JP6484061B2 - Manufacturing method of electronic component package - Google Patents

Manufacturing method of electronic component package Download PDF

Info

Publication number
JP6484061B2
JP6484061B2 JP2015033463A JP2015033463A JP6484061B2 JP 6484061 B2 JP6484061 B2 JP 6484061B2 JP 2015033463 A JP2015033463 A JP 2015033463A JP 2015033463 A JP2015033463 A JP 2015033463A JP 6484061 B2 JP6484061 B2 JP 6484061B2
Authority
JP
Japan
Prior art keywords
resin sheet
pressure
sealing resin
sealing
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015033463A
Other languages
Japanese (ja)
Other versions
JP2015179829A (en
Inventor
智絵 飯野
智絵 飯野
浩介 盛田
浩介 盛田
豪士 志賀
豪士 志賀
石坂 剛
剛 石坂
剛志 土生
剛志 土生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to PCT/JP2015/055233 priority Critical patent/WO2015129689A1/en
Priority to JP2015033463A priority patent/JP6484061B2/en
Priority to TW104106395A priority patent/TW201541577A/en
Publication of JP2015179829A publication Critical patent/JP2015179829A/en
Application granted granted Critical
Publication of JP6484061B2 publication Critical patent/JP6484061B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16235Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a via metallisation of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3512Cracking

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

本発明は、電子部品パッケージの製造方法に関する。   The present invention relates to a method for manufacturing an electronic component package.

半導体チップ等の電子部品のパッケージの作製には、代表的に、基板や仮止め材等の被着体に固定された1又は複数の電子部品を封止樹脂にて封止し、必要に応じて封止物を電子部品単位のパッケージとなるようにダイシングするという手順が採用されている。このような封止樹脂としてハンドリング性が良好なシート状の封止樹脂が提案されている(特許文献1)。   For the production of electronic component packages such as semiconductor chips, typically, one or more electronic components fixed to an adherend such as a substrate or a temporary fixing material are sealed with a sealing resin, and if necessary Then, a procedure of dicing the encapsulated material so as to form a package in units of electronic components is employed. As such a sealing resin, a sheet-shaped sealing resin having a good handling property has been proposed (Patent Document 1).

特開2006−19714号公報JP 2006-19714 A

しかしながら、このような封止樹脂シートを用いて平板プレスによる加圧成形により電子部品を封止する場合、成形物(封止物)の中心部と比較して外周部では電子部品の周辺にボイド(気泡)が発生しやすくなることが判明した。ボイドを含んだまま成形物を熱硬化工程に供すると、この工程における加熱によりボイドが拡大し、場合によっては外観不良やパッケージクラックが生じて電子部品パッケージの信頼性が大幅に低下するおそれがある。このような傾向は単位工程当たりの電子部品数を増加させるために大判の封止樹脂シートを用いた場合に顕著になる。   However, when an electronic component is sealed by pressure molding with a flat plate press using such a sealing resin sheet, a void is formed around the electronic component at the outer peripheral portion as compared with the central portion of the molded product (sealed product). It was found that (bubbles) are likely to occur. If the molded product is subjected to a thermosetting process while containing voids, the voids expand due to heating in this process, and in some cases, appearance defects and package cracks may occur, which may significantly reduce the reliability of the electronic component package. . Such a tendency becomes conspicuous when a large sealing resin sheet is used in order to increase the number of electronic components per unit process.

本発明の目的は、電子部品を樹脂封止した後のボイドの発生を防止して高信頼性の電子部品パッケージを歩留まり良く製造可能な電子部品パッケージの製造方法を提供することにある。   An object of the present invention is to provide an electronic component package manufacturing method capable of manufacturing a highly reliable electronic component package with a high yield by preventing generation of voids after the electronic component is sealed with a resin.

本発明者らは、上記不具合を検討したところ、封止後の成形物におけるボイドは加圧封止時の圧力が成形物の中心部と外周部とで均等にかからないことに起因するのではないかとの知見を得た。さらに鋭意検討した結果、以下の構成により上記課題を解決できることを見出し、本発明を完成させた。   The present inventors have examined the above problems, and the void in the molded product after sealing is not due to the fact that the pressure at the time of pressure sealing is not evenly applied between the central portion and the outer peripheral portion of the molded product. I got the knowledge of heels. As a result of further intensive studies, the inventors have found that the above-described problems can be solved by the following configuration, and have completed the present invention.

すなわち、本発明は、複数の電子部品が配置された被着体を準備する工程A、及び
前記電子部品を埋め込むように封止樹脂シートを加圧下にて前記被着体上に積層する工程Bを含み、
前記工程Bにおいて、前記封止樹脂シートに対する加圧を圧力分散材を介して行う電子部品パッケージの製造方法である。
That is, the present invention includes a step A for preparing an adherend on which a plurality of electronic components are arranged, and a step B for laminating a sealing resin sheet on the adherend under pressure so as to embed the electronic components. Including
In the step B, the electronic component package is produced by pressurizing the sealing resin sheet through a pressure dispersion material.

当該製造方法では、加圧下にて封止樹脂シートを被着体上に積層して電子部品を樹脂封止する(以下、「加圧封止」ともいう。)際に、圧力分散材を介して加圧を行うので、封止樹脂シートに負荷される圧力の均一性が高まり、言い換えると封止樹脂シートの中心部と外周部との圧力差を低減することができ、その結果、封止後のボイドの発生を抑制して高信頼性の電子部品パッケージを製造することができる。なお、封止樹脂シートの中心部と外周部との圧力差の発生メカニズムは定かではないものの、以下のように推測される。すなわち、一般的に平板プレスでは封止樹脂シートの側面は開放系となっているので、加圧封止時の加熱により封止樹脂シートが軟化すると、外周部では封止樹脂シートが外側に向かって展延することになる。その結果、封止樹脂シートの厚さが薄くなって圧力が負荷されにくくなり、結果的に圧力差が生じるということに起因すると推測される。また、加圧封止時に圧力分散材を介在させるだけでよいので、既存の工程をそのまま利用しつつ、高信頼性の電子部品パッケージを歩留まり良く製造することができる。   In the manufacturing method, when a sealing resin sheet is laminated on an adherend under pressure and an electronic component is resin-sealed (hereinafter also referred to as “pressure sealing”), a pressure dispersion material is interposed. Therefore, the pressure applied to the sealing resin sheet is more uniform, in other words, the pressure difference between the central portion and the outer peripheral portion of the sealing resin sheet can be reduced. A highly reliable electronic component package can be manufactured by suppressing the generation of voids later. In addition, although the generation | occurrence | production mechanism of the pressure difference of the center part of a sealing resin sheet and an outer peripheral part is not certain, it estimates as follows. That is, since the side surface of the sealing resin sheet is generally an open system in a flat plate press, if the sealing resin sheet is softened by heating during pressure sealing, the sealing resin sheet faces outward at the outer periphery. Will be extended. As a result, the thickness of the sealing resin sheet becomes thin and it is difficult for the pressure to be applied. As a result, it is assumed that the pressure difference is generated. In addition, since it is only necessary to interpose a pressure dispersion material at the time of pressure sealing, a highly reliable electronic component package can be manufactured with a high yield while using an existing process as it is.

前記圧力分散材は平面視で前記封止樹脂シートより大きいことが好ましい。これにより、加圧封止時の圧力によって圧力分散材が封止樹脂シートの側面まで回り込むことができ、側面からの加圧状態が達成されることになる。その結果、ボイドの発生しやすい封止樹脂シートの外周部への圧力を側面から補うことができ、より圧力負荷の均一性を高めることができる。   The pressure dispersion material is preferably larger than the sealing resin sheet in plan view. Thereby, a pressure dispersion material can go around to the side of a sealing resin sheet with the pressure at the time of pressure sealing, and the pressurization state from a side will be achieved. As a result, the pressure on the outer peripheral portion of the sealing resin sheet where voids are likely to be generated can be supplemented from the side surface, and the uniformity of the pressure load can be further improved.

前記圧力分散材は多孔質であることが好ましい。多孔質とすることにより圧力分散性を向上させることができ、加圧封止時の封止樹脂シートへの圧力負荷の均一性をさらに高めることができる。   The pressure dispersion material is preferably porous. By making it porous, the pressure dispersibility can be improved, and the uniformity of the pressure load on the sealing resin sheet during pressure sealing can be further enhanced.

前記圧力分散材はフッ素スポンジ又はシリコーンスポンジにより形成されていることが好ましい。これらの材料は適度な弾性を有するので、圧力分散性に優れる。また、剥離性を兼ね備えているので、封止樹脂シートや加圧封止のためのプレス板からの剥離を容易に行うことができる。   The pressure dispersion material is preferably made of a fluorine sponge or a silicone sponge. Since these materials have moderate elasticity, they are excellent in pressure dispersibility. Moreover, since it also has releasability, it can peel easily from the sealing resin sheet or the press plate for pressure sealing.

前記封止樹脂シートと前記圧力分散材との間に剥離フィルムを介在させて前記工程Bを行うことが好ましい。これにより封止樹脂シートと圧力分散材との間の剥離を容易に行うことができ、電子部品の生産効率を向上させることができる。   It is preferable to perform the step B with a release film interposed between the sealing resin sheet and the pressure dispersion material. Thereby, peeling between a sealing resin sheet and a pressure dispersion material can be performed easily, and the production efficiency of an electronic component can be improved.

前記封止樹脂シートの平面視形状は、直径300mm以上の円形又は一辺の長さが300mm以上の長方形であってもよい。1回の封止プロセスで得られる電子部品パッケージの収率を高めるには封止すべき電子部品の数を増加させるとともに、封止樹脂シートの平面視形状を大型化(すなわち、大面積化)すればよい。しかしながら、封止樹脂シートの大面積化を行うと、封止樹脂シートへの圧力分布に偏りが生じ、ボイドの発生割合も高くなってしまう。当該製造方法では、このような大面積化した封止樹脂シートを用いる場合であっても圧力分散材による封止樹脂シートへの圧力負荷の均一性を高めることができるので、封止後のボイドの発生を防止することができ、ひいては電子部品パッケージの製造効率を向上させることができる。   The shape of the sealing resin sheet in plan view may be a circle with a diameter of 300 mm or more or a rectangle with a side length of 300 mm or more. In order to increase the yield of electronic component packages obtained by a single sealing process, the number of electronic components to be sealed is increased and the size of the sealing resin sheet in plan view is increased (that is, the area is increased). do it. However, when the area of the encapsulating resin sheet is increased, the pressure distribution on the encapsulating resin sheet is biased and the void generation rate is increased. In the manufacturing method, even when such a large-area sealing resin sheet is used, the uniformity of the pressure load on the sealing resin sheet by the pressure dispersion material can be improved, so the void after sealing Can be prevented, and as a result, the manufacturing efficiency of the electronic component package can be improved.

前記加圧を平板プレスにより行うことが好ましい。平板プレスは操作の簡易性や利用可能性から好ましいものの、上述のように樹脂封止の際には封止樹脂シートの側面は開放系となっていることから、封止樹脂シートの中心部と外周部とで圧力差が生じやすくなっている。しかしながら、当該製造方法では加圧封止の際に圧力分散材を用いるので、このような平板プレスによる加圧であっても上記圧力差を低減することができ、高信頼性のパッケージを製造することができる。   The pressing is preferably performed by a flat plate press. Although the flat plate press is preferable from the simplicity of operation and availability, since the side surface of the sealing resin sheet is an open system at the time of resin sealing as described above, the center portion of the sealing resin sheet A pressure difference is likely to occur between the outer periphery and the outer periphery. However, since the manufacturing method uses a pressure dispersion material at the time of pressure sealing, the pressure difference can be reduced even by pressing with such a flat plate press, and a highly reliable package is manufactured. be able to.

本発明の一実施形態に係る電子部品パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the electronic component package which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電子部品パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the electronic component package which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電子部品パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the electronic component package which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電子部品パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the electronic component package which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電子部品パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the electronic component package which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電子部品パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the electronic component package which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電子部品パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the electronic component package which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電子部品パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the electronic component package which concerns on one Embodiment of this invention. 本発明の別の一実施形態に係る電子部品及び被着体を模式的に示す断面図である。It is sectional drawing which shows typically the electronic component and to-be-adhered body which concern on another one Embodiment of this invention. 実施例1の封止体のチップ露出面の写真である。3 is a photograph of a chip exposed surface of the sealing body of Example 1. 比較例1の封止体のチップ露出面の写真である。6 is a photograph of a chip exposed surface of a sealing body of Comparative Example 1.

本発明の電子部品パッケージの製造方法の実施形態について、図面を参照しながら以下に説明する。ただし、図の一部又は全部において、説明に不要な部分は省略し、また説明を容易にするために拡大または縮小等して図示した部分がある。   An embodiment of a method for manufacturing an electronic component package of the present invention will be described below with reference to the drawings. However, in some or all of the drawings, parts unnecessary for the description are omitted, and there are parts shown enlarged or reduced for easy explanation.

《第1実施形態》
[電子部品パッケージの製造方法]
封止樹脂シートを用いる本実施形態に係る電子部品パッケージの製造方法について図1A〜図1Hを参照しつつ説明する。図1A〜図1Hはそれぞれ、本発明の一実施形態に係る電子部品パッケージの製造方法の一工程を模式的に示す断面図である。第1実施形態では、電子部品として半導体チップを用い、被着体として仮固定材を用いつつ、仮固定材上に搭載された半導体チップを封止樹脂シートにより樹脂封止して半導体パッケージを作製する。
<< First Embodiment >>
[Electronic component package manufacturing method]
A method for manufacturing an electronic component package according to this embodiment using a sealing resin sheet will be described with reference to FIGS. 1A to 1H. 1A to 1H are cross-sectional views schematically showing one process of a method for manufacturing an electronic component package according to an embodiment of the present invention. In the first embodiment, a semiconductor chip is manufactured by using a semiconductor chip as an electronic component and a temporary fixing material as an adherend, and sealing the semiconductor chip mounted on the temporary fixing material with a sealing resin sheet. To do.

[工程A1:仮固定材準備工程]
仮固定材準備工程では、支持体1b上に熱膨張性粘着剤層1aが積層された仮固定材1を被着体として準備する(図1A参照)。なお、熱膨張性粘着剤層に代えて、放射線硬化型粘着剤層を用いることもできる。
[Step A1: Temporary fixing material preparation step]
In the temporary fixing material preparing step, the temporary fixing material 1 in which the thermally expandable pressure-sensitive adhesive layer 1a is laminated on the support 1b is prepared as an adherend (see FIG. 1A). In addition, it can replace with a thermally expansible adhesive layer, and can also use a radiation curing type adhesive layer.

