JP6221243B2 - Thin film transistor array and image display device - Google Patents

Thin film transistor array and image display device Download PDF

Info

Publication number
JP6221243B2
JP6221243B2 JP2013013115A JP2013013115A JP6221243B2 JP 6221243 B2 JP6221243 B2 JP 6221243B2 JP 2013013115 A JP2013013115 A JP 2013013115A JP 2013013115 A JP2013013115 A JP 2013013115A JP 6221243 B2 JP6221243 B2 JP 6221243B2
Authority
JP
Japan
Prior art keywords
electrode
gate
thin film
film transistor
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013013115A
Other languages
Japanese (ja)
Other versions
JP2014145832A (en
Inventor
剛史 鈴木
剛史 鈴木
広大 村田
広大 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2013013115A priority Critical patent/JP6221243B2/en
Publication of JP2014145832A publication Critical patent/JP2014145832A/en
Application granted granted Critical
Publication of JP6221243B2 publication Critical patent/JP6221243B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Liquid Crystal (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Description

本発明は、薄膜トランジスタアレイ及び画像表示装置に関する。 The present invention relates to a thin film transistor array及beauty picture image display device.

近年、フレキシブル化、軽量化、低コスト化等の観点から、印刷法による薄膜トランジスタの研究が盛んであり、有機ELや電子ペーパー等の駆動回路や電子タグ等への応用が期待されている。しかしながら、一般に印刷法はフォトリソ法よりパターン解像度が劣り、又、塗布型の有機半導体は一般にキャリア移動度が小さい。したがって、印刷法による薄膜トランジスタの実用化には、各種電極(ゲート電極及びソース・ドレイン電極)の微細形成が特に重要であり技術的課題の一つである。   In recent years, from the viewpoint of flexibility, weight reduction, cost reduction, etc., research on thin film transistors by a printing method has been actively conducted, and application to driving circuits such as organic EL and electronic paper, electronic tags, and the like is expected. However, in general, the printing method has a lower pattern resolution than the photolithography method, and the coating type organic semiconductor generally has a low carrier mobility. Therefore, for practical use of a thin film transistor by a printing method, fine formation of various electrodes (a gate electrode and a source / drain electrode) is particularly important and is one of technical problems.

前記各種電極の印刷法として、これまで、スクリーン印刷やインクジェットを用いた例が数多く報告されているが、これらの印刷法はパターン解像度が十分とは言えない。例えば、スクリーン印刷は、スクリーンメッシュの精細度の制約から、パターンの微細度がライン/スペースで20/20μm以下となると、パターンの安定形成は困難である。又、パターンが微細となると、粘度が高く流動性の低い印刷ペーストを用いる必要があるため、印刷後のレベリング不足によりパターンに擦れや表面凹凸が残るという表面平滑性の問題も生じてくる。   As examples of the printing methods for the various electrodes, many examples using screen printing or ink jet have been reported so far, but these printing methods do not have sufficient pattern resolution. For example, in screen printing, it is difficult to stably form a pattern when the fineness of the pattern is 20/20 μm or less in line / space due to restrictions on the fineness of the screen mesh. Further, when the pattern becomes fine, it is necessary to use a printing paste having a high viscosity and low fluidity, which causes a problem of surface smoothness such as rubbing and surface irregularities remaining on the pattern due to insufficient leveling after printing.

一方、インクジェットは印刷版に関わる問題は無く、表面平滑性の問題も小さいが、インクの着弾精度は微細パターン形成には十分とは言えず、さらにインクジェット用のインクは低粘度で流動性が大きいため、パターン解像度はスクリーン印刷より悪い。この問題に対し、予め基材表面にインクの流動を制限するための各種パターニング処理を施すことで、微細パターンを形成した例もあるが、工程が複雑となるため低コスト化や大面積化に対する有効性は限られたものとなる。   On the other hand, inkjet has no problems with printing plates and surface smoothness problems are small, but the ink landing accuracy is not sufficient for fine pattern formation, and ink for ink jet has low viscosity and high fluidity Therefore, the pattern resolution is worse than screen printing. In order to deal with this problem, there are examples in which a fine pattern is formed by performing various patterning processes for restricting the flow of ink on the substrate surface in advance, but the process becomes complicated, so the cost is reduced and the area is increased. Effectiveness is limited.

これらの印刷法に対し、微細なパターンが形成可能な方法として反転オフセット印刷法が知られている。反転オフセット印刷は、剥離性表面を有する印刷ブランケットの全面に転写物を塗布形成し、この印刷ブランケットを凸版に密着させ離すことで、転写物のうち凸版凸部に接触した部分を印刷ブランケットから除去し、続いてこの印刷ブランケットを被転写物に密着させ離すことで転写物を転写する印刷パターニング方法である。これまでに、線幅10μm以下、線間隔が5μm以下の電極パターンを反転オフセット印刷にて形成した薄膜トランジスタアレイの報告例等(特許文献1)がある。さらに、薄膜トランジスタアレイの特性劣化(半導体の移動度やON/OFF比の低下等)を抑制すべく、半導体上にストライプ状の封止層を形成する例(特許文献2)等も報告されている。   In contrast to these printing methods, a reverse offset printing method is known as a method capable of forming a fine pattern. In the reverse offset printing, a transfer material is applied and formed on the entire surface of a printing blanket having a peelable surface, and this printing blanket is brought into close contact with the relief printing plate to remove the portion of the transfer material that has contacted the relief printing plate from the printing blanket. Subsequently, this printing blanket is a printing patterning method in which the transfer material is transferred by bringing the printing blanket into close contact with the transfer object. There have been reported examples of a thin film transistor array in which an electrode pattern having a line width of 10 μm or less and a line interval of 5 μm or less is formed by reverse offset printing (Patent Document 1). Furthermore, an example of forming a stripe-shaped sealing layer on a semiconductor (Patent Document 2) and the like has been reported in order to suppress deterioration in characteristics of the thin film transistor array (such as a decrease in mobility and ON / OFF ratio of the semiconductor). .

このように薄膜トランジスタアレイの特性劣化を抑制する方法として、薄膜トランジスタの構造を改善する特許案がある一方で、薄膜トランジスタアレイの回路に注目した特許案も報告されている。例えば、薄膜トランジスタアレイの端部に保護素子を施した薄膜トランジスタアレイを作製することで、静電気放電による過渡電圧の影響を抑制し、しきい値電圧のシフトに代表されるデバイス劣化や損傷を回避している(特許文献3,4)。   As a method for suppressing the deterioration of the characteristics of the thin film transistor array, there is a patent proposal for improving the structure of the thin film transistor, while a patent proposal focusing on the circuit of the thin film transistor array is also reported. For example, by fabricating a thin film transistor array with a protective element at the edge of the thin film transistor array, the influence of transient voltage due to electrostatic discharge is suppressed, and device degradation and damage represented by shifts in threshold voltage are avoided. (Patent Documents 3 and 4).

