JP6269069B2 - Concentrating device, photovoltaic device, and manufacturing method of concentrating device - Google Patents
Concentrating device, photovoltaic device, and manufacturing method of concentrating device Download PDFInfo
- Publication number
- JP6269069B2 JP6269069B2 JP2014000861A JP2014000861A JP6269069B2 JP 6269069 B2 JP6269069 B2 JP 6269069B2 JP 2014000861 A JP2014000861 A JP 2014000861A JP 2014000861 A JP2014000861 A JP 2014000861A JP 6269069 B2 JP6269069 B2 JP 6269069B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- optical member
- structures
- prism member
- condensing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000011347 resin Substances 0.000 claims description 48
- 229920005989 resin Polymers 0.000 claims description 48
- 239000000463 material Substances 0.000 claims description 28
- 230000003287 optical effect Effects 0.000 claims description 25
- 238000006243 chemical reaction Methods 0.000 claims description 14
- 239000011521 glass Substances 0.000 claims description 13
- 238000010248 power generation Methods 0.000 claims description 4
- 230000004907 flux Effects 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 13
- 239000004926 polymethyl methacrylate Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 10
- 230000004048 modification Effects 0.000 description 9
- 238000012986 modification Methods 0.000 description 9
- 238000002834 transmittance Methods 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000005304 optical glass Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000002463 transducing effect Effects 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
Landscapes
- Optical Elements Other Than Lenses (AREA)
- Photovoltaic Devices (AREA)
Description
本発明は、集光装置、その集光装置を備える光発電装置、その集光装置の製造方法に関する。 The present invention relates to a light collecting device, a photovoltaic device including the light collecting device, and a method for manufacturing the light collecting device.
表面から入射した光を裏面から出射する第1プリズム部材と、その第1プリズム部材の裏面に対向して設けられた第2プリズム部材とを備える集光装置が知られている(特許文献1)。 A condensing device including a first prism member that emits light incident from the front surface from the back surface and a second prism member provided to face the back surface of the first prism member is known (Patent Document 1). .
特許文献1に記載の集光装置では、図12に示されるように、第2プリズム部材320は、その入射面321が、導光面3211と連絡面3213が反射面3212から周期的に突出する複雑な形状を有している。このような複雑な形状の光学部材は、アクリルなどの樹脂材料を用いれば形成し易い。しかし、樹脂材料は紫外域と赤外域の光の透過率が低い。太陽光は第2プリズム部材320中の比較的長い距離を進むため、第2プリズム部材320が樹脂材料により形成されている場合には、太陽光に含まれている紫外光や赤外光が吸収されて集光効率が低下してしまう。特に、赤外光については相当量が吸収されてしまう。第2プリズム部材320がガラスにより形成されている場合には、樹脂により形成した場合に比べて集光率は高い。しかし、ガラスにより第2プリズム部材320のような複雑な形状を加工することは難しい。
In the light collecting device described in
本発明は、以上のような事情に鑑みてなされたものであり、太陽光の透過率が優れた第2プリズム部材を用いることにより、集光効率に優れた集光装置、その集光装置を備える光発電装置、および、その集光装置の製造方法を提供することを目的とする。 The present invention has been made in view of the circumstances as described above. By using the second prism member having excellent sunlight transmittance, a light collecting device having excellent light collecting efficiency, and the light collecting device are provided. It is an object of the present invention to provide a photovoltaic device and a method for manufacturing the light collecting device.