(熱膨張性粘着剤層)
熱膨張性粘着剤層1aは、ポリマー成分と、発泡剤とを含む粘着剤組成物により形成することができる。ポリマー成分(特にベースポリマー)としては、粘着剤組成物に用いられる公知の樹脂が挙げられ、ポリイミド樹脂、シリコーン樹脂、脂肪族オレフィン系樹脂、水添スチレン系熱可塑性エラストマー、アクリル樹脂等を挙げることができる。中でも、アクリル系樹脂が好ましい。
(Thermal expansion adhesive layer)
The heat-expandable pressure-sensitive adhesive layer 1a can be formed of a pressure-sensitive adhesive composition containing a polymer component and a foaming agent. Examples of the polymer component (particularly the base polymer) include known resins used in pressure-sensitive adhesive compositions, such as polyimide resins, silicone resins, aliphatic olefin resins, hydrogenated styrene thermoplastic elastomers, and acrylic resins. Can do. Of these, acrylic resins are preferred.

また、熱膨張性粘着剤には、粘着力を調整するため、外部架橋剤を適宜に用いることもできる。外部架橋方法の具体的手段としては、ポリイソシアネート化合物、エポキシ化合物、アジリジン化合物、メラミン系架橋剤等のいわゆる架橋剤を添加し反応させる方法が挙げられる。外部架橋剤を使用する場合、その使用量は、前記ベースポリマー100重量部に対して、20重量部以下(好ましくは0.1重量部〜10重量部)である。   In addition, an external cross-linking agent can be appropriately used for the heat-expandable pressure-sensitive adhesive in order to adjust the pressure-sensitive adhesive force. Specific examples of the external crosslinking method include a method of adding a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, a melamine crosslinking agent, and reacting them. When using an external crosslinking agent, the amount used is 20 parts by weight or less (preferably 0.1 parts by weight to 10 parts by weight) with respect to 100 parts by weight of the base polymer.

(発泡剤)
熱膨張性粘着剤層1aにおいて用いられている発泡剤としては、特に制限されず、公知の発泡剤から適宜選択することができる。発泡剤は単独で又は2種以上組み合わせて使用することができる。発泡剤としては、熱膨張性微小球を好適に用いることができる。熱膨張性微小球としては、例えば、イソブタン、プロパン、ペンタンなどの加熱により容易にガス化して膨張する物質を、弾性を有する殻内に内包させた微小球などが挙げられる前記殻を形成する物質として、例えば、塩化ビニリデン−アクリロニトリル共重合体、ポリビニルアルコール、ポリビニルブチラール、ポリメチルメタクリレート、ポリアクリロニトリル、ポリ塩化ビニリデン、ポリスルホンなどが挙げられる。
(Foaming agent)
The foaming agent used in the heat-expandable pressure-sensitive adhesive layer 1a is not particularly limited, and can be appropriately selected from known foaming agents. A foaming agent can be used individually or in combination of 2 or more types. As the foaming agent, thermally expandable microspheres can be suitably used. Examples of the heat-expandable microsphere include a microsphere in which a substance that expands easily by gasification by heating, such as isobutane, propane, or pentane, is encapsulated in an elastic shell. Examples thereof include vinylidene chloride-acrylonitrile copolymer, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate, polyacrylonitrile, polyvinylidene chloride, and polysulfone.

熱膨張性微小球には、例えば、松本油脂製薬株式会社製の商品名「マツモトマイクロスフェアー」のシリーズ(例えば、商品名「マツモトマイクロスフェアーF30」、同「マツモトマイクロスフェアーF301D」、同「マツモトマイクロスフェアーF50D」、同「マツモトマイクロスフェアーF501D」、同「マツモトマイクロスフェアーF80SD」、同「マツモトマイクロスフェアーF80VSD」など)の他、エクスパンセル社製の商品名「051DU」、同「053DU」、同「551DU」、同「551−20DU」、同「551−80DU」などの市販品を使用することができる。   Examples of thermally expandable microspheres include a series of “Matsumoto Microsphere F30”, “Matsumoto Microsphere F30D”, “Matsumoto Microsphere F301D”, “Matsumoto Microsphere F50D”, “Matsumoto Microsphere F501D”, “Matsumoto Microsphere F80SD”, “Matsumoto Microsphere F80VSD”, etc.) , "053DU", "551DU", "551-20DU", and "551-80DU" can be used.

なお、発泡剤として熱膨張性微小球を用いた場合、該熱膨張性微小球の粒径(平均粒子径)としては、熱膨張性粘着剤層の厚みなどに応じて適宜選択することができる。熱膨張性微小球の平均粒子径としては、例えば、100μm以下(好ましくは80μm以下、さらに好ましくは1μm〜50μm、特に1μm〜30μm)の範囲から選択することができる。   When thermally expandable microspheres are used as the foaming agent, the particle size (average particle diameter) of the thermally expandable microspheres can be appropriately selected according to the thickness of the thermally expandable pressure-sensitive adhesive layer. . The average particle diameter of the heat-expandable microspheres can be selected from a range of, for example, 100 μm or less (preferably 80 μm or less, more preferably 1 μm to 50 μm, particularly 1 μm to 30 μm).

発泡剤(熱膨張性微小球など)の配合量は、熱膨張性粘着剤層の膨張倍率や接着力の低下性などに応じて適宜設定しうるが、一般には熱膨張性粘着剤層を形成するベースポリマー100重量部に対して、例えば1重量部〜150重量部(好ましくは10重量部〜130重量部、さらに好ましくは25重量部〜100重量部)である。   The amount of foaming agent (thermally expandable microspheres, etc.) can be set as appropriate depending on the expansion ratio of the thermally expandable pressure-sensitive adhesive layer and the ability to lower the adhesive strength, but generally a thermally expandable pressure-sensitive adhesive layer is formed. The amount is, for example, 1 part by weight to 150 parts by weight (preferably 10 parts by weight to 130 parts by weight, more preferably 25 parts by weight to 100 parts by weight) with respect to 100 parts by weight of the base polymer.

本実施形態では、発泡剤の発泡開始温度(熱膨張開始温度)(T)は80℃〜210℃が好ましく、90℃〜200℃がより好ましい。発泡剤の発泡開始温度が低すぎると、不用意に発泡剤が発泡してしまう場合がある。一方、発泡剤の発泡開始温度が高すぎると、仮固定材の支持体や封止樹脂に過度の耐熱性が必要となり、取り扱い性、生産性やコスト面で好ましくない。発泡剤の発泡開始温度(T)は、熱膨張性粘着剤層の発泡開始温度(T)に相当する。 In the present embodiment, the foaming start temperature (thermal expansion start temperature) (T 0 ) of the foaming agent is preferably 80 ° C. to 210 ° C., more preferably 90 ° C. to 200 ° C. If the foaming start temperature of the foaming agent is too low, the foaming agent may inadvertently foam. On the other hand, if the foaming start temperature of the foaming agent is too high, excessive heat resistance is required for the support of the temporary fixing material and the sealing resin, which is not preferable in terms of handleability, productivity, and cost. Foaming starting temperature of the foaming agent (T 0) corresponds to the foaming starting temperature of the heat-expandable pressure-sensitive adhesive layer (T 0).

熱膨張性粘着剤層の厚さは、特に制限されず、接着力の低減性などにより適宜に選択することができ、例えば、5μm〜300μm(好ましくは20μm〜150μm)程度である。   The thickness of the heat-expandable pressure-sensitive adhesive layer is not particularly limited, and can be appropriately selected depending on the reduction in adhesive strength, and is, for example, about 5 μm to 300 μm (preferably 20 μm to 150 μm).

なお、熱膨張性粘着剤層は単層、複層の何れであってもよい。   The thermally expandable pressure-sensitive adhesive layer may be either a single layer or multiple layers.

本実施形態では、熱膨張性粘着剤層には、各種添加剤(例えば、着色剤、増粘剤、増量剤、充填剤、粘着付与剤、可塑剤、老化防止剤、酸化防止剤、界面活性剤、架橋剤など)が含まれていても良い。   In the present embodiment, the heat-expandable pressure-sensitive adhesive layer has various additives (for example, a colorant, a thickener, a bulking agent, a filler, a tackifier, a plasticizer, an anti-aging agent, an antioxidant, and a surfactant. Agent, cross-linking agent, etc.).

(支持体)
支持体1bは、仮固定材1の強度母体となる薄板状部材である。支持体1bの材料としては取り扱い性や耐熱性等を考慮して適宜選択すればよく、例えばSUS等の金属材料、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルサルフォン等のプラスチック材料、ガラス等を用いることができる。これらの中でも、耐熱性や強度、再利用可能性等の観点から、SUSプレートが好ましい。
(Support)
The support 1 b is a thin plate member that serves as a strength matrix of the temporary fixing material 1. The material of the support 1b may be appropriately selected in consideration of handling properties, heat resistance, and the like. For example, metal materials such as SUS, plastic materials such as polyimide, polyamideimide, polyether ether ketone, and polyether sulfone, glass Etc. can be used. Among these, a SUS plate is preferable from the viewpoints of heat resistance, strength, reusability, and the like.

支持体1bの厚さは目的とする強度や取り扱い性を考慮して適宜選択することができ、好ましくは100〜5000μmであり、より好ましくは300〜2000μmである。   The thickness of the support 1b can be appropriately selected in consideration of the intended strength and handleability, and is preferably 100 to 5000 μm, more preferably 300 to 2000 μm.

(中間層)
本実施形態では、熱膨張性粘着剤層1aと支持体1bとの間に、密着力の向上や加熱後の剥離性の向上等を目的とした中間層が設けられていてもよい(図示せず)。中でも、中間層としてゴム状有機弾性中間層が設けられていることが好ましい。ゴム状有機弾性中間層は、例えば、ASTM D−2240に基づくD型シュアーD型硬度が、50以下、特に40以下の天然ゴム、合成ゴム又はゴム弾性を有する合成樹脂により形成することが好ましい。中間層の厚さは、例えば、5μm〜300μm、好ましくは20μm〜150μm程度である。
(Middle layer)
In the present embodiment, an intermediate layer may be provided between the heat-expandable pressure-sensitive adhesive layer 1a and the support 1b for the purpose of improving adhesion and improving peelability after heating (not shown). ) Among them, it is preferable that a rubbery organic elastic intermediate layer is provided as the intermediate layer. The rubber-like organic elastic intermediate layer is preferably formed of natural rubber, synthetic rubber, or synthetic resin having rubber elasticity having a D-type Sure D-type hardness of 50 or less, particularly 40 or less based on ASTM D-2240. The thickness of the intermediate layer is, for example, about 5 μm to 300 μm, preferably about 20 μm to 150 μm.

(仮固定材の形成方法)
仮固定材1は、支持体1b上に熱膨張性粘着剤層1aを形成することにより得られる。熱膨張性粘着剤層は、例えば、粘着剤(感圧接着剤)と、発泡剤(熱膨張性微小球など)と、必要に応じて溶媒やその他の添加剤などとを混合して、シート状の層に形成する慣用の方法を利用し形成することができる。具体的には、例えば、粘着剤、発泡剤(熱膨張性微小球など)、および必要に応じて溶媒やその他の添加剤を含む混合物を、支持体1b上に塗布する方法、適当なセパレータ(剥離紙など)上に前記混合物を塗布して熱膨張性粘着剤層を形成し、これを支持体1b上に転写(移着)する方法などにより、熱膨張性粘着剤層を形成することができる。
(Method for forming temporary fixing material)
The temporary fixing material 1 is obtained by forming the thermally expandable pressure-sensitive adhesive layer 1a on the support 1b. The heat-expandable pressure-sensitive adhesive layer is, for example, a sheet obtained by mixing a pressure-sensitive adhesive (pressure-sensitive adhesive), a foaming agent (heat-expandable microspheres, etc.) and, if necessary, a solvent or other additives. It can be formed using a conventional method for forming a layer. Specifically, for example, a method of applying a mixture containing a pressure-sensitive adhesive, a foaming agent (such as thermally expandable microspheres), and a solvent and other additives as necessary onto the support 1b, an appropriate separator ( The heat-expandable pressure-sensitive adhesive layer may be formed by applying the mixture on a release paper or the like to form a heat-expandable pressure-sensitive adhesive layer, and transferring (transferring) the mixture onto the support 1b. it can.

[工程A2:半導体チップ配置工程]
半導体チップ配置工程では、上記仮固定材1上に複数の半導体チップ13をその活性面A1が仮固定材1に対向するように配置する(図1A参照)。半導体チップ13の配置には、フリップチップボンダーやダイボンダーなどの公知の装置を用いることができる。
[Step A2: Semiconductor Chip Placement Step]
In the semiconductor chip arrangement step, a plurality of semiconductor chips 13 are arranged on the temporary fixing material 1 such that the active surface A1 faces the temporary fixing material 1 (see FIG. 1A). A known device such as a flip chip bonder or a die bonder can be used to arrange the semiconductor chip 13.

半導体チップ13の配置のレイアウトや配置数は、仮固定材1の形状やサイズ、目的とするパッケージの生産数などに応じて適宜設定することができ、例えば、複数行で、かつ複数列のマトリックス状に整列させて配置することができる。   The layout and the number of arrangement of the semiconductor chips 13 can be appropriately set according to the shape and size of the temporary fixing material 1, the number of target packages produced, and the like, for example, a matrix of a plurality of rows and a plurality of columns. Can be arranged in a line.

[工程B:封止工程]
封止工程では、半導体チップ13を封止樹脂シート11に埋め込むように仮固定材1上へ封止樹脂シート11を積層し、半導体チップ13を上記封止樹脂シートで樹脂封止する(図1B及び図1C参照)。この封止樹脂シート11は、半導体チップ13及びそれに付随する要素を外部環境から保護するための封止樹脂として機能する。
[Process B: Sealing process]
In the sealing step, the sealing resin sheet 11 is laminated on the temporary fixing material 1 so that the semiconductor chip 13 is embedded in the sealing resin sheet 11, and the semiconductor chip 13 is resin-sealed with the sealing resin sheet (FIG. 1B). And FIG. 1C). The sealing resin sheet 11 functions as a sealing resin for protecting the semiconductor chip 13 and its accompanying elements from the external environment.

まず、封止樹脂シート11を準備する。封止樹脂シート11(図1B参照)は、ポリエチレンテレフタレート(PET)フィルムなどのセパレータ(図示せず)上に積層された状態で準備してもよい。この場合、セパレータには封止樹脂シート11の剥離を容易に行うために離型処理が施されていてもよい。封止シート11を形成するための樹脂組成物及び製造方法の詳細については後述する。   First, the sealing resin sheet 11 is prepared. The sealing resin sheet 11 (see FIG. 1B) may be prepared in a state of being laminated on a separator (not shown) such as a polyethylene terephthalate (PET) film. In this case, the separator may be subjected to a release treatment in order to easily peel off the sealing resin sheet 11. Details of the resin composition and the manufacturing method for forming the sealing sheet 11 will be described later.