特開2006−332165号公報JP 2006-332165 A 特開2008−270744号公報JP 2008-270744 A 特開平8−179366号公報JP-A-8-179366 特開平7−287250号公報JP 7-287250 A

しかしながら、保護素子の各種電極(ソース電極・ドレイン電極等)を反転オフセット印刷法等の転写印刷法にて形成する際に、ゲート電極上に形成されたゲート絶縁膜のビア開口部の側面にはブランケットが接触できないという問題がある。さらに、ビア開口部から露出したゲート電極の表面エネルギーが小さいと、ソース電極・ドレイン電極をビア開口部に転写することができなく、ゲート電極とソース電極・ドレイン電極の導通がとれないという問題がある。   However, when various electrodes (source electrode, drain electrode, etc.) of the protective element are formed by a transfer printing method such as a reverse offset printing method, the side surface of the via opening of the gate insulating film formed on the gate electrode There is a problem that the blanket cannot contact. Furthermore, if the surface energy of the gate electrode exposed from the via opening is small, the source electrode / drain electrode cannot be transferred to the via opening, and the conduction between the gate electrode and the source electrode / drain electrode cannot be obtained. is there.

本発明は、ゲート絶縁膜ビア開口部に対しても転写印刷法による転写不良を回避することができる薄膜トランジスタアレイ及び保護素子並びに画像表示装置を提供するものである。   The present invention provides a thin film transistor array, a protection element, and an image display device capable of avoiding a transfer failure caused by a transfer printing method even for a gate insulating film via opening.

上記課題を達成するためになされた第1の発明は、絶縁基板上に形成されたゲート電極及びキャパシタ電極と、前記ゲート電極及び前記キャパシタ電極上に形成されたゲート絶縁膜と、前記ゲート絶縁膜上に形成されたソース電極及びドレイン電極と、前記ソース電極と前記ドレイン電極との間に形成された半導体層と、前記半導体層上に形成された封止層とを有する薄膜トランジスタをマトリックス状に配置し、マトリックス状に配置された前記薄膜トランジスタの周囲にゲート共通電極及びソース共通電極を有し、前記ゲート共通電極とゲート配線との間にはゲート保護素子が接続され、前記ソース共通電極とソース配線との間にはソース保護素子が接続されている薄膜トランジスタアレイであって、前記ゲート保護素子及び前記ソース保護素子のゲート絶縁膜ビア開口部のテーパー角が60°以下であり、前記ゲート絶縁膜ビア開口部から露出した前記ゲート電極の表面に、アミノ基及びメルカプト基の両方を含む化合物で形成された単分子膜を有することを特徴とする。 According to a first aspect of the present invention, there is provided a gate electrode and a capacitor electrode formed on an insulating substrate, a gate insulating film formed on the gate electrode and the capacitor electrode, and the gate insulating film. Thin film transistors having a source electrode and a drain electrode formed thereon, a semiconductor layer formed between the source electrode and the drain electrode, and a sealing layer formed on the semiconductor layer are arranged in a matrix And having a gate common electrode and a source common electrode around the thin film transistors arranged in a matrix, a gate protection element being connected between the gate common electrode and the gate wiring, and the source common electrode and the source wiring a thin film transistor array source protection element is connected to the front Symbol gate protection element and the source between the Der taper angle is 60 ° or less of the gate insulating film via the opening of the protection element is, on the surface of the gate electrode exposed from the gate insulating film via the opening, formed by compounds containing both amino and mercapto groups It characterized that you have a monomolecular film.

の発明は、前記第の発明において、前記ゲート絶縁膜の膜厚が1.5μm以下であることを特徴とする。 According to a second aspect , in the first aspect , the gate insulating film has a thickness of 1.5 μm or less.

の発明は、前記第1の発明の薄膜トランジスタアレイと画像表示媒体とからなることを特徴とする画像表示装置である。 A third invention is an image display device comprising the thin film transistor array of the first invention and an image display medium.

の発明は、前記第の発明において、前記画像表示媒体が電気泳動方式によるものであることを特徴とする。 According to a fourth invention, in the third invention, the image display medium is of an electrophoretic method.

本発明によれば、ゲート保護素子及びソース保護素子におけるゲート絶縁膜ビア開口部のテーパー角を60°以下にすることやビア開口部から露出したゲート電極の表面をアミノ基、エポキシ基、メルカプト基等のような官能基を末端に持つ単分子膜で表面処理することで、転写印刷法にてソース電極・ドレイン電極を単分子膜上に形成する際に、ゲート絶縁膜ビア開口部に対しても転写不良なく形成することができる。そのため、ゲート電極とソース・ドレイン電極の導通を図ることができ、静電気放電に伴う過渡電圧の影響を抑制し、しきい値電圧のシフトに代表されるデバイス劣化や損傷を回避することができる。そして、信頼性の高い薄膜トランジスタアレイ及び画像表示装置を提供することができる。   According to the present invention, the taper angle of the gate insulating film via opening in the gate protection element and the source protection element is set to 60 ° or less, and the surface of the gate electrode exposed from the via opening is amino group, epoxy group, mercapto group When the source and drain electrodes are formed on the monomolecular film by the transfer printing method, the surface is treated with a monomolecular film having a functional group at the end, such as for the gate insulating film via opening. Can also be formed without transfer defects. Therefore, conduction between the gate electrode and the source / drain electrodes can be achieved, the influence of transient voltage due to electrostatic discharge can be suppressed, and device deterioration and damage represented by threshold voltage shift can be avoided. A highly reliable thin film transistor array and image display device can be provided.

本発明の実施形態を示すものであり、薄膜トランジスタアレイ全体の概略構成を示すパターンレイアウト平面図である。1, showing an embodiment of the present invention, is a pattern layout plan view showing a schematic configuration of an entire thin film transistor array. FIG. 本発明における薄膜トランジスタアレイの概略構成の一部を示すパターンレイアウト平面図である。It is a pattern layout top view which shows a part of schematic structure of the thin-film transistor array in this invention. 本発明の薄膜トランジスタの断面構造である。2 is a cross-sectional structure of a thin film transistor of the present invention. 本発明のゲート保護素子及びソース保護素子の断面構造である。3 is a cross-sectional structure of a gate protection element and a source protection element of the present invention.

以下、本発明に係る薄膜トランジスタ及び画像表示装置の実施形態を、図面を参照しつつ説明する。実施の形態において、同一構成要素には同一符号を付け、実施の形態間において重複する説明は省略する。   Hereinafter, embodiments of a thin film transistor and an image display device according to the present invention will be described with reference to the drawings. In the embodiments, the same components are denoted by the same reference numerals, and redundant description among the embodiments is omitted.