本発明による集光装置は、互いに対向する第1の表面と第1の裏面とを有する第1の光学部材と、互いに対向する第2の表面と第2の裏面とを有し、第2の表面が第1の裏面に対向するように配置される第2の光学部材と、を備え、第1の光学部材は、第1の表面に入射する光束を集光する複数の集光構造が互いに平行に第1の表面に配列されるとともに、複数の集光構造によって集光された集光光束をそれぞれ偏向する複数の偏向構造が互いに平行に複数の集光構造に対応するように第1の裏面に配列され、複数の集光構造の各々は、光束の入射側に凸構造を有し、複数の偏向構造の各々は、偏向面と出射面とを有し、偏向面によって偏向された集光光束を出射面から出射し、第2の光学部材は、出射面から出射された集光光束を受光する複数の受光構造が互いに平行に複数の偏向構造に対応するように第2の表面に突設され、複数の受光構造の各々が受光した集光光束を第2の裏面が反射し、第2の光学部材の本体部はガラス材料からなり、複数の受光構造の各々は樹脂材料からなり、本体部に接合されていることを特徴とする。 The light collecting device according to the present invention includes a first optical member having a first surface and a first back surface facing each other, a second surface and a second back surface facing each other, and a second optical member. A second optical member disposed so that the front surface faces the first back surface, and the first optical member has a plurality of condensing structures that condense light beams incident on the first surface. A plurality of deflecting structures arranged in parallel on the first surface and deflecting the condensed light beams collected by the plurality of light collecting structures respectively correspond to the plurality of light collecting structures in parallel with each other. Arranged on the back surface, each of the plurality of condensing structures has a convex structure on the incident side of the light beam, and each of the plurality of deflecting structures has a deflecting surface and an exit surface, and is concentrated by the deflecting surface. The light beam is emitted from the emission surface, and the second optical member receives the condensed light beam emitted from the emission surface. The plurality of light receiving structures are projected on the second surface so as to correspond to the plurality of deflection structures in parallel with each other, and the second back surface reflects the condensed light beam received by each of the plurality of light receiving structures, The main body portion of the optical member is made of a glass material, and each of the plurality of light receiving structures is made of a resin material and is joined to the main body portion.
本発明によれば、集光効率に優れた集光装置、その集光装置を備える光発電装置、およびその集光装置の製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the condensing apparatus excellent in condensing efficiency, a photovoltaic device provided with the condensing apparatus, and the manufacturing method of the condensing apparatus can be provided.
(第1の実施の形態)
図1は、本発明の第1の実施の形態における集光装置を用いた光発電装置の概略構成図である。図1に例示される光発電装置1は、第1プリズム部材310aおよび第2プリズム部材320aからなる集光装置300aと、多接合型の光電変換素子330とを備える。
(First embodiment)
FIG. 1 is a schematic configuration diagram of a photovoltaic power generation device using a light condensing device according to a first embodiment of the present invention. The
第1プリズム部材310aは、図12に示す特許文献1の第1プリズム部材310と同一である。すなわち、第1プリズム部材310aは、光を入射させる表面に複数の集光構造311が互いに平行に配列されるとともに、集光構造311に集光された集光光束を斜めに偏向させて出射させる複数の偏向構造315が互いに平行に裏面に配列されている。複数の集光構造311と複数の偏向構造315は、x軸方向に同一ピッチで配列されており、一対一の対応関係がある。
The
第2プリズム部材320aは、第2プリズム部材320aの表面が第1プリズム部材310aの裏面に対向するように設けられる。第2プリズム部材320aは、三角柱形状の本体部327と、本体部327の上面3271の上にx軸方向に周期的に配列された複数の凸部328とを有する。本体部327には、太陽光の広い波長域に対して高い透過率を有するガラス、例えば光学ガラスBK7を用いる。
The
第2プリズム部材320aの凸部328は、第1プリズム部材310aの出射光を受光する受光構造を構成する。第2プリズム部材320aは、凸部328で受光した、すなわち凸部328に入射した光を出射面325に導く。出射面325は、上面3271および反射構造322のそれぞれと接しているとともに、光電変換素子330が接着されている。光電変換素子330は、出射面325に導かれ出射面325から出射した光を受光して光電変換する。
The
凸部328には、複雑な形状を容易に形成可能な紫外線硬化樹脂を用いる。凸部328の屈折率は、本体部327の屈折率と略同一であることが好ましい。凸部328は、適当な型を用意し、本体部327の上面3271に紫外線硬化樹脂を塗布した後、型を紫外線硬化樹脂に押し当て、その状態で紫外線を照射して硬化させることで形成することができる。