封止樹脂シートを準備した後、図1Bに示すように、下側加熱板101上に半導体チップ13を固定した仮固定材1を半導体チップ13が実装された面を上にして配置するとともに、仮固定材1の半導体チップ13が実装された面上に封止樹脂シート11を配置する。この工程においては、下側加熱板101上にまず仮固定材1を配置し、その後、仮固定材1上に封止樹脂シート11を配置してもよく、仮固定材1上に封止樹脂シート11を先に積層し、その後、仮固定材1と封止樹脂シート11とが積層された積層物を下側加熱板101上に配置してもよい。   After preparing the sealing resin sheet, as shown in FIG. 1B, the temporary fixing material 1 in which the semiconductor chip 13 is fixed on the lower heating plate 101 is disposed with the surface on which the semiconductor chip 13 is mounted facing upward. The sealing resin sheet 11 is disposed on the surface of the temporary fixing material 1 on which the semiconductor chip 13 is mounted. In this step, the temporary fixing material 1 may be first disposed on the lower heating plate 101, and then the sealing resin sheet 11 may be disposed on the temporary fixing material 1. The sheet 11 may be laminated first, and then a laminate in which the temporary fixing material 1 and the sealing resin sheet 11 are laminated may be disposed on the lower heating plate 101.

(圧力分散材)
本実施形態では、封止樹脂シート11と上側加熱板102との間に圧力分散材2を配置する。これにより、封止樹脂シート11に対する加圧が圧力分散材を介して行われることになる。圧力分散材2は、下側加熱板101及び上側加熱板102による熱プレスの際に、封止樹脂シート11に負荷される圧力を分散し、封止樹脂シート11の中心部と外周部との圧力差を低減する作用を有する。
(Pressure dispersion material)
In the present embodiment, the pressure dispersion material 2 is disposed between the sealing resin sheet 11 and the upper heating plate 102. Thereby, the pressurization with respect to the sealing resin sheet 11 is performed through the pressure dispersion material. The pressure dispersion member 2 disperses the pressure applied to the sealing resin sheet 11 during hot pressing by the lower heating plate 101 and the upper heating plate 102, so that the central portion and the outer peripheral portion of the sealing resin sheet 11 are dispersed. Has the effect of reducing the pressure difference.

平面視での圧力分散材2のサイズは、封止樹脂シート11より小さくてもよく、同じでもよく、大きくてもよい。圧力分散材2は平面視で封止樹脂シート11より大きいことが好ましい。これにより、加圧封止時の圧力による圧力分散材2の封止樹脂シート11の側面への回り込みが容易となり、封止樹脂シート11の上面だけでなく側面からの加圧状態が達成されることになる。その結果、ボイドの発生しやすい封止樹脂シートの外周部への圧力を側面から補うことができ、より圧力負荷の均一性を高めてボイド発生を抑制することができる。なお、圧力分散材2の平面視サイズが封止樹脂シート11と同等以下である場合は、柔軟な形成材料を採用して封止樹脂シート11の展延性を高め、封止時の加圧により封止樹脂シート11の側面まで到達させるようにすればよい。   The size of the pressure dispersion material 2 in plan view may be smaller than the sealing resin sheet 11, may be the same, or may be larger. The pressure dispersion material 2 is preferably larger than the sealing resin sheet 11 in plan view. Thereby, it becomes easy for the pressure dispersion material 2 to wrap around the side surface of the sealing resin sheet 11 due to the pressure at the time of pressure sealing, and not only the upper surface of the sealing resin sheet 11 but also the pressure state from the side surface is achieved. It will be. As a result, the pressure on the outer peripheral portion of the sealing resin sheet where voids are likely to be generated can be compensated from the side surface, and the uniformity of the pressure load can be further increased to suppress the generation of voids. In addition, when the planar view size of the pressure dispersion material 2 is equal to or less than that of the sealing resin sheet 11, a flexible forming material is used to enhance the spreadability of the sealing resin sheet 11, and the pressure during sealing is increased. What is necessary is just to make it reach to the side surface of the sealing resin sheet 11.

圧力分散材2の形成材料としては、軟らかすぎると封止樹脂シートへの圧力の負荷ないし伝達が十分でなく、硬すぎると封止樹脂シート形状への追従が困難となる。従って、圧力分散材2の形成材料は、封止樹脂シート11(及び仮固定材1)に追従し得るだけの適度な柔軟性と封止樹脂シート11への負荷圧力を分散し得るだけの適度な反発性とを有する限り特に限定されない。好適な形成材料としては、ポリイミド、フッ素樹脂、シリコーン樹脂、ウレタン樹脂、天然ゴム、合成ゴム(クロロプレンゴム、エチレンプロピレンゴム、ニトリルゴム等)等が挙げられる。中でも耐熱性の観点からフッ素樹脂、シリコーン樹脂が好ましい。   If the pressure dispersion material 2 is too soft, the pressure load or transmission to the sealing resin sheet is not sufficient, and if it is too hard, it is difficult to follow the shape of the sealing resin sheet. Therefore, the material for forming the pressure dispersion material 2 is moderate enough to disperse the load pressure on the sealing resin sheet 11 and moderate flexibility enough to follow the sealing resin sheet 11 (and the temporary fixing material 1). It is not particularly limited as long as it has a good resilience. Suitable forming materials include polyimide, fluororesin, silicone resin, urethane resin, natural rubber, synthetic rubber (chloroprene rubber, ethylene propylene rubber, nitrile rubber, etc.) and the like. Of these, fluororesins and silicone resins are preferred from the viewpoint of heat resistance.

圧力分散材2は多孔質であることが好ましい。多孔質とすることにより圧力分散性を向上させることができ、加圧封止時の封止樹脂シートへの圧力負荷の均一性をさらに高めることができる。特に、圧力分散材2はフッ素スポンジ又はシリコーンスポンジにより形成されていることが好ましい。これらの材料は適度な弾性を有するので、圧力分散性に優れる。また、剥離性を兼ね備えているので、封止樹脂シートや加圧封止のためのプレス板からの剥離を容易に行うことができる。   The pressure dispersion material 2 is preferably porous. By making it porous, the pressure dispersibility can be improved, and the uniformity of the pressure load on the sealing resin sheet during pressure sealing can be further enhanced. In particular, the pressure dispersion material 2 is preferably formed of a fluorine sponge or a silicone sponge. Since these materials have moderate elasticity, they are excellent in pressure dispersibility. Moreover, since it also has releasability, it can peel easily from the sealing resin sheet or the press plate for pressure sealing.

圧力分散材2のショアE硬度は、10以上70以下が好ましく、15以上50以下がより好ましい。ショアE硬度が低すぎると加圧によって圧力分散材自体が潰れてしまい、封止樹脂シートに適切に圧力を負荷することが困難となる。一方、ショアE硬度が高すぎると、圧力分散材の展延性が低下するとともに、封止樹脂シート形状への追従性が低下してしまい、十分な圧力分散作用を発揮することができなくなるおそれがある。   The Shore E hardness of the pressure dispersion material 2 is preferably 10 or more and 70 or less, and more preferably 15 or more and 50 or less. If the Shore E hardness is too low, the pressure dispersion material itself is crushed by pressurization, making it difficult to properly apply pressure to the sealing resin sheet. On the other hand, if the Shore E hardness is too high, the spreadability of the pressure dispersion material is lowered, and the followability to the shape of the sealing resin sheet is lowered, so that a sufficient pressure dispersion action may not be exhibited. is there.

圧力分散材2の見掛け密度については特に限定されないものの、見掛け密度が大きすぎると柔軟性が低下することが多く、封止樹脂シート11への追従性が低下するおそれがある。一方、見掛け密度が小さすぎると圧力分散材自体の機械的強度が低下して反発性が低下し、圧力分散作用が損なわれるおそれがある。なお、見掛け密度は、JIS K 7222:2005に準拠して測定することができる。   The apparent density of the pressure dispersion material 2 is not particularly limited, but if the apparent density is too large, the flexibility is often lowered, and the followability to the sealing resin sheet 11 may be lowered. On the other hand, if the apparent density is too small, the mechanical strength of the pressure dispersion material itself is lowered, the resilience is lowered, and the pressure dispersion action may be impaired. The apparent density can be measured according to JIS K 7222: 2005.

圧力分散材2がシート状である場合の厚さは、被着体と封止樹脂シートとの積層物の厚さに応じて適宜設定することができるものの、圧力分散材は積層物よりも厚いことが好ましい。圧力分散材内に積層物を埋め込むことができ、封止樹脂シートの上面及び側面からの圧力負荷が可能となるからである。   Although the thickness in the case where the pressure dispersion material 2 is in a sheet form can be appropriately set according to the thickness of the laminate of the adherend and the sealing resin sheet, the pressure dispersion material is thicker than the laminate. It is preferable. This is because the laminate can be embedded in the pressure dispersion material, and a pressure load from the upper surface and the side surface of the sealing resin sheet becomes possible.

本実施形態では、図1B及び図1Cに示すように、封止樹脂シート11と圧力分散材2との間にさらに剥離フィルム3を介在させて加圧封止を行うことが好ましい。これにより封止樹脂シート11と圧力分散材2との間の封止後の剥離を容易に行うことができ、電子部品の生産効率を向上させることができる。剥離フィルム3の形成材料としては、封止樹脂シート11及び仮固定材1との積層物への追従性の点から、いわゆるコシのない(剛性の低い)材料が好ましく、オレフィン系フィルム、フッ素樹脂系フィルム等が好ましい。剥離フィルム3の厚さは特に限定されないものの、上記追従性やハンドリング性の観点から、10μm以上100μm以下が好ましく、20μm以上50μm以下がより好ましい。   In this embodiment, as shown in FIGS. 1B and 1C, it is preferable to perform pressure sealing by further interposing a release film 3 between the sealing resin sheet 11 and the pressure dispersion material 2. Thereby, peeling after sealing between the sealing resin sheet 11 and the pressure dispersion material 2 can be performed easily, and the production efficiency of electronic components can be improved. The material for forming the release film 3 is preferably a so-called non-stiff (low rigidity) material from the viewpoint of followability to the laminate of the sealing resin sheet 11 and the temporary fixing material 1, and is preferably an olefin film or fluororesin. A system film or the like is preferable. Although the thickness of the release film 3 is not particularly limited, it is preferably 10 μm or more and 100 μm or less, and more preferably 20 μm or more and 50 μm or less, from the viewpoint of the followability and handling properties.

次に、図1Cに示すように、下側加熱板101と上側加熱板102とにより熱プレスして、半導体チップ13を封止樹脂シート11に埋め込みながら、封止樹脂シート11を仮固定材1上に積層する。これにより、仮固定材1上に固定されている半導体チップ13が封止樹脂シート11に埋め込まれた封止体(図1D参照)が得られる。本実施形態では、圧力分散材2を介して熱プレスによる加圧を行っているので、図1Cに示すように、加圧により展延した圧力分散材が封止樹脂シートの上面及び側面を覆うことになる。その結果、封止樹脂シートの上面だけでなく側面からの圧力負荷が可能となり、これにより封止樹脂シートの中心部と外周部との圧力差を低減して、封止樹脂シートの半導体チップ及び仮固定材への密着不足によるボイドの発生を好適に抑制することができる。熱プレス後の封止樹脂シート11の厚さが所定値となるように、下側加熱板101と上側加熱板102との間にスペーサー(図示せず)を介在させてもよい。   Next, as illustrated in FIG. 1C, the sealing resin sheet 11 is temporarily pressed 1 while the semiconductor chip 13 is embedded in the sealing resin sheet 11 by hot pressing with the lower heating plate 101 and the upper heating plate 102. Laminate on top. Thereby, the sealing body (refer FIG. 1D) by which the semiconductor chip 13 currently fixed on the temporary fixing material 1 was embedded in the sealing resin sheet 11 is obtained. In this embodiment, since pressure is applied by hot pressing through the pressure dispersion material 2, as shown in FIG. 1C, the pressure dispersion material spread by pressure covers the upper surface and side surfaces of the sealing resin sheet. It will be. As a result, pressure load from the side surface as well as the upper surface of the sealing resin sheet is possible, thereby reducing the pressure difference between the central portion and the outer peripheral portion of the sealing resin sheet, and the semiconductor chip of the sealing resin sheet and Generation of voids due to insufficient adhesion to the temporary fixing material can be suitably suppressed. A spacer (not shown) may be interposed between the lower heating plate 101 and the upper heating plate 102 so that the thickness of the sealing resin sheet 11 after hot pressing becomes a predetermined value.

熱プレス条件としては、温度が、例えば、40〜130℃、好ましくは、60〜120℃であり、圧力が、例えば、50〜2500kPa、好ましくは、100〜2000kPaであり、時間が、例えば、0.3〜10分間、好ましくは、0.5〜5分間である。また、封止樹脂シート11の半導体チップ13及び仮固定材1への密着性および追従性の向上を考慮すると、好ましくは、減圧条件下(例えば10〜2000Pa)において、プレスすることが好ましい。本実施形態では、封止樹脂シート11及び圧力分散材2を採用することにより、半導体チップ13の被覆に仮固定材1上に貼り付けるだけで半導体チップ13を埋め込むことができ、半導体パッケージの信頼性及び生産効率を向上させることができる。   As hot press conditions, the temperature is, for example, 40 to 130 ° C., preferably 60 to 120 ° C., the pressure is, for example, 50 to 2500 kPa, preferably 100 to 2000 kPa, and the time is, for example, 0 .3 to 10 minutes, preferably 0.5 to 5 minutes. In consideration of improvement in the adhesion and followability of the sealing resin sheet 11 to the semiconductor chip 13 and the temporary fixing material 1, it is preferable to press under reduced pressure conditions (for example, 10 to 2000 Pa). In the present embodiment, by employing the sealing resin sheet 11 and the pressure dispersion material 2, the semiconductor chip 13 can be embedded simply by pasting the semiconductor chip 13 on the temporary fixing material 1 and the reliability of the semiconductor package. And production efficiency can be improved.

熱プレス後、封止体15を熱プレス装置より取り出し、封止樹脂シート11にセパレータが積層されている場合は、封止体15を熱硬化工程に送る前に、セパレータを剥離しておく。   After hot pressing, the sealing body 15 is taken out from the hot pressing apparatus, and when the separator is laminated on the sealing resin sheet 11, the separator is peeled off before the sealing body 15 is sent to the thermosetting process.