図1,2の薄膜トランジスタアレイのパターンレイアウト平面図に示すように、薄膜トランジスタ1がマトリックス状に配置され、その周囲にゲート共通電極4及びソース共通電極5を有し、ゲート共通電極4とゲート配線2の間にはゲート保護素子6が接続され、ソース共通電極5とソース配線3の間にはソース保護素子7が接続されている。ゲート共通電極4及びソース共通電極5はアース電位に接続されているか、あるいは抵抗を介してアース電位に接続されている。図2においてゲート保護素子6及びソース保護素子7は、1個のフローティングゲートトランジスタの場合を記載しているが、薄膜トランジスタをダイオード接続(即ちゲート電極とドレイン電極を短絡)したものを逆向きに2個並列に接続したものか、薄膜トランジスタをダイオード接続したものを2個直列構造したものでも良い。   As shown in the pattern layout plan views of the thin film transistor array of FIGS. 1 and 2, the thin film transistors 1 are arranged in a matrix, and have a gate common electrode 4 and a source common electrode 5 around them, and the gate common electrode 4 and the gate wiring 2 A gate protection element 6 is connected between them, and a source protection element 7 is connected between the source common electrode 5 and the source wiring 3. The gate common electrode 4 and the source common electrode 5 are connected to the ground potential or connected to the ground potential via a resistor. In FIG. 2, the gate protection element 6 and the source protection element 7 are described in the case of a single floating gate transistor. However, a thin film transistor that is diode-connected (that is, the gate electrode and the drain electrode are short-circuited) is reversed 2 Two of them connected in parallel or two diodes of thin film transistors connected in series may be used.

薄膜トランジスタ1は、図3に示すように、ボトムゲート・ボトムコンタクト型構造をしており、絶縁基板8、ゲート電極9、キャパシタ電極10、ゲート絶縁膜11、ソース電極12、ドレイン電極13、半導体層14、封止層15によって構成されている。   As shown in FIG. 3, the thin film transistor 1 has a bottom gate / bottom contact structure, and includes an insulating substrate 8, a gate electrode 9, a capacitor electrode 10, a gate insulating film 11, a source electrode 12, a drain electrode 13, and a semiconductor layer. 14 and the sealing layer 15.

ゲート保護素子6及びソース保護素子7は、図4に示すように、絶縁基板8、ゲート電極9、キャパシタ電極10、ゲート絶縁膜11、ソース電極12、ドレイン電極13、単分子膜16、ビア開口部17によって構成されている。ゲート絶縁膜11とゲート絶縁膜ビア開口部17から露出したゲート電極9上に単分子膜16が形成されている。ゲート絶縁膜ビア開口部17はテーパー形状をしている。   As shown in FIG. 4, the gate protection element 6 and the source protection element 7 include an insulating substrate 8, a gate electrode 9, a capacitor electrode 10, a gate insulating film 11, a source electrode 12, a drain electrode 13, a monomolecular film 16, and a via opening. The unit 17 is configured. A monomolecular film 16 is formed on the gate electrode 9 exposed from the gate insulating film 11 and the gate insulating film via opening 17. The gate insulating film via opening 17 has a tapered shape.

本発明の絶縁基板8には、ポリメチレンメタクリレート、ポリアクリレート、ポリカーボネート、ポリスチレン、ポリエチレンサルファイド、ポリエーテルスルホン、ポリオレフィン、ポリエチレンテレフタレート、ポリエチレンナフタレート、シクロオレフィンポリマー、ポリエーテルサルフォン、トリアセチルセルロース、ポリビニルフルオライドフィルム、エチレン−テトラフルオロエチレン、共重合樹脂、耐候性ポリエチレンテレフタレート、耐候性ポリプロピレン、ガラス繊維強化アクリル樹脂フィルム、ガラス繊維強化ポリカーボネート、透明性ポリイミド、フッ素系樹脂、環状ポリオレフィン樹脂等を使用することができるが、本発明はこれらに限定されるものではない。これらは単独でも、二種以上が積層された複合基板としても使用することができる。又ガラスやプラスチック基板上にカラーフィルタのような樹脂層を有する基板も使用することができる。   The insulating substrate 8 of the present invention includes polymethylene methacrylate, polyacrylate, polycarbonate, polystyrene, polyethylene sulfide, polyethersulfone, polyolefin, polyethylene terephthalate, polyethylene naphthalate, cycloolefin polymer, polyethersulfone, triacetylcellulose, polyvinyl Fluoride film, ethylene-tetrafluoroethylene, copolymer resin, weather resistant polyethylene terephthalate, weather resistant polypropylene, glass fiber reinforced acrylic resin film, glass fiber reinforced polycarbonate, transparent polyimide, fluorine resin, cyclic polyolefin resin, etc. are used. However, the present invention is not limited to these. These can be used alone or as a composite substrate in which two or more kinds are laminated. A substrate having a resin layer such as a color filter on a glass or plastic substrate can also be used.

本発明のゲート電極9、キャパシタ電極10、ソース電極12、ドレイン電極13には、Au、Ag、Cu、Cr、Al、Mg、Li等の低抵抗金属材料や酸化物材料が好適に用いられる。具体的には、酸化インジウム(In)、酸化錫(SnO)、酸化亜鉛(ZnO)、酸化カドミウム(CdO)、酸化インジウムカドミウム(CdIn)、酸化カドミウム錫(CdSnO)、酸化亜鉛錫(ZnSnO)、酸化インジウム亜鉛(InZnO)等が挙げられる。又、この酸化物材料に不純物をドープしたものも好ましい。一例として酸化インジウムにモリブデンやチタンをドープしたもの、酸化錫にアンチモンやフッ素をドープしたもの、酸化亜鉛にインジウム、アルミニウム、ガリウムをドープしたもの等が挙げられる。なかでも酸化インジウムに錫をドープした酸化インジウム錫(ITO)がとりわけ低い抵抗率を示す。又、PEDOT/PSS(ポリエチレンジオキシチオフェン/ポリアニオンポリ(スチレンスルホン酸塩))等の有機導電性材料も好適であり、単体の場合も導電性酸化物材料との複数積層の場合も好んで用いられる。ゲート電極9、キャパシタ電極10、ソース電極12及びドレイン電極13は、すべて同じ材料からできていても、違う材料からできていてもよい。しかし、工程を減らすためにはゲート電極9とキャパシタ電極10やソース電極12とドレイン電極13に同一の材料を使用することが望ましい。又、ファインな線幅かつ薄膜な電極を印刷するためには全ての電極(ゲート電極9、キャパシタ電極10、ソース電極12、ドレイン電極13)を反転オフセット印刷法等の転写印刷法によって形成することが望ましい。 For the gate electrode 9, the capacitor electrode 10, the source electrode 12, and the drain electrode 13 of the present invention, a low resistance metal material such as Au, Ag, Cu, Cr, Al, Mg, Li, or an oxide material is preferably used. Specifically, indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), zinc oxide (ZnO), cadmium oxide (CdO), indium cadmium oxide (CdIn 2 O 4 ), cadmium tin oxide (Cd 2 SnO) 4 ), zinc tin oxide (Zn 2 SnO 4 ), indium zinc oxide (InZnO), and the like. Moreover, what doped this oxide material with the impurity is also preferable. For example, indium oxide doped with molybdenum or titanium, tin oxide doped with antimony or fluorine, zinc oxide doped with indium, aluminum, or gallium. Among them, indium tin oxide (ITO) in which tin is doped in indium oxide exhibits a particularly low resistivity. Organic conductive materials such as PEDOT / PSS (polyethylenedioxythiophene / polyanionic poly (styrene sulfonate)) are also suitable, and they are preferably used in the case of a single substance or a plurality of laminated layers with a conductive oxide material. It is done. The gate electrode 9, the capacitor electrode 10, the source electrode 12, and the drain electrode 13 may all be made of the same material or different materials. However, in order to reduce the number of steps, it is desirable to use the same material for the gate electrode 9 and the capacitor electrode 10 and the source electrode 12 and the drain electrode 13. In addition, in order to print a fine line width and thin film electrode, all electrodes (gate electrode 9, capacitor electrode 10, source electrode 12, drain electrode 13) are formed by a transfer printing method such as a reverse offset printing method. Is desirable.