For the convex
偏向構造315の第2面317(図12参照)と、凸部328の導光面3211とは、接合部319により接合されている。接合部319の屈折率は、第1プリズム部材310aの屈折率と第2プリズム部材320aの屈折率と略同一であることが好ましい。
The second surface 317 (see FIG. 12) of the
偏向構造315から出射した光は、接合部319を透過して導光面3211(図12参照)から第2プリズム部材320aに入射する。第2プリズム部材320aに入射した光は、本体部327と凸部328との境界を透過して、本体部327の反射構造322で全反射され、再び本体部327と凸部328との境界を透過して、凸部328の反射面3212で全反射される。第2プリズム部材320aの入射光は、本体部327の反射構造322と凸部328の反射面3212との間で繰り返し全反射して出射面325へ導かれる。
The light emitted from the
次に、集光装置300aに用いる材料について説明する。図2(a)は、AM1.5の測定条件で測定された太陽光の直達日射量の波長特性を示す。図2(a)から明らかなように、太陽光は、紫外光と、可視光と、赤外光とを含み、特に、赤外域に広い波長域にわたる光を含む。
Next, the material used for the
図2(b)は、PMMAおよび光学ガラスBK7の厚さ10mmあたりのそれぞれ分光透過率を示す。図2(b)からわかる通り、PMMAは、BK7に比べて紫外域および赤外域の透過率が低い。第2プリズム部材320aの内部では、太陽光は比較的長い距離を伝播する。従って、第2プリズム部材320aの材料としてPMMAを用いた場合、かなりの量の紫外光および赤外光が第2プリズム部材320aにより吸収されてしまう。一方、第2プリズム部材320aの材料としてBK7を用いた場合には、このような吸収を大幅に抑制できる。本発明にかかる集光装置では、太陽光が長い距離を伝播する第2プリズム部材320aの本体部327にはガラスを用い、ガラスでは形成しにくい凸部328のみに樹脂材料(例えば、紫外線硬化樹脂)を用いることにより、太陽光が伝播する樹脂部の長さ(厚さ)をできるだけ小さくして、紫外光および赤外光の吸収を抑制する。
FIG. 2B shows the spectral transmittances per 10 mm thickness of PMMA and optical glass BK7. As can be seen from FIG. 2B, PMMA has lower transmittance in the ultraviolet region and infrared region than BK7. Within the
(光発電装置の発電効率)
図3は、光電変換素子330の構造の一例を模式的に表した図である。図3に例示された光電変換素子330は、光の入射面から順に、所定波長域の光を選択的に光電変換するL1層、L2層、L3層が配置され、これらは電気的に直列に接続される。
(Power generation efficiency of photovoltaic device)
FIG. 3 is a diagram schematically illustrating an example of the structure of the
図4は、L1層、L2層、L3層の量子効率の波長特性を示す。ここで、量子効率とは、入射した光子の数と光子により励起したキャリアの数との比である。図4に示した例では、L1層は約650nm以下の波長の光に対して量子効率が高く、L2層は約650nmから約900nmの光に対して量子効率が高く、L3層は約900nm以上の波長の光に対して量子効率が高い。 FIG. 4 shows the wavelength characteristics of the quantum efficiencies of the L1, L2, and L3 layers. Here, the quantum efficiency is a ratio between the number of incident photons and the number of carriers excited by the photons. In the example shown in FIG. 4, the L1 layer has high quantum efficiency for light having a wavelength of about 650 nm or less, the L2 layer has high quantum efficiency for light of about 650 nm to about 900 nm, and the L3 layer has about 900 nm or more. Quantum efficiency is high for light of a wavelength of
太陽光に含まれる波長が約650nm以下の光は、L1層で光電変換される。太陽光に含まれる波長が約650nmから約900nmの光は、L1層を通過してL2層で光電変換される。太陽光に含まれる波長が約900nm以上の波長の光は、L1層とL2層を通過してL3層で光電変換される。 Light having a wavelength of about 650 nm or less contained in sunlight is photoelectrically converted in the L1 layer. Light having a wavelength of about 650 nm to about 900 nm contained in sunlight passes through the L1 layer and is photoelectrically converted in the L2 layer. Light having a wavelength of about 900 nm or more contained in sunlight passes through the L1 layer and the L2 layer and is photoelectrically converted in the L3 layer.
L1層、L2層、L3層は、直列接続されるため、光電変換素子330の出力電流iは、L1層の出力電流iL1、L2層の出力電流iL2、L3層の出力電流iL3のうちの最小値となる。
L1 layer, the L2 layer, the L3 layer, to be connected in series, the output current i of the
太陽光が透過率τ(λ)の光学材料を透過してL1層に入射した際のL1層の出力電流iL1は、下式(1)で表される。
iL1=∫{q・QL1(λ)・S・Pin(λ)・τ(λ)・λ/(h・c)}dλ …(1)
λ:光の波長
q:電子1個あたりの電荷1.602176487×10−19〔C〕
QL1(λ):図5に示す波長λにおけるL1層の量子効率
S:L1層の受光面積〔m2〕
Pin(λ):図3(a)に示す波長λの光の強度〔W/m2〕
τ(λ):波長λの光に対する厚さ10mmの光学材料の透過率
h:プランク定数6.62606896×10−34〔J・s〕
c:光速2.99792458×108〔m/s〕
The output current i L1 of the L1 layer when sunlight passes through the optical material having the transmittance τ (λ) and enters the L1 layer is expressed by the following equation (1).
