JP6151541B2 - MEMS device and manufacturing method thereof - Google Patents

MEMS device and manufacturing method thereof Download PDF

Info

Publication number
JP6151541B2
JP6151541B2 JP2013054857A JP2013054857A JP6151541B2 JP 6151541 B2 JP6151541 B2 JP 6151541B2 JP 2013054857 A JP2013054857 A JP 2013054857A JP 2013054857 A JP2013054857 A JP 2013054857A JP 6151541 B2 JP6151541 B2 JP 6151541B2
Authority
JP
Japan
Prior art keywords
fixed electrode
hole
sacrificial layer
electrode film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013054857A
Other languages
Japanese (ja)
Other versions
JP2014180702A (en
Inventor
孝英 臼井
孝英 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2013054857A priority Critical patent/JP6151541B2/en
Publication of JP2014180702A publication Critical patent/JP2014180702A/en
Application granted granted Critical
Publication of JP6151541B2 publication Critical patent/JP6151541B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Micromachines (AREA)

Description

本発明は、MEMS素子およびその製造方法に関し、特にマイクロフォン、各種センサ、スイッチ等として用いられる容量型のMEMS素子およびその製造方法に関する。   The present invention relates to a MEMS element and a manufacturing method thereof, and more particularly to a capacitive MEMS element used as a microphone, various sensors, switches, and the like and a manufacturing method thereof.

従来、半導体プロセスを用いたMEMS(Micro Electro Mechanical Systems)素子では、半導体基板上に固定電極と、この固定電極に中空構造(エアーギャップ)を介して対向するように可動電極とを備えた構造の容量型MEMS素子が広く知られている。このような構造のMEMS素子は、犠牲層と呼ばれる中間膜を介して固定電極と可動電極を形成した後、犠牲層をエッチング除去することによって、中空構造を形成している。   2. Description of the Related Art Conventionally, a MEMS (Micro Electro Mechanical Systems) element using a semiconductor process has a structure including a fixed electrode on a semiconductor substrate and a movable electrode so as to face the fixed electrode through a hollow structure (air gap). Capacitive MEMS elements are widely known. The MEMS element having such a structure forms a hollow structure by forming a fixed electrode and a movable electrode through an intermediate film called a sacrificial layer, and then etching away the sacrificial layer.

一般的に、犠牲層を除去する方法は、犠牲層を選択エッチングする溶液を用いたウエットエッチング法か、ガスを用いたドライエッチング法が用いられる。これらの方法の内、安価なMEMS素子を形成するためには、製造コストの安いウエットエッチング法を採用するのが好ましい。   Generally, as a method for removing the sacrificial layer, a wet etching method using a solution for selectively etching the sacrificial layer or a dry etching method using a gas is used. Among these methods, in order to form an inexpensive MEMS element, it is preferable to employ a wet etching method having a low manufacturing cost.

しかしウエットエッチング法では、犠牲層のエッチングの際に、固定電極と可動電極が固着してしまうという問題が発生することが知られている。そこでこの問題を解決するため、固定電極と可動電極とが対向する面に、小さな突起を形成する方法が採用されている。図3は、この種の突起を形成する製造方法の説明図である。まず図3(a)に示すように、半導体基板1上に犠牲層2を堆積させる。次に、フォトレジスト3を突起を形成する部分を開口するようにパターニングし、フォトレジスト3をエッチングマスクとして使用して犠牲層2の一部をエッチング除去し、段差部4を形成する(図3b)。フォトレジスト3を除去した後、犠牲層2上に可動電極5を形成する。この可動電極は、図3(c)に示すように、先に形成した段差部4内を充填するように形成される。また可動電極5には、複数の貫通穴5bが形成されているため、この貫通穴5bを通して、犠牲層2をエッチング除去する。   However, it is known that the wet etching method has a problem that the fixed electrode and the movable electrode are fixed when the sacrificial layer is etched. In order to solve this problem, a method of forming a small protrusion on the surface where the fixed electrode and the movable electrode face each other is employed. FIG. 3 is an explanatory view of a manufacturing method for forming this kind of protrusion. First, as shown in FIG. 3A, a sacrificial layer 2 is deposited on the semiconductor substrate 1. Next, the photoresist 3 is patterned so as to open a portion where a protrusion is to be formed, and a part of the sacrificial layer 2 is removed by etching using the photoresist 3 as an etching mask to form a stepped portion 4 (FIG. 3b). ). After removing the photoresist 3, the movable electrode 5 is formed on the sacrificial layer 2. As shown in FIG. 3C, the movable electrode is formed so as to fill the previously formed stepped portion 4. Since the movable electrode 5 has a plurality of through holes 5b, the sacrificial layer 2 is removed by etching through the through holes 5b.