本発明のゲート絶縁膜11には、酸化シリコン、窒化シリコン、酸化窒化シリコン、酸化アルミニウム、酸化タンタル、酸化イットリウム、酸化ハフニウム、ハフニウムアルミネート、酸化ジルコニア、酸化チタン等の無機材料、又はPMMA(ポリメチルメタクリレート)等のポリアクリレート、PVA(ポリビニルアルコール)、PVP(ポリビニルフェノール)等が挙げられるが、本発明はこれらに限定されるものではない。又ゲートリーク電流を抑えるために、絶縁材料の好ましい抵抗率は1011Ωcm以上、より好ましくは1014Ωcm以上である。ゲート絶縁膜の膜厚は1.5μm以下であることが好ましい。膜厚が1.5μmよりも厚くなると、静電容量が小さいために、トランジスタを起動するための電圧を高くしなければならない。そのため、消費電力がかかる。又、ゲート絶縁膜11のビア開口部17はフォトリソグラフィー技術によって印刷され、ビア開口部17のテーパー角18は現像を行う際の時間や現像液の濃度によって制御することができるが、管理のしやすさを考慮すると、現像時間にてテーパー角18を制御することが望ましい。 The gate insulating film 11 of the present invention includes an inorganic material such as silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, tantalum oxide, yttrium oxide, hafnium oxide, hafnium aluminate, zirconia oxide, titanium oxide, or PMMA (polyethylene oxide). Examples thereof include polyacrylates such as methyl methacrylate), PVA (polyvinyl alcohol), and PVP (polyvinylphenol), but the present invention is not limited thereto. In order to suppress the gate leakage current, a preferable resistivity of the insulating material is 10 11 Ωcm or more, more preferably 10 14 Ωcm or more. The thickness of the gate insulating film is preferably 1.5 μm or less. When the film thickness is thicker than 1.5 μm, since the capacitance is small, the voltage for starting the transistor must be increased. Therefore, power consumption is required. In addition, the via opening 17 of the gate insulating film 11 is printed by photolithography, and the taper angle 18 of the via opening 17 can be controlled by the development time and the developer concentration. In consideration of easiness, it is desirable to control the taper angle 18 by the development time.

ビア開口部17のテーパー角18は60°以下であることが望ましい。ゲート絶縁膜11の膜厚が1.5μm以下であることから、60°よりも大きいと、転写印刷法にてビア開口部17から露出したゲート電極9にソース電極12・ドレイン電極13を形成する際に、ブランケットがゲート電極9の側面に接触しづらく、転写不良を起こす恐れがある。   The taper angle 18 of the via opening 17 is desirably 60 ° or less. Since the thickness of the gate insulating film 11 is 1.5 μm or less, if it is larger than 60 °, the source electrode 12 and the drain electrode 13 are formed on the gate electrode 9 exposed from the via opening 17 by the transfer printing method. At this time, it is difficult for the blanket to come into contact with the side surface of the gate electrode 9, which may cause a transfer failure.

本発明で用いられる半導体層14として、酸化物半導体や有機半導体が挙げられる。酸化物半導体材料としては、亜鉛、インジウム、錫、タングステン、マグネシウム、ガリウム等のうち一種類以上の元素を含む酸化物、すなわち酸化亜鉛、酸化インジウム、酸化インジウム亜鉛、酸化錫、酸化タングステン、酸化亜鉛ガリウムインジウム等公知の材料が挙げられる。有機半導体材料としては、ポリチオフェン、ポリアリルアミン、フルオレンビチオフェン共重合体、及びそれらの誘導体のような高分子有機半導体材料、及びペンタセン、テトラセン、銅フタロシアニン、ペリレン、6,13−ビス(トリイソプロピルシリルエチニル)ペンタセン(TIPS−ペンタセン)、及びそれらの誘導体のような低分子有機半導体材料や加熱処理等で有機半導体に変換される前駆体を半導体材料インキとして用いることができる。又、カーボンナノチューブあるいはフラーレン等の炭素化合物や半導体ナノ粒子分散液等も半導体層の材料として用いることができる。半導体材料インキを用いる場合には、溶媒としてトルエンやキシレン、インダン、テトラリン、プロピレングリコールメチルエーテルアセテート等が挙げられるが、これらに限定されるものではない。これらの半導体層は、真空蒸着法、イオンプレーティング法、スパッタ法、レーザーアブレーション法、プラズマCVD法、光CVD法、ホットワイヤーCVD法等により形成される。又、上述の導電性材料をインキ状、ペースト状にしたものをスクリーン印刷、フレキソ印刷、インクジェット法等により塗布し、乾燥することでも形成可能であるが、本発明はこれらに限定されるものではない。   Examples of the semiconductor layer 14 used in the present invention include an oxide semiconductor and an organic semiconductor. As an oxide semiconductor material, an oxide containing one or more elements selected from zinc, indium, tin, tungsten, magnesium, gallium, etc., that is, zinc oxide, indium oxide, indium zinc oxide, tin oxide, tungsten oxide, zinc oxide Known materials such as gallium indium can be used. Organic semiconductor materials include high molecular organic semiconductor materials such as polythiophene, polyallylamine, fluorenebithiophene copolymers, and derivatives thereof, and pentacene, tetracene, copper phthalocyanine, perylene, 6,13-bis (triisopropylsilyl) Low molecular organic semiconductor materials such as ethynyl) pentacene (TIPS-pentacene) and their derivatives, and precursors that are converted into organic semiconductors by heat treatment or the like can be used as the semiconductor material ink. Carbon compounds such as carbon nanotubes or fullerenes, semiconductor nanoparticle dispersions, and the like can also be used as the semiconductor layer material. When the semiconductor material ink is used, examples of the solvent include toluene, xylene, indane, tetralin, propylene glycol methyl ether acetate, and the like, but are not limited thereto. These semiconductor layers are formed by a vacuum deposition method, an ion plating method, a sputtering method, a laser ablation method, a plasma CVD method, a photo CVD method, a hot wire CVD method, or the like. In addition, it is possible to form the conductive material in the form of ink or paste by applying it by screen printing, flexographic printing, ink jet method or the like and drying it, but the present invention is not limited to these. Absent.