i L1 = ∫ {q · Q L1 (λ) · S · P in (λ) · τ (λ) · λ / (h · c)} dλ (1)
λ: wavelength of light q: charge per electron 1.602176487 × 10 −19 [C]
Q L1 (λ): quantum efficiency of the L1 layer at the wavelength λ shown in FIG. 5 S: light receiving area of the L1 layer [m 2 ]
P in (λ): Intensity of light of wavelength λ shown in FIG. 3A [W / m 2 ]
τ (λ): Transmittance of optical material having a thickness of 10 mm for light of wavelength λ h: Planck's constant 6.6260896 × 10 −34 [J · s]
c: speed of light 2.99979458 × 10 8 [m / s]
太陽光が透過率τ(λ)の光学材料を透過してL2層およびL3層に入射した場合のL2層およびL3層の出力電流iL2およびiL3も同様にして計算することができる。 The output currents i L2 and i L3 of the L2 layer and the L3 layer when sunlight passes through the optical material having the transmittance τ (λ) and enters the L2 layer and the L3 layer can be similarly calculated.
図5(a)は、PMMAを介して光電変換素子に太陽光を導いた場合の、PMMAの厚さとL1層、L2層、L3層の単位受光面積(cm2)あたりの出力電流〔mA/cm2〕の各計算値を示す。図5(a)に示されるように、L3層の単位受光面積あたりの出力電流は、PMMAによる赤外光の吸収の影響により、PMMAが厚くなるに従って大きく減少し、厚さが約28mmを超えると、L1層、L2層の出力電流よりも小さくなる。 FIG. 5A shows the thickness of the PMMA and the output current per unit light receiving area (cm 2 ) of the L1, L2, and L3 layers [mA / mA when sunlight is guided to the photoelectric conversion element via the PMMA. Each calculated value of cm 2 ] is shown. As shown in FIG. 5A, the output current per unit light-receiving area of the L3 layer greatly decreases as the PMMA becomes thicker due to the influence of absorption of infrared light by the PMMA, and the thickness exceeds about 28 mm. And smaller than the output current of the L1 layer and the L2 layer.
一方、図5(b)には、BK7を介して光電変換素子に太陽光を導いた場合の、BK7の厚さとL1層、L2層、L3層の単位受光面積あたりの出力電流〔mA/cm2〕の各計算値を示す。図5(b)に示されるように、BK7は赤外光をよく透過するため、PMMAの場合のような出力電流の低下は起きていない。従って、太陽光がPMMA中を伝播する距離はできるだけ小さくし、長い距離を伝播する部分はガラスにより構成されることが望ましいことがわかる。 On the other hand, FIG. 5B shows the thickness of BK7 and the output current per unit light-receiving area of the L1, L2, and L3 layers [mA / cm when sunlight is guided to the photoelectric conversion element via BK7. 2 ] shows each calculated value. As shown in FIG. 5B, since BK7 transmits infrared light well, the output current does not decrease as in the case of PMMA. Therefore, it can be seen that the distance that sunlight propagates through PMMA is as small as possible, and that the portion that propagates a long distance is preferably made of glass.
上述した第1の実施の形態によれば、次の作用効果が得られる。
(1)第1の実施の形態による集光装置300aの第2プリズム部材320aは、ガラス材料で構成された本体部327に樹脂材料で構成された凸部328が接合されている。凸部328は、第1プリズム部材310aの偏向構造315に対応するように、第2プリズム部材320aの表面に一方向に配列されるとともに第1プリズム部材310aの出射面から出射された集光光束を受光する複数の受光構造として用いられる。したがって、集光装置300a、その集光装置300aを備える光発電装置1は、集光効率に優れている。
According to the first embodiment described above, the following operational effects are obtained.