このように形成することにより、半導体基板1上の犠牲層2からなるスぺーサ部2aに支持され、半導体基板1とエアーギャップGを介して、突起部5aを備えた可動電極を形成することができる。なお図3では、固定電極やバックチャンバーの図示は省略している。このような突起部の形成方法は、例えば特許文献1に開示されている。   By forming in this way, a movable electrode is formed which is supported by the spacer portion 2a made of the sacrificial layer 2 on the semiconductor substrate 1 and has the protruding portion 5a via the semiconductor substrate 1 and the air gap G. Can do. In FIG. 3, illustration of the fixed electrode and the back chamber is omitted. A method for forming such a protrusion is disclosed in Patent Document 1, for example.

特許3500780号公報Japanese Patent No. 3500780

ところで、固定電極と可動電極が固着しないように形成する突起は、仮に両者が触れた場合でも容易に離れるようにするため、その先端面の接触面積を小さくすることが好ましい。このため従来は、露光装置の解像限界を超えたフォトリソグラフィー技術を用い、図3(b)に示すようにフォトレジスト2の開口幅を狭くし、エッチング条件を制御することで、段差部4の形状が開口部の開口幅に比べて底部の開口幅が狭くなるように形成し、先端の尖った突起5aを形成していた。   By the way, it is preferable to reduce the contact area of the front end surface of the protrusion formed so that the fixed electrode and the movable electrode do not adhere to each other even if they touch each other. For this reason, conventionally, by using a photolithography technique that exceeds the resolution limit of the exposure apparatus, the opening width of the photoresist 2 is narrowed as shown in FIG. Is formed so that the opening width of the bottom portion is narrower than the opening width of the opening portion, and the protrusion 5a having a sharp tip is formed.

しかしながら、このような解像限界を超えたフォトリソグラフィー技術を用いる方法では、フォトレジスト3の開口寸法がばらついたり、その結果段差4の深さがばらついてしまうという問題があった。   However, the method using the photolithographic technique exceeding the resolution limit has a problem that the opening size of the photoresist 3 varies and as a result, the depth of the step 4 varies.

本発明は、上記問題点を解消するため、通常の半導体装置の製造方法によって、突起部を安定して作製することができるMEMS素子およびその製造方法を提供することを目的とする。   In order to solve the above-described problems, an object of the present invention is to provide a MEMS element capable of stably producing a protrusion by a normal method for manufacturing a semiconductor device and a method for manufacturing the MEMS element.

上記目的を達成するため、本願請求項1に係る発明は、バックチャンバーを備えた基板と、該基板上にエアーギャップを形成して配置された固定電極と可動電極とを備えたMEMS素子において、前記固定電極は、貫通孔を備え、前記固定電極上に、少なくとも前記貫通孔の側壁部から連続して前記エアーギャップ方向であって、前記貫通孔の中心部方向に突出した突起部を構成する絶縁膜が積層形成されていることを特徴とする。 In order to achieve the above object, an invention according to claim 1 of the present application is a MEMS device including a substrate provided with a back chamber, and a fixed electrode and a movable electrode arranged with an air gap formed on the substrate. The fixed electrode includes a through hole, and forms a protrusion on the fixed electrode that protrudes from the side wall of the through hole in the air gap direction and toward the center of the through hole. Insulating films are stacked and formed.

