JP6930572B2 - Power storage element management device, power storage element module, vehicle and power storage element management method - Google Patents

Power storage element management device, power storage element module, vehicle and power storage element management method Download PDF

Info

Publication number
JP6930572B2
JP6930572B2 JP2019210409A JP2019210409A JP6930572B2 JP 6930572 B2 JP6930572 B2 JP 6930572B2 JP 2019210409 A JP2019210409 A JP 2019210409A JP 2019210409 A JP2019210409 A JP 2019210409A JP 6930572 B2 JP6930572 B2 JP 6930572B2
Authority
JP
Japan
Prior art keywords
soc
power storage
storage element
range
soc range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019210409A
Other languages
Japanese (ja)
Other versions
JP2020043084A (en
Inventor
賢一 瀬島
賢一 瀬島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016006353A external-priority patent/JP6830318B2/en
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2019210409A priority Critical patent/JP6930572B2/en
Publication of JP2020043084A publication Critical patent/JP2020043084A/en
Priority to JP2021129610A priority patent/JP2021183975A/en
Application granted granted Critical
Publication of JP6930572B2 publication Critical patent/JP6930572B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本明細書によって開示される技術は、蓄電素子管理装置、蓄電素子モジュール、車両および蓄電素子管理方法に関する。 The technology disclosed herein relates to a power storage element management device, a power storage element module, a vehicle, and a power storage element management method.

例えば、リチウムイオン二次電池などの二次電池における蓄電素子のSOC(State Of Charge)を推定する方法として、二次電池の開放電圧であるOCV(Open Circuit Voltage)とSOCとの相関関係に基づいて決定されるOCV法や、蓄電素子の充放電電流を積算して決定される電流積算法がある。このような技術としては、特開2007−178215号公報(下記特許文献1)に記載のものが知られている。 For example, as a method of estimating the SOC (State Of Charge) of a power storage element in a secondary battery such as a lithium ion secondary battery, it is based on the correlation between OCV (Open Circuit Voltage), which is the open circuit voltage of the secondary battery, and SOC. There are an OCV method determined by the above method and a current integration method determined by integrating the charge / discharge current of the power storage element. As such a technique, those described in Japanese Patent Application Laid-Open No. 2007-178215 (Patent Document 1 below) are known.

ところで、電流積算法においてSOCを算出する場合、電流積算が長期継続されると、電流センサの計測誤差が蓄積してSOCの推定誤差が大きくなる。そのため、電流積算が長期継続した場合には、OCV法によりSOCを推定して、誤差の蓄積をリセットする。 By the way, when the SOC is calculated by the current integration method, if the current integration is continued for a long period of time, the measurement error of the current sensor is accumulated and the SOC estimation error becomes large. Therefore, if the current integration continues for a long period of time, the SOC is estimated by the OCV method and the accumulation of errors is reset.

特開2007−178215号公報JP-A-2007-178215

しかしながら、蓄電素子のSOC−OCV特性において、OCVの変化が小さいプラトー領域が存在する場合、このプラトー領域においてOCV法によりSOCを推定すると、SOCの推定誤差が大きくなってしまう。このため、SOC−OCV特性においてOCVの変化に傾きのある領域で、OCV法によりSOC値を推定することが考えられる。ところが、このような場合、OCV法の適用は、OCVの変化に傾きのある場合にのみ限られるため、OCV法の適用頻度が低下し、結局、電流積算法の累積誤差が大きくなってしまう。 However, in the SOC-OCV characteristics of the power storage element, when there is a plateau region in which the change in OCV is small, if the SOC is estimated by the OCV method in this plateau region, the SOC estimation error becomes large. Therefore, it is conceivable to estimate the SOC value by the OCV method in the region where the change in OCV is inclined in the SOC-OCV characteristics. However, in such a case, since the application of the OCV method is limited to the case where the change of the OCV has a slope, the application frequency of the OCV method decreases, and eventually the cumulative error of the current integration method becomes large.

本明細書では、蓄電素子のSOCの推定精度を向上させる技術を開示する。 This specification discloses a technique for improving the SOC estimation accuracy of a power storage element.

本明細書によって開示される技術は、蓄電要素の充電状態を示すSOC範囲を決定する蓄電要素管理装置であって、第1の方法により決定される第1SOC範囲と、前記第1SOC範囲が決定される段階において第2の方法により決定される第2SOC範囲とに基づいてSOC範囲を決定する情報処理部を備える構成とした。 The technique disclosed in the present specification is a power storage element management device for determining an SOC range indicating a charging state of a power storage element, in which a first SOC range determined by the first method and the first SOC range are determined. The configuration is provided with an information processing unit that determines the SOC range based on the second SOC range determined by the second method at the stage.

本明細書によって開示される技術によれば、蓄電素子のSOCの推定誤差が低減され、SOCの推定精度を向上させることができる。 According to the technique disclosed in the present specification, the SOC estimation error of the power storage element can be reduced, and the SOC estimation accuracy can be improved.

実施形態1における自動車を示す図The figure which shows the automobile in Embodiment 1. 電池モジュールの斜視図Perspective view of the battery module 電池モジュールの斜視断面図Perspective sectional view of the battery module 電池モジュールのブロック図Battery module block diagram 二次電池のSOC−OCV相関関係を示す図The figure which shows the SOC-OCV correlation of a secondary battery 二次電池のSOC−OCV相関関係における各領域のSOC範囲を示す図The figure which shows the SOC range of each region in the SOC-OCV correlation of a secondary battery. SOC決定処理を示すフローチャート図Flow chart showing SOC determination process 電流積算法処理を示すフローチャート図Flow chart showing current integration method processing SOC範囲の決定過程を示す図The figure which shows the determination process of the SOC range 図9の(a)におけるSOC−OCV相関関係を示す図The figure which shows the SOC-OCV correlation in (a) of FIG. 図9の(b)におけるSOC−OCV相関関係を示す図The figure which shows the SOC-OCV correlation in (b) of FIG. 図9の(c)におけるSOC−OCV相関関係を示す図The figure which shows the SOC-OCV correlation in (c) of FIG. 図9の(d)におけるSOC−OCV相関関係を示す図The figure which shows the SOC-OCV correlation in (d) of FIG. SOC領域変更処理を示すフローチャート図Flow chart showing SOC area change processing 二次電池の放電SOC−OCV相関関係と充電SOC−OCV相関関係を示す図The figure which shows the discharge SOC-OCV correlation and the charge SOC-OCV correlation of a secondary battery. 図15の一部拡大図Partially enlarged view of FIG. 実施形態2における二次電池の充電中におけるRC−V1相関関係を示す図The figure which shows the RC-V1 correlation during charging of the secondary battery in Embodiment 2. 二次電池の放電中におけるRC−V2相関関係を示す図The figure which shows the RC-V2 correlation during discharge of a secondary battery

(本実施形態の概要)
初めに、本実施形態にて開示する蓄電素子管理装置および蓄電素子管理方法の概要について説明する。
本明細書により開示される蓄電素子管理装置は、例えばリチウムイオン電池等の蓄電要素の充電状態を示すSOC範囲を決定する蓄電要素管理装置であって、第1の方法により決定される第1SOC範囲と、第1SOC範囲が決定される段階において第2の方法により決定される第2SOC範囲とに基づいて新たなSOC範囲を決定する情報処理部を備える。
(Outline of this embodiment)
First, an outline of the power storage element management device and the power storage element management method disclosed in the present embodiment will be described.
The power storage element management device disclosed in the present specification is a power storage element management device that determines an SOC range indicating a charging state of a power storage element such as a lithium ion battery, and is a first SOC range determined by the first method. And an information processing unit that determines a new SOC range based on the second SOC range determined by the second method at the stage where the first SOC range is determined.

また、本明細書により開示される蓄電素子モジュールは、蓄電素子と、前記蓄電素子に流れる電流を検出する電流計測部と、前記蓄電素子の電圧を検出する電圧計測部と、前記蓄電素子の電圧とSOCとの相関関係の情報を記憶するメモリと、前記蓄電素子管理装置とを備える構成とした。 Further, the power storage element module disclosed in the present specification includes a power storage element, a current measurement unit that detects a current flowing through the power storage element, a voltage measurement unit that detects the voltage of the power storage element, and a voltage of the power storage element. It is configured to include a memory for storing information on the correlation between the and SOC and the power storage element management device.

また、本明細書により開示される車両は、前記蓄電素子モジュールと、前記蓄電素子モジュールからの電力供給される車両負荷と、前記車両負荷を制御し、かつ前記蓄電素子モジュールと通信可能な車両側電子制御部とを有する構成とした。 Further, the vehicle disclosed in the present specification is a vehicle side capable of controlling the power storage element module, the vehicle load supplied with electric power from the power storage element module, and the vehicle load, and communicating with the power storage element module. It is configured to have an electronic control unit.

また、本明細書により開示される蓄電素子管理方法は、蓄電素子の充電状態を示す値であるSOCの推定値を決定するための蓄電素子管理方法であって、第1の方法により決定される第1SOC範囲と、第2の方法により決定される第2SOC範囲とに基づいてSOC範囲を決定する構成とした。 Further, the power storage element management method disclosed in the present specification is a power storage element management method for determining an estimated value of SOC, which is a value indicating a charging state of the power storage element, and is determined by the first method. The SOC range is determined based on the first SOC range and the second SOC range determined by the second method.

一方、各種の蓄電素子の中には、例えばリチウムイオン電池等のように、その電圧(V)と充電状態(SOC)との間に比較的再現性が高い相関関係を有するものがある。そこで、そのような蓄電素子について予めその相関関係をSOC−V相関関係としてテーブル化してメモリに記憶させてある。そして、例えばCPUと、所要の動作プログラムを記憶したメモリとを備えた情報処理部が設けられている。そして、情報処理部は、電流センサにより検出した電流の時間積算により充放電電力量を求めて蓄電素子のSOCを決定する電流積算法と、電圧センサの検出結果から前記SOC−V相関関係に基づきSOCを決定するOCV法とが実行可能である。そして、情報処理部は、それぞれの方法によって決定された各SOCが、どのような関係にあるかによってSOC推定値を決定する。 On the other hand, among various power storage elements, there are those having a relatively high reproducibility correlation between the voltage (V) and the charged state (SOC), such as a lithium ion battery. Therefore, the correlation of such a power storage element is tabulated as an SOC-V correlation in advance and stored in the memory. Then, for example, an information processing unit including a CPU and a memory for storing a required operation program is provided. Then, the information processing unit obtains the charge / discharge power amount by time integration of the current detected by the current sensor and determines the SOC of the power storage element based on the current integration method and the detection result of the voltage sensor based on the SOC-V correlation. An OCV method that determines the SOC is feasible. Then, the information processing unit determines the SOC estimated value according to the relationship between each SOC determined by each method.

しかしながら、蓄電素子のSOC−V相関関係において、OCVの変化が小さいプラトー領域が存在する場合、このプラトー領域においてOCV法によりSOCを推定すると、SOCの推定誤差が大きくなってしまう問題があり、SOC−V相関関係においてOCVの変化に傾きのある領域でのみOCV法を適用する場合、適用頻度が低下するといった問題があった。 However, in the SOC-V correlation of the power storage element, when there is a plateau region in which the change in OCV is small, if the SOC is estimated by the OCV method in this plateau region, there is a problem that the estimation error of the SOC becomes large, and the SOC When the OCV method is applied only in a region where the change in OCV is inclined in the −V correlation, there is a problem that the application frequency is reduced.

そこで、本発明者は、上記課題を解決するために鋭意検討した結果、従来は、機器の誤差範囲などを含む幅をもったSOC範囲内における特定の値(平均値など)をSOCとして捉えていたところを、機器の誤差範囲などを含むSOCのデータ範囲をSOC範囲として捉えることを試みた。 Therefore, as a result of diligent studies to solve the above problems, the present inventor has conventionally regarded a specific value (average value, etc.) within the SOC range having a width including the error range of the device as the SOC. However, I tried to capture the SOC data range including the error range of the device as the SOC range.

そして、発明者は、第1の方法により決定される第1SOC範囲と、第2の方法により決定される第2SOC範囲との双方のSOC範囲に基づいてSOC範囲を決定する着想に至り、プラトー領域を有する蓄電素子であっても、SOC範囲の推定誤差が大きくなることを防ぎつつ、高頻度にSOC範囲を推定することができることを突き止めた。そして、蓄電素子におけるSOC範囲の推定精度を向上させることができることを見いだした。 Then, the inventor came up with the idea of determining the SOC range based on both the SOC ranges of the first SOC range determined by the first method and the second SOC range determined by the second method, and the plateau area. It was found that the SOC range can be estimated with high frequency while preventing the estimation error of the SOC range from becoming large even in the power storage element having the above. Then, it was found that the estimation accuracy of the SOC range in the power storage element can be improved.

本明細書によって開示される蓄電素子管理装置は、以下の構成としてもよい。
本明細書により開示される技術の一実施態様として、前記情報処理部は、前記第1SOC範囲と前記第2SOC範囲とが重複する場合には、前記第1SOC範囲と、前記第2SOC範囲との重複範囲を前記SOC範囲に決定する構成にしてもよい。
The power storage element management device disclosed by the present specification may have the following configuration.
As one embodiment of the technique disclosed herein, the information processing unit overlaps the first SOC range with the second SOC range when the first SOC range and the second SOC range overlap. The range may be determined to be the SOC range.