(1) As for the
(第2の実施の形態)
図6は、本発明の第2の実施の形態における集光装置300bを用いた光発電装置の概略構成図である。図6に例示される光発電装置2は、裏面形状が第1プリズム部材310aと異なる第1プリズム部材310bを第1プリズム部材310aの代わりに備える点が第1の実施の形態による光発電装置1と異なっている。
(Second Embodiment)
FIG. 6 is a schematic configuration diagram of a photovoltaic power generation apparatus using the
第2の実施の形態では、第1プリズム部材310bの裏面を、集光光束の偏向だけでなく、第2プリズム部材320aの凸部328を形成するための型としても用いる。図7は、第1プリズム部材310bの裏面と第2プリズム部材320aの表面との対向部を拡大した様子を示す。図7に示されるように、第1プリズム部材310bの裏面の形状は、成形すべき凸部328の形状に対応している。即ち、導光面3211は、第1プリズム部材310bの第2面317に対応する。また、第2プリズム部材320aの連絡面3213は、第1プリズム部材310bの第2面317に接続する第4面3171に対応する。第2プリズム部材の反射面3212は、第4面3171と接続する第5面3172に対応する。
In the second embodiment, the back surface of the
第1プリズム部材310bには、空隙部3173が設けられ、空隙部3173は開口部3173aにより、第3面318と第5面3172とを隔てている。空隙部3173は第1プリズム部材310bの第1面316において太陽光を全反射させるために設けられている。開口部3173aは、凸部328を成形する際に、例えば紫外線硬化樹脂が空隙部3173に入り込むことを防ぐ意味から、第1プリズム部材310bを製造可能な範囲でできるだけ狭いことが好ましい。
The
凸部328の形成は次のように行う。まず、図8(a)に示すように、凸部328を形成すべき第2プリズム部材320aの上面3271に紫外線硬化樹脂3281を塗布する。紫外線硬化樹脂の塗布方法としては、ディスペンサーによる滴下、スピンコートによる塗布、スプレーによる塗布等、使用する紫外線硬化樹脂に適した種々の方法から選択することができる。次に、図8(b)に示すように、塗布された紫外線硬化樹脂に第1プリズム部材310bの裏面を押し当て、その状態を維持して紫外線を照射し、紫外線硬化樹脂を硬化させる。次に、硬化した紫外線硬化樹脂から第1プリズム部材310bの裏面を剥離することで、凸部328の形成は完了する。
The
(集光装置300の生産方法)
ここでは、第1プリズム部材310bの裏面を型として用いて凸部328を形成する手順について説明する。図9は、集光装置300の製造方法の一例を示すフローチャートである。
(Production method of concentrating device 300)
Here, a procedure for forming the
ステップS10では、図8(a)に示したように、第2プリズム部材320aの本体部327の上面3271に紫外線硬化樹脂3281を塗布する。なお、紫外線硬化樹脂の塗布に先立って、第2プリズム部材320aの上面3271に対してシランカップリング処理をしておくことが望ましい。これは、紫外線硬化樹脂が硬化した際に確実に第2プリズム部材320aの上面3271に付着させるためである。
In step S10, as shown in FIG. 8A, an ultraviolet
ステップS20では、図8(b)に例示するように、第2プリズム部材320aの上面3271に第1プリズム部材310bを押し付ける。これにより、第2プリズム部材320aの本体部327と第1プリズム部材310bの裏面との間に紫外線硬化樹脂が閉じ込められる(充填される)。なお、第2プリズム部材320aの上面3271に第1プリズム部材310bを押し付ける前に第1プリズム部材319bの裏面に離型剤を塗ることにしてもよい。離型剤には、例えばフッ素化合物などを用いればよい。離型剤は、第1プリズム部材310bの光学的な性能に影響を与えない程度に非常に薄く塗ることが好ましい。
In step S20, as illustrated in FIG. 8B, the
ステップS30では、紫外線硬化樹脂に紫外光を照射することにより紫外線硬化樹脂を硬化させ、凸部328を形成する。紫外光は第1プリズム部材310bの上面から照射してもよいし、第2プリズム部材320aの裏面(反射構造)側から照射してもよい。
In step S <b> 30, the ultraviolet curable resin is cured by irradiating the ultraviolet curable resin with ultraviolet light, and the
ステップS40では、第2プリズム部材320aの上面3271の上に硬化した紫外線硬化樹脂層から第1プリズム部材310bを剥離する。図10は、剥離方法の一例を示す。図10に示すように、第1プリズム部材310bの一方の端面(z軸に直交する側面の一方)に空隙部3173を塞ぐ封止部材600を密接させ、反対側の端面に空隙部3173に窒素ガスを注入するための流路521を有する注入部材601を密接させる。その状態で、流路521を介して空隙部3173に所定圧力の窒素ガスを注入する。窒素ガスは、第1プリズム部材310bと第2プリズム部材320aとの隙間に浸入し、第1プリズム部材310bを第2プリズム部材320a上に形成された紫外線硬化樹脂層328から剥離する。
In step S40, the
ステップS50では、第1プリズム部材310bの第3面318と第2プリズム部材320aの反射面3212との間に適当な厚さの空気層が介在するように固定する。
In step S50, an air layer having an appropriate thickness is fixed between the
ステップS60では、必要に応じて、第1プリズム部材310bの第2面317と、第2プリズム部材320aの導光面3211との隙間に接合部319を形成する。例えば、第1プリズム部材310bの第2面317と、第2プリズム部材320aの導光面3211との隙間に毛細管現象により紫外線硬化樹脂を浸透させて、ステップS30のように集光構造311に紫外光を照射する。
In step S60, a joint 319 is formed in the gap between the
上述した実施の形態によれば、次の作用効果が得られる。
(1)第2の実施の形態による集光装置300bの第2プリズム部材320aは、ガラス材料で構成された本体部327に樹脂材料で構成された凸部328が接合されている。凸部328は、第1プリズム部材310bの偏向構造315に対応するように、第2プリズム部材320aの表面に一方向に配列されるとともに第1プリズム部材310bの出射面から出射された集光光束を受光する複数の受光構造として用いられる。したがって、集光装置300b、その集光装置300bを備える光発電装置2は、集光効率に優れている。
According to the embodiment described above, the following operational effects can be obtained.
(1) As for the
次のような変形も本発明の範囲内であり、変形例の一つ、もしくは複数を上述の実施形態と組み合わせることも可能である。
(変形例1)上記の実施の形態では、本体部327の材料をBK7としたが、他のガラスでもよい。例えば、ソーダライムガラス、無アルカリガラス、石英ガラスなどでもよい。
The following modifications are also within the scope of the present invention, and one or a plurality of modifications can be combined with the above-described embodiment.
(Modification 1) In the above embodiment, the material of the
(変形例2)上記の実施の形態では、第1プリズム部材310aの第2面317と、第2プリズム部材320aの導光面3211との隙間に接合部319を設けたが、設けないことにしてもよい。
(Modification 2) In the above embodiment, the joint 319 is provided in the gap between the
(変形例3)上記の実施の形態では、第1プリズム部材310a、第1プリズム部材310b、第2プリズム部材320aは、z軸方向に延在する形状を有するものとして説明したが、その形状に限定しない。例えば、第1プリズム部材310aおよび310bの表面側から見た集光装置300aおよび300bの平面図が図11に示すようなほぼ同心円状の形状を有するものであってもよい。図11のX−X断面は、図1に示す集光装置300aや図6に示す集光装置300bの形状と同様の形状となる。
(Modification 3) In the above embodiment, the
(変形例4)上記の実施の形態では、本体部327の断面形状を楔形としたが、上面3271と反射構造322との間をつなぐと共に出射面325と対向する面を本体部327にさらに設けて、本体部327の断面形状を台形として設けることにしてもよい。
(Modification 4) In the above embodiment, the cross-sectional shape of the
(変形例5)上記の実施の形態では、ステップS40において第1プリズム部材310bを第2プリズム部材320aから剥離する際に空隙部3173に窒素ガスを注入することにした。しかし、窒素ガスを用いる代わりに、例えば、乾燥した空気やアルゴンガスなどを空隙部3173に注入することにしてもよい。
(Modification 5) In the above embodiment, nitrogen gas is injected into the
(変形例6)上記の実施の形態では、第2プリズム部材320の本体部327の上面3271に形成する凸部328の材料として紫外線硬化樹脂を用いたが、紫外線硬化樹脂以外の樹脂を塗布することにしてもよい。例えば、熱硬化性樹脂を用いてもよい。
(Modification 6) In the above embodiment, the ultraviolet curable resin is used as the material of the
上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。 Although various embodiments and modifications have been described above, the present invention is not limited to these contents. Other embodiments conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention.