本発明で用いられる封止層15として用いられる材料はポリビニルフェノール、ポリメタクリル酸メチル、ポリイミド、ポリビニルアルコール、エポキシ樹脂、フッ素樹脂等の高分子溶液、アルミナやシリカゲル等の粒子を分散させた溶液が好適に用いられる。又、封止層の形成方法はスクリーン印刷や凸版印刷、インクジェット法等の湿式法を用いて直接パターンを形成する方法が好適に用いられるが、これらに限定されるものではない。   The material used as the sealing layer 15 used in the present invention is a polymer solution such as polyvinylphenol, polymethyl methacrylate, polyimide, polyvinyl alcohol, epoxy resin, fluororesin, or a solution in which particles such as alumina or silica gel are dispersed. Preferably used. In addition, as a method for forming the sealing layer, a method of directly forming a pattern using a wet method such as screen printing, letterpress printing, or an inkjet method is preferably used, but is not limited thereto.

本発明に用いられる単分子膜16の化合物はチオール化合物、若しくはジスルフィド化合物、若しくはシランカップリング剤、若しくはホスホン酸化合物等が挙げられるが、これらに限定されるものではない。これらの化合物としては、エタンチオール、プロパンチオール、ブタンチオール、ペンタンチオール、ヘキサンチオール、ヘプタンチオール、オクタンチオール、デカンチオール、オクタデカンチオール等のアルカンチオール類、ベンゼンチオール、フルオロベンゼンチオール、ペンタフルオロベンゼンチオール等の芳香族チオール類、ジフェニルジスルフィド等のジスルフィド化合物、メチルトリメトキシシラン、エチルトリメトキシシラン、プロピルトリメトキシシラン、オクチルトリメトキシシラン、オクチルトリエトキシシラン、オクチルトリクロロシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシラン、オクタデシルトリクロロシラン等のシランカップリング剤、オクタデシルホスホン酸等のホスホン酸化合物等が挙げられるが、これらに限定されるものではない。   The compound of the monomolecular film 16 used in the present invention includes, but is not limited to, a thiol compound, a disulfide compound, a silane coupling agent, a phosphonic acid compound, or the like. These compounds include ethanethiol, propanethiol, butanethiol, pentanethiol, hexanethiol, heptanethiol, octanethiol, decanethiol, octadecanethiol and other alkanethiols, benzenethiol, fluorobenzenethiol, pentafluorobenzenethiol, etc. Aromatic thiols, disulfide compounds such as diphenyl disulfide, methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, octyltrimethoxysilane, octyltriethoxysilane, octyltrichlorosilane, octadecyltrimethoxysilane, octadecyltriethoxy Silane coupling agents such as silane and octadecyltrichlorosilane, and phosphonation of octadecylphosphonic acid Goods and the like, but not limited thereto.

本発明に用いられる単分子膜16の形成方法は特に限定されるものではないが、ディップコート法、スプレーコート法、スピンコート法等のウェットプロセスが望ましいが、真空蒸着法等のドライプロセスも用いることができる。ディップコート法、スプレーコート法、スピンコート法等のウェットプロセスは、真空蒸着法等のドライプロセスと比較して、簡便なプロセス及び装置にすることができ、さらに低コストで表面処理を施すことができる。   A method for forming the monomolecular film 16 used in the present invention is not particularly limited, but a wet process such as a dip coating method, a spray coating method, or a spin coating method is desirable, but a dry process such as a vacuum deposition method is also used. be able to. Wet processes such as dip coating, spray coating, and spin coating can be simplified in process and equipment compared to dry processes such as vacuum deposition, and surface treatment can be performed at a lower cost. it can.

本発明に用いられる単分子膜16の厚さは数nm程度であり、単分子膜16の末端を主々の官能基に置き換えることで単分子膜16上の表面自由エネルギーを制御することができる。例えば、アミノ基、エポキシ基、メルカプト基等を修飾した単分子膜16は、一般的に表面自由エネルギーが大きい傾向にある。そのため、ゲート絶縁膜11及びゲート絶縁膜ビア開口部17上に表面自由エネルギーの大きい単分子膜16を形成することで、転写印刷法にてソース電極12・ドレイン電極13を単分子膜16上に転写不良無く形成することができる。   The thickness of the monomolecular film 16 used in the present invention is about several nm, and the surface free energy on the monomolecular film 16 can be controlled by replacing the end of the monomolecular film 16 with main functional groups. . For example, the monomolecular film 16 modified with an amino group, an epoxy group, a mercapto group or the like generally tends to have a large surface free energy. Therefore, by forming the monomolecular film 16 having a large surface free energy on the gate insulating film 11 and the gate insulating film via opening 17, the source electrode 12 and the drain electrode 13 are formed on the monomolecular film 16 by the transfer printing method. It can be formed without transfer defects.

本実施例では、図1〜4に示すボトムゲート・ボトムコンタクト型薄膜トランジスタアレイの作製方法を以下に示す。本トランジスタアレイは、1画素サイズ500μm×500μm、配線幅25μm、チャネル長5μm、チャネル幅25μm、画素数240×320ある。   In this embodiment, a manufacturing method of the bottom gate / bottom contact type thin film transistor array shown in FIGS. This transistor array has a pixel size of 500 μm × 500 μm, a wiring width of 25 μm, a channel length of 5 μm, a channel width of 25 μm, and a pixel number of 240 × 320.

まず、絶縁基板8としてポリエチレンナフタレート(PEN)フィルム(帝人デュポン製)を用いた。PENフィルム上に銀インク(ハリマ化成製)を転写印刷し、180℃で1時間乾燥させ、膜厚100nmのゲート電極9、キャパシタ電極10、ゲート配線2を形成した。   First, a polyethylene naphthalate (PEN) film (manufactured by Teijin DuPont) was used as the insulating substrate 8. Silver ink (manufactured by Harima Chemicals) was transferred and printed on the PEN film and dried at 180 ° C. for 1 hour to form a gate electrode 9, capacitor electrode 10, and gate wiring 2 having a film thickness of 100 nm.