また本願請求項2に係る発明は、基板上に可動電極膜を形成し、該可動電極膜上に犠牲層を形成し、該犠牲層上に固定電極膜を形成した後、前記犠牲層を除去することにより、前記可動電極膜と前記固定電極膜との間にエアーギャップを形成する工程を含むMEMS素子の製造方法において、前記犠牲層上に貫通孔を備えた固定電極膜を形成する工程と、前記貫通孔内に露出する前記犠牲層の一部をエッチングし、段差部を形成する工程と、少なくとも前記固定電極膜および前記段差部を被覆するように絶縁膜を形成する工程と、前記貫通孔の側壁部から連続して前記段差部内に前記絶縁膜が残るように前記段差部の底面部分の前記絶縁膜をエッチング除去する工程と、前記犠牲層をエッチング除去し、前記可動電極膜と前記固定電極膜との間にエアギャップを形成するとともに、前記貫通孔の側壁から前記エアーギャップ方向であって、前記貫通孔の中心部方向に突出する前記絶縁膜からなる突起部を形成する工程と、前記基板の一部をエッチング除去してバックチャンバーを形成する工程とを含むことを特徴とする。

According to the second aspect of the present invention, a movable electrode film is formed on a substrate, a sacrificial layer is formed on the movable electrode film, a fixed electrode film is formed on the sacrificial layer, and then the sacrificial layer is removed. Forming a fixed electrode film having a through-hole on the sacrificial layer in a method of manufacturing a MEMS element including a step of forming an air gap between the movable electrode film and the fixed electrode film. Etching a part of the sacrificial layer exposed in the through hole to form a stepped portion, forming an insulating film so as to cover at least the fixed electrode film and the stepped portion, and the through hole Etching and removing the insulating film on the bottom surface of the step portion so that the insulating film remains in the step portion continuously from the side wall portion of the hole; and etching and removing the sacrificial layer; With fixed electrode membrane To form the air over gap, a said air gap direction from the side wall of the through hole and forming the made of an insulating film protruding portion protruding toward the center of the through hole, said substrate- And a step of forming a back chamber by etching away the portion.

本発明のMEMS素子は、エアーギャップ方向に突出する突起部を備えるため、犠牲層をウエットエッチング法により形成した場合であっても、電極の固着を効果的に防止することができる。   Since the MEMS element of the present invention includes a protrusion protruding in the air gap direction, even when the sacrificial layer is formed by a wet etching method, it is possible to effectively prevent the electrodes from being fixed.

また本発明のMEMS素子の製造方法によれば、通常の半導体装置の製造工程のみで、固着を防止する突起部を安定して形成することができ、MEMS素子の製造において歩留まりが向上し、製造コストの低いMEMS素子の提供が可能となる。   Further, according to the method for manufacturing a MEMS element of the present invention, it is possible to stably form a protrusion for preventing sticking only by a normal manufacturing process of a semiconductor device, and the yield is improved in manufacturing the MEMS element. A low-cost MEMS element can be provided.

本発明のMEMS素子の製造工程の説明図である。It is explanatory drawing of the manufacturing process of the MEMS element of this invention. 本発明のMEMS素子の製造工程の説明図である。It is explanatory drawing of the manufacturing process of the MEMS element of this invention. 従来のMEMS素子の突起を形成する製造方法の説明図である。It is explanatory drawing of the manufacturing method which forms the protrusion of the conventional MEMS element.

本発明に係るMEMS素子およびその製造方法は、固定電極の貫通孔内に露出する犠牲層をオーバーエッチングして段差部を形成し、この段差部に絶縁膜を充填した後、段差部の中央部分の絶縁膜をエッチング除去することによって、接触面積の小さい突起を形成する。以下、容量型MEMS素子の一例として、小型マイクロフォン用トランスデューサーの製造工程に従い、本発明の実施例を説明する。   In the MEMS element and the manufacturing method thereof according to the present invention, a sacrificial layer exposed in the through hole of the fixed electrode is over-etched to form a stepped portion, and after filling the stepped portion with an insulating film, a central portion of the stepped portion is formed. By removing the insulating film by etching, a projection with a small contact area is formed. Hereinafter, as an example of a capacitive MEMS element, an embodiment of the present invention will be described according to a manufacturing process of a transducer for a small microphone.