[工程C:熱硬化工程]
熱硬化工程では、上記封止樹脂シート11に熱硬化処理を施して硬化した封止体15を形成する(図1D参照)。封止樹脂シート11の熱硬化処理の条件は、加熱温度として好ましくは100℃から200℃、より好ましくは110℃から180℃、加熱時間として好ましくは3分から200分、より好ましくは30分から120分の間、必要に応じて加圧しても良い。加圧の際は、好ましくは0.1MPaから10MPa、より好ましくは0.5MPaから5MPaを採用することができる。
[Process C: Thermosetting process]
In the thermosetting step, the sealing body 15 is formed by applying a thermosetting process to the sealing resin sheet 11 (see FIG. 1D). The conditions of the thermosetting treatment of the sealing resin sheet 11 are preferably 100 to 200 ° C., more preferably 110 to 180 ° C. as the heating temperature, and preferably 3 to 200 minutes, more preferably 30 to 120 minutes as the heating time. In the meantime, you may pressurize as needed. In the pressurization, preferably 0.1 MPa to 10 MPa, more preferably 0.5 MPa to 5 MPa can be employed.

[工程D:熱膨張性粘着剤層剥離工程]
熱膨張性粘着剤層剥離工程では、仮固定材1を加熱して熱膨張性粘着剤層1aを熱膨張させることにより、熱膨張性粘着剤層1aと封止体15との間で剥離を行う(図1E参照)。あるいは、支持体1bと熱膨張性粘着剤層1aとの界面で剥離を行い、その後、熱膨張性粘着剤層1aと封止体15との界面で熱膨張による剥離を行うという手順も好適に採用することができる。いずれも場合であっても、熱膨張性粘着剤層1a加熱して熱膨張させその粘着力を低下させることで、熱膨張性粘着剤層1aと封止体15との界面での剥離を容易に行うことができる。熱膨張の条件としては、上述の熱膨張性粘着剤層における発泡剤の発泡開始温度の条件を好適に採用することができる。
[Step D: Thermally expandable pressure-sensitive adhesive layer peeling step]
In the heat-expandable pressure-sensitive adhesive layer peeling step, the temporary fixing material 1 is heated to thermally expand the heat-expandable pressure-sensitive adhesive layer 1a, thereby peeling between the heat-expandable pressure-sensitive adhesive layer 1a and the sealing body 15. (See FIG. 1E). Alternatively, a procedure of performing peeling at the interface between the support 1b and the thermally expandable pressure-sensitive adhesive layer 1a and then performing peeling by thermal expansion at the interface between the thermally expandable pressure-sensitive adhesive layer 1a and the sealing body 15 is also preferable. Can be adopted. In either case, peeling at the interface between the thermally expandable pressure-sensitive adhesive layer 1a and the sealing body 15 is facilitated by heating and thermally expanding the heat-expandable pressure-sensitive adhesive layer 1a to reduce its adhesive strength. Can be done. As the conditions for thermal expansion, the conditions for the foaming start temperature of the foaming agent in the above-mentioned thermally expandable pressure-sensitive adhesive layer can be suitably employed.

本工程では、半導体チップ13が露出した状態で、再配線形成工程に先だってプラズマ処理などにより封止体15の表面をクリーニングしてもよい。   In this step, the surface of the sealing body 15 may be cleaned by plasma treatment or the like prior to the rewiring forming step with the semiconductor chip 13 exposed.

[工程E:再配線形成工程)
本実施形態ではさらに、封止体15の半導体チップ13の活性面A1側の面に再配線19を形成する再配線形成工程を含むことが好ましい。再配線形成工程では、上記熱膨張性粘着剤層1aの剥離後、上記露出した半導体チップ13と接続する再配線19を封止体15上に形成する(図1F参照)。
[Process E: Rewiring process]
In the present embodiment, it is preferable to further include a rewiring forming step of forming the rewiring 19 on the surface of the sealing body 15 on the active surface A1 side of the semiconductor chip 13. In the rewiring forming step, after the thermally expandable pressure-sensitive adhesive layer 1a is peeled off, a rewiring 19 connected to the exposed semiconductor chip 13 is formed on the sealing body 15 (see FIG. 1F).

再配線の形成方法としては、例えば、露出している半導体チップ13上へ真空成膜法などの公知の方法を利用して金属シード層を形成し、セミアディティブ法などの公知の方法により、再配線19を形成することができる。   As a method of forming the rewiring, for example, a metal seed layer is formed on the exposed semiconductor chip 13 using a known method such as a vacuum film forming method, and then re-reformed by a known method such as a semi-additive method. The wiring 19 can be formed.

かかる後に、再配線19及び封止体15上へポリイミドやPBOなどの絶縁層を形成してもよい。   Thereafter, an insulating layer such as polyimide or PBO may be formed on the rewiring 19 and the sealing body 15.

[工程F:バンプ形成工程]
次いで、形成した再配線19上にバンプ17を形成するバンピング加工を行ってもよい(図1G参照)。バンピング加工は、半田ボールや半田メッキなど公知の方法で行うことができる。バンプの材質は特に限定されず、例えば、錫−鉛系金属材、錫−銀系金属材、錫−銀−銅系金属材、錫−亜鉛系金属材、錫−亜鉛−ビスマス系金属材等の半田類(合金)や、金系金属材、銅系金属材などが挙げられる。
[Process F: Bump formation process]
Next, a bumping process for forming bumps 17 on the formed rewiring 19 may be performed (see FIG. 1G). The bumping process can be performed by a known method such as a solder ball or solder plating. The material of the bump is not particularly limited. For example, a tin-lead metal material, a tin-silver metal material, a tin-silver-copper metal material, a tin-zinc metal material, a tin-zinc-bismuth metal material, etc. Solders (alloys), gold-based metal materials, copper-based metal materials, and the like.

[工程G:ダイシング工程]
最後に、半導体チップ13、封止樹脂シート11及び再配線19などの要素からなる積層体のダイシングを行う(図1H参照)。これにより、チップ領域の外側に配線を引き出した半導体パッケージ18を半導体チップ単位で得ることができる。図1Hでは、1つの半導体チップに対応させてダイシングしているが、2つ以上の半導体チップを一単位としてダイシングを行ってもよい。ダイシングは、通常、従来公知のダイシングシートにより上記封止体15を固定した上で行う。切断箇所の位置合わせは直接照明又は間接照明を用いた画像認識により行ってもよい。
[Process G: Dicing process]
Finally, dicing is performed on the laminate including elements such as the semiconductor chip 13, the sealing resin sheet 11, and the rewiring 19 (see FIG. 1H). As a result, the semiconductor package 18 in which the wiring is drawn outside the chip region can be obtained for each semiconductor chip. In FIG. 1H, dicing is performed corresponding to one semiconductor chip, but dicing may be performed with two or more semiconductor chips as a unit. Dicing is usually performed after fixing the sealing body 15 with a conventionally known dicing sheet. The alignment of the cut portion may be performed by image recognition using direct illumination or indirect illumination.

本工程では、例えば、ダイシングシートまで切込みを行うフルカットと呼ばれる切断方式等を採用できる。本工程で用いるダイシング装置としては特に限定されず、従来公知のものを用いることができる。   In this step, for example, a cutting method called full cut for cutting up to a dicing sheet can be adopted. It does not specifically limit as a dicing apparatus used at this process, A conventionally well-known thing can be used.

なお、ダイシング工程に続いて封止体のエキスパンドを行う場合、該エキスパンドは従来公知のエキスパンド装置を用いて行うことができる。エキスパンド装置は、ダイシングリングを介してダイシングシートを下方へ押し下げることが可能なドーナッツ状の外リングと、外リングよりも径が小さくダイシングシートを支持する内リングとを有している。このエキスパンド工程により、隣り合う半導体パッケージ18同士が接触して破損するのを防ぐことができる。   In addition, when expanding a sealing body following a dicing process, this expansion can be performed using a conventionally well-known expanding apparatus. The expanding device includes a donut-shaped outer ring that can push down the dicing sheet through the dicing ring, and an inner ring that has a smaller diameter than the outer ring and supports the dicing sheet. By this expanding process, it is possible to prevent the adjacent semiconductor packages 18 from coming into contact with each other and being damaged.

(工程H:基板実装工程)
必要に応じて、上記で得られた半導体パッケージ18を別途の基板(図示せず)に実装する基板実装工程を行うことができる。半導体パッケージ18の基板への実装には、フリップチップボンダーやダイボンダーなどの公知の装置を用いることができる。
(Process H: Board mounting process)
If necessary, a substrate mounting step of mounting the semiconductor package 18 obtained above on a separate substrate (not shown) can be performed. For mounting the semiconductor package 18 on the substrate, a known device such as a flip chip bonder or a die bonder can be used.

[封止樹脂シート]
以下、封止樹脂シートを形成する樹脂組成物の好適な態様について説明する。樹脂組成物としては、封止樹脂シート硬化後の耐熱性や安定性を向上させる観点から、熱硬化性樹脂をさらに含むことが好ましい。具体的な成分として以下のA成分からE成分を含有するエポキシ樹脂組成物が好ましいものとして挙げられる。
A成分:エポキシ樹脂
B成分:フェノール樹脂
C成分:エラストマー
D成分:無機充填剤
E成分:硬化促進剤
[Sealing resin sheet]
Hereinafter, the suitable aspect of the resin composition which forms a sealing resin sheet is demonstrated. The resin composition preferably further includes a thermosetting resin from the viewpoint of improving heat resistance and stability after curing the sealing resin sheet. As specific components, epoxy resin compositions containing the following components A to E are preferred.
A component: Epoxy resin B component: Phenol resin C component: Elastomer D component: Inorganic filler E component: Curing accelerator

(A成分)
熱硬化性樹脂としてのエポキシ樹脂(A成分)としては、特に限定されるものではない。例えば、トリフェニルメタン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、変性ビスフェノールA型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、変性ビスフェノールF型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、フェノキシ樹脂等の各種のエポキシ樹脂を用いることができる。これらエポキシ樹脂は単独で用いてもよいし2種以上併用してもよい。
(A component)
It does not specifically limit as an epoxy resin (A component) as a thermosetting resin. For example, triphenylmethane type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, modified bisphenol A type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, modified bisphenol F type epoxy resin, dicyclopentadiene type Various epoxy resins such as an epoxy resin, a phenol novolac type epoxy resin, and a phenoxy resin can be used. These epoxy resins may be used alone or in combination of two or more.

エポキシ樹脂の硬化後の靭性及びエポキシ樹脂の反応性を確保する観点からは、エポキシ当量150〜250、軟化点もしくは融点が50〜130℃の常温で固形のものが好ましく、中でも、信頼性の観点から、トリフェニルメタン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂が好ましい。   From the viewpoint of ensuring the toughness after curing of the epoxy resin and the reactivity of the epoxy resin, those having an epoxy equivalent of 150 to 250 and a softening point or melting point of 50 to 130 ° C. are preferably solid, and in particular, from the viewpoint of reliability. Therefore, triphenylmethane type epoxy resin, cresol novolac type epoxy resin, and biphenyl type epoxy resin are preferable.

また、低応力性の観点から、アセタール基やポリオキシアルキレン基等の柔軟性骨格を有する変性ビスフェノールA型エポキシ樹脂が好ましく、アセタール基を有する変性ビスフェノールA型エポキシ樹脂は、液体状で取り扱いが良好であることから、特に好適に用いることができる。   Also, from the viewpoint of low stress, a modified bisphenol A type epoxy resin having a flexible skeleton such as an acetal group or a polyoxyalkylene group is preferable, and a modified bisphenol A type epoxy resin having an acetal group is in a liquid state and is easy to handle. Therefore, it can be particularly preferably used.

エポキシ樹脂(A成分)の含有量は、エポキシ樹脂組成物全体に対して1〜10重量%の範囲に設定することが好ましい。   The content of the epoxy resin (component A) is preferably set in the range of 1 to 10% by weight with respect to the entire epoxy resin composition.

(B成分)
フェノール樹脂(B成分)は、熱硬化性樹脂として用いることができるとともに、エポキシ樹脂(A成分)との間で硬化反応を生起するものであれば特に限定されるものではない。例えば、フェノールノボラック樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ジシクロペンタジエン型フェノール樹脂、クレゾールノボラック樹脂、レゾール樹脂、等が用いられる。これらフェノール樹脂は単独で用いてもよいし、2種以上併用してもよい。
(B component)
The phenol resin (component B) is not particularly limited as long as it can be used as a thermosetting resin and causes a curing reaction with the epoxy resin (component A). For example, a phenol novolak resin, a phenol aralkyl resin, a biphenyl aralkyl resin, a dicyclopentadiene type phenol resin, a cresol novolak resin, a resole resin, or the like is used. These phenolic resins may be used alone or in combination of two or more.

フェノール樹脂としては、エポキシ樹脂(A成分)との反応性の観点から、水酸基当量が70〜250、軟化点が50〜110℃のものを用いることが好ましく、中でも硬化反応性が高いという観点から、フェノールノボラック樹脂を好適に用いることができる。また、信頼性の観点から、フェノールアラルキル樹脂やビフェニルアラルキル樹脂のような低吸湿性のものも好適に用いることができる。   From the viewpoint of reactivity with the epoxy resin (component A), it is preferable to use a phenolic resin having a hydroxyl equivalent weight of 70 to 250 and a softening point of 50 to 110 ° C., among which the curing reactivity is high. A phenol novolac resin can be preferably used. From the viewpoint of reliability, low hygroscopic materials such as phenol aralkyl resins and biphenyl aralkyl resins can also be suitably used.

エポキシ樹脂(A成分)とフェノール樹脂(B成分)の配合割合は、硬化反応性という観点から、エポキシ樹脂(A成分)中のエポキシ基1当量に対して、フェノール樹脂(B成分)中の水酸基の合計が0.7〜1.5当量となるように配合することが好ましく、より好ましくは0.9〜1.2当量である。   From the viewpoint of curing reactivity, the blending ratio of the epoxy resin (component A) and the phenol resin (component B) is a hydroxyl group in the phenol resin (component B) with respect to 1 equivalent of the epoxy group in the epoxy resin (component A). It is preferable to mix | blend so that it may become 0.7-1.5 equivalent, More preferably, it is 0.9-1.2 equivalent.

(C成分)
エポキシ樹脂(A成分)及びフェノール樹脂(B成分)とともに用いられるエラストマー(C成分)は特に限定するものではなく、例えば、各種アクリル系共重合体やゴム成分等を用いることができる。エポキシ樹脂(A成分)への分散性や、得られる封止樹脂シートの耐熱性、可撓性、強度を向上させることができるという観点から、ゴム成分を含むことが好ましい。このようなゴム成分としては、ブタジエン系ゴム、スチレン系ゴム、アクリル系ゴム、シリコーン系ゴムからなる群より選択される少なくとも1種であることが好ましい。これらは単独で用いてもよいし、2種以上併せて用いてもよい。
(C component)
The elastomer (C component) used together with the epoxy resin (A component) and the phenol resin (B component) is not particularly limited, and for example, various acrylic copolymers and rubber components can be used. A rubber component is preferably included from the viewpoint that the dispersibility in the epoxy resin (component A) and the heat resistance, flexibility, and strength of the obtained sealing resin sheet can be improved. Such a rubber component is preferably at least one selected from the group consisting of butadiene rubber, styrene rubber, acrylic rubber, and silicone rubber. These may be used alone or in combination of two or more.

エラストマー(C成分)の含有量は、エポキシ樹脂組成物全体の1.0〜3.5重量%であることが好ましく、1.0〜3.0重量%であることがより好ましい。エラストマー(C成分)の含有量が1.0重量%未満では、封止樹脂シート11の柔軟性及び可撓性を得るのが困難となり、さらには封止樹脂シートの反りを抑えた樹脂封止も困難となる。逆に上記含有量が3.5重量%を超えると、封止樹脂シート11の溶融粘度が高くなって電子部品の埋まり込み性が低下するとともに、封止樹脂シート11の硬化体の強度及び耐熱性が低下する傾向がみられる。   The content of the elastomer (component C) is preferably 1.0 to 3.5% by weight, more preferably 1.0 to 3.0% by weight, based on the entire epoxy resin composition. If the content of the elastomer (component C) is less than 1.0% by weight, it becomes difficult to obtain the flexibility and flexibility of the sealing resin sheet 11, and further the resin sealing that suppresses the warping of the sealing resin sheet It will also be difficult. On the other hand, when the content exceeds 3.5% by weight, the melt viscosity of the sealing resin sheet 11 is increased and the embedding property of the electronic component is lowered, and the strength and heat resistance of the cured body of the sealing resin sheet 11 are reduced. Tend to decrease.

(D成分)
無機質充填剤(D成分)は、特に限定されるものではなく、従来公知の各種充填剤を用いることができ、例えば、石英ガラス、タルク、シリカ(溶融シリカや結晶性シリカ等)、アルミナ、窒化アルミニウム、窒化珪素、窒化ホウ素の粉末が挙げられる。これらは単独で用いてもよいし、2種以上併用してもよい。
(D component)
The inorganic filler (component D) is not particularly limited, and various conventionally known fillers can be used. For example, quartz glass, talc, silica (fused silica, crystalline silica, etc.), alumina, nitriding Examples thereof include aluminum, silicon nitride, and boron nitride powders. These may be used alone or in combination of two or more.

中でも、エポキシ樹脂組成物の硬化体の熱線膨張係数が低減することにより内部応力を低減し、その結果、電子部品の封止後の封止樹脂シート11の反りを抑制できるという点から、シリカ粉末を用いることが好ましく、シリカ粉末の中でも溶融シリカ粉末を用いることがより好ましい。溶融シリカ粉末としては、球状溶融シリカ粉末、破砕溶融シリカ粉末が挙げられるが、流動性という観点から、球状溶融シリカ粉末を用いることが特に好ましい。中でも、平均粒径が55μm以下の範囲のものを用いることが好ましく、0.1〜30μmの範囲のものを用いることがより好ましく、0.5〜20μmの範囲のものを用いることが特に好ましい。   Among these, silica powder is used in that the internal stress is reduced by reducing the coefficient of thermal expansion of the cured product of the epoxy resin composition, and as a result, warpage of the sealing resin sheet 11 after sealing of the electronic component can be suppressed. It is preferable to use a fused silica powder among the silica powders. Examples of the fused silica powder include spherical fused silica powder and crushed fused silica powder. From the viewpoint of fluidity, it is particularly preferable to use a spherical fused silica powder. Among them, those having an average particle size in the range of 55 μm or less are preferably used, those in the range of 0.1 to 30 μm are more preferable, and those in the range of 0.5 to 20 μm are particularly preferable.

なお、平均粒径は、母集団から任意に抽出される試料を用い、レーザー回折散乱式粒度分布測定装置を用いて測定することにより導き出すことができる。   The average particle diameter can be derived by using a sample arbitrarily extracted from the population and measuring it using a laser diffraction / scattering particle size distribution measuring apparatus.

無機質充填剤(D成分)の含有量は、好ましくはエポキシ樹脂組成物全体の70〜90体積%(シリカ粒子の場合、比重2.2g/cmであるので、81〜94重量%)であり、より好ましくは74〜85体積%(シリカ粒子の場合、84〜91重量%)であり、さらに好ましくは76〜83体積%(シリカ粒子の場合、85〜90重量%)である。無機質充填剤(D成分)の含有量が70体積%未満では、エポキシ樹脂組成物の硬化体の線膨張係数が大きくなるために、封止樹脂シート11の反りが大きくなる傾向がみられる。一方、上記含有量が90体積%を超えると、封止樹脂シート11の柔軟性や流動性が悪くなるために、電子部品との接着性が低下する傾向がみられる。 The content of the inorganic filler (component D) is preferably 70 to 90% by volume of the entire epoxy resin composition (81 to 94% by weight because the specific gravity is 2.2 g / cm 3 in the case of silica particles). More preferably, it is 74 to 85% by volume (84 to 91% by weight in the case of silica particles), and still more preferably 76 to 83% by volume (85 to 90% by weight in the case of silica particles). When the content of the inorganic filler (D component) is less than 70% by volume, the linear expansion coefficient of the cured product of the epoxy resin composition increases, and thus the warpage of the sealing resin sheet 11 tends to increase. On the other hand, since the softness | flexibility and fluidity | liquidity of the sealing resin sheet 11 will worsen when the said content exceeds 90 volume%, the tendency for adhesiveness with an electronic component to fall is seen.

(E成分)
硬化促進剤(E成分)は、エポキシ樹脂とフェノール樹脂の硬化を進行させるものであれば特に限定されるものではないが、硬化性と保存性の観点から、トリフェニルホスフィンやテトラフェニルホスホニウムテトラフェニルボレート等の有機リン系化合物や、イミダゾール系化合物が好適に用いられる。これら硬化促進剤は、単独で用いても良いし、他の硬化促進剤と併用しても構わない。
(E component)
The curing accelerator (component E) is not particularly limited as long as it allows curing of the epoxy resin and the phenol resin, but from the viewpoint of curability and storage stability, triphenylphosphine or tetraphenylphosphonium tetraphenyl. Organic phosphorus compounds such as borates and imidazole compounds are preferably used. These curing accelerators may be used alone or in combination with other curing accelerators.

硬化促進剤(E成分)の含有量は、エポキシ樹脂(A成分)及びフェノール樹脂(B成分)の合計100重量部に対して0.1〜5重量部であることが好ましい。   It is preferable that content of a hardening accelerator (E component) is 0.1-5 weight part with respect to a total of 100 weight part of an epoxy resin (A component) and a phenol resin (B component).

(その他の成分)
エポキシ樹脂組成物には、A成分からE成分に加えて、難燃剤成分を加えてもよい。難燃剤組成分としては、例えば水酸化アルミニウム、水酸化マグネシウム、水酸化鉄、水酸化カルシウム、水酸化スズ、複合化金属水酸化物等の各種金属水酸化物を用いることができる。また、難燃剤成分としては上記金属水酸化物のほか、ホスファゼン化合物を用いることができる。ホスファゼン化合物としては、例えばSPR−100、SA−100、SP−100(以上、大塚化学株式会社)、FP−100、FP−110(以上、株式会社伏見製薬所)等が市販品として入手可能である。環状ホスファゼンオリゴマーは、例えばFP−100、FP−110(以上、株式会社伏見製薬所)等が市販品として入手可能である。少量でも難燃効果を発揮するという観点から、ホスファゼン化合物に含まれるリン元素の含有率は、12重量%以上であることが好ましい。
(Other ingredients)
In addition to the A component to the E component, a flame retardant component may be added to the epoxy resin composition. As the flame retardant composition, various metal hydroxides such as aluminum hydroxide, magnesium hydroxide, iron hydroxide, calcium hydroxide, tin hydroxide, and complex metal hydroxide can be used. As the flame retardant component, a phosphazene compound can be used in addition to the metal hydroxide. As phosphazene compounds, for example, SPR-100, SA-100, SP-100 (above, Otsuka Chemical Co., Ltd.), FP-100, FP-110 (above, Fushimi Pharmaceutical Co., Ltd.) and the like are available as commercial products. is there. As the cyclic phosphazene oligomer, for example, FP-100, FP-110 (above, Fushimi Pharmaceutical Co., Ltd.) and the like are commercially available. From the viewpoint of exhibiting a flame retardant effect even in a small amount, the content of the phosphorus element contained in the phosphazene compound is preferably 12% by weight or more.

なお、エポキシ樹脂組成物は、上記の各成分以外に必要に応じて、カーボンブラックをはじめとする顔料等、他の添加剤を適宜配合することができる。   In addition to the above components, the epoxy resin composition can be appropriately mixed with other additives such as a pigment including carbon black as necessary.

封止樹脂シート11の平面視形状は特に限定されず、直径300mm以上の円形又は一辺の長さが300mm以上の長方形であってもよい。このように封止樹脂シート11を大面積化することにより、1回の封止プロセスでの封止すべき電子部品の数を増加させることができ、得られる電子部品パッケージの収率を高めることができる。また、封止樹脂シートの大面積化を行うと外周部におけるボイドの発生割合も高くなってしまうものの、加圧封止の際に圧力分散材を介して封止樹脂シート11に対する加圧を行うので、中心部と外周部との圧力差が低減されてボイドの発生を防止することができ、ひいては電子部品パッケージの信頼性及び製造効率を向上させることができる。   The planar view shape of the sealing resin sheet 11 is not particularly limited, and may be a circle having a diameter of 300 mm or more or a rectangle having a side length of 300 mm or more. By enlarging the sealing resin sheet 11 as described above, the number of electronic components to be sealed in one sealing process can be increased, and the yield of the obtained electronic component package can be increased. Can do. Further, when the sealing resin sheet is increased in area, the generation ratio of voids in the outer peripheral portion also increases, but the pressure is applied to the sealing resin sheet 11 via a pressure dispersion material during pressure sealing. Therefore, the pressure difference between the central portion and the outer peripheral portion can be reduced to prevent the generation of voids, thereby improving the reliability and manufacturing efficiency of the electronic component package.

前記封止樹脂シートの熱硬化前の55℃での貯蔵弾性率が10Pa以上200000Pa以下であることが好ましく、100Pa以上150000Pa以下であることがより好ましい。熱硬化前の貯蔵弾性率を上記範囲程度とすることにより、封止樹脂シートのハンドリング性や電子部品の埋まり込み性が良好になる。   The storage elastic modulus of the sealing resin sheet at 55 ° C. before thermosetting is preferably 10 Pa or more and 200000 Pa or less, and more preferably 100 Pa or more and 150,000 Pa or less. By setting the storage elastic modulus before thermosetting to the above range, the handling property of the sealing resin sheet and the embedding property of the electronic component are improved.

(封止樹脂シートの作製方法)
封止樹脂シートの作製方法を以下に説明する。本実施形態の封止樹脂シートの製造方法は、混練物を調製する混練工程、及び前記混練物をシート状に成形して封止樹脂シートを得る成形工程を含む。
(Method for producing sealing resin sheet)
A method for producing the sealing resin sheet will be described below. The manufacturing method of the sealing resin sheet of this embodiment includes a kneading step of preparing a kneaded product, and a molding step of forming the kneaded product into a sheet shape to obtain a sealing resin sheet.

(混練工程)
まず、上述の各成分を混合することによりエポキシ樹脂組成物を調製する。混合方法は、各成分が均一に分散混合される方法であれば特に限定するものではない。その後、各配合成分を直接ニーダー等で混練することにより混練物を調製する。
(Kneading process)
First, an epoxy resin composition is prepared by mixing the above-described components. The mixing method is not particularly limited as long as each component is uniformly dispersed and mixed. Thereafter, a kneaded product is prepared by directly kneading each compounding component with a kneader or the like.

具体的には、上記A〜E成分及び必要に応じて他の添加剤の各成分をミキサーなど公知の方法を用いて混合し、その後、溶融混練することにより混練物を調製する。溶融混練する方法としては、特に限定されないが、例えば、ミキシングロール、加圧式ニーダー、押出機などの公知の混練機により、溶融混練する方法などが挙げられる。このようなニーダーとしては、例えば、軸方向の一部においてスクリュー羽のスクリュー軸からの突出量が他の部分のスクリュー羽のスクリュー軸からの突出量よりも小さい部分を有する混練用スクリュー、又は軸方向の一部においてスクリュー羽がない混練用スクリューを備えたニーダーを好適に用いることができる。スクリュー羽の突出量が小さい部分又はスクリュー羽がない部分では低せん断力かつ低攪拌となり、これにより混練物の圧縮率が高まって噛みこんだエアを排除可能となり、得られる混練物における気孔の発生を抑制することができる。   Specifically, the above components A to E and, if necessary, each component of other additives are mixed using a known method such as a mixer, and then kneaded to prepare a kneaded product. The method of melt kneading is not particularly limited, and examples thereof include a method of melt kneading with a known kneader such as a mixing roll, a pressure kneader, or an extruder. As such a kneader, for example, a kneading screw having a portion in which the protruding amount of the screw blade from the screw shaft in a part of the axial direction is smaller than the protruding amount of the screw blade of the other portion or the shaft A kneader equipped with a kneading screw having no screw blades in a part of the direction can be suitably used. Low shear force and low agitation in the part where the protruding amount of the screw wing is small or where there is no screw wing increases the compression rate of the kneaded product, and it is possible to eliminate the trapped air and generate pores in the obtained kneaded product Can be suppressed.

混練条件としては、温度が、上記した各成分の軟化点以上であれば特に制限されず、例えば30〜150℃、エポキン樹脂の熱硬化性を考慮すると、好ましくは40〜140℃、さらに好ましくは60〜120℃であり、時間が、例えば1〜30分間、好ましくは5〜15分間である。これによって、混練物を調製することができる。   The kneading conditions are not particularly limited as long as the temperature is equal to or higher than the softening point of each component described above. For example, when considering the thermosetting property of 30 to 150 ° C. and the epoxy resin, preferably 40 to 140 ° C., more preferably It is 60-120 degreeC, and time is 1 to 30 minutes, for example, Preferably it is 5 to 15 minutes. Thereby, a kneaded material can be prepared.