続いて、ゲート電極9、キャパシタ電極10、ゲート配線2を全面に覆うように、ポジ型感光性ポリイミド(旭化成製)をダイコーター塗布した後、60℃で30分間乾燥した。次いで、露光した後、水酸化テトラアンモニウム水溶液2.38%を用いて75秒間現像を行った。その後、レジストを剥離し、180℃で1時間乾燥させ、ゲート絶縁膜11に60°のテーパー角18を有するビア開口部17を形成した。   Subsequently, a positive photosensitive polyimide (manufactured by Asahi Kasei) was applied with a die coater so as to cover the entire surface of the gate electrode 9, the capacitor electrode 10, and the gate wiring 2 and then dried at 60 ° C. for 30 minutes. Next, after exposure, development was performed for 75 seconds using 2.38% of a tetraammonium hydroxide aqueous solution. Thereafter, the resist was peeled off and dried at 180 ° C. for 1 hour to form a via opening 17 having a taper angle 18 of 60 ° in the gate insulating film 11.

その後、ゲート絶縁膜11とビア開口部17に単分子膜16を形成するための表面処理剤として、9-アミノ1-オクタンチオール(関東化学製)をイソプロパノール(関東化学製)に0.5重量%となるように溶解させた溶液を用い、30分浸漬した。浸漬後、イソプロパノールで洗浄し、エアーブローで乾燥させた。表面自由エネルギーを測定したところ、65mN/mであった。   Thereafter, 9-amino 1-octanethiol (manufactured by Kanto Chemical Co., Ltd.) is added to isopropanol (manufactured by Kanto Chemical Co., Ltd.) as a surface treatment agent for forming the monomolecular film 16 in the gate insulating film 11 and the via opening 17. The solution was dissolved so as to be% and immersed for 30 minutes. After soaking, it was washed with isopropanol and dried by air blow. The surface free energy was measured and found to be 65 mN / m.

続いて、薄膜トランジスタ1の作製方法と同様にして、銀インク(ハリマ化成製)を転写印刷法により100nm成膜することにより、ゲート絶縁膜ビア開口部17から露出したゲート電極9上にもソース電極12・ドレイン電極13を形成することができた。   Subsequently, in the same manner as in the method of manufacturing the thin film transistor 1, a silver ink (manufactured by Harima Kasei) is formed to a thickness of 100 nm by a transfer printing method, whereby the source electrode is also formed on the gate electrode 9 exposed from the gate insulating film via opening 17. 12. The drain electrode 13 could be formed.

半導体層形成用材料として、テトラリン(関東化学製)と1,13−ビス(トリイソプロピルシリルエチニル)ペンタセン(TIPS−ペンタセン)(Aldrich製)を混合した溶液を用いた。半導体層の形成にはフレキソ印刷法を用いた。フレキソ印刷には感光性樹脂フレキソ版と150線のアニロックスロールを用い、ストライプ状に半導体材料を印刷した後100℃で60分乾燥させて半導体層14を形成した。   As a semiconductor layer forming material, a mixed solution of tetralin (manufactured by Kanto Chemical) and 1,13-bis (triisopropylsilylethynyl) pentacene (TIPS-pentacene) (manufactured by Aldrich) was used. The flexographic printing method was used for forming the semiconductor layer. For flexographic printing, a photosensitive resin flexographic plate and a 150-wire anilox roll were used. After the semiconductor material was printed in stripes, the semiconductor layer 14 was formed by drying at 100 ° C. for 60 minutes.

続いて封止層15を形成した。封止層形成材料としてサイトップ(旭硝子製)を用いた。封止層形成にはフレキソ印刷を用いた。フレキソ版として感光性樹脂フレキソ版を用い、150線アニロックスロールを用いた。   Subsequently, the sealing layer 15 was formed. Cytop (manufactured by Asahi Glass) was used as the sealing layer forming material. Flexographic printing was used for forming the sealing layer. A photosensitive resin flexographic plate was used as the flexographic plate, and a 150-wire anilox roll was used.

しかる後、対向電極との間に電気泳動媒体を挟んで本実施例によるディスプレイを駆動したところ、しきい値電圧のシフトが±1%以内となり、デバイス劣化の小さい薄膜トランジスタアレイを作製することができた。   After that, when the display according to this example is driven with an electrophoretic medium sandwiched between the counter electrode and the threshold voltage shift is within ± 1%, a thin film transistor array with little device degradation can be manufactured. It was.

比較例1Comparative Example 1

実施例1と同様の手順で、PENフィルム8上にゲート電極9、キャパシタ電極10、ゲート絶縁膜11、ソース電極12、ドレイン電極13、半導体層14、封止層15を形成し、薄膜トランジスタ1を作製した。   In the same procedure as in Example 1, a gate electrode 9, a capacitor electrode 10, a gate insulating film 11, a source electrode 12, a drain electrode 13, a semiconductor layer 14, and a sealing layer 15 are formed on the PEN film 8, and the thin film transistor 1 is formed. Produced.

続いて、ゲート保護素子6及びソース保護素子7を作製するために、実施例1と同様にPENフィルム8上にゲート電極9を形成した。   Subsequently, a gate electrode 9 was formed on the PEN film 8 in the same manner as in Example 1 in order to produce the gate protection element 6 and the source protection element 7.

続いて、作製したゲート電極9上にゲート絶縁材料としてポジ型感光性ポリイミド(旭化成製)をダイコーターにより塗布し、フォトリソグラフィーを行った。現像は水酸化テトラアンモニウム水溶液2.38%を用いて30秒間行った。その後レジストを剥離し、180℃で1時間乾燥させ、ゲート絶縁膜11に80°のテーパー角18を有するビアを形成した。   Subsequently, positive photosensitive polyimide (manufactured by Asahi Kasei) was applied as a gate insulating material on the produced gate electrode 9 by a die coater, and photolithography was performed. Development was carried out for 30 seconds using 2.38% of an aqueous tetraammonium hydroxide solution. Thereafter, the resist was peeled off and dried at 180 ° C. for 1 hour to form a via having a taper angle 18 of 80 ° in the gate insulating film 11.

その後、ゲート絶縁膜11とビア開口部17に単分子膜16を形成するための表面処理剤として、9-アミノ1-オクタンチオール(関東化学製)をイソプロパノール(関東化学製)に0.5重量%となるように溶解させた溶液を用い、30分浸漬した。浸漬後、イソプロパノールで洗浄し、エアーブローで乾燥させた。表面自由エネルギーを測定したところ、65mN/mであった。   Thereafter, 9-amino 1-octanethiol (manufactured by Kanto Chemical Co., Ltd.) is added to isopropanol (manufactured by Kanto Chemical Co., Ltd.) as a surface treatment agent for forming the monomolecular film 16 in the gate insulating film 11 and the via opening 17. The solution was dissolved so as to be% and immersed for 30 minutes. After soaking, it was washed with isopropanol and dried by air blow. The surface free energy was measured and found to be 65 mN / m.