まず、結晶方位(100)面の厚さ420μmのシリコン基板10上に、厚さ1μm程度の熱酸化膜11を形成し、熱酸化膜11上に、厚さ0.4μmの導電性ポリシリコンからなる可動電極膜12を積層形成する(図1a)。更に可動電極膜12上に、厚さ2.0〜4.0μm程度のUSG(Undoped Silicate Glass)膜からなる犠牲層13を積層形成する。犠牲層13上に、厚さ0.1〜1.0μm程度の導電性ポリシリコンから固定電極膜14を積層形成する(図1b)。   First, a thermal oxide film 11 having a thickness of about 1 μm is formed on a silicon substrate 10 having a crystal orientation (100) plane of 420 μm in thickness, and the conductive oxide having a thickness of 0.4 μm is formed on the thermal oxide film 11. A movable electrode film 12 to be formed is laminated (FIG. 1a). Further, a sacrificial layer 13 made of a USG (Undoped Silicate Glass) film having a thickness of about 2.0 to 4.0 μm is laminated on the movable electrode film 12. On the sacrificial layer 13, the fixed electrode film 14 is laminated and formed from conductive polysilicon having a thickness of about 0.1 to 1.0 μm (FIG. 1 b).

固定電極膜14を通常のフォトリソグラフィーにより貫通孔15を備えた所定の形状にパターニングする。その後、固定電極膜14に形成した貫通孔15部分を露出するようにフォトレジストをパターニングし、固定電極膜14をエッチングマスクとして使用して、貫通孔15内に露出する犠牲層13の表面をエッチングし、段差部16を形成する。このエッチングは、例えばCF4、CHEF3、Arの混合ガスをエッチングガスとして使用し、圧力267Pa、印加電力500Wの条件でドライエッチングを行い、エッチング深さが0.25μm程度となるように制御する(図1c)。 The fixed electrode film 14 is patterned into a predetermined shape provided with the through holes 15 by ordinary photolithography. Thereafter, the photoresist is patterned so as to expose the portion of the through hole 15 formed in the fixed electrode film 14, and the surface of the sacrificial layer 13 exposed in the through hole 15 is etched using the fixed electrode film 14 as an etching mask. Then, the step portion 16 is formed. For this etching, for example, a mixed gas of CF 4 , CHEF 3 , and Ar is used as an etching gas, and dry etching is performed under conditions of a pressure of 267 Pa and an applied power of 500 W, and the etching depth is controlled to be about 0.25 μm. (FIG. 1c).

その後、絶縁膜として厚さ0.2μmの窒化膜17を全面に形成する(図2e)。窒化膜17は、固定電極膜14上の他に、犠牲層13上に形成された段差部16表面にも堆積することになる。この窒化膜17は、後述するように段差部16の底部の一部をエッチング除去するため、必要な強度が得られる範囲で薄く形成するのが好ましい。   Thereafter, a nitride film 17 having a thickness of 0.2 μm is formed on the entire surface as an insulating film (FIG. 2e). The nitride film 17 is deposited on the surface of the stepped portion 16 formed on the sacrificial layer 13 in addition to the fixed electrode film 14. As will be described later, the nitride film 17 is preferably formed to be thin within a range in which a necessary strength can be obtained in order to etch away a part of the bottom of the step portion 16.

次に突起部を形成するため、少なくとも固定電極膜14の貫通孔15の側壁部から段差部16内につながる窒化膜17が残るようにエッチングする。具体的には、段差部16の底部を露出するように図示しないフォトレジストをパターニングし、このフォトレジストをエッチングマスクとして使用し、窒化膜17をエッチングする(図2f)。   Next, in order to form a protrusion, etching is performed so that the nitride film 17 connected at least from the side wall portion of the through hole 15 of the fixed electrode film 14 into the stepped portion 16 remains. Specifically, a photoresist (not shown) is patterned so as to expose the bottom of the stepped portion 16, and the nitride film 17 is etched using the photoresist as an etching mask (FIG. 2f).

以下、一般的な容量型MEMS素子の製造工程に従い、可動電極膜12、固定電極膜14にそれぞれ接続する配線部18a、18bを形成するため、厚さ1.2μmのAlCu膜を形成し、所望のパターンを形成する。その後、シリコン基板10の裏面側から可動電極膜12が露出するまでシリコン基板10および熱酸化膜11の一部を除去し、バックチャンバー19を形成する。さらに固定電極膜14に形成された貫通孔15を介して犠牲層13の一部を除去し、可動電極膜12と固定電極膜14の間にエアーギャップ20が形成される(図2g)。   Hereinafter, in order to form the wiring portions 18a and 18b respectively connected to the movable electrode film 12 and the fixed electrode film 14 in accordance with a general capacitive MEMS element manufacturing process, an AlCu film having a thickness of 1.2 μm is formed and desired. The pattern is formed. Thereafter, part of the silicon substrate 10 and the thermal oxide film 11 is removed until the movable electrode film 12 is exposed from the back surface side of the silicon substrate 10, thereby forming a back chamber 19. Further, a part of the sacrificial layer 13 is removed through the through hole 15 formed in the fixed electrode film 14, and an air gap 20 is formed between the movable electrode film 12 and the fixed electrode film 14 (FIG. 2g).

以上のように形成されたMEMS素子は、図2(g)に示すように、可動電極膜14の貫通孔15からエアーギャップ20方向に突出するように、窒化膜17で形成された突起部21が形成される。このような突起部21を備えることで、本発明によるMEMS素子は可動電極膜12と固定電極膜14が固着するのを防止することができる構造となる。   As shown in FIG. 2G, the MEMS element formed as described above has a protruding portion 21 formed of the nitride film 17 so as to protrude from the through hole 15 of the movable electrode film 14 in the direction of the air gap 20. Is formed. By providing such a protrusion 21, the MEMS element according to the present invention has a structure capable of preventing the movable electrode film 12 and the fixed electrode film 14 from being fixed.

本発明の製造方法は、通常の半導体装置の製造方法のみで形成することができ、安価なMEMS素子を提供することができる。   The manufacturing method of the present invention can be formed only by a normal method for manufacturing a semiconductor device, and can provide an inexpensive MEMS element.

10:シリコン基板、11:熱酸化膜、12:可動電極膜、13:犠牲層、14:固定電極膜、15:貫通孔、16:段差部、17:窒化膜、18:配線部、19:バックチャンバー、20:エアーギャップ、21:突起部 10: silicon substrate, 11: thermal oxide film, 12: movable electrode film, 13: sacrificial layer, 14: fixed electrode film, 15: through hole, 16: stepped portion, 17: nitride film, 18: wiring portion, 19: Back chamber, 20: Air gap, 21: Projection

Claims (2)

バックチャンバーを備えた基板と、該基板上にエアーギャップを形成して配置された固定電極と可動電極とを備えたMEMS素子において、
前記固定電極は、貫通孔を備え、
前記固定電極上に、少なくとも前記貫通孔の側壁部から連続して前記エアーギャップ方向であって、前記貫通孔の中心部方向に突出した突起部を構成する絶縁膜が積層形成されていることを特徴とするMEMS素子。
In a MEMS device comprising a substrate provided with a back chamber, and a fixed electrode and a movable electrode arranged to form an air gap on the substrate,
The fixed electrode includes a through hole,
On the fixed electrode, an insulating film constituting a protrusion protruding in the air gap direction at least continuously from the side wall portion of the through hole and in the central portion direction of the through hole is laminated. A featured MEMS element.
基板上に可動電極膜を形成し、該可動電極膜上に犠牲層を形成し、該犠牲層上に固定電極膜を形成した後、前記犠牲層を除去することにより、前記可動電極膜と前記固定電極膜との間にエアーギャップを形成する工程を含むMEMS素子の製造方法において、
前記犠牲層上に貫通孔を備えた固定電極膜を形成する工程と、
前記貫通孔内に露出する前記犠牲層の一部をエッチングし、段差部を形成する工程と、
少なくとも前記固定電極膜および前記段差部を被覆するように絶縁膜を形成する工程と、
前記貫通孔の側壁部から連続して前記段差部内に前記絶縁膜が残るように前記段差部の底面部分の前記絶縁膜をエッチング除去する工程と、
前記犠牲層をエッチング除去し、前記可動電極膜と前記固定電極膜との間にエアギャップを形成するとともに、前記貫通孔の側壁から前記エアーギャップ方向であって、前記貫通孔の中心部方向に突出する前記絶縁膜からなる突起部を形成する工程と、
前記基板の一部をエッチング除去してバックチャンバーを形成する工程とを含むことを特徴とするMEMS素子の製造方法。
A movable electrode film is formed on the substrate, a sacrificial layer is formed on the movable electrode film, a fixed electrode film is formed on the sacrificial layer, and then the sacrificial layer is removed, whereby the movable electrode film and the In the manufacturing method of the MEMS element including the step of forming an air gap between the fixed electrode film,
Forming a fixed electrode film having a through hole on the sacrificial layer;
Etching a part of the sacrificial layer exposed in the through hole to form a stepped portion;
Forming an insulating film so as to cover at least the fixed electrode film and the stepped portion; and
Etching and removing the insulating film on the bottom surface of the step portion so that the insulating film remains in the step portion continuously from the side wall portion of the through hole;
The sacrificial layer is etched away to form the air over the gap between the fixed electrode film and the movable electrode film, said an air gap direction from the side wall of the through hole, the center direction of the through hole Forming a protrusion made of the insulating film protruding to
And a step of forming a back chamber by etching away a part of the substrate.
JP2013054857A 2013-03-18 2013-03-18 MEMS device and manufacturing method thereof Active JP6151541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013054857A JP6151541B2 (en) 2013-03-18 2013-03-18 MEMS device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013054857A JP6151541B2 (en) 2013-03-18 2013-03-18 MEMS device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014180702A JP2014180702A (en) 2014-09-29
JP6151541B2 true JP6151541B2 (en) 2017-06-21