(成形工程)
得られる混練物をシート状に押出成形により成形することにより、封止樹脂シート11を得ることができる。具体的には、溶融混練後の混練物を冷却することなく高温状態のままで、押出成形することで、封止樹脂シート11を形成することができる。このような押出方法としては、特に制限されず、Tダイ押出法、ロール圧延法、ロール混練法、共押出法、カレンダー成形法などが挙げられる。押出温度としては、上記した各成分の軟化点以上であれば、特に制限されないが、エポキシ樹脂の熱硬化性および成形性を考慮すると、例えば40〜150℃、好ましくは、50〜140℃、さらに好ましくは70〜120℃である。以上により、封止樹脂シート11を形成することができる。
(Molding process)
The sealing resin sheet 11 can be obtained by forming the obtained kneaded material into a sheet shape by extrusion molding. Specifically, the encapsulating resin sheet 11 can be formed by extrusion molding without cooling the kneaded product after melt-kneading while maintaining a high temperature state. Such an extrusion method is not particularly limited, and examples thereof include a T-die extrusion method, a roll rolling method, a roll kneading method, a co-extrusion method, and a calendar molding method. The extrusion temperature is not particularly limited as long as it is equal to or higher than the softening point of each component described above, but considering the thermosetting property and moldability of the epoxy resin, for example, 40 to 150 ° C, preferably 50 to 140 ° C, Preferably it is 70-120 degreeC. As described above, the sealing resin sheet 11 can be formed.

封止樹脂シート11の厚さは特に限定されないが、100〜2000μmであることが好ましい。上記範囲内であると、良好に電子部品を封止することができる。また、樹脂シートを薄型にすることで、発熱量を低減でき、硬化収縮が起こりにくくなる。この結果、パッケージ反り量を低減でき、より信頼性の高い電子部品パッケージが得られる。   Although the thickness of the sealing resin sheet 11 is not specifically limited, It is preferable that it is 100-2000 micrometers. Within the above range, the electronic component can be satisfactorily sealed. Further, by making the resin sheet thin, the amount of heat generation can be reduced, and curing shrinkage hardly occurs. As a result, the amount of package warpage can be reduced, and a more reliable electronic component package can be obtained.

このようにして得られた封止樹脂シートは、必要により所望の厚みとなるように積層して使用してもよい。すなわち、封止樹脂シートは、単層構造にて使用してもよいし、2層以上の多層構造に積層してなる積層体として使用してもよい。   The encapsulating resin sheet thus obtained may be used by being laminated so as to have a desired thickness if necessary. That is, the sealing resin sheet may be used in a single layer structure, or may be used as a laminate formed by laminating two or more multilayer structures.

《第2実施形態》
本発明の一実施形態である第2実施形態について説明する。図2は、本発明の別の一実施形態に係る電子部品及び被着体を模式的に示す断面図である。第1実施形態では、半導体チップを仮固定材に仮固定した状態で樹脂封止を行っているが、第2実施形態では、被着体として半導体ウェハを用い、この半導体ウェハにフリップチップ接続された半導体チップを封止樹脂シートにて樹脂封止して半導体パッケージを作製する。以下では、主に第1実施形態と異なる点を説明する。
<< Second Embodiment >>
A second embodiment which is an embodiment of the present invention will be described. FIG. 2 is a cross-sectional view schematically showing an electronic component and an adherend according to another embodiment of the present invention. In the first embodiment, the resin sealing is performed in a state where the semiconductor chip is temporarily fixed to the temporary fixing material. In the second embodiment, a semiconductor wafer is used as an adherend, and the semiconductor wafer is flip-chip connected to the semiconductor wafer. The semiconductor chip is sealed with a sealing resin sheet to produce a semiconductor package. Hereinafter, differences from the first embodiment will be mainly described.

(工程A:チップ搭載ウェハ準備工程)
チップ搭載ウェハ準備工程では、複数の半導体チップ23がフリップチップ接続された半導体ウェハ22Aを準備する(図2参照)。半導体チップ23は、所定の回路が形成された半導体ウェハを公知の方法でダイシングして個片化することにより形成することができる。半導体チップ23の半導体ウェハ22Aへの搭載には、フリップチップボンダーなどの公知の装置を用いることができる。本実施形態では、半導体チップ23の突起電極23aが形成された活性面A2が半導体ウェハ22Aと対向するフリップチップ接続を採用している。半導体チップ23に形成されたバンプ等の突起電極23aと、半導体ウェハ22Aに設けられた貫通電極22aとを介して、半導体チップ23と半導体ウェハ22Aとが電気的に接続されている。貫通電極22aは、TSV(Through Silicon Via)形式の電極を好適に用いることができる。
(Process A: Chip mounting wafer preparation process)
In the chip mounting wafer preparation step, a semiconductor wafer 22A in which a plurality of semiconductor chips 23 are flip-chip connected is prepared (see FIG. 2). The semiconductor chip 23 can be formed by dicing a semiconductor wafer on which a predetermined circuit is formed by a known method. For mounting the semiconductor chip 23 on the semiconductor wafer 22A, a known device such as a flip chip bonder can be used. In the present embodiment, flip chip connection is employed in which the active surface A2 on which the protruding electrode 23a of the semiconductor chip 23 is formed faces the semiconductor wafer 22A. The semiconductor chip 23 and the semiconductor wafer 22A are electrically connected to each other through bump electrodes 23a formed on the semiconductor chip 23 and through electrodes 22a provided on the semiconductor wafer 22A. As the through electrode 22a, an electrode of the TSV (Through Silicon Via) type can be suitably used.

また、半導体チップ23と半導体ウェハ22Aとの間には両者の熱膨張率の差を緩和して特に接続部位におけるクラック等の発生を防止するためのアンダーフィル材24が充填されている。アンダーフィル材24としては公知のものを用いればよい。アンダーフィル材24の配置は、半導体チップ23の半導体ウェハ22Aへの搭載後、両者間に液状のアンダーフィル材24を注入させることにより行ってもよく、シート状のアンダーフィル材24付きの半導体チップ23又は半導体ウェハ22Aを用意した上で、半導体チップ23と半導体ウェハ22Aとを接続することにより行ってもよい。   Also, an underfill material 24 is filled between the semiconductor chip 23 and the semiconductor wafer 22A in order to alleviate the difference in thermal expansion coefficient between them and prevent the occurrence of cracks and the like particularly at the connection site. A known material may be used as the underfill material 24. The underfill material 24 may be disposed by injecting a liquid underfill material 24 between the semiconductor chips 23 after mounting the semiconductor chip 23 on the semiconductor wafer 22A, or a semiconductor chip with a sheet-like underfill material 24. 23 or the semiconductor wafer 22A may be prepared and then the semiconductor chip 23 and the semiconductor wafer 22A may be connected.

以降の封止工程から基板実装工程までは第1実施形態と同様の条件で行うことができる。なお、第2実施形態では被着体として半導体ウェハを用いていることから、熱膨張性粘着剤層剥離工程は省略され、また、再配線形成工程では、半導体ウェハ22Aの貫通電極22aと接続する再配線を半導体ウェハ22A上に形成する。さらに、半導体ウェハ22A上に積層した封止樹脂シートを熱硬化させた後、半導体ウェハ22Aを所望の厚さまで研削する研削工程を設けてもよい。研削は、裏面研削用テープを硬化後の封止樹脂シートに貼り合わせて封止体を固定し、固定した封止体の半導体ウェハ22Aに対して公知の研削装置を用いて行えばよい。裏面研削用テープは公知のものを用いることができる。   The subsequent sealing process to substrate mounting process can be performed under the same conditions as in the first embodiment. In the second embodiment, since the semiconductor wafer is used as the adherend, the thermally expandable pressure-sensitive adhesive layer peeling step is omitted, and in the rewiring forming step, the semiconductor wafer 22A is connected to the through electrode 22a. Rewiring is formed on the semiconductor wafer 22A. Furthermore, after the sealing resin sheet laminated on the semiconductor wafer 22A is thermally cured, a grinding process for grinding the semiconductor wafer 22A to a desired thickness may be provided. Grinding may be performed using a known grinding apparatus for fixing the sealing body by bonding the back surface grinding tape to the cured sealing resin sheet, and fixing the semiconductor wafer 22A of the fixed sealing body. A well-known thing can be used for the tape for back surface grinding.

《第3実施形態》
第1実施形態では、各配合成分をニーダー等で混練して混練物を調製し、この混練物を押出成形してシート状に形成している。これに対し、本実施形態では、各成分を有機溶剤等に溶解又は分散したワニスを塗工してシート状に形成する。
<< Third Embodiment >>
In the first embodiment, each compounding component is kneaded with a kneader or the like to prepare a kneaded product, and the kneaded product is extruded to form a sheet. On the other hand, in this embodiment, the varnish which melt | dissolved or disperse | distributed each component in the organic solvent etc. is applied, and it forms in a sheet form.

ワニスを用いる具体的な作製手順としては、上記A〜E成分及び必要に応じて他の添加剤を常法に準じて適宜混合し、有機溶剤に均一に溶解あるいは分散させ、ワニスを調製する。ついで、上記ワニスをポリエステル等の支持体上に塗布し乾燥させることにより封止シートを得ることができる。そして必要により、封止シートの表面を保護するためにポリエステルフィルム等の剥離シートを貼り合わせてもよい。   As a specific production procedure using a varnish, the above components A to E and, if necessary, other additives are appropriately mixed according to a conventional method, and uniformly dissolved or dispersed in an organic solvent to prepare a varnish. Subsequently, the sealing sheet can be obtained by applying the varnish on a support such as polyester and drying it. If necessary, a release sheet such as a polyester film may be bonded to protect the surface of the sealing sheet.

上記有機溶剤としては、特に限定されるものではなく従来公知の各種有機溶剤、例えばメチルエチルケトン、アセトン、シクロヘキサノン、ジオキサン、ジエチルケトン、トルエン、酢酸エチル等を用いることができる。これらは単独で用いてもよいし、2種以上併せて用いてもよい。また通常、ワニスの固形分濃度が30〜95重量%の範囲となるように有機溶剤を用いることが好ましい。   The organic solvent is not particularly limited, and various conventionally known organic solvents such as methyl ethyl ketone, acetone, cyclohexanone, dioxane, diethyl ketone, toluene, ethyl acetate and the like can be used. These may be used alone or in combination of two or more. In general, it is preferable to use an organic solvent so that the solid content concentration of the varnish is in the range of 30 to 95% by weight.

有機溶剤乾燥後のシートの厚みは、特に制限されるものではないが、厚みの均一性と残存溶剤量の観点から、通常、5〜100μmに設定することが好ましく、より好ましくは20〜70μmである。また、乾燥後のシートを複数枚積層させて所望の厚さとしてもよい。   Although the thickness of the sheet after drying the organic solvent is not particularly limited, it is usually preferably set to 5 to 100 μm, more preferably 20 to 70 μm, from the viewpoint of uniformity of thickness and the amount of residual solvent. is there. Alternatively, a plurality of dried sheets may be laminated to obtain a desired thickness.

《他の実施形態》
第1実施形態及び第2実施形態では、電子部品として半導体チップを用い、第2実施形態では被着体として半導体ウェハを用いているが、これら以外の要素を用いてもよい。電子部品として例えば、SAW(Surface Acoustic Wave(表面弾性波))フィルタセンサー、MEMS(Micro Electro Mechanical Systems)等の中空構造を有する電子デバイス(中空型電子デバイス);IC(集積回路)、トランジスタなどの半導体;コンデンサ;抵抗;発光素子等を用いることができる。また、被着体として、プリント配線基板、リードフレーム、テープキャリア等を用いることができる。なお、中空構造を有する電子デバイスは中空封止してもよく、封止対象によっては中空部分を含まないようアンダーフィル材等を用いて中実封止してもよい。
<< Other embodiments >>
In the first and second embodiments, a semiconductor chip is used as the electronic component, and in the second embodiment, a semiconductor wafer is used as the adherend. However, other elements may be used. Examples of electronic components include SAW (Surface Acoustic Wave) filter sensors, MEMS (Micro Electro Mechanical Systems) and other hollow electronic devices (hollow electronic devices); ICs (integrated circuits), transistors, etc. Semiconductors, capacitors, resistors, light-emitting elements, and the like can be used. Moreover, a printed wiring board, a lead frame, a tape carrier, etc. can be used as an adherend. Note that an electronic device having a hollow structure may be sealed in a hollow state, or may be solidly sealed using an underfill material or the like so as not to include a hollow portion depending on a sealing target.

以下に、この発明の好適な実施例を例示的に詳しく説明する。ただし、この実施例に記載されている材料や配合量等は、特に限定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。また、部とあるのは、重量部を意味する。   Hereinafter, preferred embodiments of the present invention will be described in detail by way of example. However, the materials, blending amounts, and the like described in this example are not intended to limit the scope of the present invention only to those unless otherwise specified. The term “parts” means parts by weight.

<ワークの作製>
SUSキャリアに熱膨張性粘着剤層(製品名「リバアルファ No.3195V」、日東電工社製)をラミネートして仮固定材とし、熱膨張性粘着剤層上にフリップチップボンダーでチップを配置したものをワークとして使用した。
<Production of workpiece>
A thermally expandable pressure-sensitive adhesive layer (product name “Riva Alpha No. 3195V” manufactured by Nitto Denko Corporation) was laminated on a SUS carrier to make a temporary fixing material, and a chip was placed on the thermally expandable pressure-sensitive adhesive layer with a flip chip bonder. Things were used as work.

キャリアサイズ:直径300mm×厚さ1.1mm
キャリア材質:SUS
チップサイズ:7mm□×0.3mm厚
チップ数:482個
Carrier size: 300mm diameter x 1.1mm thickness
Carrier material: SUS
Chip size: 7mm □ × 0.3mm thickness Number of chips: 482

<封止樹脂シートの作製>
以下の手順にて封止樹脂シートを作製した。作製例1では混練法によりシート成形し、作製例2では塗工法によりシートを形成した。
<Preparation of sealing resin sheet>
A sealing resin sheet was produced by the following procedure. In Production Example 1, a sheet was formed by a kneading method, and in Production Example 2, a sheet was formed by a coating method.

(成分)
作製例1及び2で用いた成分は以下のとおりであった。
(component)
The components used in Production Examples 1 and 2 were as follows.