続いて、単分子膜16上に銀インク(製)を転写印刷法により100nm成膜することによりソース電極12・ドレイン電極13を形成しようとしたが、ゲート絶縁膜ビア開口部17から露出したゲート電極上には銀インクが転写することはなく、ゲート電極9とソース電極12・ドレイン電極13の導通を図ることができなかった。   Subsequently, an attempt was made to form the source electrode 12 and the drain electrode 13 by depositing silver ink (manufactured) on the monomolecular film 16 by a transfer printing method to a thickness of 100 nm, but the gate exposed from the gate insulating film via opening 17 Silver ink was not transferred onto the electrode, and the gate electrode 9 and the source electrode 12 / drain electrode 13 could not be electrically connected.

続いて、実施例1と同様に半導体層14、封止層15を形成した。   Subsequently, the semiconductor layer 14 and the sealing layer 15 were formed in the same manner as in Example 1.

最後に、対向電極との間に電気泳動媒体を挟んで本実施例によるディスプレイを駆動したところ、しきい値電圧のシフトが±10%以上となり、デバイス劣化が大きい結果となった。   Finally, when the display according to the present example was driven with the electrophoretic medium sandwiched between the counter electrode and the counter electrode, the threshold voltage shift was ± 10% or more, resulting in large device degradation.

比較例2Comparative Example 2

実施例1と同様の手順で、PENフィルム8上にゲート電極9、キャパシタ電極10、ゲート絶縁膜11、ソース電極12、ドレイン電極13、半導体層14、封止層15を形成し、薄膜トランジスタ1を作製した。   In the same procedure as in Example 1, a gate electrode 9, a capacitor electrode 10, a gate insulating film 11, a source electrode 12, a drain electrode 13, a semiconductor layer 14, and a sealing layer 15 are formed on the PEN film 8, and the thin film transistor 1 is formed. Produced.

続いて、ゲート保護素子6及びソース保護素子7を作製するために、実施例1と同様にPENフィルム8上にゲート電極9、ゲート絶縁膜11、ビア開口部17を形成した。   Subsequently, in order to manufacture the gate protection element 6 and the source protection element 7, the gate electrode 9, the gate insulating film 11, and the via opening 17 were formed on the PEN film 8 as in Example 1.

その後、ゲート絶縁膜11とビア開口部17に単分子膜16を形成するための表面処理剤として、オクチルトリクロロシラン(関東化学製)をイソプロパノール(関東化学製)に0.5重量%となるように溶解させた溶液を用い、30分浸漬した。浸漬後、イソプロパノールで洗浄し、エアーブローで乾燥させた。表面エネルギーを測定したところ、16 mN/mであった。   Thereafter, octyltrichlorosilane (manufactured by Kanto Chemical Co., Ltd.) is added to isopropanol (manufactured by Kanto Chemical Co., Ltd.) as a surface treatment agent for forming the monomolecular film 16 in the gate insulating film 11 and the via opening 17 so as to be 0.5% by weight. The solution dissolved in was used for 30 minutes. After soaking, it was washed with isopropanol and dried by air blow. The surface energy was measured and found to be 16 mN / m.

続いて、薄膜トランジスタ1の作製方法と同様にして、銀インク(製)を転写印刷法により100nm成膜することによりソース電極12・ドレイン電極13を形成しようとしたが、ゲート絶縁膜ビア開口部17から露出したゲート電極上には銀インクが転写することはなく、ゲート電極9とソース電極12・ドレイン電極13の導通を図ることができなかった。   Subsequently, the source electrode 12 and the drain electrode 13 were formed by depositing silver ink (manufactured) to a thickness of 100 nm by transfer printing in the same manner as the method for manufacturing the thin film transistor 1. The silver ink was not transferred onto the gate electrode exposed from the above, and the continuity between the gate electrode 9 and the source electrode 12 / drain electrode 13 could not be achieved.

続いて、実施例1と同様に半導体層14、封止層15を形成した。   Subsequently, the semiconductor layer 14 and the sealing layer 15 were formed in the same manner as in Example 1.

しかる後、対向電極との間に電気泳動媒体を挟んで本実施例によるディスプレイを駆動したところ、しきい値電圧のシフトが±10%以上となり、デバイス劣化が大きい結果となった。   Thereafter, when the electrophoretic medium was sandwiched between the counter electrode and the display according to this example was driven, the threshold voltage shift was ± 10% or more, resulting in a large device deterioration.

本発明は、有機ELや電子ペーパー等の表示装置の駆動回路や電子タグ等に適用可能である。   The present invention can be applied to a drive circuit, an electronic tag, and the like of a display device such as organic EL and electronic paper.

1・・・薄膜トランジスタ
2・・・ゲート配線
3・・・ソース配線
4・・・ゲート共通電極
5・・・ソース共通電極
6・・・ゲート保護素子
7・・・ソース保護素子
8・・・絶縁基板
9・・・ソース電極
10・・・キャパシタ電極
11・・・ゲート絶縁膜
12・・・ソース電極
13・・・ドレイン電極
14・・・半導体層
15・・・封止層
16・・・単分子膜
17・・・ビア開口部
18・・・テーパー角
DESCRIPTION OF SYMBOLS 1 ... Thin-film transistor 2 ... Gate wiring 3 ... Source wiring 4 ... Gate common electrode 5 ... Source common electrode 6 ... Gate protection element 7 ... Source protection element 8 ... Insulation Substrate 9 ... Source electrode 10 ... Capacitor electrode 11 ... Gate insulating film 12 ... Source electrode 13 ... Drain electrode 14 ... Semiconductor layer 15 ... Sealing layer 16 ... Single Molecular film 17 ... via opening 18 ... taper angle

Claims (4)