Family

ID=51699903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013054857A Active JP6151541B2 (en) 2013-03-18 2013-03-18 MEMS device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6151541B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107040860B (en) * 2016-02-03 2019-10-11 中芯国际集成电路制造(上海)有限公司 The preparation method of semiconductor structure and the microphone comprising the semiconductor structure
CN107799388B (en) * 2016-09-06 2020-07-31 中芯国际集成电路制造(北京)有限公司 Semiconductor device and method for manufacturing the same
CN107799386B (en) 2016-09-06 2020-04-28 中芯国际集成电路制造(北京)有限公司 Semiconductor device and method for manufacturing the same
JP2018058150A (en) * 2016-10-04 2018-04-12 新日本無線株式会社 Mems element and manufacturing method thereof
JP7364163B2 (en) * 2018-12-13 2023-10-18 日清紡マイクロデバイス株式会社 MEMS element and its manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0683921B1 (en) * 1993-02-04 2004-06-16 Cornell Research Foundation, Inc. Microstructures and single mask, single-crystal process for fabrication thereof
US6538798B2 (en) * 2000-12-11 2003-03-25 Axsun Technologies, Inc. Process for fabricating stiction control bumps on optical membrane via conformal coating of etch holes
WO2009104389A1 (en) * 2008-02-20 2009-08-27 オムロン株式会社 Electrostatic capacitive vibrating sensor
JP5083369B2 (en) * 2010-04-28 2012-11-28 オムロン株式会社 Acoustic sensor and manufacturing method thereof

Also Published As

Publication number Publication date
JP2014180702A (en) 2014-09-29

Similar Documents

Publication Publication Date Title
US20230224657A1 (en) Semiconductor devices having a membrane layer with smooth stress-relieving corrugations and methods of fabrication thereof
KR101357312B1 (en) Micromechanical sound transducer having a membrane support with tapered surface, and methods of manufacture
JP6151541B2 (en) MEMS device and manufacturing method thereof
JP5129456B2 (en) Method of manufacturing structure having beam portion and MEMS device
CN106211003A (en) MEMS microphone and forming method thereof
TW202013991A (en) Microphone, MEMS device and method of manufacturing MEMS device
JP6405276B2 (en) MEMS device and manufacturing method thereof
JP2012040619A (en) Capacity type mems sensor and method of manufacturing the same
JP6356512B2 (en) MEMS element
JP6345926B2 (en) MEMS device and manufacturing method thereof
JP5973792B2 (en) Manufacturing method of MEMS element
JP6863545B2 (en) MEMS device and its manufacturing method
JP6659027B2 (en) MEMS device and manufacturing method thereof
JP2015188946A (en) MEMS element
CN105451145B (en) MEMS microphone and forming method thereof
JP2015188947A (en) MEMS element
JP2010228018A (en) Method of manufacturing electronic device
JP6645652B2 (en) Method for manufacturing MEMS device
JP6679044B2 (en) MEMS element
JP6209041B2 (en) MEMS device and manufacturing method thereof
JP2006224219A (en) Manufacturing method for mems element
JP2016007681A (en) Mems element and method for manufacturing the same
JP6784005B2 (en) MEMS device and its manufacturing method
JP7120543B2 (en) Manufacturing method of MEMS element
JP7156690B2 (en) Electronic device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170525

R150 Certificate of patent or registration of utility model

Ref document number: 6151541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250