1,2 光発電装置
300a,300b 集光装置
310,310a,310b 第1プリズム部材
311 集光構造
315 偏向構造
316 第1面
317 第2面
318 第3面
319 接合部
320,320a 第2プリズム部材
321 入射面
322 反射構造
325 出射面
327 本体部
328 凸部(受光構造)
330 光電変換素子
1, 2
330 photoelectric conversion element
Claims (6)
互いに対向する第2の表面と第2の裏面とを有し、前記第2の表面が前記第1の裏面に対向するように配置される第2の光学部材と、を備え、
前記第1の光学部材は、前記第1の表面に入射する光束を集光する複数の集光構造が互いに平行に前記第1の表面に配列されるとともに、前記複数の集光構造によって集光された集光光束をそれぞれ偏向する複数の偏向構造が互いに平行に前記複数の集光構造に対応するように前記第1の裏面に配列され、
前記複数の集光構造の各々は、光束の入射側に凸構造を有し、
前記複数の偏向構造の各々は、偏向面と出射面とを有し、前記偏向面によって偏向された集光光束を前記出射面から出射し、
前記第2の光学部材は、
前記出射面から出射された集光光束を受光する複数の受光構造が互いに平行に前記複数の偏向構造に対応するように前記第2の表面に突設され、
前記複数の受光構造の各々が受光した集光光束を前記第2の裏面が反射し、
前記第2の光学部材の本体部はガラス材料からなり、
前記複数の受光構造の各々は樹脂材料からなり、前記本体部に接合されていることを特徴とする集光装置。 A first optical member having a first surface and a first back surface facing each other;
A second optical member having a second surface and a second back surface facing each other, the second optical member being disposed such that the second surface faces the first back surface,
In the first optical member, a plurality of condensing structures for condensing a light beam incident on the first surface are arranged in parallel with each other on the first surface, and are condensed by the plurality of condensing structures. A plurality of deflecting structures for respectively deflecting the collected light flux are arranged on the first back surface so as to correspond to the plurality of light collecting structures in parallel with each other;
Each of the plurality of condensing structures has a convex structure on the incident side of the light beam,
Each of the plurality of deflection structures has a deflection surface and an emission surface, and emits the condensed light beam deflected by the deflection surface from the emission surface,
The second optical member is
A plurality of light receiving structures for receiving the condensed light beam emitted from the emission surface are provided on the second surface so as to correspond to the plurality of deflection structures in parallel with each other,
The second back surface reflects the condensed light beam received by each of the plurality of light receiving structures,
The main body of the second optical member is made of a glass material,
Each of the plurality of light receiving structures is made of a resin material, and is joined to the main body.
前記樹脂材料は光硬化性樹脂であることを特徴とする集光装置。 The light collecting device according to claim 1,
The light collecting device, wherein the resin material is a photocurable resin.
前記集光装置により集光された光を光電変換する光電変換素子と、
を備えることを特徴とする光発電装置。 The light collecting device according to claim 1 or 2,
A photoelectric conversion element that photoelectrically converts light collected by the light collecting device;
A photovoltaic power generation apparatus comprising:
前記第2の光学部材の前記本体部の表面に液状の前記樹脂材料を塗布する塗布工程と、
前記樹脂材料が塗布された前記本体部の表面に前記第1の裏面が前記第2の表面に向き合うように前記第1の光学部材を重ねて、前記第2の光学部材の前記本体部の表面と前記第1の光学部材の前記第1の裏面との間に前記樹脂材料を充填する充填工程と、
前記第1の光学部材が前記第2の光学部材に重ねられた状態で、前記樹脂材料を硬化させる硬化工程とを備えることを特徴とする集光装置の製造方法。 In the manufacturing method of the condensing device of Claim 1 or 2,
An application step of applying the liquid resin material to the surface of the main body of the second optical member;
The surface of the body portion of the second optical member is overlapped with the surface of the body portion coated with the resin material such that the first back surface faces the second surface. Filling the resin material between the first optical member and the first back surface of the first optical member;
A condensing device manufacturing method comprising: a curing step of curing the resin material in a state where the first optical member is overlapped with the second optical member.
前記樹脂材料は、紫外線硬化樹脂であり、
前記硬化工程は、充填された前記紫外線硬化樹脂に紫外線を照射して、前記紫外線硬化樹脂を硬化することを特徴とする集光装置の製造方法。 In the manufacturing method of the condensing device of Claim 4,
The resin material is an ultraviolet curable resin,
In the curing step, the ultraviolet curable resin filled is irradiated with ultraviolet rays to cure the ultraviolet curable resin.