このような構成によると、第1SOC範囲と前記第2SOC範囲とが重複する場合には、第1SOC範囲と第2SOC範囲との重複範囲をSOC範囲として絞り込んでSOC範囲に設定するから、SOC範囲の推定誤差が大きくなることを防ぎつつ、高頻度にSOC範囲を推定することができ、蓄電素子におけるSOC範囲の推定精度を向上させることができる。 According to such a configuration, when the first SOC range and the second SOC range overlap, the overlapping range between the first SOC range and the second SOC range is narrowed down as the SOC range and set as the SOC range. The SOC range can be estimated frequently while preventing the estimation error from becoming large, and the estimation accuracy of the SOC range in the power storage element can be improved.

また、本明細書により開示される技術の一実施態様として、前記第1の方法は、前回のSOC範囲から時間経過に伴う前記蓄電素子の状態に基づいて第1SOC範囲を決定し、前記第2の方法は、前記第1SOC範囲が決定された段階の前記蓄電要素の状態に基づいて前記第2SOC範囲を決定し、前記第1SOC範囲と前記第2SOC範囲とが重複しない場合には、前記第2SOC範囲を前記SOC範囲として決定する構成としてもよい。 Further, as one embodiment of the technique disclosed in the present specification, in the first method, the first SOC range is determined based on the state of the power storage element with the passage of time from the previous SOC range, and the second SOC range is determined. In the method of, the second SOC range is determined based on the state of the power storage element at the stage when the first SOC range is determined, and when the first SOC range and the second SOC range do not overlap, the second SOC range The range may be determined as the SOC range.

このような構成によると、第1SOC範囲と第2SOC範囲とが重複しない場合には、第1SOC範囲が決定される段階において決定される第2SOC範囲がSOC範囲として決定される。つまり、第1SOC範囲と第2SOC範囲とが重複しない場合には、直近に得られた第2SOC範囲をSOC範囲として採用することにより、蓄電素子におけるSOC範囲の推定誤差が大きくなることを防ぐことができる。 According to such a configuration, when the first SOC range and the second SOC range do not overlap, the second SOC range determined at the stage where the first SOC range is determined is determined as the SOC range. That is, when the first SOC range and the second SOC range do not overlap, by adopting the most recently obtained second SOC range as the SOC range, it is possible to prevent the estimation error of the SOC range in the power storage element from becoming large. can.

また、本明細書により開示される技術の一実施態様として、前記第1SOC範囲は、前記蓄電素子に流れる電流の時間積算により決定され、前記第2SOC範囲は、前記蓄電素子の電圧と、前記蓄電素子のSOC−V相関関係とにより決定される構成としてもよい。 Further, as one embodiment of the technique disclosed in the present specification, the first SOC range is determined by time integration of the current flowing through the power storage element, and the second SOC range is the voltage of the power storage element and the power storage element. The configuration may be determined by the SOC-V correlation of the device.

また、前記情報処理部は、無電流状態の前記蓄電素子の開放電圧と充電状態との相関関係であるSOC−OCV相関関係に基づいて第2SOC範囲を決定する構成としてもよい。
すなわち、電流の時間積算に基づく第1の方法(電流積算法)により決定される第1SOC範囲と、電圧とSOC−OCV相関関係とに基づく第2の方法(OCV法)により決定される第2SOC範囲とが重複する場合には、その重複部分をSOC範囲として決定することで、SOC範囲の推定誤差が大きくなることを防ぐことができる。
Further, the information processing unit may be configured to determine the second SOC range based on the SOC-OCV correlation, which is the correlation between the open circuit voltage of the power storage element in the no-current state and the charging state.
That is, the first SOC range determined by the first method (current integration method) based on the time integration of the current and the second SOC determined by the second method (OCV method) based on the voltage and the SOC-OCV correlation. When the ranges overlap, it is possible to prevent the estimation error of the SOC range from becoming large by determining the overlapping portion as the SOC range.

また、第1SOC範囲と第2SOC範囲とが重複しない場合には、第1の方法(電流積算法)による累積誤差などに問題があるとして、第2の方法(OCV法)により得られた直近の第2SOC範囲をSOC範囲として決定し、蓄電素子におけるSOC範囲の推定誤差が大きくなることを防ぐことができる。ここで、「第1SOC範囲」の具体例としては、計測機器の誤差範囲や電流の時間積算による自己放電および暗電流などの累積など含むSOCのデータ範囲をいい、「第2SOC範囲」の具体例としては、計測機器の誤差などを含むSOCのデータ範囲をいう。 Further, when the first SOC range and the second SOC range do not overlap, it is considered that there is a problem such as a cumulative error by the first method (current integration method), and the latest obtained by the second method (OCV method). The second SOC range can be determined as the SOC range, and it is possible to prevent the estimation error of the SOC range in the power storage element from becoming large. Here, as a specific example of the "first SOC range", it means a SOC data range including an error range of the measuring device, self-discharge by time integration of current, accumulation of dark current, etc., and a specific example of the "second SOC range". Refers to the SOC data range including the error of the measuring device.

また、本明細書により開示される技術の一実施態様として、前記情報処理部は、前記蓄電素子の充電後における充電SOC−OCV相関関係および前記蓄電素子の放電後における放電SOC−OCV関係に基づいて第2SOC範囲を決定する構成にしてもよい。 Further, as an embodiment of the technique disclosed in the present specification, the information processing unit is based on a charging SOC-OCV correlation after charging the power storage element and a discharging SOC-OCV relationship after discharging the power storage element. The second SOC range may be determined.

ところで、蓄電素子において電圧とSOCとの対応関係が、電圧の検出前における蓄電素子の充放電の履歴によって影響を受けることが知られている。具体的には、蓄電素子の電流が放電傾向であった場合の方が、充電傾向であった場合よりもSOCに対する開放電圧が低くなる傾向にある。しかしながら、一般に、蓄電素子における充放電は、電流値や通電時間など様々な要因によって決定されるため、充放電の履歴を推定することは困難である。したがって、充放電の履歴の影響によっては、実際のSOCが含まれないSOC範囲を推定してしまう虞がある。 By the way, it is known that the correspondence between the voltage and the SOC in the power storage element is affected by the charge / discharge history of the power storage element before the voltage is detected. Specifically, when the current of the power storage element tends to be discharged, the open circuit voltage with respect to the SOC tends to be lower than when the current tends to be charged. However, in general, the charge / discharge in the power storage element is determined by various factors such as the current value and the energization time, so that it is difficult to estimate the charge / discharge history. Therefore, depending on the influence of the charge / discharge history, there is a risk of estimating the SOC range that does not include the actual SOC.

ところが、上記のような構成によると、SOC範囲の上限値を放電SOC−OCV関係、下限値を充電SOC−OCV関係から求めることで、SOC範囲が実際のSOCを含まない範囲に決定されることを防ぐことができる。 However, according to the above configuration, the SOC range is determined to be a range that does not include the actual SOC by obtaining the upper limit value of the SOC range from the discharge SOC-OCV relationship and the lower limit value from the charge SOC-OCV relationship. Can be prevented.

また、本明細書により開示される技術の一実施態様として、前記情報処理部は、前記蓄電要素の充電中における充電電圧と残存容量との相関関係であるC−V相関関係に基づいて第2SOC範囲を決定するようになっており、充電電流が所定の電流値よりも低く、かつ充電電圧が所定の電圧値よりも高い場合、前記第2SOC範囲を、前記蓄電素子が満充電状態に近い状態である満充電SOC範囲に決定する構成としてもよい。 Further, as one embodiment of the technique disclosed in the present specification, the information processing unit has a second SOC based on a CV correlation which is a correlation between a charging voltage and a remaining capacity during charging of the power storage element. The range is determined, and when the charging current is lower than the predetermined current value and the charging voltage is higher than the predetermined voltage value, the second SOC range is set to a state in which the power storage element is close to a fully charged state. It may be configured to determine the fully charged SOC range.

また、前記情報処理部は、充電電流が所定の電流値よりも高く、かつ充電電圧が所定の電圧値よりも低い場合、前記第2SOC範囲を、前記満充電SOC範囲とは異なる範囲である非満充電SOC範囲に決定する構成としてもよい。 Further, when the charging current is higher than the predetermined current value and the charging voltage is lower than the predetermined voltage value, the information processing unit sets the second SOC range to a range different from the fully charged SOC range. It may be configured to determine the fully charged SOC range.

このような構成によると、充電中における蓄電素子の充電電圧および充電電流を検出し、充電電流が所定の電流値よりも低く、かつ充電電圧が所定の電圧値よりも高いか判定することにより、第2SOC範囲が満充電SOC範囲であるか否かを容易に決定することができる。また、充電電流が所定の電流値よりも高く、かつ充電電圧が所定の電圧値よりも低いか判定することにより、第2SOC範囲が非満充電SOC範囲であるか否かを決定することができる。これにより、充電中の蓄電素子であっても高頻度にSOC範囲を推定し、SOC範囲の推定精度をさらに高めることができる。 According to such a configuration, the charging voltage and charging current of the power storage element during charging are detected, and it is determined whether the charging current is lower than the predetermined current value and the charging voltage is higher than the predetermined voltage value. It can be easily determined whether or not the second SOC range is the fully charged SOC range. Further, by determining whether the charging current is higher than the predetermined current value and the charging voltage is lower than the predetermined voltage value, it is possible to determine whether or not the second SOC range is the non-fully charged SOC range. .. As a result, the SOC range can be estimated frequently even for the power storage element being charged, and the estimation accuracy of the SOC range can be further improved.

また、本明細書により開示される技術の一実施態様として、前記情報処理部は、前記蓄電素子の放電中における放電電圧と残存容量の相関関係であるC−V相関関係に基づいて第2SOC範囲を決定するようになっており、放電電流が所定の電流値よりも低く、かつ放電電圧が所定の電圧値よりも低い場合、前記第2SOC範囲を、前記蓄電素子が放電終止状態に近い状態である放電終止SOC範囲に決定する構成にしてもよい。 Further, as one embodiment of the technique disclosed in the present specification, the information processing unit has a second SOC range based on a CV correlation which is a correlation between the discharge voltage and the remaining capacity during discharge of the power storage element. When the discharge current is lower than the predetermined current value and the discharge voltage is lower than the predetermined voltage value, the second SOC range is set in a state where the power storage element is close to the discharge end state. The configuration may be such that the discharge termination SOC range is determined.

また、前記情報処理部は、放電電流が所定の電流値よりも高く、かつ放電電圧が所定の電圧値よりも高い場合、前記第2SOC範囲を、前記放電終止SOC範囲とは異なる範囲である非放電終止SOC範囲に決定する構成にしてもよい。 Further, when the discharge current is higher than the predetermined current value and the discharge voltage is higher than the predetermined voltage value, the information processing unit sets the second SOC range to a range different from the discharge end SOC range. The configuration may be such that the discharge termination SOC range is determined.

このような構成によると、放電中における蓄電素子の放電電圧および放電電流を検出し、放電電流が所定の電流値よりも低く、かつ放電電圧が所定の電圧値よりも低いか判定することにより、第2SOC範囲が放電終止SOC範囲であるか否かを容易に決定することができる。また、放電電流が所定の電流値よりも高く、かつ放電電圧が所定の電圧値よりも高いか判定することにより、第2SOC範囲が非放電終止SOC範囲であるか否かを決定することができる。これにより、放電中の蓄電素子であっても高頻度にSOC範囲を推定し、SOC範囲の推定精度をさらに高めることができる。 According to such a configuration, the discharge voltage and the discharge current of the power storage element during discharge are detected, and it is determined whether the discharge current is lower than the predetermined current value and the discharge voltage is lower than the predetermined voltage value. It can be easily determined whether or not the second SOC range is the discharge termination SOC range. Further, by determining whether the discharge current is higher than the predetermined current value and the discharge voltage is higher than the predetermined voltage value, it is possible to determine whether or not the second SOC range is the non-discharge termination SOC range. .. As a result, the SOC range can be estimated frequently even for the power storage element being discharged, and the estimation accuracy of the SOC range can be further improved.

また、本明細書により開示される技術の一実施態様として、前記情報処理部は、前記蓄電素子の蓄電状態を複数のSOC領域に区分し、前記複数のSOC領域のうちSOCの変化量に対する電圧の変化量が他よりも小さいSOC領域を低変化領域としたとき、前記第1SOC範囲が、所定期間の間、前記低変化領域に属する場合には、前記蓄電素子を充放電し、前記第2SOC範囲を前記第1SOC範囲と異なる範囲となるように変化させる構成としてもよい。
このような構成によると、意図的に蓄電素子に対して充放電を行うことで、第1SOC範囲から第2SOC範囲に移動した分、新たなSOC範囲が絞り込まれることになり、SOC範囲の推定精度を向上させることができる。
また、本明細書により開示される技術の一実施態様として、前記情報処理部は、前記第2SOC範囲を、現在属している前記低変化領域とは異なる領域に属するように変化させる構成にしてもよい。
Further, as one embodiment of the technique disclosed in the present specification, the information processing unit divides the storage state of the power storage element into a plurality of SOC regions, and the voltage with respect to the amount of change in SOC among the plurality of SOC regions. When the SOC region in which the amount of change in is smaller than the others is defined as the low change region, and the first SOC range belongs to the low change region for a predetermined period, the power storage element is charged and discharged, and the second SOC is charged and discharged. The range may be changed so as to be a range different from the first SOC range.
According to such a configuration, by intentionally charging / discharging the power storage element, a new SOC range is narrowed down by the amount of movement from the first SOC range to the second SOC range, and the estimation accuracy of the SOC range is achieved. Can be improved.
Further, as one embodiment of the technique disclosed in the present specification, the information processing unit may be configured to change the second SOC range so as to belong to a region different from the low change region to which the current belonging belongs. good.

このような構成によると、意図的に蓄電素子に対して充放電を行うことで、電圧を、現在属している低変化領域とは異なる領域に変化させ、蓄電素子のSOC範囲を決定するから、SOC範囲の推定精度をさらに向上させることができる。 According to such a configuration, by intentionally charging and discharging the power storage element, the voltage is changed to a region different from the low change region to which it currently belongs, and the SOC range of the power storage element is determined. The estimation accuracy of the SOC range can be further improved.

<実施形態1>
本明細書で開示される技術を自動車10などの車両に適用した実施形態1について図1から図16を参照して説明する。
本実施形態の自動車10は、図1に示すように、エンジンルーム11に設置されるエンジン始動用のスターターモータや電装品などの車両負荷12と、車両負荷12に接続されたバッテリモジュール20と、車両負荷12およびバッテリモジュール20に接続された図示しないオルターネータと、車両負荷12の動作を制御する車両側電子制御部(以下、「ECU」という)13などを備えて構成されている。
<Embodiment 1>
The first embodiment in which the technique disclosed in the present specification is applied to a vehicle such as an automobile 10 will be described with reference to FIGS. 1 to 16.
As shown in FIG. 1, the automobile 10 of the present embodiment includes a vehicle load 12 such as a starter motor and electrical components for starting an engine installed in the engine room 11, a battery module 20 connected to the vehicle load 12, and a battery module 20. It includes an alternator (not shown) connected to the vehicle load 12 and the battery module 20, a vehicle-side electronic control unit (hereinafter, referred to as "ECU") 13 for controlling the operation of the vehicle load 12, and the like.

車両負荷12は、バッテリモジュール20およびオルターネータから電力供給されることで動作するようになっており、オルターネータからの電力供給量が少ない場合にバッテリモジュール20から電力供給を受けることで動作する。
オルターネータは、自動車10のエンジンの駆動に伴って回転することで発電し、車両負荷12およびバッテリモジュール20に電力供給を行う。
The vehicle load 12 operates by being supplied with electric power from the battery module 20 and the alternator, and operates by receiving electric power from the battery module 20 when the amount of electric power supplied from the alternator is small.
The alternator generates electric power by rotating as the engine of the automobile 10 is driven, and supplies electric power to the vehicle load 12 and the battery module 20.

車両側電子制御部13は、車両負荷12、オルターネータ、バッテリモジュール20などと通信線Wによって接続されており、自動車10の状態やバッテリモジュール20の状態などに基づいてエンジンや車両負荷12の動作制御を行う。 The vehicle-side electronic control unit 13 is connected to the vehicle load 12, the alternator, the battery module 20, and the like by a communication line W, and operates the engine and the vehicle load 12 based on the state of the automobile 10 and the state of the battery module 20. Take control.

バッテリモジュール20は、図2および図3に示すように、ブロック状の電池ケース21を有しており、電池ケース21内には、図3および図4に示すように、直列に接続された複数の二次電池(「蓄電素子」の一例)30と、これら二次電池30を管理する電池管理装置(以下、「BMU」という)50と、二次電池30に流れる電流を検出する電流センサ40などが収容されている。 As shown in FIGS. 2 and 3, the battery module 20 has a block-shaped battery case 21, and a plurality of battery modules 20 connected in series as shown in FIGS. 3 and 4 in the battery case 21. (Example of "storage element") 30, a battery management device (hereinafter referred to as "BMU") 50 that manages these secondary batteries 30, and a current sensor 40 that detects the current flowing through the secondary battery 30. Etc. are housed.

なお、BMU50が「蓄電素子管理装置」の一例であり、図3では、電池ケース21構成を分かりやすくするために、電流センサ40を図示省略すると共に、電池ケース21の内部構造を図示簡略化している。また、以下の説明において、図2および図3を参照する場合、電池ケース21が設置面に対して傾きなく水平に置かれた時の電池ケース21の上下方向をY方向とし、電池ケース21の長辺方向に沿う方向をX方向とし、電池ケース21の奥行き方向をZ方向として説明する。 The BMU 50 is an example of the “storage element management device”. In FIG. 3, the current sensor 40 is omitted and the internal structure of the battery case 21 is simplified in order to make the configuration of the battery case 21 easy to understand. There is. Further, in the following description, when referring to FIGS. 2 and 3, the vertical direction of the battery case 21 when the battery case 21 is placed horizontally without inclination with respect to the installation surface is the Y direction, and the battery case 21 The direction along the long side direction will be described as the X direction, and the depth direction of the battery case 21 will be described as the Z direction.

電池ケース21は、合成樹脂製であって、電池ケース21の上面壁21Aは、図2および図3に示すように、平面視略矩形状をなし、Y方向に高低差を付けた形状とされている。上面壁21Aにおいて低い部分のX方向両端部には、図示しないハーネス端子が接続される一対の端子部22が上面壁21Aに埋設された状態で設けられている。一対の端子部22は、例えば、鉛合金等の金属からなり、一対の端子部22のうち、一方が正極側端子部22Pとされ、他方が負極側端子部22Nとされている。そして、各端子部22の下端部が、電池ケース21内に収容された二次電池30に接続されている。 The battery case 21 is made of synthetic resin, and the upper surface wall 21A of the battery case 21 has a substantially rectangular shape in a plan view and a height difference in the Y direction as shown in FIGS. 2 and 3. ing. A pair of terminal portions 22 to which harness terminals (not shown) are connected are provided at both ends of the lower portion of the upper surface wall 21A in the X direction in a state of being embedded in the upper surface wall 21A. The pair of terminal portions 22 are made of, for example, a metal such as a lead alloy, and one of the pair of terminal portions 22 is a positive electrode side terminal portion 22P and the other is a negative electrode side terminal portion 22N. Then, the lower end of each terminal portion 22 is connected to the secondary battery 30 housed in the battery case 21.

また、電池ケース21は、図3に示すように、上方に開口する箱型のケース本体23と、複数の二次電池30を位置決めする位置決め部材24と、ケース本体23の上部に装着される中蓋25と、中蓋25の上部に装着される上蓋26とを備えて構成されている。
ケース本体23内には、図3に示すように、複数の二次電池30が個別に収容される複数のセル室23AがX方向に並んで設けられている。
Further, as shown in FIG. 3, the battery case 21 is mounted on a box-shaped case body 23 that opens upward, a positioning member 24 that positions a plurality of secondary batteries 30, and an upper portion of the case body 23. It is configured to include a lid 25 and an upper lid 26 attached to the upper part of the inner lid 25.
As shown in FIG. 3, a plurality of cell chambers 23A in which a plurality of secondary batteries 30 are individually housed are provided in the case main body 23 side by side in the X direction.

位置決め部材24は、図3に示すように、複数のバスバー27が上面に配置されており、位置決め部材24がケース本体23内に配置された複数の二次電池30の上部に配置されることで、複数の二次電池30が、位置決めされると共に複数のバスバー27によって直列に接続されるようになっている。
中蓋25は、図3に示すように、BMU50が内部に収容可能とされており、中蓋25がケース本体23に装着されることで、二次電池30とBMU50とが接続されるようになっている。
As shown in FIG. 3, the positioning member 24 has a plurality of bus bars 27 arranged on the upper surface, and the positioning member 24 is arranged on the upper part of the plurality of secondary batteries 30 arranged in the case main body 23. , A plurality of secondary batteries 30 are positioned and connected in series by a plurality of bus bars 27.
As shown in FIG. 3, the inner lid 25 is capable of accommodating the BMU 50 inside, and the inner lid 25 is attached to the case body 23 so that the secondary battery 30 and the BMU 50 are connected to each other. It has become.

二次電池30は、例えばグラファイト系材料の負極活物質と、LiFePO4などのリン酸鉄系の正極活物質を使用したリチウムイオン電池であって、例えばその開放電圧(OCV:Open Circuit Voltage)と充電状態(SOC:State Of Charge)との間には図5に示す相関関係(以下、「SOC−OCV相関関係」という)がある。このSOC−OCV相関関係では、図5および図6に示すように、二次電池30の充電状態を次の5つの領域に分けて考えることができる。 The secondary battery 30 is a lithium ion battery using, for example, a negative electrode active material of a graphite-based material and an iron phosphate-based positive electrode active material such as LiFePO4, and is charged with, for example, its open circuit voltage (OCV). There is a correlation (hereinafter referred to as “SOC-OCV correlation”) shown in FIG. 5 with the state (SOC: State Of Charge). In this SOC-OCV correlation, as shown in FIGS. 5 and 6, the state of charge of the secondary battery 30 can be considered by dividing it into the following five regions.

これらの領域のうち3つの領域I,III,Vは、二次電池30のOCVの変化がSOCに対して所定値以上変化する右上がりの傾きを有する、すなわち、OCVの変化がSOCに対して比較的大きい(以下、これらの領域を「電圧傾斜領域」I,III,Vという)。具体的には、電圧傾斜領域は、例えば、SOCが1%変化するのに対して、OCVの変化が2〜6mV以上の領域である。 Three of these regions, I, III, and V, have an upward-sloping slope in which the change in OCV of the secondary battery 30 changes by a predetermined value or more with respect to SOC, that is, the change in OCV with respect to SOC. It is relatively large (hereinafter, these regions are referred to as "voltage gradient regions" I, III, V). Specifically, the voltage gradient region is, for example, a region in which the SOC changes by 1% while the OCV changes by 2 to 6 mV or more.

これに対して、領域II、IV(電圧傾斜領域I,III,V以外の領域)では、二次電池30のOCVの変化が、SOCに対して所定値未満の傾斜を有する、すなわち、OCVの変化がSOCの変化に対して極めて小さい、(以下、これらの領域を「電圧平坦領域」II,IVという)。具体的には、電圧平坦領域は、例えば、SOCが1%変化するのに対して、OCVの変化が2〜6mV未満の領域である。 On the other hand, in the regions II and IV (regions other than the voltage gradient regions I, III and V), the change in the OCV of the secondary battery 30 has a gradient of less than a predetermined value with respect to the SOC, that is, the OCV. The change is extremely small with respect to the change in SOC (hereinafter, these regions are referred to as "voltage flat region" II, IV). Specifically, the voltage flat region is, for example, a region in which the SOC changes by 1% while the OCV change is less than 2 to 6 mV.

BMU50は、図4に示すように、制御部60と、電圧計測部70と、電流計測部80とを備えて構成されている。制御部60は、情報処理部としての中央処理装置(以下、「CPU」という)61と、メモリ63とを有する。メモリ63には、BMU50の動作を制御するための各種のプログラムが記憶されており、CPU61はメモリ63から読み出したプログラムに従って、後述する「SOC決定処理」、「電流積算法処理」、「電圧参照法処理」および「SOC領域変更処理」等からなるSOC決定処理を実行する。 As shown in FIG. 4, the BMU 50 includes a control unit 60, a voltage measuring unit 70, and a current measuring unit 80. The control unit 60 has a central processing unit (hereinafter referred to as “CPU”) 61 as an information processing unit and a memory 63. Various programs for controlling the operation of the BMU 50 are stored in the memory 63, and the CPU 61 refers to "SOC determination processing", "current integration method processing", and "voltage reference" described later according to the program read from the memory 63. The SOC determination process including "legal process" and "SOC area change process" is executed.

また、メモリ63には、SOC決定処理の実行に必要なデータ、例えば、二次電池30のテーブル化したSOC−OCV相関関係、各領域I〜Vの充電状態の上限値および下限値、二次電池30の満充電容量等が記憶されている。 Further, in the memory 63, data necessary for executing the SOC determination process, for example, a tabulated SOC-OCV correlation of the secondary battery 30, an upper limit value and a lower limit value of the charging state of each area I to V, and a secondary value. The full charge capacity of the battery 30 and the like are stored.

電圧計測部70は、電圧検知線を介して二次電池30の両端にそれぞれ接続されており、各二次電池30の電圧Vを所定期間毎に測定する。
電流計測部80は、電流センサ40を介して二次電池30に流れる電流を計測する。
The voltage measuring unit 70 is connected to both ends of the secondary battery 30 via a voltage detection line, and measures the voltage V of each secondary battery 30 at predetermined intervals.
The current measuring unit 80 measures the current flowing through the secondary battery 30 via the current sensor 40.

さて、次に二次電池30のSOCを決定するSOC決定処理について図7を参照して説明する。
SOC決定処理は、例えば、自動車10が始動され、ECU13から出力された実行指令をBMU50が受信することにより開始される。
Next, the SOC determination process for determining the SOC of the secondary battery 30 will be described with reference to FIG. 7.
The SOC determination process is started, for example, when the automobile 10 is started and the BMU 50 receives an execution command output from the ECU 13.

処理開始後は、制御部60の指令により、まず、測定機器の誤差範囲などを含む幅をもった初期のSOC範囲を決定する。
そして、図9に示すように、この初期のSOC範囲(a)を基に、電流の時間積算により二次電池のSOC範囲(b)を決定する電流積算法と、電流積算法によってSOC範囲(b)が決定された段階における二次電池のSOC範囲(c)を決定する電圧参照法との2つの方法によって決定されたSOC範囲の重複範囲を新たなSOC範囲(d)に決定する。
After the processing is started, the initial SOC range having a width including the error range of the measuring device is first determined by the command of the control unit 60.
Then, as shown in FIG. 9, the SOC range (b) of the secondary battery is determined by the time integration of the current based on the initial SOC range (a), and the SOC range (SOC range) by the current integration method. The overlapping range of the SOC range determined by the voltage reference method for determining the SOC range (c) of the secondary battery at the stage where b) is determined is determined as the new SOC range (d).

そして、この操作を繰り返すことにより、累積誤差や機器の計測誤差を含む幅を持ったSOC範囲を絞り込み、SOC範囲の推定精度を向上させる。 Then, by repeating this operation, the SOC range having a width including the cumulative error and the measurement error of the device is narrowed down, and the estimation accuracy of the SOC range is improved.

以下にSOC決定処理を図7から図9を参照しつつ詳しく説明する。
初期のSOC範囲(a)を決定する場合、まず、制御部60の指令により、前回決定されたSOC範囲がメモリに記憶されているか判定する(S10)。
The SOC determination process will be described in detail below with reference to FIGS. 7 to 9.
When determining the initial SOC range (a), first, it is determined by the command of the control unit 60 whether the previously determined SOC range is stored in the memory (S10).

メモリにSOC範囲が記憶されていれば、メモリからSOC範囲を読み出し、初期のSOC範囲として決定する(S11)。メモリにSOC範囲が記憶されていない場合、電圧参照法(OCV法)により決定する。 If the SOC range is stored in the memory, the SOC range is read from the memory and determined as the initial SOC range (S11). If the SOC range is not stored in the memory, it is determined by the voltage reference method (OCV method).

以下に、電圧参照法(OCV法)により初期のSOC範囲を決定する方法を説明する。
電圧参照法(OCV法)では、まず、充放電が停止されて安定した状態の二次電池30のOCV(電流が流れていない状態の開放電圧)を電圧計測部70によって計測する(S12)。ここで、電圧計測部70の計測では、セル電圧計測誤差が生じるため、セル電圧計測誤差を考慮してOCV範囲を決定する。つまり、二次電池30のOCVの計測値とセル電圧計測誤差からOCV範囲の上限値と下限値を算出する。算出したOCV範囲の上限値と下限値をもとに、図5に示すSOC−OCVの相関関係を参照することにより、SOC範囲の上限値と下限値を求めて、初期のSOC範囲R0として決定する(S13)。つまり、図9に示すように、初期のSOC範囲R0を、SOC推定誤差Mを含む幅をもったデータとして取り扱う。
The method of determining the initial SOC range by the voltage reference method (OCV method) will be described below.
In the voltage reference method (OCV method), first, the OCV (opening voltage in a state where no current is flowing) of the secondary battery 30 in a stable state after charging / discharging is stopped is measured by the voltage measuring unit 70 (S12). Here, since a cell voltage measurement error occurs in the measurement of the voltage measuring unit 70, the OCV range is determined in consideration of the cell voltage measurement error. That is, the upper limit value and the lower limit value of the OCV range are calculated from the OCV measurement value of the secondary battery 30 and the cell voltage measurement error. Based on the calculated upper and lower limits of the OCV range, the upper and lower limits of the SOC range are obtained by referring to the correlation of SOC-OCV shown in FIG. 5, and the initial SOC range R0 is determined. (S13). That is, as shown in FIG. 9, the initial SOC range R0 is treated as data having a width including the SOC estimation error M.

具体的には、図10に示すように、二次電池30のOCVが3.31Vであり、セル電圧計測誤差が例えば、10mVだった場合、OCV範囲の上限値は、3.31V+0.01V=3.32Vとなり、OCV範囲の下限値は、3.31V−0.01V=3.3Vとなる。 Specifically, as shown in FIG. 10, when the OCV of the secondary battery 30 is 3.31V and the cell voltage measurement error is, for example, 10 mV, the upper limit of the OCV range is 3.31V + 0.01V =. It becomes 3.32V, and the lower limit value of the OCV range becomes 3.31V-0.01V = 3.3V.

そして、このOCV範囲の上限値および下限値をもとに、図10に示すSOC−OCVの相関関係を参照することで、初期のSOC範囲R0は下限値が35%、上限値が65%(SOC範囲35−65%)と決定される。また、このときの初期のSOC範囲R0の平均値は50%、SOC推定誤差は±15%として決定される。そして、この初期のSOC範囲R0が、図9の(a)の状態に相当する。 Then, based on the upper limit value and the lower limit value of this OCV range, by referring to the correlation of SOC-OCV shown in FIG. 10, the initial SOC range R0 has a lower limit value of 35% and an upper limit value of 65% ( SOC range 35-65%). Further, the average value of the initial SOC range R0 at this time is determined as 50%, and the SOC estimation error is determined as ± 15%. Then, this initial SOC range R0 corresponds to the state of FIG. 9A.

次に、初期のSOC範囲R0が決定したところで、制御部60は、初期のSOC範囲R0に基づいて電流積算法処理により電流積算SOC範囲R1を決定する(S20)。
電流積算法処理は、図8に示すように、S21からS23の動作を規定周期Tで繰り返し実行する。
Next, when the initial SOC range R0 is determined, the control unit 60 determines the current integration SOC range R1 by the current integration method processing based on the initial SOC range R0 (S20).
In the current integration method processing, as shown in FIG. 8, the operations S21 to S23 are repeatedly executed in the specified cycle T.

電流積算法処理では、まず、制御部60が、電流計測部80に指令を与え、二次電池30に流れる電流を電流センサ40により検出して電流を計測する処理を実行する(S21)。そして、電流計測部80にて計測された電流値はメモリ63に記憶される。 In the current integration method processing, first, the control unit 60 gives a command to the current measurement unit 80, detects the current flowing through the secondary battery 30 by the current sensor 40, and executes a process of measuring the current (S21). Then, the current value measured by the current measuring unit 80 is stored in the memory 63.

次に、制御部60は、電流計測部80で計測した電流値Iに規定周期Tを乗算して電流積算値ZIを算出する。
そして、この算出した電流積算値ZIを、放電をプラス、充電をマイナスとして、加算又は減算することで、累積充放電量Cを算出する(S22)。このとき、累積充放電量Cには、電流計測部80の誤差が累積することに起因した累積誤差m1が含まれることになる。
Next, the control unit 60 calculates the current integrated value ZI by multiplying the current value I measured by the current measuring unit 80 by the specified period T.
Then, the cumulative charge / discharge amount C is calculated by adding or subtracting the calculated current integrated value ZI with the discharge as a plus and the charge as a minus (S22). At this time, the cumulative charge / discharge amount C includes the cumulative error m1 due to the cumulative error of the current measuring unit 80.

次に、累積充放電量Cが算出されたところで、二次電池30が放電もしくは充電により通電中であるか判定する(S23)。そして、二次電池30に対して放電もしくは充電が継続され、二次電池30に対して所定値よりも大きな電流が流れている通電中の間は、規定周期Tで、S21からS23の動作を繰り返し実行する。 Next, when the cumulative charge / discharge amount C is calculated, it is determined whether the secondary battery 30 is energized by discharging or charging (S23). Then, while the secondary battery 30 is continuously discharged or charged and a current larger than a predetermined value is flowing through the secondary battery 30, the operations S21 to S23 are repeatedly executed in the specified cycle T. do.

一方、例えば、自動車10が停止するなど二次電池30の充電もしくは放電が終了したことによって、制御部60が、二次電池30に流れる電流Iが所定値(電流が概ねゼロとみなせる値)よりも小さくなったと判定した場合、無電流状態になったとして経過時間のカウントを開始する(S24)。 On the other hand, for example, when the charging or discharging of the secondary battery 30 is completed such as when the automobile 10 is stopped, the control unit 60 determines that the current I flowing through the secondary battery 30 is higher than a predetermined value (a value at which the current can be regarded as substantially zero). When it is determined that the value has become smaller, the elapsed time is counted as if the current state has not been reached (S24).

そして、制御部60は、二次電池30の放置により、予め設定された所定時間(安定時間)が経過したかどうか判定する(S25)。ここで、安定時間は、二次電池30のOCVが安定するのを待つための時間であり、例えば、制御部60は、メモリ63に記憶された所定時間を安定時間として採用してもよく、二次電池30の温度状況により、メモリ63に記憶された温度と安定時間の相関関係から、安定時間を採用することもできる。 Then, the control unit 60 determines whether or not a preset predetermined time (stabilization time) has elapsed by leaving the secondary battery 30 unattended (S25). Here, the stabilization time is a time for waiting for the OCV of the secondary battery 30 to stabilize. For example, the control unit 60 may adopt a predetermined time stored in the memory 63 as the stabilization time. Depending on the temperature condition of the secondary battery 30, the stable time can be adopted from the correlation between the temperature stored in the memory 63 and the stable time.

経過時間が安定時間に至ると、経過時間が安定時間に至るまでの間に、積算された暗電流(例えば、車両負荷12による微弱な電力消費や自己放電などに基づいて積算された電流)を、累積充放電量Cに加え、暗電流を含んだ累積充放電量Cとして更新する(S26)。 When the elapsed time reaches the stable time, the integrated dark current (for example, the integrated current based on the weak power consumption by the vehicle load 12 or self-discharge) is calculated until the elapsed time reaches the stable time. , In addition to the cumulative charge / discharge amount C, the cumulative charge / discharge amount C including the dark current is updated (S26).

そして、累積充放電量Cが更新されたところで、累積充放電量Cを、メモリ63に記憶された満充電容量Cfで除算することにより、SOCの増減量ΔSOCを算出(C/Cf=ΔSOC)し(S27)、このSOCの増減量ΔSOCを初期のSOC範囲R0に加えることで、電流積算法による電流積算SOC範囲R1を決定する(S28)。つまり、電流積算SOC範囲R1は、図9に示すように、電流計測部80による累積誤差m1を含むと共に、SOC推定誤差Mを含む幅をもったデータとなる。なお、電流積算SOC範囲を、以後、「SOC範囲(i)」と表記する。 Then, when the cumulative charge / discharge amount C is updated, the cumulative charge / discharge amount C is divided by the full charge capacity Cf stored in the memory 63 to calculate the increase / decrease amount ΔSOC of the SOC (C / Cf = ΔSOC). Then, by adding the increase / decrease amount ΔSOC of this SOC to the initial SOC range R0, the current integration SOC range R1 by the current integration method is determined (S28). That is, as shown in FIG. 9, the current integrated SOC range R1 is data having a width including the cumulative error m1 by the current measuring unit 80 and the SOC estimation error M. The current integrated SOC range is hereinafter referred to as "SOC range (i)".

具体的には、図11に示すように、初期のSOC範囲R0の下限値が35%、上限値が65%であり、そのときのSOC範囲R0の平均値が50%、SOC推定誤差が±15%であると、電流積算法により算出されたΔSOCが15%、電流積算法による累積誤差が±3%の場合、SOC範囲(i)R1は、下限値が50%±3%、上限値が80%±3%となる。つまり、SOC範囲(i)R1は、47−83%であり、平均値65%、その時のSOC推定誤差は±18%となる。そして、このSOC範囲(i)R1が、図9の(b)の状態に相当する。 Specifically, as shown in FIG. 11, the lower limit value of the initial SOC range R0 is 35%, the upper limit value is 65%, the average value of the SOC range R0 at that time is 50%, and the SOC estimation error is ±. When it is 15%, when the ΔSOC calculated by the current integration method is 15% and the cumulative error by the current integration method is ± 3%, the lower limit value of the SOC range (i) R1 is 50% ± 3% and the upper limit value. Is 80% ± 3%. That is, the SOC range (i) R1 is 47-83%, the average value is 65%, and the SOC estimation error at that time is ± 18%. Then, this SOC range (i) R1 corresponds to the state of (b) in FIG.

次に、制御部60は、SOC範囲(i)R1が決定された段階における二次電池30の電圧参照SOC範囲R2を電圧参照法処理(OCV法処理)により決定する(S30)。
電圧参照法処理では、初期のSOC範囲R0を求めるのと同様に、制御部60の指令により、充放電が停止されて安定した状態の二次電池30のOCVを電圧計測部70によって計測し、図5に示すSOC−OCVの相関関係を参照することによりOCV範囲を決定する。そして、OCV範囲が領域IからVのうちのどの領域に属するか判定し、判定された領域の上限から下限までの範囲を電圧参照SOC範囲R2として決定する。なお、以後、電圧参照SOC範囲R2を、「SOC範囲(v)」と表記する。
Next, the control unit 60 determines the voltage reference SOC range R2 of the secondary battery 30 at the stage where the SOC range (i) R1 is determined by the voltage reference method processing (OCV method processing) (S30).
In the voltage reference method processing, in the same manner as obtaining the initial SOC range R0, the voltage measuring unit 70 measures the OCV of the secondary battery 30 in a stable state in which charging / discharging is stopped by the command of the control unit 60. The OCV range is determined by referring to the SOC-OCV correlation shown in FIG. Then, it is determined which region of the regions I to V the OCV range belongs to, and the range from the upper limit to the lower limit of the determined region is determined as the voltage reference SOC range R2. Hereinafter, the voltage reference SOC range R2 will be referred to as “SOC range (v) ”.

具体的には、図12に示すように、二次電池30のOCVが3.34Vであり、セル電圧計測誤差が例えば、10mVだった場合、OCV範囲の上限値は、3.34V+0.01V=3.35Vとなり、OCV範囲の下限値は、3.34V−0.01V=3.33Vとなる。 Specifically, as shown in FIG. 12, when the OCV of the secondary battery 30 is 3.34V and the cell voltage measurement error is, for example, 10 mV, the upper limit of the OCV range is 3.34V + 0.01V =. It becomes 3.35V, and the lower limit value of the OCV range becomes 3.34V-0.01V = 3.33V.

そして、このOCV範囲の上限値および下限値をもとに、図12に示すSOC−OCVの相関関係を参照することで、SOC範囲(v)R2は、67−98%と決定され、SOC範囲(v)R2の平均値82.5%、SOC推定誤差±15.5%と決定される。そして、このSOC範囲(v)R2が、図9の(c)の状態に相当する。 Then, by referring to the correlation of SOC-OCV shown in FIG. 12 based on the upper limit value and the lower limit value of this OCV range, the SOC range (v) R2 is determined to be 67-98%, and the SOC range is determined. (V) It is determined that the average value of R2 is 82.5% and the SOC estimation error is ± 15.5%. Then, this SOC range (v) R2 corresponds to the state of (c) in FIG.

次に、SOC範囲(i)R1と、SOC範囲(v)R2とが決定されたところで、これら2つのSOC範囲が重複するか判定する(S14)。 Next, when the SOC range (i) R1 and the SOC range (v) R2 are determined, it is determined whether these two SOC ranges overlap (S14).

SOC範囲(i)R1と、SOC範囲(v)R2とが重複する場合、その重複部分を新たなSOC範囲R3として決定する(S15)。つまり、図13SOC範囲(i)R1の47−83%と、SOC範囲(v)R2の67−98%との重複範囲は、図9および図13に示すように、67−83%で、新たなSOC範囲R3の平均値は、75%、推定誤差は±8%となる。そして、この新たなSOC範囲R3が、図9の(d)の状態に相当する。 When the SOC range (i) R1 and the SOC range (v) R2 overlap, the overlapping portion is determined as a new SOC range R3 (S15). That is, the overlap range between 47-83% of the SOC range (i) R1 in FIG. 13 and 67-98% of the SOC range (v) R2 is 67-83%, which is new as shown in FIGS. 9 and 13. The average value of the SOC range R3 is 75%, and the estimation error is ± 8%. Then, this new SOC range R3 corresponds to the state of (d) in FIG.

一方、例えば、SOC決定処理の電流積算処理において、累積誤差m1が大きくなるなどして、SOC範囲(i)R1と、SOC範囲(v)R2が重複しない場合は、直近に得られた電圧参照SOC範囲であるSOC範囲(v)R2を新たなSOC範囲R3として決定する(S16)。 On the other hand, for example, in the current integration process of the SOC determination process, if the SOC range (i) R1 and the SOC range (v) R2 do not overlap due to a large cumulative error m1, refer to the most recently obtained voltage. The SOC range (v) R2, which is the SOC range, is determined as the new SOC range R3 (S16).

そして、このようにして決定されたSOC範囲をメモリに記憶し、SOC決定処理は終了する。そして、このSOC決定処理は、規定の周期で繰り返し実行される。 Then, the SOC range determined in this way is stored in the memory, and the SOC determination process ends. Then, this SOC determination process is repeatedly executed at a predetermined cycle.

すなわち、例えば、電流積算による累積誤差をリセットするために、電圧参照法(OCV法)を用いることで、SOCの値を、幅をもった範囲とせず、重複範囲を新たなSOC範囲として取り扱わない場合には、電圧参照法でリセットすると、新たなSOCが82.5%、推定誤差が±15。5%(最大31%)となってしまうところ、本実施形態によると、SOC範囲が67−83%、平均値75%でその推定誤差が±8%(最大16%)となる。つまり、本実施形態によると、SOCの値を、幅を持ったSOC範囲として採用し、2つの方法によって得られたSOC範囲の重複部分を新たなSOC範囲として捉えているから、上記のケースの場合によると、電圧参照法(OCV法)でリセットする場合に比べて、SOCの推定誤差を約半分にすることができ、SOC推定精度を飛躍的に向上させることができる。 That is, for example, by using the voltage reference method (OCV method) to reset the cumulative error due to current integration, the SOC value is not set to a range having a width, and the overlapping range is not treated as a new SOC range. In this case, when reset by the voltage reference method, the new SOC becomes 82.5% and the estimation error becomes ± 15.5% (maximum 31%). However, according to this embodiment, the SOC range is 67-. At 83% and an average value of 75%, the estimation error is ± 8% (maximum 16%). That is, according to the present embodiment, the SOC value is adopted as the SOC range having a width, and the overlapping portion of the SOC range obtained by the two methods is regarded as a new SOC range. In some cases, the SOC estimation error can be halved as compared with the case of resetting by the voltage reference method (OCV method), and the SOC estimation accuracy can be dramatically improved.

また、仮に、SOC決定処理の電流積算処理において、累積誤差が大きくなるなどして、SOC範囲(i)R1と、SOC範囲(v)R2とが重複しない場合には、SOC範囲(v)R2を新たなSOC範囲として決定することで、その累積誤差を解消することができる。 Further, if the SOC range (i) R1 and the SOC range (v) R2 do not overlap due to a large cumulative error in the current integration process of the SOC determination process, the SOC range (v) R2 By determining as a new SOC range, the cumulative error can be eliminated.

さらに、例えば、電圧参照法のみ用いてリセットする場合、電圧参照法を適用できる領域が、電圧傾斜領域I,III,Vに限られてしまうところ、本実施形態によると、電圧傾斜領域I,III,Vのみに限られず、電圧平坦領域II,IVを含む全ての領域においてSOC決定処理を実施することができるから、SOC決定処理の実施頻度を向上させることができ、SOC推定精度をさらに向上させることができる。 Further, for example, when resetting using only the voltage reference method, the area to which the voltage reference method can be applied is limited to the voltage gradient areas I, III, V. However, according to the present embodiment, the voltage gradient regions I, III Since the SOC determination process can be performed not only in V and V but also in all the regions including the voltage flat regions II and IV, the frequency of the SOC determination process can be improved and the SOC estimation accuracy can be further improved. be able to.

ところで、SOC決定処理において、SOC範囲(i)R1と、SOC範囲(v)R2との重複部分を新たなSOC範囲R3として決定する際に、電流積算法処理によって算出されるSOC範囲(i)R1と、電圧参照法処理によって算出するSOC範囲(v)R2とがSOC−OCV相関関係において、同一の電圧平坦領域に属する場合がある。このような場合、SOC範囲(i)R1と、SOC範囲(v)R2とにより、新たなSOC範囲R3を絞り込むことができるものの、重複範囲が大きくなり、その結果、新たに決定されるSOC範囲R3が大きくなってしまう。 By the way, in the SOC determination process, when the overlapping portion between the SOC range (i) R1 and the SOC range (v) R2 is determined as a new SOC range R3, the SOC range (i) calculated by the current integration method processing. R1 and the SOC range (v) R2 calculated by the voltage reference method processing may belong to the same voltage flat region in the SOC-OCV correlation. In such a case, although the new SOC range R3 can be narrowed down by the SOC range (i) R1 and the SOC range (v) R2, the overlapping range becomes large, and as a result, the newly determined SOC range is obtained. R3 becomes large.

具体的には、SOC決定処理の電流積算処理過程における二次電池30のOCVが電圧平坦領域IIに属しており、例えば、オルターネータによる発電量と、車両負荷12による電力消費とがほぼ同じ場合、SOC範囲が長時間の間、同一の電圧平坦領域IIに属することとなる。
そこで、本実施形態では、制御部60は、SOC領域変更処理を行うことができるようになっている。
Specifically, when the OCV of the secondary battery 30 in the current integration process of the SOC determination process belongs to the voltage flat region II, for example, the amount of power generated by the alternator and the power consumption by the vehicle load 12 are almost the same. , The SOC range will belong to the same voltage flat region II for a long time.
Therefore, in the present embodiment, the control unit 60 can perform the SOC area change process.

以下に、SOC領域変更処理について、図14を参照しつつ、説明する。
SOC領域変更処理は、電流積算法処理においてSOC範囲(i)R1が算出され、無電流状態になってからの経過時間が安定時間に至ったところで、制御部60が、電圧計測部70に指令を与え、電圧計測部70が各二次電池30の電圧を計測する処理を実行する(S31)。
そして、電圧が所定の期間の間、同一の電圧平坦領域に属しているか判定し(S32)、SOC範囲(i)R1が、同一の電圧平坦領域に属していない場合には、SOC領域変更処理を終了する。
The SOC area change process will be described below with reference to FIG.
In the SOC area change processing, when the SOC range (i) R1 is calculated in the current integration method processing and the elapsed time from the non-current state reaches the stable time, the control unit 60 commands the voltage measurement unit 70. Is given, and the voltage measuring unit 70 executes a process of measuring the voltage of each secondary battery 30 (S31).
Then, it is determined whether the voltage belongs to the same voltage flat region for a predetermined period (S32), and if the SOC range (i) R1 does not belong to the same voltage flat region, the SOC region change process is performed. To finish.

一方、SOC範囲(i)R1が、所定の期間の間、同一の電圧平坦領域に属している場合には、SOC範囲を現在属している電圧平坦領域とは異なる領域に属するように二次電池30を充放電させる(S33)。 On the other hand, when the SOC range (i) R1 belongs to the same voltage flat region for a predetermined period, the secondary battery so that the SOC range belongs to a region different from the current voltage flat region. 30 is charged and discharged (S33).

具体的には、SOC決定処理の電流積算処理中に計測されたOCVが、電圧平坦領域IIに属しており、所定の期間の間、OCVが同一の電圧平坦領域IIに属している場合には、制御部60が、図示しない放電回路によって二次電池30を放電させたり、ECU13を通じてオルターネータにより二次電池30を充電したりする。 Specifically, when the OCV measured during the current integration process of the SOC determination process belongs to the voltage flat region II and the OCV belongs to the same voltage flat region II for a predetermined period, The control unit 60 discharges the secondary battery 30 by a discharge circuit (not shown), or charges the secondary battery 30 by an alternator through the ECU 13.

つまり、意図的に二次電池30に対して充放電を行うことで、電圧を、現在属している低変化領域とは異なる領域に変化させ、異なる領域に変化した電圧を基に電圧参照法処理によってSOC範囲(v)R2を決定するから、新たなSOC範囲がより絞り込まれることになり、SOC範囲の推定精度をさらに向上させることができる。
なお、充放電した結果、異なる領域に変化しない場合においても、SOC範囲(i)R1は充放電により移動する。そのため、移動後のSOC範囲(i)R1とSOC範囲(v)R2は、同じ範囲を示すことはなく、SOC範囲(i)R1が移動した分、新たなSOC範囲がより絞り込まれる。すなわち、充放電によって必ずしも異なる領域に変化しなくても、SOC範囲の推定精度を向上させることができる。
That is, by intentionally charging and discharging the secondary battery 30, the voltage is changed to a region different from the low change region to which it currently belongs, and the voltage reference method processing is performed based on the voltage changed in the different region. Since the SOC range (v) R2 is determined by the above, the new SOC range is further narrowed down, and the estimation accuracy of the SOC range can be further improved.
Even if the area does not change as a result of charging / discharging, the SOC range (i) R1 moves by charging / discharging. Therefore, the SOC range (i) R1 and the SOC range (v) R2 after the movement do not show the same range, and the new SOC range is further narrowed down by the movement of the SOC range (i) R1. That is, the estimation accuracy of the SOC range can be improved even if the area does not necessarily change due to charging / discharging.

ところで、二次電池における開放電圧(OCV:Open Circuit Voltage)と充電状態(SOC:State Of Charge)との間には、図5に示すSOC−OCV相関関係があるものの、二次電池のOCVとSOCとの対応関係が、開放電圧の検出前における二次電池の充放電の履歴によって影響を受けることが知られている。 By the way, although there is an SOC-OCV correlation between the open circuit voltage (OCV) in the secondary battery and the state of charge (SOC) in the secondary battery, it is the same as the OCV in the secondary battery. It is known that the correspondence with SOC is affected by the charge / discharge history of the secondary battery before the detection of the open circuit voltage.

具体的には、図15に示すように、二次電池30の電流が放電傾向であった場合の放電SOC−OCV相関関係L2が、充電傾向であった場合の充電SOC−OCV相関関係L1よりもOCVに対するSOCが高くなる傾向にある。 Specifically, as shown in FIG. 15, the discharge SOC-OCV correlation L2 when the current of the secondary battery 30 tends to discharge is more than the charge SOC-OCV correlation L1 when the current of the secondary battery 30 tends to be charged. Also tends to have a high SOC for OCV.

しかしながら、一般に、二次電池における充放電が、電流値や通電時間など様々な要因によって決定されるため、本実施形態のように、車両などに搭載されるバッテリモジュールにおいて、充放電の履歴を推定することは困難であり、充放電の履歴によっては、実際のSOCを含まない範囲に逸脱したSOC範囲を推定してしまう虞がある。 However, in general, the charge / discharge in the secondary battery is determined by various factors such as the current value and the energization time. Therefore, as in the present embodiment, the charge / discharge history is estimated in the battery module mounted on the vehicle or the like. It is difficult to do so, and depending on the charge / discharge history, there is a risk of estimating the SOC range that deviates from the range that does not include the actual SOC.

そこで、本実施形態は、図15および図16に示すように、二次電池30の放電の傾向を示す放電SOC−OCV相関関係L2と、充電の傾向を示す充電SOC−OCV相関関係L1とを予めメモリに記憶しておく。そして、SOC−OCVの相関関係を参照する際に、SOC範囲の上限値は、放電の傾向を示す放電SOC−OCV関係を参照することで推定でき、SOC範囲の下限値は、充電の傾向を示す充電SOC−OCV関係を参照することで推定できるようになっている。 Therefore, in the present embodiment, as shown in FIGS. 15 and 16, the discharge SOC-OCV correlation L2 indicating the discharge tendency of the secondary battery 30 and the charge SOC-OCV correlation L1 indicating the charge tendency are provided. Store in memory in advance. When referring to the SOC-OCV correlation, the upper limit of the SOC range can be estimated by referring to the discharge SOC-OCV relationship that indicates the tendency of discharge, and the lower limit of the SOC range indicates the tendency of charging. It can be estimated by referring to the charging SOC-OCV relationship shown.

つまり、例えば、二次電池30のOCVの傾向が放電側になっているにも関わらず、SOC範囲が実際の値よりも低い値に決定されたり、二次電池30のOCVの傾向が充電側になっているにも関わらず、SOC範囲が実際の値よりも高い値に決定されることを防ぐことができる。 That is, for example, although the OCV tendency of the secondary battery 30 is on the discharge side, the SOC range is determined to be lower than the actual value, or the OCV tendency of the secondary battery 30 is on the charge side. Despite the fact that, it is possible to prevent the SOC range from being determined to be higher than the actual value.

具体的には、図16に示すように、制御部60の指令により、電圧計測部70によって計測されたOCVが3.27Vで、セル電圧計測誤差が10mVの場合、OCVの上限値は、放電SOC−OCV相関関係により、35%と決定され、OCVの下限値は、充電SOC−OCV相関関係により、19%と決定される。 Specifically, as shown in FIG. 16, when the OCV measured by the voltage measuring unit 70 is 3.27V and the cell voltage measurement error is 10 mV according to the command of the control unit 60, the upper limit of the OCV is discharge. The SOC-OCV correlation determines 35%, and the lower limit of OCV is determined to be 19% by the charging SOC-OCV correlation.

これにより、例えば、放電SOC−OCV相関関係と、充電SOC−OCV相関関係との平均値であるSOC−OCV相関関係を参照する場合に比べて、SOC範囲が実際のSOCを含まない範囲に逸脱してしまうことを防ぐことができる。 As a result, for example, the SOC range deviates from the range not including the actual SOC as compared with the case of referring to the SOC-OCV correlation which is the average value of the discharge SOC-OCV correlation and the charge SOC-OCV correlation. It is possible to prevent this from happening.

<実施形態2>
次に、実施形態2について図17および図18を参照して説明する。
実施形態2のSOC決定処理における電圧参照SOC範囲の決定方法は、実施形態1と異なり、二次電池30の充電中もしくは放電中における電圧および電流に基づいてSOCを決定するものであって、実施形態1と共通する構成、作用、および効果については重複するため、その説明を省略する。また、実施形態1と同じ構成については同一の符号を用いるものとする。
<Embodiment 2>
Next, the second embodiment will be described with reference to FIGS. 17 and 18.
The method for determining the voltage reference SOC range in the SOC determination process of the second embodiment is different from that of the first embodiment in that the SOC is determined based on the voltage and current during charging or discharging of the secondary battery 30. Since the configurations, actions, and effects common to those of the first embodiment are duplicated, the description thereof will be omitted. Further, the same reference numerals are used for the same configurations as in the first embodiment.

ところで、二次電池30は、実施形態1に示す開放電圧(OCV:Open Circuit Voltage)と充電状態(SOC:State Of Charge)との間の相関関係以外にも、充電電圧V1と残存容量RCとの間、放電電圧V2と残存容量RCとの間に、図17および図18に示すように、C−V相関関係がある。ここで、残存容量RCとは、二次電池30が所定の放電終止電圧まで低下する間に電池から放電できる電気量であり、電流と時間の積からなるアンペア時[Ah]で表される。

By the way, in the secondary battery 30, in addition to the correlation between the open circuit voltage (OCV: Open Circuit Voltage) and the charging state (SOC: State Of Charge) shown in the first embodiment, the charging voltage V1 and the remaining capacity RC are used. during, between the discharge voltage V2 and the remaining capacity RC, as shown in FIGS. 17 and 18, R C-V correlation. Here, the remaining capacity RC is the amount of electricity that can be discharged from the secondary battery 30 while the secondary battery 30 drops to a predetermined end-of-discharge voltage, and is represented by amp-hour [Ah], which is the product of current and time.

そこで、この充電電圧V1と残存容量RCとの間のRC−V1相関関係に対して、満充電状態に近い状態であるか否か判定するための基準となる電流閾値および電圧閾値を設定し、電流計測部70において計測された電流および電圧を基に二次電池30の残存容量RCの状態を決定する。そして、決定された残存容量RCを、満充電容量Cfで除算することにより、二次電池30のSOC範囲の状態を決定する。 Therefore, for the RC-V1 correlation between the charging voltage V1 and the remaining capacity RC, a current threshold value and a voltage threshold value as a reference for determining whether or not the state is close to the fully charged state are set. The state of the remaining capacity RC of the secondary battery 30 is determined based on the current and voltage measured by the current measuring unit 70. Then, the state of the SOC range of the secondary battery 30 is determined by dividing the determined remaining capacity RC by the full charge capacity Cf.

以下に、充電中の二次電池30におけるSOC範囲の決定方法ついて説明する。
二次電池30の充電中において、電流計測部80によって計測された電流が電流閾値よりも小さく、かつ、電圧計測部70によって計測された電圧が電圧閾値よりも高い場合には、二次電池30の残存容量RCが満充電状態に近い状態であると決定し、二次電池30のSOC範囲が満充電SOC範囲であると決定する。
The method for determining the SOC range of the secondary battery 30 being charged will be described below.
During charging of the secondary battery 30, if the current measured by the current measuring unit 80 is smaller than the current threshold value and the voltage measured by the voltage measuring unit 70 is higher than the voltage threshold value, the secondary battery 30 It is determined that the remaining capacity RC of the secondary battery 30 is close to the fully charged state, and the SOC range of the secondary battery 30 is determined to be the fully charged SOC range.

また、二次電池30の充電中において、電流計測部80によって計測された電流が電流閾値よりも大きく、かつ、電圧計測部70によって計測された電圧が電圧閾値よりも低い場合には、二次電池30の残存容量RCが満充電状態ではないと決定し、二次電池30のSOC範囲が満充電SOC範囲とは異なる非満充電SOC範囲であると決定する。 Further, during charging of the secondary battery 30, if the current measured by the current measuring unit 80 is larger than the current threshold value and the voltage measured by the voltage measuring unit 70 is lower than the voltage threshold value, the secondary battery 30 is charged. It is determined that the remaining capacity RC of the battery 30 is not in the fully charged state, and that the SOC range of the secondary battery 30 is a non-fully charged SOC range different from the fully charged SOC range.

具体的には、図17に示すように、25℃における充電電圧V1と残存容量RCとの間のRC−V1相関関係において、電流閾値を60[A]、電圧閾値SVを3.45[V]とした場合、二次電池30の電流が電流閾値よりも小さいにも関わらず、二次電池30の電圧が電圧閾値よりも高い時には、二次電池30の残存容量RCが満充電状態から約8Ah以内の満充電に近い状態R10であると決定される。 Specifically, as shown in FIG. 17, in the RC-V1 correlation between the charging voltage V1 and the remaining capacity RC at 25 ° C., the current threshold is 60 [A] and the voltage threshold SV is 3.45 [V]. ], When the voltage of the secondary battery 30 is higher than the voltage threshold even though the current of the secondary battery 30 is smaller than the current threshold, the remaining capacity RC of the secondary battery 30 is about from the fully charged state. It is determined that the state R10 is close to full charge within 8 Ah.

つまり、例えば、充電中に計測した電流が58[A]で、かつ、電圧が3.47[V](二次電池30の電流が電流閾値よりも小さいにも関わらず、二次電池30の電圧が電圧閾値よりも高い)とすると、二次電池30の残存容量RCが満充電状態から約8Ah以内の満充電に近い状態であると決定される。そして、二次電池30のSOC範囲は、例えば90%を超える満充電SOC範囲であると決定される。 That is, for example, the current measured during charging is 58 [A] and the voltage is 3.47 [V] (although the current of the secondary battery 30 is smaller than the current threshold, the secondary battery 30 If the voltage is higher than the voltage threshold), it is determined that the remaining capacity RC of the secondary battery 30 is close to full charge within about 8 Ah from the fully charged state. Then, the SOC range of the secondary battery 30 is determined to be, for example, a fully charged SOC range exceeding 90%.

また、例えば、充電中に計測した電流が62[A]で、電圧が3.40[V](二次電池30の電流が電流閾値よりも大きいにも関わらず、二次電池30の電圧が電圧閾値よりも低い)とすると、二次電池30の残存容量RCが満充電状態とは異なる非満充電状態(満充電状態ではない)R11であると決定し、二次電池30のSOC範囲が満充電SOC範囲とは異なる範囲である90%以下の非満充電SOC範囲であると決定される。 Further, for example, the current measured during charging is 62 [A] and the voltage is 3.40 [V] (although the current of the secondary battery 30 is larger than the current threshold, the voltage of the secondary battery 30 is high. If it is lower than the voltage threshold), it is determined that the remaining capacity RC of the secondary battery 30 is a non-fully charged state (not a fully charged state) R11 different from the fully charged state, and the SOC range of the secondary battery 30 is set. It is determined that the non-fully charged SOC range is 90% or less, which is a range different from the fully charged SOC range.

なお、充電中に計測された電流が電流閾値よりも小さく、かつ、計測された電圧が電圧閾値よりも低い場合や、充電中に計測された電流が電流閾値よりも大きく、かつ、計測された電圧が電圧閾値よりも高い場合は、OCVがいずれの状態であるか決定できず、SOC範囲を決定することができないため、SOC決定処理では、SOC範囲(i)R1を新たなSOC範囲として決定する。 When the current measured during charging is smaller than the current threshold and the measured voltage is lower than the voltage threshold, or when the current measured during charging is larger than the current threshold and measured. When the voltage is higher than the voltage threshold value, it is not possible to determine which state the OCV is in, and the SOC range cannot be determined. Therefore, in the SOC determination process, the SOC range (i) R1 is determined as a new SOC range. do.

次に、放電中の二次電池30におけるSOC範囲の決定方法ついて説明する。
二次電池30が放電中の場合、電流計測部80によって計測された電流が電流閾値よりも小さく、かつ、電圧計測部70によって計測された電圧が電圧閾値よりも低い時には、二次電池30の残存容量RCが放電終止状態に近い状態であると決定し、二次電池30のSOC範囲が放電終止SOC範囲であると決定する。
Next, a method of determining the SOC range in the secondary battery 30 being discharged will be described.
When the secondary battery 30 is discharging, when the current measured by the current measuring unit 80 is smaller than the current threshold and the voltage measured by the voltage measuring unit 70 is lower than the voltage threshold, the secondary battery 30 It is determined that the remaining capacity RC is in a state close to the discharge end state, and that the SOC range of the secondary battery 30 is the discharge end SOC range.

また、二次電池30の放電中において、電流計測部80によって計測された電流が電流閾値よりも大きく、かつ、電圧計測部70によって計測された電圧が電圧閾値よりも高い時には、二次電池30の残存容量RCが放電終止状態ではないと決定し、二次電池30のSOC範囲が放電終止SOC範囲とは異なる非放電終止SOC範囲であると決定する。 Further, when the current measured by the current measuring unit 80 is larger than the current threshold value and the voltage measured by the voltage measuring unit 70 is higher than the voltage threshold value while the secondary battery 30 is being discharged, the secondary battery 30 is discharged. It is determined that the remaining capacity RC of the secondary battery 30 is not in the discharge end state, and the SOC range of the secondary battery 30 is a non-discharge end SOC range different from the discharge end SOC range.

具体的には、図18に示すように、0℃における放電電圧V2と残存容量RCとの間のRC−V2相関関係において、電流閾値を55[A]、電圧閾値SVを2.8[V]とした場合、二次電池30の電流が電流閾値よりも小さいにも関わらず、二次電池30の電圧が電圧閾値よりも低い時には、二次電池30の残存容量RCが放電終止状態から約13Ah以内の放電終止状態R20に近い状態であると決定される。 Specifically, as shown in FIG. 18, in the RC-V2 correlation between the discharge voltage V2 at 0 ° C. and the residual capacity RC, the current threshold is 55 [A] and the voltage threshold SV is 2.8 [V]. ], When the voltage of the secondary battery 30 is lower than the voltage threshold even though the current of the secondary battery 30 is smaller than the current threshold, the remaining capacity RC of the secondary battery 30 is about from the discharge end state. It is determined that the state is close to the discharge termination state R20 within 13 Ah.

つまり、例えば、放電中に計測した電流が54[A]で、電圧が2.6[V](二次電池30の電流が電流閾値よりも小さいにも関わらず、二次電池30の電圧が電圧閾値よりも低い)とすると、二次電池30の残存容量RCが放電終止状態から約13Ah以内の放電終止状態に近い状態であると決定される。そして、二次電池30のSOC範囲が、例えば17%を下回る放電終止SOC範囲であると決定される。 That is, for example, the current measured during discharging is 54 [A], and the voltage is 2.6 [V] (although the current of the secondary battery 30 is smaller than the current threshold, the voltage of the secondary battery 30 is high. If it is lower than the voltage threshold), it is determined that the remaining capacity RC of the secondary battery 30 is close to the discharge end state within about 13 Ah from the discharge end state. Then, it is determined that the SOC range of the secondary battery 30 is, for example, a discharge termination SOC range of less than 17%.

そして、例えば、放電中に計測した電流が57[A]で、電圧が3.0[V](二次電池30の電流が電流閾値よりも大きいにも関わらず、二次電池30の電圧が電圧閾値よりも高い)とすると、二次電池30の残存容量RCが放電終止状態とは異なる非放電終止状態(放電終止状態ではない)R21と決定し、二次電池30のSOC範囲が放電終止SOC範囲とは異なる範囲である17%以上の非放電終止SOC範囲であると決定される。 Then, for example, the current measured during discharging is 57 [A], and the voltage is 3.0 [V] (although the current of the secondary battery 30 is larger than the current threshold, the voltage of the secondary battery 30 is high. If it is higher than the voltage threshold), the remaining capacity RC of the secondary battery 30 is determined to be a non-discharge end state (not the discharge end state) R21 different from the discharge end state, and the SOC range of the secondary battery 30 is the discharge end state. It is determined that the non-discharge termination SOC range is 17% or more, which is a range different from the SOC range.

なお、放電中に計測された電流が電流閾値よりも小さく、かつ、計測された電圧が電圧閾値よりも高い場合や、充電中に計測された電流が電流閾値よりも大きく、かつ、計測された電圧が電圧閾値よりも低い場合は、OCVがいずれの状態であるか決定できず、SOC範囲も決定することができないため、SOC決定処理では、SOC範囲(i)R1を新たなSOC範囲として決定する。 When the current measured during discharging is smaller than the current threshold and the measured voltage is higher than the voltage threshold, or when the current measured during charging is larger than the current threshold and measured. When the voltage is lower than the voltage threshold value, it is not possible to determine which state the OCV is in, and the SOC range cannot be determined. Therefore, in the SOC determination process, the SOC range (i) R1 is determined as a new SOC range. do.

すなわち、本実施形態によると、充電電圧V1と残存容量RCとの間のRC−V1相関関係に基づいて二次電池30のSOC範囲の状態を決定しているものの、その基準は、電流閾値および電圧閾値となっているから、充電中の電流と電圧を計測するだけで、二次電池30のSOC範囲が、満充電SOC範囲や非満充電SOC範囲であるか決定することができる。 That is, according to the present embodiment, the state of the SOC range of the secondary battery 30 is determined based on the RC-V1 correlation between the charging voltage V1 and the remaining capacity RC, but the reference is the current threshold and the current threshold. Since it is the voltage threshold, it is possible to determine whether the SOC range of the secondary battery 30 is the fully charged SOC range or the non-fully charged SOC range only by measuring the current and the voltage during charging.

また、二次電池30が放電中の場合においても、電流閾値および電圧閾値を基準に、放電中の電流と電圧を計測するだけで、二次電池30のSOC範囲が、放電終止SOC範囲や非放電終止SOC範囲であるか決定することができる。
すなわち、満充電SOC範囲、非満充電SOC範囲、放電終止SOC範囲または非放電終止SOC範囲であるか決定できる場合には、SOCの推定誤差を解消し、SOC推定精度を向上させることができる。
Further, even when the secondary battery 30 is being discharged, the SOC range of the secondary battery 30 can be changed to the discharge termination SOC range or non-discharge end SOC range by simply measuring the current and voltage during discharge with reference to the current threshold and the voltage threshold. It can be determined whether the discharge end SOC range is reached.
That is, when it is possible to determine whether the SOC is in the fully charged SOC range, the non-fully charged SOC range, the discharge end SOC range, or the non-discharge end SOC range, the SOC estimation error can be eliminated and the SOC estimation accuracy can be improved.

<他の実施形態>
本明細書で開示される技術は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような種々の態様も含まれる。
<Other embodiments>
The techniques disclosed herein are not limited to the embodiments described above and in the drawings, and include, for example, various aspects such as:

(1)上記実施形態では、蓄電素子の一例としてリン酸鉄系の正極活物質を使用したリチウムイオン二次電池を示した。しかしながら、これに限らず、蓄電素子としては、リチウムイオン二次電池以外の二次電池や、電気化学現象を伴うキャパシタ等でもよく、SOC−V相関関係において電圧平坦領域を有するものに好適であり、その電圧平坦領域が二カ所にあるものに限らず、1種類の電圧平坦領域のみ有するタイプの蓄電素子であってもよいし、3種類以上の電圧平坦領域を有するタイプの蓄電素子であってもよい。 (1) In the above embodiment, a lithium ion secondary battery using an iron phosphate-based positive electrode active material is shown as an example of a power storage element. However, the storage element is not limited to this, and the storage element may be a secondary battery other than the lithium ion secondary battery, a capacitor with an electrochemical phenomenon, or the like, and is suitable for one having a voltage flat region in the SOC-V correlation. The voltage flat region is not limited to two, and may be a type of power storage element having only one type of voltage flat region, or a type of power storage element having three or more types of voltage flat regions. May be good.

(2)上記実施形態では、制御部60の一例としてCPU61を例示した。しかしながら、これに限らず、制御部は、複数のCPUを備える構成や、ASIC(Application Specific Integrated Circuit)などのハード回路でもよく、マイコン、FPGA、MPU、また、それらが組み合わされた構成でもよい。つまり、制御部は、SOC決定処理を、ソフトウェアまたはハード回路を利用して実行するものであればよい。 (2) In the above embodiment, the CPU 61 is illustrated as an example of the control unit 60. However, the present invention is not limited to this, and the control unit may have a configuration including a plurality of CPUs, a hardware circuit such as an ASIC (Application Specific Integrated Circuit), a microcomputer, an FPGA, an MPU, or a configuration in which they are combined. That is, the control unit may execute the SOC determination process by using software or a hardware circuit.

(3)上記実施形態では、二次電池30のOCVがSOC−OCV相関関係においてどの領域にあるかを判定する際に、測定したOCVから領域を判断している。しかしながら、これに限らず、測定したOCVからSOCを求め、求めたSOCから領域を判定する構成にしてもよい。 (3) In the above embodiment, when determining in which region the OCV of the secondary battery 30 is in the SOC-OCV correlation, the region is determined from the measured OCV. However, the present invention is not limited to this, and the SOC may be obtained from the measured OCV and the region may be determined from the obtained SOC.

(4)上記実施形態では、第1の方法として、計測した電流値Iから算出する電流積算法を用い、第2の方法として電圧参照法(OCV法)や充放電中の電圧および電流を利用したSOC推定法を用いた構成とした。しかしながら、これに限らず、第1の方法として、電流値が一定と見なせる場合の時間積算法などを用いてもよく、第2の方法としては、カルマンフィルタを用いたOCV法などを用いてもよい。 (4) In the above embodiment, the current integration method calculated from the measured current value I is used as the first method, and the voltage reference method (OCV method) or the voltage and current during charging / discharging are used as the second method. The configuration was made using the SOC estimation method. However, the present invention is not limited to this, and as the first method, a time integration method or the like when the current value can be regarded as constant may be used, and as the second method, an OCV method using a Kalman filter or the like may be used. ..

(5)上記実施形態では、SOC範囲(i)R1とSOC範囲(v)R2との2つのSOC範囲から新たなSOC範囲R3を決定する構成とした。しかしながら、これに限らず、2つのSOC範囲から新たなSOC範囲を決定し、新たなSOC範囲と、他の方法によって算出されたSOC範囲とから、さらに新たなSOC範囲を推定する構成にしてもよい。 (5) In the above embodiment, a new SOC range R3 is determined from the two SOC ranges of the SOC range (i) R1 and the SOC range (v) R2. However, the present invention is not limited to this, and a new SOC range is determined from the two SOC ranges, and a new SOC range is estimated from the new SOC range and the SOC range calculated by another method. good.

(6)上記実施形態では、2つのSOC範囲を決定し、それらの重複範囲を新たなSOC範囲R3とする構成とした。しかしながら、これに限らず、2つのSOC範囲とは異なる範囲を特定し、これら2つの異なる範囲ではない範囲を特定することにより、SOC範囲を特定してもよい。 (6) In the above embodiment, two SOC ranges are determined, and the overlapping range thereof is set as a new SOC range R3. However, the SOC range may be specified by specifying a range different from the two SOC ranges and specifying a range other than these two different ranges.

10:自動車(「車両」の一例)
12:車両負荷
13:車両側電子制御部
20:バッテリモジュール(「蓄電素子モジュール」の一例)
30:二次電池(「蓄電素子」の一例)
50:電池管理装置(「蓄電素子管理装置」の一例)
61:中央処理装置(「情報処理部」の一例)
63:メモリ
70:電圧計測部
80:電流計測部
R1:SOC範囲(i)(「第1SOC範囲」の一例)
R2:SOC範囲(v)(「第2SOC範囲」の一例)
R3:SOC範囲
10: Automobile (an example of "vehicle")
12: Vehicle load 13: Vehicle-side electronic control unit 20: Battery module (an example of "power storage element module")
30: Secondary battery (an example of "storage element")
50: Battery management device (an example of "storage element management device")
61: Central processing unit (an example of "information processing unit")
63: Memory 70: Voltage measuring unit 80: Current measuring unit R1: SOC range (i) (an example of "first SOC range")
R2: SOC range (v) (an example of "second SOC range")
R3: SOC range

Claims (13)

蓄電素子の充電状態を示すSOC範囲を決定する蓄電素子管理装置であって、
前記蓄電素子の電流に基づいてSOCを推定する第1の方法と前記蓄電素子の電圧に基づいてSOCを推定する第2の方法とを用いてSOC範囲を決定する情報処理部を備え、
前記情報処理部は、前記第1の方法により決定される第1SOC範囲と前記第2の方法により決定される第2SOC範囲とが重複する場合には、前記第1SOC範囲と前記第2SOC範囲との重複範囲を、前記SOC範囲に決定する蓄電素子管理装置。
A power storage element management device that determines the SOC range that indicates the charging state of the power storage element.
An information processing unit for determining an SOC range by using a first method of estimating SOC based on the current of the power storage element and a second method of estimating SOC based on the voltage of the power storage element is provided.
When the first SOC range determined by the first method and the second SOC range determined by the second method overlap, the information processing unit sets the first SOC range and the second SOC range. A power storage element management device that determines the overlapping range within the SOC range.
前記情報処理部は、前記第1SOC範囲と前記第2SOC範囲とが重複しない場合には、前記第2SOC範囲を前記SOC範囲として決定する請求項1に記載の蓄電素子管理装置。 Wherein the information processing unit is configured to when the first 1SOC range before Symbol first 2SOC range do not overlap, the power storage device management apparatus according to claim 1 for determining the first 2SOC range as the SOC range. 前記第2の方法は、前記蓄電素子の充放電中の電圧Vと残存容量RCの相関関係であるRC−V相関関係に基づいて、前記第2SOC範囲を決定する方法である、請求項1又は請求項2に記載の蓄電素子管理装置。 The second method is a method of determining the second SOC range based on the RC-V correlation, which is the correlation between the voltage V during charging and discharging of the power storage element and the residual capacity RC, according to claim 1 or The power storage element management device according to claim 2. 記蓄電素子の充電中における充電電圧V1と残存容量RCの相関関係であるC−V相関関係に対し、前記蓄電素子が満充電状態に近い状態であるか、判定するための電圧閾値を設定し、
前記情報処理部は、充電電流が所定の電流値よりも低く、かつ充電電圧が前記電圧閾値よりも高い場合、前記第2SOC範囲を、前記蓄電素子が満充電状態に近い状態である満充電SOC範囲に決定する請求項3に記載の蓄電素子管理装置。
Over the previous SL R C-V 1 correlation is a correlation relationship between the charging voltage V1 remaining capacity RC during charging of the power storage device, or the storage element is in a state close to a fully charged state, the voltage threshold for determining Set and
When the charging current is lower than a predetermined current value and the charging voltage is higher than the voltage threshold value, the information processing unit covers the second SOC range with a fully charged SOC in which the power storage element is close to a fully charged state. The power storage element management device according to claim 3 , wherein the range is determined.
前記情報処理部は、充電電流が所定の電流値よりも高く、かつ充電電圧が前記電圧閾値よりも低い場合、前記第2SOC範囲を、前記満充電SOC範囲とは異なる範囲である非満充電SOC範囲に決定する請求項4に記載の蓄電素子管理装置。 When the charging current is higher than the predetermined current value and the charging voltage is lower than the voltage threshold value, the information processing unit sets the second SOC range to a non-fully charged SOC range different from the fully charged SOC range. The power storage element management device according to claim 4 , wherein the range is determined. 記蓄電素子の放電中における放電電圧V2と残存容量RCの相関関係であるRC−V相関関係に対し、前記蓄電素子が放電終止状態に近い状態であるか、判定するための電圧閾値を設定し、
前記情報処理部は放電電流が所定の電流値よりも低く、かつ放電電圧が前記電圧閾値よりも低い場合、前記第2SOC範囲を、前記蓄電素子が放電終止状態に近い状態である放電終止SOC範囲に決定する請求項3に記載の蓄電素子管理装置。
Over the previous SL RC -V 2 correlation is correlation between the discharge voltage V2 and the remaining capacity RC during discharge of the power storage device, or the storage element is in a state close to a final discharge state, the voltage threshold for determining Set,
When the discharge current is lower than the predetermined current value and the discharge voltage is lower than the voltage threshold value, the information processing unit covers the second SOC range and the discharge termination SOC in which the power storage element is close to the discharge termination state. The power storage element management device according to claim 3 , wherein the range is determined.
前記情報処理部は、放電電流が所定の電流値よりも高く、かつ放電電圧が前記電圧閾値よりも高い場合、前記第2SOC範囲を、前記放電終止SOC範囲とは異なる範囲である非放電終止SOC範囲に決定する請求項6に記載の蓄電素子管理装置。 When the discharge current is higher than the predetermined current value and the discharge voltage is higher than the voltage threshold value, the information processing unit sets the second SOC range to a non-discharge termination SOC range different from the discharge termination SOC range. The power storage element management device according to claim 6 , wherein the range is determined. 前記情報処理部は、前記蓄電素子の蓄電状態を複数のSOC領域に区分し、前記複数のSOC領域のうちSOCの変化量に対する電圧の変化量が他よりも小さいSOC領域を低変化領域としたとき、
前記第1SOC範囲が、所定期間の間、前記低変化領域に属する場合、前記情報処理部は、前記蓄電素子を充放電し、充放電後の前記第1SOC範囲と前記第2SOC範囲との重複範囲を、新たなSOC範囲として決定する請求項1から請求項7のいずれか一項に記載の蓄電素子管理装置。
The information processing unit divides the storage state of the power storage element into a plurality of SOC regions, and the SOC region in which the amount of change in voltage with respect to the amount of change in SOC is smaller than the others is defined as the low change region. When
When the first SOC range belongs to the low change region for a predetermined period , the information processing unit charges and discharges the power storage element, and the overlapping range of the first SOC range and the second SOC range after charging and discharging. The power storage element management device according to any one of claims 1 to 7 , wherein the new SOC range is determined.
前記情報処理部は、前記蓄電素子の充放電により、前記第2SOC範囲を、現在属している前記低変化領域とは異なる領域に属するように変化させる、請求項8に記載の蓄電素子管理装置。 The power storage element management device according to claim 8 , wherein the information processing unit changes the second SOC range so as to belong to a region different from the low change region to which the power storage element currently belongs. 前記第1の方法は、前記蓄電素子の電流積算値に基づいてSOCを推定する電流積算法であり、
前記情報処理部は、前回のSOC範囲の上限値と下限値に対して電流積算法により推定したSOCの増減量と電流計測値の累積誤差をそれぞれ加算することによって、前記第1SOC範囲を決定する、請求項1から請求項9のいずれか一項に記載の蓄電素子管理装置。
The first method is a current integration method for estimating the SOC based on the current integrated value of the electric storage device,
The information processing unit determines the first SOC range by adding the amount of increase / decrease in SOC estimated by the current integration method and the cumulative error of the current measurement value to the upper limit value and the lower limit value of the previous SOC range, respectively. , The power storage element management device according to any one of claims 1 to 9.
蓄電素子と、
前記蓄電素子に流れる電流を検出する電流計測部と、
前記蓄電素子の電圧を検出する電圧計測部と、
前記蓄電素子のSOC範囲を決定するためのデータを記憶するメモリと、
請求項1から請求項10のいずれか一項に記載の蓄電素子管理装置とを備えた蓄電素子モジュール。
Power storage element and
A current measuring unit that detects the current flowing through the power storage element, and
A voltage measuring unit that detects the voltage of the power storage element and
A memory for storing data for determining the SOC range of the power storage element, and
A power storage element module including the power storage element management device according to any one of claims 1 to 10.
請求項11に記載の蓄電素子モジュールと、
前記蓄電素子モジュールから電力供給される車両負荷と、
前記車両負荷を制御し、かつ前記蓄電素子モジュールと通信可能な車両側電子制御部とを有する車両。
The power storage element module according to claim 11,
The vehicle load supplied from the power storage element module and
A vehicle having a vehicle-side electronic control unit that controls the vehicle load and can communicate with the power storage element module.
蓄電素子の充電状態を示すSOC範囲を決定するための蓄電素子管理方法であって、
前記蓄電素子の電流に基づいて推定される第1SOC範囲と前記蓄電素子の電圧に基づいて推定される第2SOC範囲が重複する場合、前記第1SOC範囲と前記第2SOC範囲との重複範囲を、前記SOC範囲に決定する、蓄電素子管理方法。
It is a power storage element management method for determining the SOC range indicating the charging state of the power storage element.
When the first SOC range estimated based on the current of the power storage element and the second SOC range estimated based on the voltage of the power storage element overlap, the overlapping range between the first SOC range and the second SOC range is set as described above. A power storage element management method that determines the SOC range.
JP2019210409A 2016-01-15 2019-11-21 Power storage element management device, power storage element module, vehicle and power storage element management method Active JP6930572B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019210409A JP6930572B2 (en) 2016-01-15 2019-11-21 Power storage element management device, power storage element module, vehicle and power storage element management method
JP2021129610A JP2021183975A (en) 2019-11-21 2021-08-06 Electricity storage element management device, electricity storage element module, vehicle, and electricity storage element management method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016006353A JP6830318B2 (en) 2016-01-15 2016-01-15 Power storage element management device, power storage element module, vehicle and power storage element management method
JP2019210409A JP6930572B2 (en) 2016-01-15 2019-11-21 Power storage element management device, power storage element module, vehicle and power storage element management method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016006353A Division JP6830318B2 (en) 2016-01-15 2016-01-15 Power storage element management device, power storage element module, vehicle and power storage element management method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021129610A Division JP2021183975A (en) 2019-11-21 2021-08-06 Electricity storage element management device, electricity storage element module, vehicle, and electricity storage element management method

Publications (2)

Publication Number Publication Date
JP2020043084A JP2020043084A (en) 2020-03-19
JP6930572B2 true JP6930572B2 (en) 2021-09-01

Family

ID=69798757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019210409A Active JP6930572B2 (en) 2016-01-15 2019-11-21 Power storage element management device, power storage element module, vehicle and power storage element management method

Country Status (1)

Country Link
JP (1) JP6930572B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115335994A (en) 2020-03-12 2022-11-11 罗姆股份有限公司 Capacitor and method for manufacturing capacitor
KR102548137B1 (en) * 2021-08-09 2023-06-27 주식회사 씨에스에너텍 Battery Management Method and Battery Management System
CN114325415B (en) * 2021-12-31 2023-11-21 杭叉集团股份有限公司 Verification method, device and medium for lithium battery electric quantity

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3611104B2 (en) * 2000-08-09 2005-01-19 松下電器産業株式会社 Secondary battery charging control method
JP2002125321A (en) * 2000-10-16 2002-04-26 Hitachi Maxell Ltd Chargeable battery set, chargeable battery module, recording medium, and calculation method for remaining quantity
JP5732725B2 (en) * 2010-02-19 2015-06-10 ミツミ電機株式会社 Battery state detection device
KR101356899B1 (en) * 2010-02-24 2014-01-28 미츠비시 쥬고교 가부시키가이샤 Charging-rate computation system
JP5797004B2 (en) * 2011-05-11 2015-10-21 本田技研工業株式会社 Battery remaining amount estimation device for electric vehicle
JP2012242135A (en) * 2011-05-16 2012-12-10 Sanyo Electric Co Ltd Residual capacity calculation method, pre-shipment adjustment method of packed battery, residual capacity calculation device, and packed battery
JP5803668B2 (en) * 2011-12-27 2015-11-04 トヨタ自動車株式会社 Lithium ion secondary battery system
FR2987703B1 (en) * 2012-03-02 2014-12-12 Accumulateurs Fixes METHOD AND SYSTEM FOR ESTIMATING THE CHARGING STATE OF A LITHIUM ELECTROCHEMICAL ELEMENT COMPRISING A POSITIVE ELECTRODE OF LITHIUM PHOSPHATE TYPE
JP6155781B2 (en) * 2012-05-10 2017-07-05 株式会社Gsユアサ Storage element management device and SOC estimation method
JP2014059206A (en) * 2012-09-18 2014-04-03 Toyota Industries Corp Charge state estimation device and charge state estimation method
JP6036236B2 (en) * 2012-12-03 2016-11-30 住友電気工業株式会社 Storage system and storage battery deterioration diagnosis method
JP6300000B2 (en) * 2013-02-20 2018-03-28 株式会社Gsユアサ Charge state estimation device, charge state estimation method
JP2015118060A (en) * 2013-12-20 2015-06-25 株式会社豊田自動織機 State-of-charge estimation apparatus and state-of-charge estimation method
JP6279387B2 (en) * 2014-04-10 2018-02-14 カルソニックカンセイ株式会社 Specific gravity estimation device and specific gravity estimation method

Also Published As

Publication number Publication date
JP2020043084A (en) 2020-03-19

Similar Documents

Publication Publication Date Title
JP6830318B2 (en) Power storage element management device, power storage element module, vehicle and power storage element management method
US11285813B2 (en) Estimation device for estimating an SOC of an energy storage device, energy storage apparatus including estimation device for estimating an SOC of an energy storage device, and estimation method for estimating an SOC of an energy storage device
CN108885242B (en) Secondary battery degradation estimation device and secondary battery degradation estimation method
US10800261B2 (en) Battery state estimation apparatus, assembled battery, energy storage system, and methods of using the same
EP2700966B1 (en) Apparatus and method for estimating battery state
JP6714838B2 (en) State estimation device and state estimation method
EP2058891B1 (en) Charging control device for a storage battery
WO2014080764A1 (en) Secondary battery state estimating device and method
JP6930572B2 (en) Power storage element management device, power storage element module, vehicle and power storage element management method
JP6440377B2 (en) Secondary battery state detection device and secondary battery state detection method
US10739409B2 (en) Managing apparatus for electrochemical element
CN111295796B (en) Management device for electric storage element, storage battery, and management method
CN109073708B (en) Secondary battery degradation estimation device and secondary battery degradation estimation method
JP2017184534A (en) Power storage element management device, power storage device and power storage system
US20170163069A1 (en) Battery Controlling Device
JP6421986B2 (en) Secondary battery charging rate estimation method, charging rate estimation device, and soundness estimation device
JP2018050373A (en) Battery system
JP7231657B2 (en) battery controller
JP2021183975A (en) Electricity storage element management device, electricity storage element module, vehicle, and electricity storage element management method
JP6672976B2 (en) Charge amount calculation device, computer program, and charge amount calculation method
JP7375473B2 (en) Energy storage amount estimating device, energy storage amount estimation method, and computer program
JP2018085278A (en) Control system
JP7113976B2 (en) Charge/discharge control device and charge/discharge control method
JP6969307B2 (en) Management device, power storage system, method of equalizing the remaining capacity of the power storage element, method of estimating the internal state of the power storage element
EP4033586A1 (en) Estimation device, estimation method, and computer program

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201105

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210726

R150 Certificate of patent or registration of utility model

Ref document number: 6930572

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150