(
株)製 100質量部
ジクロロメタン 200質量部
エタノール 10質量部
添加剤A1 4質量部
微粒子添加液 3質量部
なお、延伸倍率は光学補償フィルムが表1に記載の位相差値になるように調整した。
<Composition of main dope 2>
Cycloolefin resin (COP): ARTON G7810, JSR (
Co., Ltd. 100 parts by mass Dichloromethane 200 parts by mass Ethanol 10 parts by mass Additive A1 4 parts by mass Fine particle additive liquid 3 parts by mass The stretching ratio was adjusted so that the optical compensation film had the retardation value shown in Table 1.

<基材フィルムA103〜108の作製>
光学補償フィルム102の作製において、添加剤の種類、添加量、膜厚を表1記載のように変化させた以外は同様にして、光学補償フィルム103〜108を作製した。
<Preparation of base film A103 to 108>
The optical compensation films 103 to 108 were produced in the same manner as in the production of the optical compensation film 102 except that the type, amount, and thickness of the additive were changed as shown in Table 1.

<光学補償フィルム109の作製>
光学補償フィルム101の作製において、下記主ドープ3を調製して用いた以外は同様にして光学補償フィルム109を作製した。
<Preparation of optical compensation film 109>
An optical compensation film 109 was produced in the same manner as in the production of the optical compensation film 101, except that the following main dope 3 was prepared and used.

〈主ドープ3の組成〉
セルロースアセテートプロピオネート(CAP) 100質量部
ジクロロメタン 200質量部
エタノール 10質量部
微粒子添加液 3質量部
<光学補償フィルム110の作製>
光学補償フィルム109の作製において、添加剤A2を5質量部添加し、延伸倍率を表1に記載の位相差値になるように調整し、膜厚を変化した以外は同様にして光学補償フィルム110を作製した。
<Composition of main dope 3>
Cellulose acetate propionate (CAP) 100 parts by mass Dichloromethane 200 parts by mass Ethanol 10 parts by mass Fine particle additive liquid 3 parts by mass <Preparation of optical compensation film 110>
In the production of the optical compensation film 109, 5 parts by mass of the additive A2 was added, the stretching ratio was adjusted to have the retardation value shown in Table 1, and the optical compensation film 110 was prepared in the same manner except that the film thickness was changed. Was prepared.

<光学補償フィルム111の作製>
光学補償フィルム101の作製において、下記主ドープ4を調製して用いた以外は同様にして光学補償フィルム110を作製した。
<Preparation of optical compensation film 111>
An optical compensation film 110 was produced in the same manner as in the production of the optical compensation film 101, except that the following main dope 4 was prepared and used.

〈主ドープ4の組成〉
ポリイミド系樹脂(PI) 100質量部
ジクロロメタン 200質量部
エタノール 10質量部
微粒子添加液 3質量部
<光学補償フィルム112の作製>
光学補償フィルム111の作製において、添加剤A2を2質量部添加し、延伸倍率を光学補償フィルムが表1に記載の位相差値になるように調整し、膜厚を変化した以外は同様にして光学補償フィルム112を作製した。
<Composition of main dope 4>
Polyimide resin (PI) 100 parts by mass Dichloromethane 200 parts by mass Ethanol 10 parts by mass Fine particle additive liquid 3 parts by mass <Preparation of optical compensation film 112>
In the production of the optical compensation film 111, 2 parts by mass of the additive A2 was added, the stretching ratio was adjusted so that the optical compensation film had the retardation value shown in Table 1, and the film thickness was changed in the same manner. An optical compensation film 112 was produced.

<光学補償フィルム113の作製>
光学補償フィルム101の作製において、下記主ドープ5を調製して用いた以外は同様にして光学補償フィルム113を作製した。
<Preparation of optical compensation film 113>
An optical compensation film 113 was produced in the same manner as in the production of the optical compensation film 101, except that the following main dope 5 was prepared and used.

〈主ドープ5の組成〉
ポリアリレート系樹脂(PA) 100質量部
ジクロロメタン 200質量部
エタノール 10質量部
微粒子添加液 3質量部
<光学補償フィルム114の作製>
光学補償フィルム113の作製において、添加剤A2を2質量部添加し、延伸倍率を光学補償フィルムが表1に記載の位相差値になるように調整し、膜厚を変化した以外は同様にして光学補償フィルム114を作製した。
<Composition of main dope 5>
Polyarylate resin (PA) 100 parts by mass Dichloromethane 200 parts by mass Ethanol 10 parts by mass Fine particle additive liquid 3 parts by mass <Preparation of optical compensation film 114>
In the production of the optical compensation film 113, 2 parts by mass of the additive A2 was added, the stretching ratio was adjusted so that the optical compensation film had the retardation value shown in Table 1, and the film thickness was changed in the same manner. An optical compensation film 114 was produced.

<光学補償フィルム115の作製>
光学補償フィルム102の作製において、下記主ドープ6を調製して用い、膜厚を45μmにした以外は同様にして光学補償フィルム115を作製した。
<Preparation of optical compensation film 115>
In the production of the optical compensation film 102, an optical compensation film 115 was produced in the same manner except that the following main dope 6 was prepared and used, and the film thickness was 45 μm.

〈主ドープ6の組成〉
シクロオレフィン系樹脂(COP):ARTON G7810、JSR(
株)製 100質量部
ジクロロメタン 200質量部
エタノール 10質量部
添加剤B1 6質量部
微粒子添加液 3質量部
なお、延伸倍率は表1に記載の位相差値になるように調整した。
<Composition of main dope 6>
Cycloolefin resin (COP): ARTON G7810, JSR (
Co., Ltd. 100 parts by mass Dichloromethane 200 parts by mass Ethanol 10 parts by mass Additive B1 6 parts by mass Fine particle additive liquid 3 parts by mass The stretching ratio was adjusted to the retardation value shown in Table 1.

<光学補償フィルム116の作製>
光学補償フィルム110の作製において、下記主ドープ7を調製して用い、膜厚を45μmにした以外は同様にして光学補償フィルム116を作製した。
<Preparation of optical compensation film 116>
In the production of the optical compensation film 110, the following main dope 7 was prepared and used, and an optical compensation film 116 was produced in the same manner except that the film thickness was 45 μm.

〈主ドープ7の組成〉
セルロースアセテートプロピオネート(CAP) 100質量部
ジクロロメタン 200質量部
エタノール 10質量部
添加剤B1 6.5質量部
微粒子添加液 3質量部
<光学補償フィルム117の作製>
光学補償フィルム101の作製において、長手方向及び幅手方向に5%づつ延伸し、膜厚を45μmにした以外は同様にして光学補償フィルム117を作製した。
<Composition of main dope 7>
Cellulose acetate propionate (CAP) 100 parts by mass Dichloromethane 200 parts by mass Ethanol 10 parts by mass Additive B1 6.5 parts by mass Fine particle additive liquid 3 parts by mass <Preparation of optical compensation film 117>
In the production of the optical compensation film 101, an optical compensation film 117 was produced in the same manner except that the film was stretched by 5% in the longitudinal direction and the width direction and the film thickness was 45 μm.

<光学補償フィルム118の作製>
光学補償フィルム116の作製において、下記主ドープ8を調製して用い、長手方向及び幅手方向に5%づつ延伸し、膜厚を45μmにした以外は同様にして光学補償フィルム118を作製した。
<Preparation of optical compensation film 118>
In the production of the optical compensation film 116, the following main dope 8 was prepared and used, and an optical compensation film 118 was produced in the same manner except that the film was stretched by 5% in the longitudinal direction and the width direction and the film thickness was 45 μm.

〈主ドープ8の組成〉
トリアセチルセルロース(TAC) 100質量部
ジクロロメタン 200質量部
エタノール 10質量部
添加剤B2 10質量部
微粒子添加液 3質量部
<光学補償フィルム119の作製>
光学補償フィルム116の作製において、下記主ドープ9を調製して用い、膜厚を45μmにした以外は同様にして光学補償フィルム118を作製した。
<Composition of main dope 8>
Triacetyl cellulose (TAC) 100 parts by mass Dichloromethane 200 parts by mass Ethanol 10 parts by mass Additive B2 10 parts by mass Fine particle additive liquid 3 parts by mass <Preparation of optical compensation film 119>
In the production of the optical compensation film 116, the following main dope 9 was prepared and used, and an optical compensation film 118 was produced in the same manner except that the film thickness was 45 μm.

〈主ドープ9の組成〉
アクリル系樹脂(Ac):ダイヤナールBR85(三菱レイヨン社製)
100質量部
ジクロロメタン 200質量部
エタノール 10質量部
微粒子添加液 3質量部
<透明導電層の作製>
用いた銀ナノワイヤーは、Y.Sun、B.Gates、B.Mayers、& Y.Xia,“Crystalline silver nanowires by soft solution processing” 、Nano letters 、(2002)、2(2) 165〜168に記載されるポリオールを用いた方法の後、ポリビニルピロリドン(PVP)の存在下で、エチレングリコールに硫酸銀を溶解し、これを還元することによって合成された銀ナノワイヤーである。すなわち本発明においてはCambrios Technologies Corporation 米国仮出願第60/815,627号に記載される修正されたポリオール方法によって、合成されたナノワイヤーを用いた。
<Composition of main dope 9>
Acrylic resin (Ac): Diamond BR85 (Mitsubishi Rayon)
100 parts by mass Dichloromethane 200 parts by mass Ethanol 10 parts by mass Fine particle additive liquid 3 parts by mass <Preparation of transparent conductive layer>
The silver nanowire used was manufactured by Y. Sun, B .; Gates, B .; Mayers, & Y. Xia, "Crystalline silver nanowires by soft solution processing", Nano Letters, (2002), 2 (2) After the method using a polyol, in the presence of polyvinylpyrrolidone (PVP) in the presence of polyvinylpyrrolidone (PVP). This is a silver nanowire that was synthesized by dissolving silver sulfate in water and reducing it. That is, the present invention used nanowires synthesized by the modified polyol method described in Cambrios Technologies Corporation, US Provisional Application No. 60 / 815,627.

透明導電層を形成する金属ナノワイヤーとして、上記方法で合成された短軸径約70〜80nm、アスペクト比100以上の銀ナノワイヤーを水性媒体中に0.5wt%/v含有する銀ナノワイヤー水分散体組成物(Cambrios Technologies Corporation社製 ClearOhmTM, Ink−A AQ)を、スロットダイ塗工機を使用し、光学補償フィルム101〜119の一方の面上に乾燥後膜厚が1.5μmになるように塗布、乾燥した後に、圧力2000kN/mで加圧処理を行い、透明導電層を形成した。As a metal nanowire forming a transparent conductive layer, silver nanowire water containing 0.5 wt% / v of silver nanowire synthesized in the above manner and having a minor axis diameter of about 70 to 80 nm and an aspect ratio of 100 or more in an aqueous medium is used. The thickness of the dispersion composition (ClearOhmTM, Ink-A AQ, manufactured by Cambrios Technologies Corporation) is dried on one surface of the optical compensation films 101 to 119 using a slot die coating machine to a thickness of 1.5 μm. After coating and drying as described above, a pressure treatment was performed at a pressure of 2000 kN / m 2 to form a transparent conductive layer.

次いで、光学補償フィルムの他方の面にも上記と同様にして透明導電層を形成しその後、低抵抗値化のために、150℃で30分間の熱処理(アニール処理)を行った。   Next, a transparent conductive layer was formed on the other surface of the optical compensation film in the same manner as described above, and then heat treatment (annealing) was performed at 150 ° C. for 30 minutes to reduce the resistance.

<偏光板及び偏光板一体型タッチパネルモジュールの作製:図2参照>
厚さ80μmのロール状ポリビニルアルコールフィルムをヨウ素水溶液中で連続して5倍に延伸し、乾燥して厚さ20μmの偏光子を得た。
<Preparation of polarizing plate and touch panel module with integrated polarizing plate: see FIG. 2>
A roll-shaped polyvinyl alcohol film having a thickness of 80 µm was continuously stretched 5 times in an aqueous iodine solution and dried to obtain a polarizer having a thickness of 20 µm.

次いで、上記作製した偏光子を、前記作製した光学補償フィルム101〜119の透明導電層を設けた一方の側と、保護フィルムとしてコニカミノルタタックKC4UA(コニカミノルタ(株)製)とで挟持して、下記紫外線硬化型接着剤液を介して、接着し偏光板一体型タッチパネルモジュール101〜119を作製した。   Next, the above-prepared polarizer was sandwiched between one side of the above-prepared optical compensation films 101 to 119 provided with the transparent conductive layer and Konica Minolta Tack KC4UA (manufactured by Konica Minolta Co., Ltd.) as a protective film. Then, they were bonded via the following ultraviolet-curable adhesive liquid to produce polarizing plate integrated touch panel modules 101 to 119.

〔紫外線硬化型接着剤液1の調製〕
下記の各成分を混合した後、脱泡して、紫外線硬化型接着剤液1を調製した。なお、トリアリールスルホニウムヘキサフルオロホスフェートは、50%プロピレンカーボネート溶液として配合し、下記にはトリアリールスルホニウムヘキサフルオロホスフェートの固形分量を表示した。
[Preparation of UV-curable adhesive liquid 1]
After mixing the following components, the mixture was defoamed to prepare an ultraviolet-curable adhesive liquid 1. The triarylsulfonium hexafluorophosphate was blended as a 50% propylene carbonate solution, and the solid content of the triarylsulfonium hexafluorophosphate is shown below.

3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサ
ンカルボキシレート 45質量部
エポリードGT−301(ダイセル社製の脂環式エポキシ樹脂)
40質量部
1,4−ブタンジオールジグリシジルエーテル 15質量部
トリアリールスルホニウムヘキサフルオロホスフェート 2.3質量部
9,10−ジブトキシアントラセン 0.1質量部
1,4−ジエトキシナフタレン 2.0質量部
なお、偏光板作製は、光学補償フィルム及び保護フィルムの表面に、コロナ出力強度2.0kW、ライン速度18m/分でコロナ放電処理を施し、コロナ放電処理面に、上記調製した紫外線硬化型接着剤液1を、硬化後の膜厚が約3μmとなるようにバーコーターで塗工して紫外線硬化型接着剤層を形成した。
3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate 45 parts by mass Epolide GT-301 (alicyclic epoxy resin manufactured by Daicel)
40 parts by mass 1,4-butanediol diglycidyl ether 15 parts by mass Triarylsulfonium hexafluorophosphate 2.3 parts by mass 0.1 part by mass 9,10-dibutoxyanthracene 0.1 part by mass 2.0 parts by mass 1,4-diethoxynaphthalene The polarizing plate was prepared by subjecting the surfaces of the optical compensation film and the protective film to a corona discharge treatment at a corona output intensity of 2.0 kW and a line speed of 18 m / min. The liquid 1 was coated with a bar coater so that the film thickness after curing was about 3 μm to form an ultraviolet-curable adhesive layer.

上記偏光板は保護フィルム側から、ベルトコンベヤー付き紫外線照射装置(ランプは、フュージョンUVシステムズ社製のDバルブを使用)を用いて、積算光量が750mJ/cmとなるように紫外線を照射し、紫外線硬化型接着剤層を硬化させた。The polarizing plate is irradiated with ultraviolet rays from the protective film side by using an ultraviolet irradiation apparatus with a belt conveyor (the lamp uses a D bulb manufactured by Fusion UV Systems Co., Ltd.) so that the integrated light amount becomes 750 mJ / cm 2 . The ultraviolet curable adhesive layer was cured.

<偏光板一体型タッチパネルモジュールを具備したタッチパネル付き液晶表示装置の作製:図2参照>
上記作製した光学補償フィルム101〜116を具備する偏光板一体型タッチパネルモジュールを、自作したVAモード型液晶セルに偏光板の光学補償フィルム側を貼合し、タッチパネル付き液晶表示装置101〜116を作製した。
<Production of a liquid crystal display device with a touch panel equipped with a touch panel module integrated with a polarizing plate: see FIG. 2>
The polarizing plate integrated type touch panel module having the optical compensation films 101 to 116 produced above is bonded to a self-made VA mode type liquid crystal cell with the optical compensation film side of the polarizing plate to produce liquid crystal display devices 101 to 116 with a touch panel. did.

また、上記作製した光学補償フィルム117〜119を具備する偏光板一体型タッチパネルモジュールは、市販のタッチパネル付きIPSモード型液晶表示装置から、タッチパネルモジュールを注意深く剥離し、IPSモード型液晶セルに偏光板の光学補償フィルム側を貼合し、タッチパネル付き液晶表示装置117〜119を作製した。   In addition, the polarizing plate integrated type touch panel module including the optical compensation films 117 to 119 prepared above is carefully peeled off the touch panel module from a commercially available IPS mode type liquid crystal display device with a touch panel, and the polarizing plate is attached to the IPS mode type liquid crystal cell. The optical compensation films were bonded together to produce liquid crystal display devices 117 to 119 with a touch panel.

上記液晶セルの反対側の面には、光学補償フィルム(コニカミノルタタックKC8UCR3)/偏光子/保護フィルム(コニカミノルタタックKC4UA、いずれもコニカミノルタ(株)製)の構成である偏光板を、光学補償フィルム側が液晶セル側になるように、粘着剤層を介して貼合した。   On the opposite surface of the liquid crystal cell, a polarizing plate having the structure of an optical compensation film (Konica Minolta Tac KC8UCR3) / polarizer / protective film (Konica Minolta Tak KC4UA, all manufactured by Konica Minolta Co., Ltd.) is provided. The films were bonded via an adhesive layer such that the compensation film side was on the liquid crystal cell side.

≪評価≫
〔1〕光学補償フィルムの位相差値
光学補償フィルムの面内位相差値Ro及び厚さ方向の位相差値Rtは、自動複屈折率計アクソスキャン(Axo Scan Mueller Matrix Polarimeter:アクソメトリックス社製)を用いて、23℃・55%RHの環境下、590nmの光波長において、三次元屈折率測定を行い、得られた屈折率n、n、nから、下記式(i)及び(ii)によって算出した。
≪Evaluation≫
[1] Retardation Value of Optical Compensation Film The in-plane retardation value Ro and the retardation value Rt in the thickness direction of the optical compensation film are measured by an automatic birefringence meter Axoscan (Axo Scan Mueller Matrix Polarimeter: manufactured by Axometrics). using, an environment of 23 ℃ · 55% RH, the optical wavelength of 590 nm, subjected to three-dimensional refractive index measured, resulting refractive indices n x, n y, from n z, the following formula (i) and ( ii).

式(i):Ro=(n−n)×d(nm)
式(ii):Rt={(n+n)/2−n}×d(nm)
〔式(i)及び式(ii)において、nは、フィルムの面内方向において屈折率が最大になる方向xにおける屈折率を表す。nは、フィルムの面内方向において、前記方向xと直交する方向yにおける屈折率を表す。nは、フィルムの厚さ方向zにおける屈折率を表す。dは、フィルムの厚さ(nm)を表す。〕
〔2〕光学補償フィルムの位相差値変動
上記光学補償フィルム試料をオーブン内に150℃で1時間放置して熱処理を行い、その前後での位相差値の変動を下記式で求めた。
Formula (i): Ro = (n x -n y) × d (nm)
Formula (ii): Rt = {( n x + n y) / 2-n z} × d (nm)
In [Equation (i) and Formula (ii), n x represents a refractive index in the direction x in which the refractive index is maximized in the plane direction of the film. n y, in-plane direction of the film, the refractive index in the direction y perpendicular to the direction x. nz represents the refractive index in the thickness direction z of the film. d represents the thickness (nm) of the film. ]
[2] Variation in retardation value of optical compensation film The optical compensation film sample was left in an oven at 150 ° C for 1 hour to perform heat treatment, and the variation in retardation value before and after the heat treatment was determined by the following equation.

位相差値Ro又はRtの変動={(熱処理後のRo値又はRt値−熱処理前のRo値又はRt値)/(熱処理前のRo値又はRt値)}×100(%)
〔3〕光学補償フィルムのガラス転移温度
ガラス転移温度Tgは、JIS K−7121に従って、セイコーインスツル(株)製の示差走査熱量計DSC220を用いて測定して、求めた。光学補償フィルム試料を10mg程度セットし、窒素流量50ml/minの条件下で、20℃/minで室温から250℃まで昇温して10分間保持し(第1スキャン)、次に20℃/minの速度で30℃まで降温して10分間保持し(第2スキャン)、さらに20℃/minで250℃まで昇温し(第3スキャン)、DSC曲線を作成し、得られた第3スキャンのDSC曲線からガラス転移温度Tgを求めた。
Fluctuation of phase difference value Ro or Rt = {(Ro value or Rt value after heat treatment-Ro value or Rt value before heat treatment) / (Ro value or Rt value before heat treatment)} × 100 (%)
[3] Glass transition temperature of optical compensation film The glass transition temperature Tg was determined by measuring with a differential scanning calorimeter DSC220 manufactured by Seiko Instruments Inc. according to JIS K-7121. About 10 mg of the optical compensation film sample was set, and the temperature was raised from room temperature to 250 ° C. at a rate of 20 ° C./min from the room temperature under a nitrogen flow rate of 50 ml / min, held for 10 minutes (first scan), and then 20 ° C./min. Then, the temperature was lowered to 30 ° C. at the speed described above, held for 10 minutes (second scan), and further raised to 250 ° C. at 20 ° C./min (third scan), and a DSC curve was created. The glass transition temperature Tg was determined from the DSC curve.

〔4〕正面コントラスト
作製したタッチパネル付き液晶表示装置101〜119について、それぞれの正面コントラストを測定した。正面コントラストの測定は、ELDIM社製の正面コントラスト測定装置(EZ−contrast)により行い、白表示時と黒表示時の光量を測定し、その比を求めた。
[4] Front contrast The front contrast of each of the manufactured liquid crystal display devices 101 to 119 with a touch panel was measured. The measurement of the front contrast was performed by a front contrast measuring device (EZ-contrast) manufactured by ELDIM, and the amount of light during white display and during black display was measured, and the ratio was obtained.

以上、光学補償フィルムの構成内容及び上記評価結果を、下記表1に示した。   The composition of the optical compensation film and the above evaluation results are shown in Table 1 below.

Figure 0006627869
Figure 0006627869

表1から、本発明に係る光学補償フィルム101〜114を用いたタッチパネル付きVAモード型液晶表示装置は、IPSモード型液晶表示装置117〜119に比較して、正面コントラストに優れることが分かる。   Table 1 shows that the VA mode liquid crystal display device with the touch panel using the optical compensation films 101 to 114 according to the present invention is superior in the front contrast as compared with the IPS mode liquid crystal display devices 117 to 119.

また、光学補償フィルムのガラス転移温度Tgが155℃未満である光学補償フィルム115及び116は、位相差値変動が大きく、正面コントラストも劣位にあり、IPSモード型液晶表示装置よりも低いコントラストであった。   In addition, the optical compensation films 115 and 116 in which the glass transition temperature Tg of the optical compensation film is less than 155 ° C. have large fluctuation in retardation value, poor frontal contrast, and lower contrast than the IPS mode liquid crystal display device. Was.

実施例2
<タッチパネルモジュールの作製>
実施例1で作製した本発明に係る光学補償フィルム104、110、112及び114の片面にスパッタリング法により透明導電層としてITO膜を厚さが20nmになるように成膜し、エッチングでX方向の第1電極パターンを形成した。
Example 2
<Preparation of touch panel module>
On one surface of the optical compensation films 104, 110, 112, and 114 according to the present invention prepared in Example 1, an ITO film was formed as a transparent conductive layer so as to have a thickness of 20 nm by a sputtering method. A first electrode pattern was formed.

次に電極パターンの間に配置される絶縁層としてSiOをスパッタリング法を用いて厚さが200nmになるように成膜し、その上にITO膜を厚さが20nmになるようにスパッタリングで成膜し、エッチングでY方向に第2電極パターンを形成した。更にその上に絶縁層としてSiOをスパッタリング法を用いて厚さ200nmになるように成膜した。次いで、低抵抗値化のために、150℃で30分間の熱処理(アニール処理)を行い、光学補償フィルム104、110、112及び114にそれぞれ対応する、透明導電層を具備する光学補償フィルム201〜204を作製した。Next, as an insulating layer disposed between the electrode patterns, SiO 2 is formed to a thickness of 200 nm by a sputtering method, and an ITO film is formed thereon by sputtering to a thickness of 20 nm. The film was formed, and a second electrode pattern was formed in the Y direction by etching. Further thereon, SiO 2 was formed as an insulating layer to a thickness of 200 nm by a sputtering method. Next, a heat treatment (annealing treatment) is performed at 150 ° C. for 30 minutes to reduce the resistance, and the optical compensation films 201 to 201 having a transparent conductive layer corresponding to the optical compensation films 104, 110, 112, and 114 respectively. 204 were produced.

<偏光板及び偏光板一体型タッチパネルモジュールの作製:図6参照>
実施例1で作製した偏光子を、上記光学補償フィルム201〜204の透明導電層を設けた側と、保護フィルムとしてコニカミノルタタックKC4UA(コニカミノルタ(株)製)とで挟持して、実施例1の紫外線硬化型接着剤液1を介して、接着し偏光板一体型タッチパネルモジュール201〜204を作製した。
<Preparation of polarizing plate and touch panel module with integrated polarizing plate: see FIG. 6>
The polarizer produced in Example 1 was sandwiched between the side on which the transparent conductive layer of the optical compensation films 201 to 204 was provided, and Konica Minolta Tack KC4UA (manufactured by Konica Minolta, Inc.) as a protective film. Bonding was performed via the ultraviolet curable adhesive liquid 1 of Example 1 to produce the polarizing plate integrated touch panel modules 201 to 204.

<偏光板一体型タッチパネルモジュールを具備したタッチパネル付き液晶表示装置の作製:図6参照>
上記作製した光学補償フィルム201〜204を具備する偏光板一体型タッチパネルモジュール201〜204を、自作したVAモード型液晶セルに透明導電層が形成されていない光学補償フィルム側を貼合し、タッチパネル付き液晶表示装置201〜204を作製した。
<Production of a liquid crystal display device with a touch panel equipped with a touch panel module integrated with a polarizing plate: see FIG. 6>
A polarizing plate-integrated touch panel module 201 to 204 including the optical compensation films 201 to 204 prepared above is attached to a self-made VA mode type liquid crystal cell on the optical compensation film side where a transparent conductive layer is not formed, and a touch panel is provided. Liquid crystal display devices 201 to 204 were produced.

液晶セルの反対側の面には、光学補償フィルム(コニカミノルタタックKC8UCR3)/偏光子/保護フィルム(コニカミノルタタックKC4UA、いずれもコニカミノルタ(株)製)の構成である偏光板を、光学補償フィルム側が液晶セル側になるように、粘着剤層を介して貼合した。   On the surface on the opposite side of the liquid crystal cell, a polarizing plate having a configuration of an optical compensation film (Konica Minolta Tak KC8UCR3) / polarizer / protective film (Konica Minolta Tak KC4UA, all manufactured by Konica Minolta Co., Ltd.) is provided. The films were bonded via an adhesive layer so that the film side was on the liquid crystal cell side.

作製した偏光板一体型タッチパネルモジュールを具備したタッチパネル付き液晶表示装置201〜204の正面コントラストを実施例1と同様に測定したところ、コントラスト比がいずれも7500:1であり、実施例1を再現して優れたコントラストを有するVAモード型タッチパネル付き液晶表示装置が得られることが分かった。   When the front contrasts of the liquid crystal display devices 201 to 204 having the touch panel equipped with the manufactured polarizing plate integrated type touch panel module were measured in the same manner as in Example 1, the contrast ratio was 7500: 1, and Example 1 was reproduced. It was found that a VA mode type liquid crystal display device with a touch panel having excellent contrast was obtained.

本発明のタッチパネル付き液晶表示装置は、本発明に係る少なくとも一方の面に透明導電層を有する光学補償フィルム、偏光子及び保護フィルムをこの順に有することによって、薄膜で正面コントラストに優れた、VAモード型液晶セルを具備するタッチパネル付き液晶表示装置を提供することができる。   The liquid crystal display device with a touch panel according to the present invention has a thin film and excellent front contrast by having an optical compensation film, a polarizer, and a protective film having a transparent conductive layer on at least one surface according to the present invention in this order. A liquid crystal display device with a touch panel having a liquid crystal cell can be provided.

1 液晶セル
2 偏光子
T1 保護フィルム
T2 光学補償フィルム
P1 偏光板(視認側)
3 粘着層
4 導電層基材フィルム
5 透明導電層
6 保護層
7 前面板
T タッチパネルモジュール
T3 光学補償フィルム
T4 保護フィルム
P2 偏光板(バックライト側)
10 比較例のタッチパネル付き液晶表示装置
20 本発明のタッチパネル付き液晶表示装置
Reference Signs List 1 liquid crystal cell 2 polarizer T1 protective film T2 optical compensation film P1 polarizing plate (viewing side)
Reference Signs List 3 adhesive layer 4 conductive layer base film 5 transparent conductive layer 6 protective layer 7 front plate T touch panel module T3 optical compensation film T4 protective film P2 polarizing plate (backlight side)
10 Liquid crystal display device with touch panel of comparative example 20 Liquid crystal display device with touch panel of the present invention

Claims (6)

VAモード型液晶セルの視認側に、透明導電層を有する偏光板一体型タッチパネルモジュールを具備するタッチパネル付き液晶表示装置であって、
前記透明導電層を有する偏光板一体型タッチパネルモジュールが、
前記VAモード型液晶セルから視認側に向かって、少なくとも一方の面に透明導電層を有する光学補償フィルム、偏光子及び保護フィルムをこの順に有し、かつ、
前記光学補償フィルムのガラス転移温度Tgが155〜250℃の範囲内であることを特徴とするタッチパネル付き液晶表示装置。
A liquid crystal display device with a touch panel, comprising a polarizing plate-integrated touch panel module having a transparent conductive layer on the viewing side of a VA mode liquid crystal cell,
A polarizing plate integrated touch panel module having the transparent conductive layer,
An optical compensation film having a transparent conductive layer on at least one surface, a polarizer, and a protective film in this order from the VA mode liquid crystal cell toward the viewing side, and
A liquid crystal display device with a touch panel, wherein the glass transition temperature Tg of the optical compensation film is in the range of 155 to 250 ° C.
前記光学補償フィルムが、シクロオレフィン系樹脂、ポリイミド系樹脂又はポリアリレート系樹脂のいずれかを含有することを特徴とする請求項1に記載のタッチパネル付き液晶表示装置。   The liquid crystal display device with a touch panel according to claim 1, wherein the optical compensation film contains any one of a cycloolefin-based resin, a polyimide-based resin, and a polyarylate-based resin. 前記光学補償フィルムが、150℃で1時間熱処理されたときの面内方向の位相差値Roの変動が、±3.0%の範囲内であり、厚さ方向の位相差値Rtの変動が±4.0%の範囲内であることを特徴とする請求項1又は請求項2に記載のタッチパネル付き液晶表示装置。   When the optical compensation film is heat-treated at 150 ° C. for 1 hour, the variation of the in-plane retardation value Ro is within ± 3.0%, and the variation of the thickness direction retardation value Rt is less than ± 3.0%. 3. The liquid crystal display device with a touch panel according to claim 1, wherein the range is within ± 4.0%. 4. 前記光学補償フィルムの厚さが、10〜40μmの範囲内であることを特徴とする請求項1から請求項3までのいずれか一項に記載のタッチパネル付き液晶表示装置。   4. The liquid crystal display device with a touch panel according to claim 1, wherein a thickness of the optical compensation film is in a range of 10 to 40 μm. 5. 前記光学補償フィルムが、位相差上昇剤として、下記一般式(3)で表される構造を有する含窒素複素環化合物を含有することを特徴とする請求項1から請求項4までのいずれか一項に記載のタッチパネル付き液晶表示装置。
Figure 0006627869
(式中Aはピラゾール環を表す。Ar及びArはそれぞれ芳香族炭化水素環又は芳香族複素環を表し、置換基を有してもよい。Rは水素原子、アルキル基、アシル基、スルホニル基、アルキルオキシカルボニル基、又はアリールオキシカルボニル基を表す。qは1又は2を表す。n及びmはそれぞれ1〜3の整数を表す。)
5. The optical compensation film according to claim 1, further comprising a nitrogen-containing heterocyclic compound having a structure represented by the following general formula (3) as a retardation increasing agent. 6. A liquid crystal display device with a touch panel according to the item.
Figure 0006627869
(In the formula, A represents a pyrazole ring. Ar 1 and Ar 2 each represent an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and may have a substituent. R 1 is a hydrogen atom, an alkyl group, or an acyl group. , A sulfonyl group, an alkyloxycarbonyl group, or an aryloxycarbonyl group. Q represents 1 or 2. n and m each represent an integer of 1 to 3.)
請求項1から請求項5までのいずれか一項に記載のタッチパネル付き液晶表示装置を製造するタッチパネル付き液晶表示装置の製造方法であって、
前記光学補償フィルムの少なくとも一方の面に前記透明導電層を形成後、150℃以上で熱処理する工程と、
偏光子を前記透明導電層を形成した光学補償フィルムと保護フィルムとで挟持するように貼合して、偏光板一体型タッチパネルモジュールを作製する工程と、
前記偏光板一体型タッチパネルモジュールの前記光学補償フィルム側を前記VAモード型液晶セルに貼合する工程と、を備えることを特徴とするタッチパネル付き液晶表示装置の製造方法。
A method for manufacturing a liquid crystal display device with a touch panel, for manufacturing the liquid crystal display device with a touch panel according to claim 1,
After forming the transparent conductive layer on at least one surface of the optical compensation film, a step of heat treatment at 150 ° C. or more,
Laminating the polarizer so as to be sandwiched between the optically compensatory film and the protective film on which the transparent conductive layer is formed, and a step of producing a polarizing plate integrated type touch panel module,
Laminating the optical compensation film side of the polarizing plate-integrated touch panel module to the VA mode liquid crystal cell.
JP2017517841A 2015-05-13 2016-04-15 Liquid crystal display device with touch panel and method of manufacturing the same Active JP6627869B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015097870 2015-05-13
JP2015097870 2015-05-13
PCT/JP2016/062055 WO2016181756A1 (en) 2015-05-13 2016-04-15 Liquid crystal display device with touch panel and method for manufacturing such liquid crystal display device

Publications (2)

Publication Number Publication Date
JPWO2016181756A1 JPWO2016181756A1 (en) 2018-03-01
JP6627869B2 true JP6627869B2 (en) 2020-01-08

Family

ID=57247979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017517841A Active JP6627869B2 (en) 2015-05-13 2016-04-15 Liquid crystal display device with touch panel and method of manufacturing the same

Country Status (4)

Country Link
JP (1) JP6627869B2 (en)
KR (2) KR102011587B1 (en)
CN (1) CN107533253B (en)
WO (1) WO2016181756A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220039857A (en) 2016-05-24 2022-03-29 다이니폰 인사츠 가부시키가이샤 Lighting control device
KR101966615B1 (en) 2017-09-27 2019-04-08 현대모비스 주식회사 Ramp apparatus
CN108735349B (en) * 2018-04-27 2020-03-31 东南大学 Silver nanowire transparent conductive film containing ionic liquid and preparation method thereof
KR101973155B1 (en) * 2018-12-10 2019-04-26 (주)딥스원에듀 Dot film, multi-layers optic sheet and smart electric board
JP7298588B2 (en) * 2019-04-18 2023-06-27 大日本印刷株式会社 dimmer
WO2021111721A1 (en) * 2019-12-04 2021-06-10 コニカミノルタ株式会社 Optical film, method for producing same, polarizing plate, and display device
CN113778251A (en) * 2020-06-10 2021-12-10 天材创新材料科技(厦门)有限公司 Transparent conductive laminated structure and touch panel
KR102524844B1 (en) * 2021-09-27 2023-04-24 동우 화인켐 주식회사 Optical laminate, and manufacturing method for the same, and smart window including the same, and automobile or windows for buiding using the same
CN115023073B (en) * 2022-05-18 2023-09-08 华为技术有限公司 Touch screen cover plate, manufacturing method thereof, display screen and electronic equipment

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000127282A (en) * 1998-10-23 2000-05-09 Kanegafuchi Chem Ind Co Ltd Transparent polymer film with transparent conductive film
KR101196268B1 (en) * 2004-05-21 2012-11-05 후지필름 가부시키가이샤 Cellulose acylate film and process for producing the same
US7236221B2 (en) * 2004-06-03 2007-06-26 Nitto Denko Corporation Multilayer optical compensation film, liquid crystal display, and process
JP2006267171A (en) * 2005-03-22 2006-10-05 Fuji Photo Film Co Ltd Optical compensation film, polarizing plate and liquid crystal display device
JP4792777B2 (en) * 2005-03-25 2011-10-12 東ソー株式会社 Wide viewing angle compensation film and transmissive liquid crystal display device using the same
KR101309598B1 (en) 2009-10-09 2013-09-23 주식회사 엘지화학 Integrated touch polarizer and touch panel comprising the same
JP5965745B2 (en) * 2011-07-01 2016-08-10 旭化成株式会社 Optically isotropic polarizing film protective film and polarizing plate
JP2013104847A (en) 2011-11-16 2013-05-30 Nitto Denko Corp Film sensor
CN104136947B (en) * 2012-02-22 2016-09-21 柯尼卡美能达株式会社 Blooming, circular polarizing disk and image display device
JP6278585B2 (en) * 2012-07-11 2018-02-14 大日本印刷株式会社 Multilayer transparent substrate, laminate using multilayer transparent substrate, and image display apparatus using them
JP6136527B2 (en) * 2012-10-29 2017-05-31 大日本印刷株式会社 Optical laminate for front surface of in-cell touch panel liquid crystal element and in-cell touch panel type liquid crystal display device using the same
WO2014091921A1 (en) * 2012-12-13 2014-06-19 コニカミノルタ株式会社 Optical film roll, method for producing same, polarizing plate, and display device

Also Published As

Publication number Publication date
KR20190096444A (en) 2019-08-19
CN107533253B (en) 2021-02-02
JPWO2016181756A1 (en) 2018-03-01
KR20170125098A (en) 2017-11-13
CN107533253A (en) 2018-01-02
KR102057017B1 (en) 2019-12-17
KR102011587B1 (en) 2019-08-16
WO2016181756A1 (en) 2016-11-17

Similar Documents

Publication Publication Date Title
JP6627869B2 (en) Liquid crystal display device with touch panel and method of manufacturing the same
JP6935840B2 (en) Method for manufacturing diagonally stretched film
WO2015076101A1 (en) Polarizing plate and liquid crystal display device using same
JP2014240905A (en) Polarizing plate and method for manufacturing the same, and organic electroluminescence display device including the same
CN108603961B (en) Polarizing plate, method for producing polarizing plate, and liquid crystal display device
JP6923048B2 (en) Method for manufacturing diagonally stretched film
JP2006309033A (en) Method for manufacturing film for optics
TWI538944B (en) A cellulose ester film, a method for producing the same, and a polarizing plate
JP6493213B2 (en) Retardation film, polarizing plate and liquid crystal display device
WO2016147840A1 (en) Method for producing obliquely stretched film
JP6428621B2 (en) Cellulose acylate film, polarizing plate and liquid crystal display device
JP5971198B2 (en) Polarizing plate, method for manufacturing the same, and organic electroluminescence display device including the same
KR101862974B1 (en) Method for producing optical film
JP2017121777A (en) Protection film laminate
WO2016132607A1 (en) Optical film, optical film manufacturing method, polarizing plate and liquid crystal display device
WO2016132606A1 (en) Polarizing plate and polarizing plate manufacturing method
WO2016111058A1 (en) Vertical alignment liquid crystal display device
JP2008284829A (en) Manufacturing method for optical film
JP2017194620A (en) Polarizing plate and liquid crystal display
JP2017102310A (en) Optical film and display device
JP2015169677A (en) Manufacturing method of polarizing laminated film and manufacturing method of polarizing plate
JP2017191153A (en) Polarizing plate and liquid crystal display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191118

R150 Certificate of patent or registration of utility model

Ref document number: 6627869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150