エポキシ樹脂:新日鐵化学(株)製のYSLV−80XY(ビスフェノールF型エポキシ樹脂、エポキン当量200g/eq.軟化点80℃)
フェノール樹脂:明和化成社製のMEH−7851−SS(ビフェニルアラルキル骨格を有するフェノール樹脂、水酸基当量203g/eq.軟化点67℃)
シランカップリング剤:信越化学社製のKBM−403(3−グリシドキシプロピルトリメトキシシラン)
硬化促進剤:四国化成工業社製の2PHZ−PW(2−フェニル−4,5−ジヒドロキシメチルイミダゾール)
熱可塑性樹脂:三菱レイヨン株式会社製のJ−5800(アクリルゴム)
フィラー:電気化学工業社製のFB−9454FC(溶融球状シリカ粉末、平均粒子径17.6μm)
カーボンブラック:三菱化学社製の#20(粒子径50nm)
Epoxy resin: YSLV-80XY manufactured by Nippon Steel Chemical Co., Ltd. (bisphenol F type epoxy resin, epkin equivalent 200 g / eq. Softening point 80 ° C.)
Phenol resin: MEH-7851-SS manufactured by Meiwa Kasei Co., Ltd. (phenol resin having a biphenylaralkyl skeleton, hydroxyl group equivalent 203 g / eq. Softening point 67 ° C.)
Silane coupling agent: KBM-403 (3-glycidoxypropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd.
Curing accelerator: 2PHZ-PW (2-phenyl-4,5-dihydroxymethylimidazole) manufactured by Shikoku Kasei Kogyo Co., Ltd.
Thermoplastic resin: J-5800 (acrylic rubber) manufactured by Mitsubishi Rayon Co., Ltd.
Filler: FB-9454FC manufactured by Denki Kagaku Kogyo Co., Ltd. (fused spherical silica powder, average particle size 17.6 μm)
Carbon black: # 20 (particle size 50 nm) manufactured by Mitsubishi Chemical Corporation

(配合比)
(1)エポキシ樹脂中のエポキシ基1当量に対して、フェノール樹脂中の水酸基が1当量となるように配合した(全配合成分100重量%中、エポキシ樹脂及びフェノール樹脂の合計量:9.3重量%)。
(2)エポキシ樹脂及びフェノール樹脂の合計100重量部に対して1.0重量部となるように硬化促進剤を配合した。
(3)有機成分(フィラーを除く全成分)100重量%中、30重量%となるように熱可塑性樹脂を配合した。
(4)全配合成分100重量%中、88重量%となるようにフィラーを配合した(樹脂シート中、79.5体積%)。
(5)フィラー100重量部に対して、0.1重量部のシランカップリング剤を配合した。
(6)全配合成分100重量%中、0.3重量%となるようにカーボンブラックを配合した。
(Mixing ratio)
(1) It compounded so that the hydroxyl group in a phenol resin might become 1 equivalent with respect to 1 equivalent of epoxy groups in an epoxy resin (The total amount of an epoxy resin and a phenol resin in 100 weight% of all compounding components: 9.3 weight%).
(2) A curing accelerator was blended so as to be 1.0 part by weight with respect to 100 parts by weight of the total of epoxy resin and phenol resin.
(3) A thermoplastic resin was blended so as to be 30% by weight in 100% by weight of organic components (all components excluding filler).
(4) A filler was blended so as to be 88% by weight in 100% by weight of all blended components (79.5% by volume in the resin sheet).
(5) 0.1 part by weight of a silane coupling agent was blended with 100 parts by weight of the filler.
(6) Carbon black was blended so as to be 0.3% by weight in 100% by weight of all blended components.

(作製例1)
上記配合比に従って各成分を配合し、ロール混練機により60〜120℃で10分間、減圧条件下(0.01kg/cm)で溶融混練し、混練物を調製した。次いで、得られた混練物を平板プレス法により厚さ500μmのシート状に成形して封止樹脂シートAを得た。
(Production Example 1)
Each component was blended according to the above blending ratio, and melt-kneaded under reduced pressure conditions (0.01 kg / cm 2 ) at 60 to 120 ° C. for 10 minutes using a roll kneader to prepare a kneaded product. Subsequently, the obtained kneaded material was molded into a sheet having a thickness of 500 μm by a flat plate pressing method, and a sealing resin sheet A was obtained.

(作製例2)
上記配合比に従い、エポキシ樹脂とフェノール樹脂と熱可塑性樹脂とフィラーとシランカップリング剤を固形分濃度が95%となるようにメチルエチルケトン(MEK)中に添加し、攪拌した。攪拌は、自転公転ミキサー(株式会社シンキー製)を用い、800rpm回転にて、5分間行った。その後、上記配合比に従い、さらに硬化促進剤とカーボンブラックを添加し、固形分濃度が90%となるようにMEKを添加し、さらに800rpmにて3分間撹拌して、塗工液(ワニス)を得た。
(Production Example 2)
According to the above blending ratio, an epoxy resin, a phenol resin, a thermoplastic resin, a filler, and a silane coupling agent were added to methyl ethyl ketone (MEK) so as to have a solid content concentration of 95%, followed by stirring. Stirring was performed for 5 minutes at 800 rpm rotation using a rotation and revolution mixer (manufactured by Sinky Co., Ltd.). Thereafter, according to the above blending ratio, a curing accelerator and carbon black are further added, MEK is added so that the solid content concentration becomes 90%, and further stirred at 800 rpm for 3 minutes to obtain a coating liquid (varnish). Obtained.

その後、塗工液を、シリコーン離型処理済みのMRA−50上に塗布し、120℃3分間、乾燥させることにより、厚さ100μmのシートを作製した。さらに作製したシートをロールラミネーターにて90℃で複数枚貼り合わせることにより厚さ500μmの封止樹脂シートBを得た。   Thereafter, the coating solution was applied onto MRA-50 that had been subjected to silicone release treatment, and dried at 120 ° C. for 3 minutes to prepare a sheet having a thickness of 100 μm. Further, a plurality of the produced sheets were bonded at 90 ° C. with a roll laminator to obtain a sealing resin sheet B having a thickness of 500 μm.

[実施例1〜4]
作製した封止樹脂シートを平面視で直径12インチの円形状に切り出した。以下に示す加熱加圧条件下、切り出した封止樹脂シートを真空熱プレスによりワーク上にチップを埋め込みながら積層した。積層の際には、封止樹脂シートの上に縦400mm×横400mmで厚さ2000μmの圧力分散材を配置した上で加熱加圧を行った。各実施例で用いた封止樹脂シート及び圧力分散材は表1のとおりである。
[Examples 1 to 4]
The produced sealing resin sheet was cut into a circular shape having a diameter of 12 inches in plan view. The cut sealing resin sheet was laminated while embedding chips on the workpiece by vacuum hot pressing under the following heating and pressing conditions. At the time of lamination, a pressure dispersion material having a length of 400 mm × width of 400 mm and a thickness of 2000 μm was placed on the sealing resin sheet, and then heating and pressing were performed. The sealing resin sheet and pressure dispersion material used in each example are shown in Table 1.

(貼り付け条件)
温度:90℃
加圧力:0.5MPa
真空度:2000Pa
プレス時間:5分
(Paste conditions)
Temperature: 90 ° C
Applied pressure: 0.5 MPa
Degree of vacuum: 2000Pa
Press time: 5 minutes

全ての実施例において大気圧に解放し、封止樹脂シートのワークからはみ出している部分を全て切除した後、熱風乾燥機中、150℃で1時間の条件で封止樹脂シートを熱硬化させることにより、封止体を作製した。   In all the examples, after releasing all the portions of the sealing resin sheet protruding from the workpiece, the sealing resin sheet is thermally cured in a hot air dryer at 150 ° C. for 1 hour. Thus, a sealed body was produced.

[比較例1、2]
圧力分散材を配置させずに封止樹脂シートの積層を行ったこと以外は、実施例1と同様にして封止体を作製した。
[Comparative Examples 1 and 2]
A sealing body was produced in the same manner as in Example 1 except that the sealing resin sheets were laminated without arranging the pressure dispersion material.

<評価>
(外観評価)
封止体の外観を目視で確認した。封止体内にボイドが存在していれば、熱硬化時の加熱によりボイドが膨張し、膨張したボイドに起因して封止樹脂シートの表面が隆起することになる。封止樹脂シートの表面に目視にて確認し得る程度の凹凸(隆起)がなかった場合を「○」、凹凸が存在していた場合を「×」として評価した。結果を表1に示す。
<Evaluation>
(Appearance evaluation)
The external appearance of the sealing body was confirmed visually. If a void exists in the sealing body, the void expands due to heating during thermosetting, and the surface of the sealing resin sheet rises due to the expanded void. The case where there was no unevenness (protrusion) to the extent that it could be visually confirmed on the surface of the sealing resin sheet was evaluated as “◯”, and the case where the unevenness was present was evaluated as “x”. The results are shown in Table 1.

(平坦性評価)
1つの封止体について厚さを複数個所で測定し、厚さの最大値と最小値との差を求め、TTV(Total Thickness Value)として評価した。測定は、ダイアルゲージを用いて面内における25点で厚さを測定し、そのうちの最大値と最小値との差をTTVの数値とした。TTVが40μm以下であった場合を「○」、40μmを超えた場合を「×」として評価した。結果を表1に示す。
(Flatness evaluation)
The thickness of one sealing body was measured at a plurality of locations, and the difference between the maximum value and the minimum value of the thickness was determined and evaluated as TTV (Total Thickness Value). The thickness was measured at 25 points in the plane using a dial gauge, and the difference between the maximum value and the minimum value was used as the TTV value. The case where the TTV was 40 μm or less was evaluated as “◯”, and the case where it exceeded 40 μm was evaluated as “X”. The results are shown in Table 1.

(チップ埋まり込み性評価)
仮固定材側を下にして各封止体を180℃に加熱したホットプレート上に置き、3分間加熱して熱膨張性粘着剤層を発泡させて、チップが埋め込まれた封止樹脂シート(合わせて封止体)をワークから分離した。その後、100℃のホットプレート上で封止体に付着しているリバアルファを剥離し、チップ露出面側を目視で観察した。チップの周辺領域での空気の噛み込み跡(表面からの窪み部分)の有無を確認し、全チップ数(N=482)に対する噛み込み跡のないチップの比率が98%以上であった場合を「○」、98%未満であった場合を「×」として評価した。結果を表1に示す。
(Evaluation of chip embedding)
Each sealing body is placed on a hot plate heated to 180 ° C. with the temporary fixing material side down, heated for 3 minutes to foam the thermally expandable pressure-sensitive adhesive layer, and a sealing resin sheet in which chips are embedded ( In addition, the sealing body) was separated from the workpiece. Thereafter, Riva Alpha attached to the sealing body was peeled off on a hot plate at 100 ° C., and the chip exposed surface side was visually observed. Check the presence or absence of air entrapment traces (dents from the surface) in the peripheral area of the chip, and the ratio of chips with no entrapment trace to the total number of chips (N = 482) is 98% or more The case where “◯” was less than 98% was evaluated as “x”. The results are shown in Table 1.

また、実施例1の封止体のチップ露出面の写真を図3に、比較例1の封止体のチップ露出面の写真を図4にそれぞれ示す。   Moreover, the photograph of the chip | tip exposed surface of the sealing body of Example 1 is shown in FIG. 3, and the photograph of the chip | tip exposed surface of the sealing body of the comparative example 1 is shown in FIG. 4, respectively.

表1からも明らかなように、実施例1〜4ではいずれの評価も良好であり、ボイドの発生は確認されなかった。一方、比較例1〜2では外観評価での凹凸とともにチップ埋まり込み性での空気の噛み込み跡が確認され、ボイドが発生してしまっていた。図4では、写真中の矢印で示した白抜き部分がボイド跡に相当する。また、ボイドの発生に起因してTTVも大きくなり厚さの均一性も得られなかった。   As is clear from Table 1, in Examples 1 to 4, all evaluations were good, and generation of voids was not confirmed. On the other hand, in Comparative Examples 1 and 2, the trace of air in the chip embedding property was confirmed together with the unevenness in the appearance evaluation, and voids were generated. In FIG. 4, white portions indicated by arrows in the photograph correspond to void traces. In addition, the TTV was increased due to the generation of voids, and the thickness was not uniform.

[実施例5〜7及び比較例3〜5]
本実施例では、電子部品として中空型電子デバイスであるSAWチップを用い、これを封止樹脂シートにて加圧封止した際のチップ埋まり込み性及び中空封止均一性を評価した。
[Examples 5 to 7 and Comparative Examples 3 to 5]
In this example, a SAW chip, which is a hollow electronic device, was used as an electronic component, and the chip embedding property and the hollow sealing uniformity when this was pressure-sealed with a sealing resin sheet were evaluated.

(封止樹脂シートの作製)
実施例5〜7及び比較例3〜5の封止樹脂シートの形成には以下の成分及び配合量を用いた。
エポキシ樹脂:新日鐵化学社製のYSLV−80XY(ビスフェノールF型エポキシ樹脂、エポキン当量:200g/eq.、軟化点:80℃)
6.3部
フェノール樹脂:群栄化学社製のLVR8210DL(ノボラック型フェノール樹脂、水酸基当量:104g/eq.、軟化点:60℃)
3.4部
熱可塑性樹脂:根上工業社製のME−2000M(カルボキシル基含有のアクリル酸エステル系ポリマー、重量平均分子量:約60万、Tg:−35℃、酸価:20mgKOH/g)
1.7部
フィラー1:電気化学工業社製のFB−5SDC(球状シリカ、平均粒径5μm)
61.6部
フィラー2:アドマテックス社製のSC−220G−SMJ(球状シリカ、平均粒径0.5μm;シランカップリング剤(信越化学工業(株)製、「KBM503」)による表面処理済)
26.4部
カーボンブラック:三菱化学社製の#20
0.36部
硬化促進剤:四国化成工業社製の2PHZ−PW(2−フェニル−4,5−ジヒドロキシメチルイミダゾール)
0.24部
(Preparation of sealing resin sheet)
The following components and blending amounts were used for forming the sealing resin sheets of Examples 5 to 7 and Comparative Examples 3 to 5.
Epoxy resin: YSLV-80XY manufactured by Nippon Steel Chemical Co., Ltd. (bisphenol F type epoxy resin, Epokin equivalent: 200 g / eq., Softening point: 80 ° C.)
6.3 parts Phenolic resin: LVR8210DL (Novolak type phenolic resin, hydroxyl group equivalent: 104 g / eq., Softening point: 60 ° C.) manufactured by Gunei Chemical Co., Ltd.
3.4 parts Thermoplastic resin: ME-2000M manufactured by Negami Kogyo Co., Ltd. (carboxyl group-containing acrylate polymer, weight average molecular weight: about 600,000, Tg: −35 ° C., acid value: 20 mgKOH / g)
1.7 parts Filler 1: FB-5SDC (spherical silica, average particle size 5 μm) manufactured by Denki Kagaku Kogyo Co., Ltd.
61.6 parts Filler 2: SC-220G-SMJ (manufactured by Admatechs) (spherical silica, average particle size 0.5 μm; surface treatment with silane coupling agent (“KBM503” manufactured by Shin-Etsu Chemical Co., Ltd.))
26.4 parts carbon black: # 20 manufactured by Mitsubishi Chemical Corporation
0.36 parts Curing accelerator: 2PHZ-PW (2-phenyl-4,5-dihydroxymethylimidazole) manufactured by Shikoku Kasei Kogyo Co., Ltd.
0.24 parts

上記配合比に従い、各成分を溶剤としてのメチルエチルケトンに溶解、分散させ、固形分濃度90重量%のワニスを得た。このワニスを、シリコーン離型処理した厚さが38μmのポリエチレンテレフタレートフィルムからなる離型処理フィルム上に塗布した後、110℃で5分間乾燥させた。これにより、厚さ50μmのシートを得た。このシートを4層積層させて厚さ200μmの封止樹脂シートを得た。   According to the above blending ratio, each component was dissolved and dispersed in methyl ethyl ketone as a solvent to obtain a varnish having a solid concentration of 90% by weight. This varnish was applied on a release treatment film made of a polyethylene terephthalate film having a thickness of 38 μm after the release treatment with silicone, and then dried at 110 ° C. for 5 minutes. As a result, a sheet having a thickness of 50 μm was obtained. Four layers of this sheet were laminated to obtain a sealing resin sheet having a thickness of 200 μm.