前記複数の偏向構造の各々は、当該偏向構造の前記偏向面と、当該偏向構造に隣接する偏向構造との間に空気層を有し、
前記硬化工程の後に、剥離用ガスを前記空気層へ注入して前記第1の光学部材を前記第2の光学部材の本体部表面に形成された樹脂層から剥離する剥離工程と、を備えることを特徴とする集光装置の製造方法。 In the manufacturing method of the condensing device of Claim 4 or 5,
Each of the plurality of deflection structures has an air layer between the deflection surface of the deflection structure and the deflection structure adjacent to the deflection structure;
A peeling step of injecting a peeling gas into the air layer and peeling the first optical member from the resin layer formed on the surface of the main body of the second optical member after the curing step. The manufacturing method of the condensing device characterized by these.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014000861A JP6269069B2 (en) | 2014-01-07 | 2014-01-07 | Concentrating device, photovoltaic device, and manufacturing method of concentrating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014000861A JP6269069B2 (en) | 2014-01-07 | 2014-01-07 | Concentrating device, photovoltaic device, and manufacturing method of concentrating device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015130389A JP2015130389A (en) | 2015-07-16 |
JP6269069B2 true JP6269069B2 (en) | 2018-01-31 |
Family
ID=53760929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014000861A Active JP6269069B2 (en) | 2014-01-07 | 2014-01-07 | Concentrating device, photovoltaic device, and manufacturing method of concentrating device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6269069B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021197847A (en) * | 2020-06-16 | 2021-12-27 | トヨタ自動車株式会社 | Non-contact light power supply method using multi-junction solar cell and light projecting device for light power supply therefor |
JP7471003B2 (en) * | 2022-03-23 | 2024-04-19 | 喬國能源科技股▲ふん▼有限公司 | Solar panels |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000147262A (en) * | 1998-11-11 | 2000-05-26 | Nobuyuki Higuchi | Converging device and photovoltaic power generation system utilizing the device |
WO2008131561A1 (en) * | 2007-05-01 | 2008-11-06 | Morgan Solar Inc. | Light-guide solar panel and method of fabrication thereof |
US9256007B2 (en) * | 2009-04-21 | 2016-02-09 | Svv Technology Innovations, Inc. | Light collection and illumination systems employing planar waveguide |
IN2014CN00502A (en) * | 2011-07-01 | 2015-04-03 | Tropiglas Technologies Ltd | |
WO2013058381A1 (en) * | 2011-10-19 | 2013-04-25 | 株式会社ニコン | Optical condenser device, optical power generation device and photothermal conversion device |
JP2013088690A (en) * | 2011-10-20 | 2013-05-13 | Nikon Corp | Light collecting device and photovoltaic device using the same |
-
2014
- 2014-01-07 JP JP2014000861A patent/JP6269069B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015130389A (en) | 2015-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102792456B (en) | Solar cell, solar panel and possess the device of solar cell | |
Eyderman et al. | Solar light trapping in slanted conical-pore photonic crystals: Beyond statistical ray trapping | |
US20110247676A1 (en) | Photonic Crystal Solar Cell | |
US8396338B2 (en) | Opto-electric hybrid module and method of manufacturing the same | |
KR101633146B1 (en) | Stimulated emission luminescent light-guide solar concentrators | |
US20090032102A1 (en) | Light collection device | |
JP2002539614A5 (en) | ||
FR2479482A1 (en) | ABSORBER OF RESONANCE | |
WO2010096718A3 (en) | Solar modules including spectral concentrators and related manufacturing methods | |
KR102700935B1 (en) | Method for manufacturing 3-dimensional transparent solar cell | |
JP6269069B2 (en) | Concentrating device, photovoltaic device, and manufacturing method of concentrating device | |
CN207780304U (en) | Effectively high coupling ratios Optical Waveguide Modes spot conversion equipment | |
CN107665931A (en) | A kind of integrated enhancing quantum trap infrared detector of guide mode resonance and design method | |
JP2005285948A (en) | Solar cell module and its manufacturing method | |
CN104503008B (en) | Compound structure with function of improving wide-spectrum light absorption efficiency | |
JP6091883B2 (en) | Concentrator and solar cell | |
JP6010758B2 (en) | Solar cell module | |
CN103605192B (en) | Optical coupling device and manufacturing method thereof | |
JP2010045178A (en) | Solar cell panel | |
CN105182549A (en) | Optical light splitting device | |
CN110105890A (en) | A kind of compound cutan laser impact intensified for surfaces of complex shape multi-pass | |
WO2009093128A3 (en) | Photovoltaic receiver for a photovoltaic generation system and photovoltaic generation system thereof | |
KR101718796B1 (en) | Solar cell using photon conversion and method for manufacturing the same | |
CN202230249U (en) | Optical shaping system of high-power semiconductor laser | |
JPWO2012026572A1 (en) | Condensing device, photovoltaic power generation device, and photothermal conversion device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161212 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171003 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170929 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171109 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171205 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171218 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6269069 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |