JP6485708B2 - Battery system - Google Patents

Battery system Download PDF

Info

Publication number
JP6485708B2
JP6485708B2 JP2016004579A JP2016004579A JP6485708B2 JP 6485708 B2 JP6485708 B2 JP 6485708B2 JP 2016004579 A JP2016004579 A JP 2016004579A JP 2016004579 A JP2016004579 A JP 2016004579A JP 6485708 B2 JP6485708 B2 JP 6485708B2
Authority
JP
Japan
Prior art keywords
deterioration
battery
secondary battery
negative electrode
internal resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016004579A
Other languages
Japanese (ja)
Other versions
JP2017126462A (en
Inventor
宏司 鬼塚
宏司 鬼塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016004579A priority Critical patent/JP6485708B2/en
Publication of JP2017126462A publication Critical patent/JP2017126462A/en
Application granted granted Critical
Publication of JP6485708B2 publication Critical patent/JP6485708B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、電池システムに関する。   The present invention relates to a battery system.

近年、リチウムイオン二次電池、ニッケル水素電池その他の二次電池は、車両搭載用電源の電源として重要性が高まっている。特に、軽量で高エネルギー密度が得られるリチウムイオン二次電池は、プラグインハイブリッド(PHV)あるいは電気自動車(EV)等の車両搭載用高出力電源として好ましく用いられている。   In recent years, lithium ion secondary batteries, nickel metal hydride batteries, and other secondary batteries have become increasingly important as power sources for in-vehicle use. In particular, a lithium ion secondary battery that is lightweight and obtains a high energy density is preferably used as a high-output power source for mounting on a vehicle such as a plug-in hybrid (PHV) or an electric vehicle (EV).

この種の二次電池においては、二次電池の劣化状態を判定し、劣化が発生しているときには使用を制限したり劣化を解消する処理を行ったりすることで、二次電池の高性能化が図られている。例えば特許文献1には、二次電池の摩耗による劣化と、二次電池の内部における塩濃度分布による劣化(ハイレート劣化)とを区別して、二次電池の劣化状態を判別し、塩濃度分布による劣化が発生しているときには、塩濃度分布を解消させる処理を行う電池システムが開示されている。   In this type of secondary battery, it is possible to improve the performance of the secondary battery by determining the deterioration state of the secondary battery and limiting the use when the deterioration occurs or by performing processing to eliminate the deterioration. Is planned. For example, in Patent Document 1, the deterioration due to wear of the secondary battery and the deterioration due to the salt concentration distribution inside the secondary battery (high rate deterioration) are distinguished, the deterioration state of the secondary battery is determined, and the salt concentration distribution is determined. A battery system is disclosed that performs processing to eliminate the salt concentration distribution when deterioration occurs.

国際公開第2013/121466号International Publication No. 2013/121466

ところで、リチウムイオン二次電池等の二次電池において、劣化の主な原因としては、摩耗による劣化や塩濃度分布による劣化のほか、負極における電荷担体(リチウムイオン二次電池の場合、リチウム)の析出がある。特許文献1に開示された技術では、摩耗による劣化や塩濃度分布による劣化は判別することはできたとしても、電荷担体の析出による劣化を判別することは困難である。   By the way, in a secondary battery such as a lithium ion secondary battery, the main causes of deterioration are deterioration due to wear and salt concentration distribution, as well as charge carriers in the negative electrode (lithium in the case of a lithium ion secondary battery). There is precipitation. With the technique disclosed in Patent Document 1, even though deterioration due to wear and deterioration due to salt concentration distribution can be determined, it is difficult to determine deterioration due to precipitation of charge carriers.

本発明は、かかる点に鑑みてなされたものであり、その主な目的は、摩耗による劣化や塩濃度分布による劣化に加えて、電荷担体の析出による劣化を判別することが可能な電池システムを提供することである。   The present invention has been made in view of such points, and its main purpose is to provide a battery system capable of discriminating deterioration due to precipitation of charge carriers in addition to deterioration due to wear and deterioration due to salt concentration distribution. Is to provide.

ここで提案される電池システムは、正極および負極と非水電解液とを備える二次電池と、前記二次電池の充放電可能な電池容量Aを取得する電池容量取得手段と、前記二次電池の内部抵抗Bを取得する内部抵抗取得手段と、電池容量低下量と内部抵抗増加量と劣化モードとの対応関係を示すマップを用いて、前記取得した電池容量Aと前記内部抵抗Bとに基づき、前記二次電池の状態が、以下の(1)〜(3):
(1)前記二次電池の摩耗による劣化;
(2)前記二次電池の内部における前記負極での電荷担体の析出による劣化;および、
(3)前記二次電池の内部における前記非水電解液の塩濃度分布の偏りによる劣化
のいずれの劣化モードであるかを判別する判別手段と
を備える。
かかる構成によると、摩耗による劣化や塩濃度分布による劣化に加えて、電荷担体の析出による劣化を判別することができる。このため、電池の劣化に適切に対処することができ、電池状態に合わせた最適な電池制御が可能になる。
The battery system proposed here includes a secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, a battery capacity acquisition unit that acquires a chargeable / dischargeable battery capacity A of the secondary battery, and the secondary battery. Based on the acquired battery capacity A and the internal resistance B, using an internal resistance acquisition means for acquiring the internal resistance B and a map showing the correspondence between the battery capacity decrease amount, the internal resistance increase amount, and the deterioration mode The state of the secondary battery is the following (1) to (3):
(1) Deterioration due to wear of the secondary battery;
(2) deterioration due to deposition of charge carriers at the negative electrode inside the secondary battery; and
(3) A discriminating means for discriminating which degradation mode is the degradation mode due to the bias of the salt concentration distribution of the non-aqueous electrolyte in the secondary battery.
According to this configuration, in addition to deterioration due to wear and deterioration due to salt concentration distribution, deterioration due to precipitation of charge carriers can be determined. For this reason, it is possible to appropriately cope with the deterioration of the battery, and it is possible to perform optimal battery control in accordance with the battery state.

本実施形態に係る二次電池の制御装置によって制御される電池システムの構成を示すブロック図である。It is a block diagram which shows the structure of the battery system controlled by the control apparatus of the secondary battery which concerns on this embodiment. 容量低下量と抵抗増加量との関係を示すグラフである。It is a graph which shows the relationship between a capacity | capacitance fall amount and resistance increase amount. 容量低下量と抵抗増加量との関係を示すグラフである。It is a graph which shows the relationship between a capacity | capacitance fall amount and resistance increase amount. 容量低下量と抵抗増加量との関係を示すグラフである。It is a graph which shows the relationship between a capacity | capacitance fall amount and resistance increase amount. 正負極電位と電池容量との関係を例示した図である。It is the figure which illustrated the relationship between positive / negative electrode potential and battery capacity. 正負極電位と電池容量との関係を例示した図である。It is the figure which illustrated the relationship between positive / negative electrode potential and battery capacity. 正負極電位と電池容量との関係を例示した図である。It is the figure which illustrated the relationship between positive / negative electrode potential and battery capacity. 正負極電位と電池容量との関係を例示した図である。It is the figure which illustrated the relationship between positive / negative electrode potential and battery capacity. 電池容量低下量と内部抵抗増加量と劣化モードとの対応関係を示すマップの一例である。It is an example of the map which shows the correspondence of battery capacity fall amount, internal resistance increase amount, and deterioration mode. 電池システムの処理フローを示す図である。It is a figure which shows the processing flow of a battery system.

以下、本発明の好適な実施の形態を具体的に説明するが、本発明をかかる具体例に示すものに限定する意図ではない。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。また、以下の図面において、同じ作用を奏する部材・部位には同じ符号を付し、重複する説明は省略することがある。   Hereinafter, preferred embodiments of the present invention will be specifically described, but the present invention is not intended to be limited to those shown in the specific examples. Note that matters other than matters specifically mentioned in the present specification and necessary for the implementation of the present invention can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field. Moreover, in the following drawings, the same code | symbol is attached | subjected to the member and site | part which show | plays the same effect | action, and the overlapping description may be abbreviate | omitted.

ここで開示される電池システムが処理対象とする二次電池は、正極および負極と非水電解液とを備える二次電池であれば特に制限されない。例えば、正負極間での電荷担体の移動に伴う電荷の移動により、繰り返し充放電が実現される各種の二次電池を対象とすることができる。例えば、リチウムイオン二次電池は、電荷担体としてリチウムイオンを利用する二次電池であり、本技術が対象とする好適な二次電池の一例であり得る。特に限定することを意図したものではないが、以下では主として本発明を車両に搭載されるリチウムイオン二次電池に適用する場合を例として本発明を詳細に説明する。   The secondary battery to be processed by the battery system disclosed herein is not particularly limited as long as it is a secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte. For example, it is possible to target various types of secondary batteries in which charge and discharge are repeatedly realized by movement of charges accompanying movement of charge carriers between positive and negative electrodes. For example, a lithium ion secondary battery is a secondary battery that uses lithium ions as a charge carrier, and may be an example of a suitable secondary battery targeted by the present technology. Although not intended to be particularly limited, the present invention will be described in detail below by taking as an example a case where the present invention is mainly applied to a lithium ion secondary battery mounted on a vehicle.

図1は、本実施形態に係る電池システム1の構成を示すブロック図である。この電池システム1は、車両(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車)に好適に用いられる。   FIG. 1 is a block diagram showing a configuration of a battery system 1 according to the present embodiment. This battery system 1 is suitably used for a vehicle (typically, an automobile including an electric motor such as an automobile, particularly a hybrid automobile, an electric automobile, or a fuel cell automobile).

電池システム1は、リチウムイオン二次電池10と、これに接続された負荷20と、リチウムイオン二次電池10の状態に応じて負荷20の作動を調節する電子制御ユニット(ECU)30とを含む構成であり得る。リチウムイオン二次電池10に接続された負荷20は、リチウムイオン二次電池10に蓄えられた電力を消費する電力消費機(例えばモータ)を含み得る。該負荷20は、電池10を充電可能な電力を供給する電力供給機(充電器)を含み得る。   The battery system 1 includes a lithium ion secondary battery 10, a load 20 connected to the lithium ion secondary battery 10, and an electronic control unit (ECU) 30 that adjusts the operation of the load 20 according to the state of the lithium ion secondary battery 10. It can be a configuration. The load 20 connected to the lithium ion secondary battery 10 may include a power consumer (for example, a motor) that consumes the power stored in the lithium ion secondary battery 10. The load 20 may include a power supply device (charger) that supplies power that can charge the battery 10.

リチウムイオン二次電池10は、対向する正極と負極と、これら正負極間に供給されるリチウムイオンを含む非水電解液(液状の電解質)とから構成されている。正極および負極には、リチウムイオンを吸蔵および放出し得る活物質が含まれている。電池の充電時には、正極活物質からリチウムイオンが放出され、このリチウムイオンは電解質を通じて負極活物質に吸蔵される。また、電池の放電時には、その逆に、負極活物質に吸蔵されていたリチウムイオンが放出され、このリチウムイオンは非水電解液を通じて再び正極活物質に吸蔵される。この正極活物質と負極活物質との間のリチウムイオンの移動に伴い、活物質から外部端子へと電子が流れる。これにより、負荷20に対して放電が行われる。   The lithium ion secondary battery 10 is composed of a positive electrode and a negative electrode facing each other, and a non-aqueous electrolyte solution (liquid electrolyte) containing lithium ions supplied between the positive and negative electrodes. The positive electrode and the negative electrode contain an active material capable of inserting and extracting lithium ions. When the battery is charged, lithium ions are released from the positive electrode active material, and the lithium ions are occluded in the negative electrode active material through the electrolyte. On the contrary, when the battery is discharged, the lithium ions stored in the negative electrode active material are released, and the lithium ions are again stored in the positive electrode active material through the non-aqueous electrolyte. As the lithium ions move between the positive electrode active material and the negative electrode active material, electrons flow from the active material to the external terminal. Thereby, the load 20 is discharged.

ここでリチウムイオン二次電池は、一般に、使用に伴い劣化(容量の低下および内部抵抗の増加)が生じることが知られている。本発明者の知見によれば、劣化の主な原因としては、
(1)二次電池の摩耗による劣化(以下、「通常劣化」ともいう。)、
(2)二次電池の内部における負極でのリチウムの析出による劣化、および
(3)二次電池の内部における非水電解液の塩濃度分布の偏りによる劣化(典型的にはハイレート充放電の繰り返しにより正極および負極に浸透した非水電解液のリチウム塩濃度に場所による偏り(ムラ)が生じることに起因する劣化、以下、「ハイレート劣化」ともいう。)
が考えられる。
Here, it is known that lithium ion secondary batteries generally deteriorate (decrease in capacity and increase in internal resistance) with use. According to the inventor's knowledge, as a main cause of deterioration,
(1) Degradation due to wear of the secondary battery (hereinafter also referred to as “normal degradation”),
(2) Deterioration due to lithium deposition at the negative electrode inside the secondary battery, and (3) Degradation due to uneven distribution of salt concentration of the nonaqueous electrolyte inside the secondary battery (typically repeated high-rate charge / discharge) (Deterioration caused by unevenness (unevenness) depending on the location of the lithium salt concentration of the non-aqueous electrolyte permeating into the positive electrode and the negative electrode due to the above, also referred to as “high rate deterioration” hereinafter.)
Can be considered.

本発明者は、種々実験を行った結果、上記(1)〜(3)の劣化と、電池容量の低下量と、内部抵抗の増加量との間に一定の相関関係があることを見出した。具体的には、リチウムイオン二次電池に対して上記(1)〜(3)の劣化を伴うサイクル劣化試験を行い、サイクル劣化試験前後における二次電池の電池容量および内部抵抗の変化量を測定した。結果を図2〜図4に示す。図2〜図4は、サイクル劣化試験前後における容量低下量と内部抵抗増加量との関係を示すグラフである。   As a result of various experiments, the present inventor has found that there is a certain correlation between the deterioration of the above (1) to (3), the amount of decrease in battery capacity, and the amount of increase in internal resistance. . Specifically, a cycle deterioration test with the deterioration (1) to (3) is performed on the lithium ion secondary battery, and the amount of change in the battery capacity and internal resistance of the secondary battery before and after the cycle deterioration test is measured. did. The results are shown in FIGS. 2 to 4 are graphs showing the relationship between the capacity reduction amount and the internal resistance increase amount before and after the cycle deterioration test.

図2〜図4に示すように、上記(1)の摩耗による劣化(通常劣化)を伴うサイクル劣化試験後においては、電池容量が低下するととともに内部抵抗が増大傾向を示した。一方、上記(2)のリチウム析出による劣化を伴うサイクル劣化試験では、電池容量は低下したものの、内部抵抗はさほど増大せず、上記(1)の通常劣化に比べて、容量劣化に対する抵抗増大が小さかった。また、上記(3)の塩濃度分布の偏りによる劣化を伴うサイクル劣化試験では、内部抵抗は増大したものの、電池容量はさほど低下せず、上記(1)の通常劣化に比べて、容量劣化に対する抵抗増大が大きかった。   As shown in FIGS. 2 to 4, after the cycle deterioration test accompanied by the deterioration (normal deterioration) due to the wear of (1) above, the battery capacity decreased and the internal resistance tended to increase. On the other hand, in the cycle deterioration test with deterioration due to lithium deposition in (2) above, although the battery capacity decreased, the internal resistance did not increase so much, and the resistance against capacity deterioration increased compared to the normal deterioration in (1) above. It was small. Further, in the cycle deterioration test with deterioration due to the uneven distribution of salt concentration in (3) above, although the internal resistance increased, the battery capacity did not decrease so much, and compared with the normal deterioration in (1) above, The resistance increase was large.

このような傾向が得られる理由としては、特に限定的に解釈されるものではないが、例えば以下のように考えられる。ここで、図5は上記サイクル劣化試験前(すなわち初期状態)における二次電池の正負極電位と電池容量との関係を例示した図であり、図6は上記(1)の摩耗による通常劣化を伴うサイクル劣化試験後における二次電池の正負極電位と電池容量との関係を例示した図であり、図7は上記(2)のリチウム析出による劣化を伴うサイクル劣化試験後における二次電池の正負極電位と電池容量との関係を例示した図であり、図8は上記(3)の塩濃度分布の偏りによる劣化を伴うサイクル劣化試験後における二次電池の正負極電位と電池容量との関係を例示した図である。   The reason why such a tendency can be obtained is not particularly limited, but is considered as follows, for example. Here, FIG. 5 is a diagram illustrating the relationship between the positive and negative electrode potentials of the secondary battery and the battery capacity before the cycle deterioration test (that is, the initial state), and FIG. 6 shows the normal deterioration due to the wear of (1) above. FIG. 7 is a diagram illustrating the relationship between the positive and negative electrode potentials of the secondary battery and the battery capacity after the accompanying cycle deterioration test, and FIG. 7 is a graph illustrating the positive and negative of the secondary battery after the cycle deterioration test involving deterioration due to lithium deposition in (2) above. FIG. 8 is a diagram illustrating the relationship between the negative electrode potential and the battery capacity, and FIG. 8 shows the relationship between the positive and negative electrode potentials of the secondary battery and the battery capacity after the cycle deterioration test with deterioration due to the deviation of the salt concentration distribution in (3) above. FIG.

正極と負極には、前述のとおり、活物質が備えられている。活物質がリチウムイオンを吸蔵する電位は結晶構造や組成等によって決まっており、電池としての可逆的に充放電可能な電池容量(可逆容量)は、正極と負極との開回路電位(OCV)において、正極電位と負極電位との容量運用域の重なった領域の大きさで決定される。図5に示す二次電池の初期状態においては、正極と負極との開回路電位において、正極電位と負極電位との容量運用域の重なった領域が初期容量となる。また、充電中は内部抵抗により正極と負極のそれぞれで開回路電位に過電圧がプラスされ(正極充電時電位および負極充電時電位)、その電位差が二次電池の充電曲線となる。   As described above, the positive electrode and the negative electrode are provided with an active material. The potential at which the active material occludes lithium ions is determined by the crystal structure, composition, etc., and the battery capacity (reversible capacity) that can be reversibly charged and discharged as a battery is the open circuit potential (OCV) between the positive electrode and the negative electrode. The positive electrode potential and the negative electrode potential are determined by the size of the overlapping region of the capacity operation area. In the initial state of the secondary battery shown in FIG. 5, in the open circuit potential of the positive electrode and the negative electrode, the region where the capacity operation region of the positive electrode potential and the negative electrode potential overlap is the initial capacity. Moreover, during charging, an overvoltage is added to the open circuit potential at each of the positive electrode and the negative electrode due to internal resistance (positive electrode charging potential and negative electrode charging potential), and the potential difference becomes a charging curve of the secondary battery.

ここで上記(1)の摩耗による劣化(通常劣化)を伴うサイクル劣化試験においては、図6に示すように、正極および負極での被膜形成により電荷担体であるリチウムイオンが消費されて不可逆容量が発生し、それに伴い充電末期においては負極電位が初期の負極電位にまで戻らない負極の容量ずれが発生する(すなわち負極の開回路電位が左方にシフトする)と考えられる。また、正極および負極での被膜形成により正極抵抗および負極抵抗が増大し、内部抵抗(ひいては過電圧)が増大した結果、正極充電時電位が上方にシフトし、負極充電時電位が下方にシフトすると考えられる。つまり、上記(1)の摩耗による通常劣化を伴うサイクル劣化試験後においては、電池容量が初期容量に比べて低下するととともに、内部抵抗が増大傾向を示すと考えられる。   Here, in the cycle deterioration test with deterioration (normal deterioration) due to wear in (1) above, as shown in FIG. 6, lithium ions as charge carriers are consumed due to film formation on the positive electrode and the negative electrode, resulting in an irreversible capacity. Therefore, at the end of charging, a negative electrode capacity shift that does not return to the initial negative electrode potential occurs (that is, the negative open circuit potential shifts to the left). In addition, the positive electrode resistance and the negative electrode resistance increase due to the film formation on the positive electrode and the negative electrode, and the internal resistance (and thus overvoltage) increases. As a result, the potential at the time of positive electrode charging shifts upward and the potential at the time of negative electrode charging shifts downward It is done. That is, it is considered that after the cycle deterioration test with normal deterioration due to wear (1), the battery capacity decreases as compared with the initial capacity and the internal resistance tends to increase.

一方、図7に示すように、上記(2)のリチウム析出による劣化を伴うサイクル劣化試験においては、リチウムイオンが負極表面に析出し、不活性化するなどして不可逆容量が大きくなるため、負極の容量ずれが発生する(負極の開回路電位が左方にシフトする)が、その一方で、正極抵抗は変化せず、負極抵抗は摩耗による通常劣化に比べると増加量は小さい(正極充電時電位および負極充電時電位は通常劣化に比べて変化しない)と考えられる。つまり、上記(2)のリチウム析出による劣化を伴うサイクル劣化試験では、摩耗による通常劣化に比べて、容量劣化に対する抵抗増大が小さくなるものと考えられる。   On the other hand, as shown in FIG. 7, in the cycle deterioration test with deterioration due to lithium deposition in (2) above, the irreversible capacity increases because lithium ions are deposited on the negative electrode surface and deactivated. (The open circuit potential of the negative electrode shifts to the left), but the positive electrode resistance does not change, and the negative electrode resistance increases little compared to normal deterioration due to wear (during positive electrode charging) It is considered that the electric potential and the electric potential at the time of negative electrode charging do not change compared to normal deterioration). In other words, in the cycle deterioration test with deterioration due to lithium deposition described in (2) above, it is considered that the increase in resistance to capacity deterioration is smaller than the normal deterioration due to wear.

また、図8に示すように、上記(3)の塩濃度分布の偏りによる劣化を伴うサイクル劣化試験においては、リチウム塩濃度が相対的に低い部分では電解液のリチウムイオン量が不足して正極抵抗および負極抵抗が増大し、内部抵抗(ひいては過電圧)が増大した結果、正極充電時電位が上方にシフトし、負極充電時電位が下方にシフトするが、その一方で、不可逆容量は発生せず、負極の容量ずれは生じにくい(負極の開回路電位は殆ど変化しない)と考えられる。つまり、上記(3)の塩濃度分布の偏りによる劣化を伴うサイクル劣化試験では、摩耗による通常劣化に比べて、容量劣化に対する抵抗増大が大きくなるものと考えられる。   Further, as shown in FIG. 8, in the cycle deterioration test involving deterioration due to the uneven distribution of salt concentration in (3) above, the amount of lithium ions in the electrolyte is insufficient at the portion where the lithium salt concentration is relatively low. As a result of increase in resistance and negative electrode resistance and increase in internal resistance (and overvoltage), the positive charge potential shifts upward and the negative charge potential shifts downward, but no irreversible capacity is generated. It is considered that the capacity shift of the negative electrode hardly occurs (the open circuit potential of the negative electrode hardly changes). That is, in the cycle deterioration test with deterioration due to the deviation of the salt concentration distribution of (3) above, it is considered that the increase in resistance to capacity deterioration is larger than normal deterioration due to wear.

ここで開示される技術においては、このような各劣化モードによる容量劣化に対する抵抗増加の挙動の違いに着目し、容量劣化に対する抵抗増加の挙動を把握することで、二次電池の劣化モードを推定するようにしている。   In the technology disclosed here, paying attention to the difference in resistance increase behavior with respect to capacity degradation due to each degradation mode, the degradation mode of the secondary battery is estimated by grasping the behavior of resistance increase with respect to capacity degradation. Like to do.

すなわち、この電池システム1は、二次電池の充放電可能な電池容量Aを取得する電池容量取得手段と、二次電池の内部抵抗Bを取得する内部抵抗取得手段と、電池容量低下量と内部抵抗増加量と劣化モードとの対応関係を示すマップを用いて、前記取得した電池容量Aと前記内部抵抗Bとに基づき、前記二次電池の状態が、
以下の(1)〜(3):
(1)前記二次電池の摩耗による劣化;
(2)前記二次電池の内部における前記負極での電荷担体の析出による劣化;および、
(3)前記二次電池の内部における前記非水電解液の塩濃度分布の偏りによる劣化
のいずれの劣化モードであるかを判別する判別手段と
を備える。ECU30の典型的な構成には、少なくとも、かかる制御を行うためのプログラムを記憶したROM(Read Only Memory)と、そのプログラムを実行可能なCPU(Central Processing Unit)と、一時的にデータを記憶するRAM(random access memory)と、図示しない入出力ポートとが含まれる。ROMには、電池容量低下量と内部抵抗増加量と劣化モードとの対応関係を示すマップが記憶されている。ECU30には、図示しない電圧センサ、電流センサ、温度センサ等からの各種信号などが入力ポートを介して入力される。また、ECU30からは、負荷20(電力消費機および/または電力供給機)への駆動信号などが出力ポートを介して出力される。このECU30により本実施形態の電池容量取得手段と内部抵抗取得手段と判別手段とが構成されている。
That is, the battery system 1 includes a battery capacity acquisition unit that acquires a chargeable / dischargeable battery capacity A of the secondary battery, an internal resistance acquisition unit that acquires the internal resistance B of the secondary battery, a battery capacity reduction amount, and an internal Based on the acquired battery capacity A and the internal resistance B, using the map showing the correspondence between the resistance increase amount and the deterioration mode, the state of the secondary battery,
The following (1) to (3):
(1) Deterioration due to wear of the secondary battery;
(2) deterioration due to deposition of charge carriers at the negative electrode inside the secondary battery; and
(3) A discriminating means for discriminating which degradation mode is the degradation mode due to the bias of the salt concentration distribution of the non-aqueous electrolyte in the secondary battery. The typical configuration of the ECU 30 stores at least a ROM (Read Only Memory) storing a program for performing such control, a CPU (Central Processing Unit) capable of executing the program, and temporarily stores data. A random access memory (RAM) and an input / output port (not shown) are included. The ROM stores a map indicating a correspondence relationship between the battery capacity decrease amount, the internal resistance increase amount, and the deterioration mode. Various signals from a voltage sensor, a current sensor, a temperature sensor, and the like (not shown) are input to the ECU 30 via an input port. Further, the ECU 30 outputs a drive signal or the like to the load 20 (power consumption machine and / or power supply machine) via an output port. The ECU 30 constitutes battery capacity acquisition means, internal resistance acquisition means, and determination means of the present embodiment.

電池容量取得手段は、二次電池の充放電可能な電池容量Aを取得(推定)するものとして構成されている。電池容量Aを取得する方法としては特に限定されず、一般的な電池システムにおいて常套的に使用されている従来公知の方法を採用し得る。例えば、電流センサ、電流センサおよび温度センサ等で検出した各種データに基づいて、電池モデル式に従って、二次電池の電池容量を推定する方法(例えば予め求められた二次電池の正極および負極の開回路電圧特性を記憶し、この記憶したデータと、電流センサ、電流センサおよび温度センサで検出したデータとを参照して、正極および負極の活物質量、容量密度、抵抗を抽出し、この抽出したパラメータを用いて二次電池の電池容量を推定する方法)が例示される。この方法は、例えば、必要に応じて特開2014−10003号公報を参照して実施することができる。   The battery capacity acquisition means is configured to acquire (estimate) the battery capacity A of the secondary battery that can be charged and discharged. The method for obtaining the battery capacity A is not particularly limited, and a conventionally known method that is conventionally used in a general battery system can be employed. For example, based on various data detected by a current sensor, a current sensor, a temperature sensor, etc., a method for estimating the battery capacity of a secondary battery according to a battery model equation (for example, opening of positive and negative electrodes of a secondary battery obtained in advance). The circuit voltage characteristics are stored, the stored data and the data detected by the current sensor, current sensor, and temperature sensor are referred to, and the active material amount, capacity density, and resistance of the positive electrode and the negative electrode are extracted and extracted. A method for estimating the battery capacity of a secondary battery using parameters) is exemplified. This method can be performed with reference to, for example, Japanese Patent Application Laid-Open No. 2014-10003 as necessary.

内部抵抗取得手段は、二次電池の内部抵抗Bを取得(推定)するものとして構成されている。内部抵抗Bを取得する方法としては特に限定されず、一般的な電池システムにおいて常套的に使用されている従来公知の方法を採用し得る。例えば、電流センサおよび電流センサで検出した各種データに基づいて、充放電時の電圧変化分をそのときの電流値の変化分で除算することにより、内部抵抗を推定する方法(例えば電流変化量のパラメータと、電圧変化量およびインピーダンス変化量に基づくパラメータとを直線近似し、近似した直線の傾きを電池のインピーダンスとして算出する方法)が例示される。この方法は、例えば、必要に応じて特開2006−250905号公報を参照して実施することができる。   The internal resistance acquisition means is configured to acquire (estimate) the internal resistance B of the secondary battery. The method for obtaining the internal resistance B is not particularly limited, and a conventionally known method that is conventionally used in a general battery system can be adopted. For example, based on the current sensor and various data detected by the current sensor, a method of estimating the internal resistance by dividing the voltage change during charging / discharging by the current change at that time (for example, the current change amount) A method of linearly approximating a parameter and a parameter based on the amount of change in voltage and the amount of change in impedance and calculating the slope of the approximated straight line as the impedance of the battery is exemplified. This method can be implemented, for example, with reference to Japanese Patent Laid-Open No. 2006-250905 as necessary.

判別手段は、電池容量低下量と内部抵抗増加量と劣化モードとの対応関係を示すマップを用いて、上記取得した電池容量Aと上記内部抵抗Bとに基づき、前記二次電池の状態が、二次電池の摩耗による劣化、二次電池の内部における負極での電荷担体の析出による劣化、および、二次電池の内部における非水電解液の塩濃度分布の偏りによる劣化のいずれの劣化モードであるかを判別するものとして構成されている。この実施形態では、判別手段は、初期容量から上記取得した電池容量Aを差し引いて電池容量低下量を算出する。また、判別手段は、上記取得した内部抵抗Bから初期内部抵抗を差し引いて内部抵抗増加量を算出する。そして、図9に示すような電池容量低下量と内部抵抗増加量と劣化モードとの対応関係を示すマップを参照して、上記算出した電池容量低下量と内部抵抗増加量とに対応する劣化モードを特定する。このマップは、予め予備実験などを行うことにより作成することができる。また、上記対応関係を示す複数のマップを用意し、電池の使用条件等に応じて複数のマップを切り替えるようにしてもよい。初期容量および初期内部抵抗についても、予め予備実験などを行うことにより求めることができる。   The determination means uses a map showing a correspondence relationship between the battery capacity decrease amount, the internal resistance increase amount, and the deterioration mode, and based on the acquired battery capacity A and the internal resistance B, the state of the secondary battery is: Deterioration due to secondary battery wear, deterioration due to charge carrier deposition at the negative electrode inside the secondary battery, or deterioration due to bias in the non-aqueous electrolyte salt concentration distribution inside the secondary battery It is configured to determine whether or not there is. In this embodiment, the determination unit calculates the battery capacity decrease amount by subtracting the acquired battery capacity A from the initial capacity. Further, the determining means calculates an increase in internal resistance by subtracting the initial internal resistance from the acquired internal resistance B. The deterioration mode corresponding to the calculated battery capacity decrease amount and the internal resistance increase amount is described with reference to the map showing the correspondence relationship between the battery capacity decrease amount, the internal resistance increase amount, and the deterioration mode as shown in FIG. Is identified. This map can be created by conducting a preliminary experiment or the like in advance. Also, a plurality of maps showing the correspondence relationship may be prepared, and the plurality of maps may be switched according to battery usage conditions. The initial capacity and the initial internal resistance can also be obtained by conducting preliminary experiments and the like in advance.

電池システム1は、上記判別手段で判別した結果を表示装置(図示せず)に出力してもよい。表示装置では、判別手段で判別した劣化モードが表示される。これにより、二次電池の劣化状態を視覚的に把握することができる。   The battery system 1 may output the result determined by the determining means to a display device (not shown). In the display device, the deterioration mode determined by the determining means is displayed. Thereby, the deterioration state of a secondary battery can be grasped visually.

電池システム1は、上記判別手段で判別した劣化モードに応じて電池制御を行う制御手段を備えていてもよい。制御手段は、判別手段で判別した劣化モードに基づいて、電池状態が良好に保たれるように負荷20(電力消費機および/または電力供給機)を駆動制御する、また、制御手段は、判別手段で判別した劣化モードに基づいて、劣化が解消または緩和されるように劣化解消手段を駆動制御する。   The battery system 1 may include a control unit that performs battery control according to the deterioration mode determined by the determination unit. The control means drives and controls the load 20 (power consumption machine and / or power supply machine) so that the battery state is kept good based on the deterioration mode determined by the determination means. Based on the degradation mode determined by the means, the degradation eliminating means is driven and controlled so that the degradation is eliminated or alleviated.

例えば、劣化モードが負極でのリチウム析出による劣化モードである場合、制御手段は、負荷20を駆動制御して負極に析出したリチウムが除去されるように放電処理を行うことができる。この方法は、例えば、必要に応じて特開2013−110885号公報を参照して実施することができる。また、制御手段は、負荷20を駆動制御して負極に析出したリチウムが溶解除去されるように負極の電位を上昇させることができる。この方法は、例えば、必要に応じて特開2009−199936号公報を参照して実施することができる。また、制御手段は、劣化解消手段(加熱手段)を駆動制御して負極に析出したリチウムが溶解する電池温度以上となるように電池を加熱することができる。この方法は、例えば、必要に応じて特開2011−142016号公報を参照して実施することができる。   For example, when the deterioration mode is a deterioration mode due to lithium deposition on the negative electrode, the control unit can drive-control the load 20 so as to remove the lithium deposited on the negative electrode. This method can be implemented with reference to, for example, Japanese Patent Application Laid-Open No. 2013-11085 as necessary. The control means can drive the load 20 to increase the potential of the negative electrode so that lithium deposited on the negative electrode is dissolved and removed. This method can be carried out with reference to, for example, Japanese Patent Application Laid-Open No. 2009-199936 as necessary. Further, the control means can drive the battery so that the deterioration eliminating means (heating means) is driven and controlled to be equal to or higher than the battery temperature at which lithium deposited on the negative electrode is dissolved. This method can be carried out, for example, with reference to JP 2011-142016 A as necessary.

また、劣化モードがリチウム塩濃度分布の偏りによる劣化(ハイレート劣化)による劣化モードである場合、制御手段は、負荷20を駆動制御してリチウム塩濃度分布の偏りが解消されるようにパルス充放電処理を行うことができる。この方法は、例えば、必要に応じて特開2010−272470号公報を参照して実施することができる。また、制御手段は、電池の許容される最大出力(放電電力値)を小さく設定し、その設定された最大出力の範囲内で負荷20を駆動制御することができる。この方法は、例えば、必要に応じて特開2009−123435号公報を参照して実施することができる。また、制御手段は、劣化解消手段(電解液加振手段)を駆動制御してリチウム塩濃度分布の偏りが解消または緩和されるように電解液の流動を促進することができる。この方法は、例えば、必要に応じて特開2010−251025号公報を参照して実施することができる。また、制御手段は、劣化解消手段(加温手段)を駆動制御してリチウム塩濃度分布の偏りが解消または緩和されるように電池を加温することができる。この方法は、例えば、必要に応じて特開2014−154399号公報を参照して実施することができる。   Further, when the deterioration mode is a deterioration mode due to deterioration due to bias in the lithium salt concentration distribution (high-rate deterioration), the control means performs pulse control so that the load 20 is controlled to eliminate the unevenness in the lithium salt concentration distribution. Processing can be performed. This method can be performed with reference to, for example, Japanese Patent Application Laid-Open No. 2010-272470 as necessary. Further, the control means can set a maximum allowable output (discharge power value) of the battery to be small, and can drive and control the load 20 within the set maximum output range. This method can be performed with reference to, for example, Japanese Patent Application Laid-Open No. 2009-123435 as necessary. In addition, the control means can drive and control the deterioration elimination means (electrolyte vibration excitation means) to promote the flow of the electrolyte so that the uneven distribution of the lithium salt concentration is eliminated or alleviated. This method can be implemented, for example, with reference to Japanese Patent Application Laid-Open No. 2010-251025 as necessary. In addition, the control means can drive and control the deterioration elimination means (heating means) to heat the battery so that the unevenness of the lithium salt concentration distribution is eliminated or alleviated. This method can be performed with reference to, for example, Japanese Patent Application Laid-Open No. 2014-154399 as necessary.

また、制御手段は、上記劣化解消手段を駆動制御しても電池の劣化が解消または緩和されない場合には、電池の使用を停止することができる。   Further, the control means can stop the use of the battery when the deterioration of the battery is not eliminated or alleviated even when the deterioration elimination means is driven and controlled.

このように構成された電池システム1の動作について説明する。図10は、本実施形態に係る電池システム1のECU30により実行される劣化モード判別処理ルーチンの一例を示すフローチャートである。このルーチンは、例えば車両に搭載された直後から所定時間毎に周期的に繰り返し実行される。   The operation of the battery system 1 configured as described above will be described. FIG. 10 is a flowchart illustrating an example of a deterioration mode determination processing routine executed by the ECU 30 of the battery system 1 according to the present embodiment. This routine is repeatedly executed periodically every predetermined time immediately after being mounted on the vehicle, for example.

図10に示す劣化モード判別処理ルーチンが実行されると、ECU30のCPUは、まず、ステップS10において、処理対象のリチウムイオン二次電池10について、電池容量Aを取得する。例えば、電流センサ、電流センサおよび温度センサで検出したデータに基づいて、電池モデル式に従って電池容量Aを推定するとよい。また、ステップS20において、二次電池の内部抵抗Bを取得する。例えば、電流センサおよび電流センサで検出したデータに基づいて、充放電時の電圧変化分をそのときの電流値の変化分で除算することにより、内部抵抗を推定するとよい。   When the deterioration mode determination processing routine shown in FIG. 10 is executed, the CPU of the ECU 30 first acquires the battery capacity A for the lithium ion secondary battery 10 to be processed in step S10. For example, the battery capacity A may be estimated according to the battery model formula based on data detected by a current sensor, a current sensor, and a temperature sensor. In step S20, the internal resistance B of the secondary battery is acquired. For example, based on the current sensor and the data detected by the current sensor, the internal resistance may be estimated by dividing the voltage change during charging / discharging by the current value change at that time.

次いで、ステップS30において、初期容量から上記取得した電池容量Aを差し引いて電池容量低下量(ΔAh)を算出する。また、上記取得した内部抵抗Bから初期内部抵抗を差し引いて内部抵抗増加量(ΔR)を算出する。   Next, in step S30, the battery capacity reduction amount (ΔAh) is calculated by subtracting the acquired battery capacity A from the initial capacity. Further, the amount of increase in internal resistance (ΔR) is calculated by subtracting the initial internal resistance from the acquired internal resistance B.

次いで、ステップS40において、ROMに記憶されている電池容量低下量と内部抵抗増加量と劣化モードとの対応関係を示すマップを参照して、上記算出した電池容量低下量(ΔAh)と内部抵抗増加量(ΔR)とに対応する劣化モードを特定する。具体的には、図9に示すマップを参照して、二次電池の状態が、二次電池の摩耗による劣化(通常劣化)、負極でのリチウム析出による劣化、および、塩濃度分布の偏りによる劣化(ハイレート劣化)のいずれの劣化モードであるかを判別する。そして、二次電池の劣化モードが摩耗による劣化の場合(YESの場合)、二次電池は正常であると判断して、この処理ルーチンを終了する。一方、二次電池の劣化モードが負極でのリチウム析出による劣化もしくは塩濃度分布の偏りによる劣化の場合(NOの場合)、二次電池は正常でないと判断して、ステップS50に進む。   Next, in step S40, the calculated battery capacity decrease amount (ΔAh) and the internal resistance increase are referred to with reference to a map showing the correspondence relationship between the battery capacity decrease amount, the internal resistance increase amount, and the deterioration mode stored in the ROM. The deterioration mode corresponding to the quantity (ΔR) is specified. Specifically, referring to the map shown in FIG. 9, the state of the secondary battery is due to deterioration due to wear of the secondary battery (normal deterioration), deterioration due to lithium deposition at the negative electrode, and bias in the salt concentration distribution. It is determined which degradation mode is degradation (high-rate degradation). When the deterioration mode of the secondary battery is deterioration due to wear (in the case of YES), it is determined that the secondary battery is normal, and this processing routine is ended. On the other hand, when the deterioration mode of the secondary battery is deterioration due to lithium deposition at the negative electrode or deterioration due to bias in the salt concentration distribution (in the case of NO), it is determined that the secondary battery is not normal, and the process proceeds to step S50.

ステップS50では、上記判別した劣化モード(すなわち負極でのリチウム析出による劣化モードまたは塩濃度分布の偏りによる劣化モード)に応じて電池制御を行う。具体的には、上記判別した劣化モードに基づいて、電池状態が良好に保たれるように負荷20を駆動制御したり、各劣化モードの劣化が解消されるように劣化解消手段を駆動制御したりする。このステップS50の処理を行っても劣化が解消しない場合には、電池の使用を停止してもよい。   In step S50, battery control is performed according to the determined deterioration mode (that is, the deterioration mode due to lithium deposition at the negative electrode or the deterioration mode due to bias in the salt concentration distribution). Specifically, based on the determined deterioration mode, the load 20 is driven and controlled so that the battery state is kept good, or the deterioration eliminating means is driven and controlled so that the deterioration of each deterioration mode is eliminated. Or When the process of step S50 is not performed, the use of the battery may be stopped.

上記実施形態によると、摩耗による劣化や塩濃度分布による劣化に加えて、リチウムの析出による劣化を判別することが可能となる。このため、電池の劣化に適切に対処することができ、電池状態に合わせた最適な電池制御が可能になる。   According to the above embodiment, in addition to deterioration due to wear and deterioration due to salt concentration distribution, it is possible to determine deterioration due to lithium precipitation. For this reason, it is possible to appropriately cope with the deterioration of the battery, and it is possible to perform optimal battery control in accordance with the battery state.

以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、勿論、種々の改変が可能である。   As mentioned above, although this invention was demonstrated by suitable embodiment, such description is not a limitation matter and of course various modifications are possible.

10 二次電池
20 負荷
30 ECU
10 Secondary battery 20 Load 30 ECU

Claims (1)

正極および負極と非水電解液とを備える二次電池と、
前記二次電池の充放電可能な電池容量Aを取得する電池容量取得手段と、
前記二次電池の内部抵抗Bを取得する内部抵抗取得手段と、
電池容量低下量と内部抵抗増加量と劣化モードとの対応関係を示すマップを用いて、前記取得した電池容量Aと前記内部抵抗Bとに基づき、前記二次電池の状態が、
以下の(1)〜(3):
(1)前記二次電池の摩耗による劣化;
(2)前記二次電池の内部における前記負極での電荷担体の析出による劣化;および、
(3)前記二次電池の内部における前記非水電解液の塩濃度分布の偏りによる劣化
のいずれの劣化モードであるかを判別する判別手段と
を備える、電池システム。
A secondary battery comprising a positive electrode and a negative electrode and a non-aqueous electrolyte;
Battery capacity acquisition means for acquiring a chargeable / dischargeable battery capacity A of the secondary battery;
Internal resistance acquisition means for acquiring the internal resistance B of the secondary battery;
Based on the acquired battery capacity A and the internal resistance B, using the map showing the correspondence between the battery capacity decrease amount, the internal resistance increase amount, and the deterioration mode, the state of the secondary battery is:
The following (1) to (3):
(1) Deterioration due to wear of the secondary battery;
(2) deterioration due to deposition of charge carriers at the negative electrode inside the secondary battery; and
(3) A battery system comprising: discrimination means for discriminating which degradation mode is degradation due to bias in the salt concentration distribution of the non-aqueous electrolyte in the secondary battery.
JP2016004579A 2016-01-13 2016-01-13 Battery system Active JP6485708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016004579A JP6485708B2 (en) 2016-01-13 2016-01-13 Battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016004579A JP6485708B2 (en) 2016-01-13 2016-01-13 Battery system

Publications (2)

Publication Number Publication Date
JP2017126462A JP2017126462A (en) 2017-07-20
JP6485708B2 true JP6485708B2 (en) 2019-03-20

Family

ID=59364415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016004579A Active JP6485708B2 (en) 2016-01-13 2016-01-13 Battery system

Country Status (1)

Country Link
JP (1) JP6485708B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7215011B2 (en) * 2018-08-09 2023-01-31 トヨタ自動車株式会社 Manufacturing method of lithium ion battery
JP7056528B2 (en) * 2018-11-26 2022-04-19 トヨタ自動車株式会社 Battery information processing system
JP7089677B2 (en) * 2019-03-01 2022-06-23 トヨタ自動車株式会社 Secondary battery abnormality judgment method
JP7435101B2 (en) 2020-03-18 2024-02-21 株式会社Gsユアサ Estimation device, power storage device, estimation method, and computer program
JP7276928B1 (en) * 2022-03-29 2023-05-18 東洋システム株式会社 Secondary battery capacity estimation system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010066229A (en) * 2008-09-12 2010-03-25 Toyota Motor Corp Device and method for detecting failure of battery
JP5537236B2 (en) * 2010-04-13 2014-07-02 トヨタ自動車株式会社 Lithium ion secondary battery deterioration determination device and deterioration determination method
US8836284B2 (en) * 2010-05-17 2014-09-16 Toyota Jidosha Kabushiki Kaisha Device and method for calculating value of rechargeable battery
JP5790219B2 (en) * 2011-07-12 2015-10-07 トヨタ自動車株式会社 Battery status detection device
JP5687584B2 (en) * 2011-08-23 2015-03-18 トヨタ自動車株式会社 Lithium-ion battery condition measurement device
US9933491B2 (en) * 2012-02-03 2018-04-03 Toyota Jidosha Kabushiki Kaisha Electric storage system
JP5704120B2 (en) * 2012-05-29 2015-04-22 トヨタ自動車株式会社 Battery system and degradation state determination method
JP2014157662A (en) * 2013-02-14 2014-08-28 Toyota Motor Corp Battery system

Also Published As

Publication number Publication date
JP2017126462A (en) 2017-07-20

Similar Documents

Publication Publication Date Title
JP6183663B2 (en) Secondary battery control device
JP6485708B2 (en) Battery system
CN108474824B (en) Power storage element management device, power storage element module, vehicle, and power storage element management method
EP3520159B1 (en) State of charge dependent plating estimation and prevention
CN107112605B (en) Method for detecting lithium plating, method and apparatus for charging secondary battery, and secondary battery system using the same
CN103969589B (en) The method detecting open-circuit voltage skew by the Optimal Fitting of anelectrode half-cell voltage curve
JP5407893B2 (en) Secondary battery system and hybrid vehicle
US10677850B2 (en) State of charge estimation method and state of charge estimation apparatus
US10310019B2 (en) System for estimating the state of health of a battery using liquid-phase diffusivity of lithium-ion parameters
EP2989675B1 (en) Method and system for estimating a capacity of individual electrodes and the total capacity of a lithium-ion battery system
EP3605127B1 (en) Device and method for estimating battery resistance
JP6485041B2 (en) Electric storage device deterioration estimation device, electric storage device deterioration estimation method, mobile object
JPWO2018181489A1 (en) Estimation device, power storage device, estimation method
JPWO2014167602A1 (en) Battery system
US20190190277A1 (en) Method and apparatus with battery charging
JP5849845B2 (en) Non-aqueous secondary battery control device and control method
JPWO2015059746A1 (en) Battery system
JP6413763B2 (en) Charge state detection device, charge state detection method, mobile object
JP2017032294A (en) Method for estimating charge rate of secondary battery, charge rate estimation device, and soundness estimation device
JP6930572B2 (en) Power storage element management device, power storage element module, vehicle and power storage element management method
JP6729460B2 (en) In-vehicle battery charge controller
US20220385095A1 (en) Fast Charging Method
JP2016091830A (en) Cell system
JP2017103896A (en) Method for controlling secondary battery
JP2018085278A (en) Control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190206

R151 Written notification of patent or utility model registration

Ref document number: 6485708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151