(チップ埋まり込み性及び中空封止均一性の評価)
アルミニウム櫛形電極が形成された以下の仕様のSAWチップを下記ボンディング条件にて30mm×30mm四方のセラミック基板に実装して、セラミック基板及びセラミック基板に実装されたSAWチップを備えるSAWチップ実装基板を作製した。SAWチップとセラミック基板との間のギャップ幅は20μmであった。
(Evaluation of chip embedding and hollow sealing uniformity)
A SAW chip with the following specifications on which aluminum comb-shaped electrodes are formed is mounted on a 30 mm × 30 mm square ceramic substrate under the following bonding conditions to produce a SAW chip mounting substrate including the ceramic substrate and the SAW chip mounted on the ceramic substrate. did. The gap width between the SAW chip and the ceramic substrate was 20 μm.

<SAWチップ>
チップサイズ:1.2mm角(厚さ150μm)
バンプ材質:Au(高さ20μm)
バンプ数:6バンプ
チップ数:100個(10個×10個)
<SAW chip>
Chip size: 1.2 mm square (thickness 150 μm)
Bump material: Au (height 20 μm)
Number of bumps: 6 bumps Number of chips: 100 (10 x 10)

<ボンディング条件>
装置:パナソニック電工(株)製
ボンディング条件:200℃、3N、1sec、超音波出力2W
<Bonding conditions>
Equipment: manufactured by Panasonic Electric Works Co., Ltd. Bonding conditions: 200 ° C., 3N, 1 sec, ultrasonic output 2W

SAWチップ実装基板上に厚さ200μmの封止樹脂シート(28mm×28mm四方)を配置し、さらに封止樹脂シートの上に圧力分散材として縦40mm×横40mmで厚さ2000μmのフッ素スポンジシートを配置した。以下に示す加熱加圧条件下で、平行平板方式で真空プレスを行って積層体を得た。   A 200 μm-thick sealing resin sheet (28 mm × 28 mm square) is placed on the SAW chip mounting substrate, and a fluorine sponge sheet having a length of 40 mm × width of 40 mm and a thickness of 2000 μm is used as a pressure dispersion material on the sealing resin sheet. Arranged. Under the heating and pressing conditions shown below, vacuum pressing was performed by a parallel plate method to obtain a laminate.

<真空プレス条件>
温度:70℃
加圧力:1〜5kgf/cm(表2参照)
真空度:1.6kPa
プレス時間:1分
<Vacuum press conditions>
Temperature: 70 ° C
Applied pressure: 1 to 5 kgf / cm 2 (see Table 2)
Degree of vacuum: 1.6 kPa
Press time: 1 minute

大気圧に開放した後、熱風乾燥機中で、150℃、1時間の条件で積層体を加熱して、封止体を得た。得られた封止体の基板と封止樹脂との界面を劈開し、KEYENCE社製、商品名「デジタルマイクロスコープ」(200倍)により、封止樹脂がチップ下部まで到達しないことによるチップの周辺領域での空気の噛み込み跡(すなわち、ボイド)の有無を確認した。全チップ数(N=100)のうち、噛み込み跡のないチップが98個以上であった場合を「○」、97個以下であった場合を「×」として評価した。結果を表2に示す。   After opening to atmospheric pressure, the laminate was heated in a hot air dryer at 150 ° C. for 1 hour to obtain a sealed body. Cleavage the interface between the substrate of the obtained sealing body and the sealing resin, and the periphery of the chip because the sealing resin does not reach the lower part of the chip with the product name “Digital Microscope” (200 times) manufactured by KEYENCE The presence or absence of air entrainment traces (ie, voids) in the region was confirmed. Of the total number of chips (N = 100), the case where 98 or more chips without biting marks were evaluated was evaluated as “◯”, and the case where the number was 97 or less was evaluated as “X”. The results are shown in Table 2.

また、それぞれのチップについて、SAWチップとセラミック基板との間の中空部への樹脂の進入量を測定した。樹脂進入量は、SAWチップの端部から中空部へ進入した樹脂の到達距離の最大値及び最小値を測定し、それぞれ最大進入量及び最小進入量とした。なお、ボイドが生じた場合、樹脂は中空部まで到達せず、平面視でチップより外側の領域にとどまっているので、樹脂進入量としてはマイナスの値となる。最大進入量が20μm以下で、かつ最小進入量が−20μm以上であった場合を「○」、最大進入量が20μmを超えるか、又は最小進入量が−20μm未満であった場合を「×」として評価した。   Further, for each chip, the amount of resin entering the hollow portion between the SAW chip and the ceramic substrate was measured. The resin penetration amount was determined by measuring the maximum value and the minimum value of the reach distance of the resin that entered the hollow portion from the end of the SAW chip, and set the maximum penetration amount and the minimum penetration amount, respectively. When a void is generated, the resin does not reach the hollow portion and remains in the region outside the chip in a plan view, and therefore the resin entry amount is a negative value. “○” when the maximum entry amount is 20 μm or less and the minimum entry amount is −20 μm or more, “X” when the maximum entry amount exceeds 20 μm or the minimum entry amount is less than −20 μm. As evaluated.

表2により分かるように、加圧封止の際にフッ素スポンジシートを用いた実施例5〜7では、チップ埋まり込み性及び中空封止均一性のいずれも良好であった。一方、圧力分散材を用いなかった比較例3〜5のいずれにおいてもボイドが発生し、チップ埋まり込み性が劣る結果となった。加圧封止の際の加圧力が比較的大きい比較例5では中空封止均一性は良好であったものの、比較例3〜5全体を通じて中空封止時の樹脂進入量に大きなバラツキが生じていた。   As can be seen from Table 2, in Examples 5 to 7 using a fluorine sponge sheet at the time of pressure sealing, both the chip embedding property and the hollow sealing uniformity were good. On the other hand, in any of Comparative Examples 3 to 5 in which no pressure dispersion material was used, voids were generated, resulting in poor chip embedding. In Comparative Example 5 where the pressure applied during pressure sealing is relatively large, the uniformity of hollow sealing was good, but there was a large variation in the amount of resin entering during hollow sealing throughout Comparative Examples 3-5. It was.

1 仮固定材
1a 熱膨張性粘着剤層
1b 支持体
2 圧力分散材
3 剥離フィルム
11 封止樹脂シート
13、23 半導体チップ
15 封止体
18 半導体パッケージ
19 再配線
22A 半導体ウェハ
DESCRIPTION OF SYMBOLS 1 Temporary fixing material 1a Thermal expansion adhesive layer 1b Support body 2 Pressure dispersion material 3 Release film 11 Sealing resin sheet 13, 23 Semiconductor chip 15 Sealing body 18 Semiconductor package 19 Rewiring 22A Semiconductor wafer

Claims (6)

複数の電子部品が配置された被着体を準備する工程A、及び
前記電子部品を埋め込むように封止樹脂シートを加圧下にて前記被着体上に積層する工程Bを含み、
前記工程Bにおいて、前記封止樹脂シートに対する加圧を圧力分散材を介して行い、
前記圧力分散材は平面視で前記封止樹脂シートより大きい電子部品パッケージの製造方法。
Including a step A of preparing an adherend on which a plurality of electronic components are arranged, and a step B of laminating a sealing resin sheet on the adherend under pressure so as to embed the electronic components,
In the step B, have lines through the pressure distribution member the pressure applied to the sealing resin sheet,
The pressure dispersion material is a manufacturing method of an electronic component package larger than the sealing resin sheet in a plan view .
前記圧力分散材は多孔質である請求項1に記載の電子部品パッケージの製造方法。 The method of manufacturing an electronic component package according to claim 1, wherein the pressure dispersion material is porous. 前記圧力分散材はフッ素スポンジ又はシリコーンスポンジにより形成されている請求項1又は2に記載の電子部品パッケージの製造方法。 Method of manufacturing an electronic component package according to claim 1 or 2 is formed by the pressure variance member fluorine sponge or silicone sponge. 前記封止樹脂シートと前記圧力分散材との間に剥離フィルムを介在させて前記工程Bを行う請求項1〜のいずれか1項に記載の電子部品パッケージの製造方法。 The manufacturing method of the electronic component package of any one of Claims 1-3 which perform the said process B by interposing a peeling film between the said sealing resin sheet and the said pressure dispersion material. 前記封止樹脂シートの平面視形状は、直径300mm以上の円形又は一辺の長さが300mm以上の長方形である請求項1〜のいずれか1項に記載の電子部品パッケージの製造方法。 Planar shape of the sealing resin sheet, a method for producing an electronic component package according to any one of claims 1-4 lengths of more than a circular or side diameter 300mm is more rectangular 300mm. 前記加圧を平板プレスにより行う請求項1〜のいずれか1項に記載の電子部品パッケージの製造方法。
Method of manufacturing an electronic component package according to any one of claims 1 to 5 for the by pressurized flat press.
JP2015033463A 2014-02-26 2015-02-24 Manufacturing method of electronic component package Active JP6484061B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2015/055233 WO2015129689A1 (en) 2014-02-26 2015-02-24 Manufacturing method of electronic component package
JP2015033463A JP6484061B2 (en) 2014-02-26 2015-02-24 Manufacturing method of electronic component package
TW104106395A TW201541577A (en) 2014-02-26 2015-02-26 Manufacturing method of electronic component package

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014035704 2014-02-26
JP2014035704 2014-02-26
JP2015033463A JP6484061B2 (en) 2014-02-26 2015-02-24 Manufacturing method of electronic component package

Publications (2)

Publication Number Publication Date
JP2015179829A JP2015179829A (en) 2015-10-08
JP6484061B2 true JP6484061B2 (en) 2019-03-13

Family

ID=54009007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015033463A Active JP6484061B2 (en) 2014-02-26 2015-02-24 Manufacturing method of electronic component package

Country Status (3)

Country Link
JP (1) JP6484061B2 (en)
TW (1) TW201541577A (en)
WO (1) WO2015129689A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3905860A1 (en) * 2020-04-28 2021-11-03 Kyocera Corporation Manufacturing method of electronic component

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6512113B2 (en) * 2016-01-08 2019-05-15 信越化学工業株式会社 Method of manufacturing solar cell module
CN108476589B (en) * 2016-01-13 2021-10-26 太阳油墨制造株式会社 Dry film and printed circuit board
KR20170092323A (en) 2016-02-03 2017-08-11 삼성전자주식회사 Molding apparatus of semiconductor package
JP6784186B2 (en) * 2017-02-10 2020-11-11 信越化学工業株式会社 Manufacturing method of solar cell module
JP7023988B2 (en) 2017-06-06 2022-02-22 ウエスト ファーマスーティカル サービシーズ インコーポレイテッド Elastomer article with embedded electronic device and its manufacturing method
JP7027458B2 (en) * 2017-06-06 2022-03-01 ウエスト ファーマスーティカル サービシーズ インコーポレイテッド Elastomer article with embedded electronic device and its manufacturing method
JP7028264B2 (en) * 2018-01-30 2022-03-02 昭和電工マテリアルズ株式会社 Film-shaped adhesive and its manufacturing method, and semiconductor device and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5435685B2 (en) * 2007-02-28 2014-03-05 ナミックス株式会社 Resin film for sealing
CN101689516B (en) * 2007-06-28 2011-09-14 松下电器产业株式会社 Method for manufacturing the semiconductor element mounting structure and pressurizing tool
JP5349432B2 (en) * 2010-09-06 2013-11-20 日東電工株式会社 Manufacturing method of electronic component device and resin composition sheet for sealing electronic component used therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3905860A1 (en) * 2020-04-28 2021-11-03 Kyocera Corporation Manufacturing method of electronic component

Also Published As

Publication number Publication date
WO2015129689A1 (en) 2015-09-03
JP2015179829A (en) 2015-10-08
TW201541577A (en) 2015-11-01

Similar Documents

Publication Publication Date Title
JP6484061B2 (en) Manufacturing method of electronic component package
JP5961055B2 (en) Sealing resin sheet, electronic component package manufacturing method, and electronic component package
TWI616476B (en) Thermosetting resin sheet and method of manufacturing electronic component package
TWI606925B (en) Thermosetting sealing resin sheet and manufacturing method of electronic part package
JP6313165B2 (en) Thermosetting sealing resin sheet, sealing sheet with separator, semiconductor device, and method for manufacturing semiconductor device
WO2015019817A1 (en) Method for producing semiconductor package
TW201513196A (en) Method for producing semiconductor package
WO2015060106A1 (en) Semiconductor package manufacturing method
TWI624914B (en) Resin sheet for electronic component sealing, resin sealed semiconductor device, and method for manufacturing resin sealed semiconductor device
WO2014196296A1 (en) Method for manufacturing semiconductor device
TW201523811A (en) Sealing sheet with separators on both surfaces, and method for manufacturing semiconductor device
JP2016103625A (en) Sealing sheet, and semiconductor device
JP6041933B2 (en) Method for manufacturing thermosetting resin sheet and electronic component package
JP2016096308A (en) Semiconductor device manufacturing method
JP2015126129A (en) Method of manufacturing electronic component package
WO2015072378A1 (en) Sealing resin sheet and method for producing electronic component package
JP6677966B2 (en) Sealing sheet with separator and method of manufacturing semiconductor device
JP6630861B2 (en) Sealing sheet with separator and method of manufacturing semiconductor device
JP2015126130A (en) Method of manufacturing electronic component package
JP2015126131A (en) Method of manufacturing electronic component package
JP2015097232A (en) Method of manufacturing electronic component package
WO2016080164A1 (en) Sealing sheet and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190215

R150 Certificate of patent or registration of utility model

Ref document number: 6484061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250