絶縁基板上に形成されたゲート電極及びキャパシタ電極と、前記ゲート電極及び前記キャパシタ電極上に形成されたゲート絶縁膜と、前記ゲート絶縁膜上に形成されたソース電極及びドレイン電極と、前記ソース電極と前記ドレイン電極との間に形成された半導体層と、前記半導体層上に形成された封止層とを有する薄膜トランジスタをマトリックス状に配置し、マトリックス状に配置された前記薄膜トランジスタの周囲にゲート共通電極及びソース共通電極を有し、前記ゲート共通電極とゲート配線との間にはゲート保護素子が接続され、前記ソース共通電極とソース配線との間にはソース保護素子が接続されている薄膜トランジスタアレイであって、
前記ゲート保護素子及び前記ソース保護素子のゲート絶縁膜ビア開口部のテーパー角が60°以下であり、
前記ゲート絶縁膜ビア開口部から露出した前記ゲート電極の表面に、アミノ基及びメルカプト基の両方を含む化合物で形成された単分子膜を有することを特徴とする薄膜トランジスタアレイ。
A gate electrode and a capacitor electrode formed on an insulating substrate, a gate insulating film formed on the gate electrode and the capacitor electrode, a source electrode and a drain electrode formed on the gate insulating film, and the source electrode A thin film transistor having a semiconductor layer formed between the semiconductor layer and the drain electrode and a sealing layer formed on the semiconductor layer is arranged in a matrix, and the gate is shared around the thin film transistor arranged in the matrix A thin film transistor array having an electrode and a source common electrode, wherein a gate protection element is connected between the gate common electrode and the gate wiring, and a source protection element is connected between the source common electrode and the source wiring Because
The taper angle of the gate insulating film via the opening of the gate protection element and the source protection element Ri der 60 ° or less,
On the surface of the gate electrode exposed from the gate insulating film via the opening, and wherein Rukoto to have a monomolecular film formed of a compound containing both an amino group and a mercapto group, a thin film transistor array.
前記ゲート絶縁膜の膜厚が1.5μm以下であることを特徴とする請求項1に記載の薄膜トランジスタアレイThe thin film transistor array according to claim 1, wherein a thickness of the gate insulating film is 1.5 μm or less. 請求項1に記載の薄膜トランジスタアレイと画像表示媒体とからなることを特徴とする画像表示装置。   An image display device comprising the thin film transistor array according to claim 1 and an image display medium. 前記画像表示媒体が電気泳動方式によるものであることを特徴とする請求項に記載の画像表示装置。 The image display device according to claim 3 , wherein the image display medium is of an electrophoretic type.
JP2013013115A 2013-01-28 2013-01-28 Thin film transistor array and image display device Expired - Fee Related JP6221243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013013115A JP6221243B2 (en) 2013-01-28 2013-01-28 Thin film transistor array and image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013013115A JP6221243B2 (en) 2013-01-28 2013-01-28 Thin film transistor array and image display device

Publications (2)

Publication Number Publication Date
JP2014145832A JP2014145832A (en) 2014-08-14
JP6221243B2 true JP6221243B2 (en) 2017-11-01

Family

ID=51426152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013013115A Expired - Fee Related JP6221243B2 (en) 2013-01-28 2013-01-28 Thin film transistor array and image display device

Country Status (1)

Country Link
JP (1) JP6221243B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6393936B2 (en) * 2014-09-05 2018-09-26 Dic株式会社 THIN FILM TRANSISTOR, TRANSISTOR ARRAY, THIN FILM TRANSISTOR MANUFACTURING METHOD, AND TRANSISTOR ARRAY MANUFACTURING METHOD
JP6393937B2 (en) * 2014-09-05 2018-09-26 Dic株式会社 Thin film transistor manufacturing method, thin film transistor, and transistor array

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005085799A (en) * 2003-09-04 2005-03-31 Seiko Epson Corp Film depositing method, method of forming circuit pattern, method of manufacturing semiconductor device, electrooptical device, and electronic apparatus
JP2006215086A (en) * 2005-02-01 2006-08-17 Sharp Corp Active matrix substrate and display device equipped with the same
JP4816873B2 (en) * 2005-05-24 2011-11-16 凸版印刷株式会社 Thin film transistor manufacturing method
JP5217224B2 (en) * 2007-04-19 2013-06-19 凸版印刷株式会社 Thin film transistor manufacturing method
JP5325465B2 (en) * 2008-06-03 2013-10-23 株式会社日立製作所 THIN FILM TRANSISTOR AND DEVICE USING THE SAME
JP4752967B2 (en) * 2009-01-27 2011-08-17 カシオ計算機株式会社 Multilayer film forming method and display panel manufacturing method
JP2011082419A (en) * 2009-10-09 2011-04-21 Sony Corp Thin film transistor, method of manufacturing the same, display device, and electronic device
JP2012054520A (en) * 2010-08-04 2012-03-15 Ricoh Co Ltd Semiconductor device and method of manufacturing the same
JP2012203148A (en) * 2011-03-24 2012-10-22 Toppan Printing Co Ltd Thin film transistor and reflection-type color display

Also Published As

Publication number Publication date
JP2014145832A (en) 2014-08-14

Similar Documents

Publication Publication Date Title
JP5286826B2 (en) Thin film transistor array, method for manufacturing thin film transistor array, and active matrix display
US8963141B2 (en) Thin-film transistor, fabrication method thereof, and image display device
US20100264408A1 (en) Organic Thin Film Transistors, Active Matrix Organic Optical Devices and Methods of Making the Same
TWI677104B (en) Thin film transistor, method for manufacturing thin film transistor, and image display device using thin film transistor
KR20100015664A (en) Organic thin film transistors
JP2011210972A (en) Field-effect transistor, method of manufacturing the same, and image display apparatus
JP6221243B2 (en) Thin film transistor array and image display device
TWI655678B (en) Thin film transistor array and image display device
WO2014049970A1 (en) Thin film transistor array and image display apparatus
JP2018041759A (en) Thin-film transistor and image display device
JP5532553B2 (en) Thin film transistor, thin film transistor manufacturing method, thin film transistor array, and image display device
EP3282488A1 (en) Thin-film transistor array formation substrate, image display device substrate, and thin-film transistor array formation substrate manufacturing method
JP2016163029A (en) Thin film transistor array, thin film transistor array manufacturing method and pixel display device
JP6209920B2 (en) Thin film transistor array and image display device
JP6197306B2 (en) Thin film transistor manufacturing method
JP2020088225A (en) Thin film transistor, image display device, sensor device and manufacturing method of thin film transistor
JP6064356B2 (en) Thin film transistor array and image display device
JP6123413B2 (en) Thin film transistor array and image display device
WO2015004847A1 (en) Electronic device and manufacturing method therefor and image display apparatus and substrate for constituting image display apparatus
JP6428126B2 (en) THIN FILM TRANSISTOR, THIN FILM TRANSISTOR ARRAY MANUFACTURING METHOD, AND IMAGE DISPLAY DEVICE
JP2018137273A (en) Thin film transistor
JP2018186131A (en) Electrode pattern, forming method of electrode pattern, thin film transistor, manufacturing method of thin film transistor, and image display device
JP2019096727A (en) Thin film transistor, manufacturing method of thin film transistor and image display unit
JP2020088096A (en) Thin film transistor and image display device
JP2017059702A (en) Thin film transistor, thin film transistor array manufacturing method and image display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170918

R150 Certificate of patent or registration of utility model

Ref document number: 6221243

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees