JP6139180B2 - Operation method of volatile organic compound processing equipment - Google Patents

Operation method of volatile organic compound processing equipment Download PDF

Info

Publication number
JP6139180B2
JP6139180B2 JP2013041427A JP2013041427A JP6139180B2 JP 6139180 B2 JP6139180 B2 JP 6139180B2 JP 2013041427 A JP2013041427 A JP 2013041427A JP 2013041427 A JP2013041427 A JP 2013041427A JP 6139180 B2 JP6139180 B2 JP 6139180B2
Authority
JP
Japan
Prior art keywords
gas
organic compound
desorption
adsorption
adsorption tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013041427A
Other languages
Japanese (ja)
Other versions
JP2014168741A (en
Inventor
博臣 釜野
博臣 釜野
晃弘 塔本
晃弘 塔本
幸助 赤瀬
幸助 赤瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP2013041427A priority Critical patent/JP6139180B2/en
Publication of JP2014168741A publication Critical patent/JP2014168741A/en
Application granted granted Critical
Publication of JP6139180B2 publication Critical patent/JP6139180B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Incineration Of Waste (AREA)
  • Treating Waste Gases (AREA)

Description

この発明は、揮発性有機化合物を含むガスを排出する前に、ガスから揮発性有機化合物を処理するにあたり、その処理作業の効率を向上させる運用方法に関する。   The present invention relates to an operation method for improving the efficiency of processing work in processing a volatile organic compound from a gas before discharging the gas containing the volatile organic compound.

工場から発生する排ガスには、そのまま大気中に排出すると問題を起こす揮発性有機化合物が含まれる場合がある。この場合、排ガスを大気中に排出する前に、含有している揮発性有機化合物を処理しなければならない。その方法として、活性炭等の吸着剤を内蔵した吸着塔で、排ガス中に含まれる揮発性有機化合物を吸着剤に吸着させ、ガス中の濃度を低減させて大気へ排出し、その後、吸着剤から揮発性有機化合物を脱着させて吸着塔を再利用可能にするとともに、揮発性有機化合物を処理するという吸脱着方式が一般的である。   Exhaust gas generated from factories may contain volatile organic compounds that cause problems if discharged into the atmosphere as they are. In this case, before exhaust gas is discharged into the atmosphere, the contained volatile organic compounds must be treated. As a method for this, an adsorption tower containing activated carbon or other adsorbent is used to adsorb volatile organic compounds contained in exhaust gas to the adsorbent, reduce the concentration in the gas and discharge it to the atmosphere. An adsorption / desorption system is generally used in which a volatile organic compound is desorbed to make the adsorption tower reusable and the volatile organic compound is treated.

上記の脱着には、揮発性有機化合物を含まないガスを吸着剤に接触させることが必要である。一基の吸着塔で脱着と同時に吸着することはできないので、脱着は速やかに実行することが好ましい。脱着を速める方法としては、脱着用のガスを大量に導入する方法、真空ポンプで吸引して圧力を低下させる方法、吸熱反応である脱着を促進するために高温の脱着用水蒸気を導入する方法などがある。   For the above desorption, it is necessary to bring a gas not containing a volatile organic compound into contact with the adsorbent. Since adsorption cannot be performed simultaneously with desorption by a single adsorption tower, desorption is preferably carried out promptly. As a method of speeding up desorption, a method of introducing a large amount of desorption gas, a method of reducing pressure by sucking with a vacuum pump, a method of introducing high-temperature desorption water vapor to promote desorption which is an endothermic reaction, etc. There is.

高温の脱着用水蒸気を導入するには、その加熱のために燃料を大量に消費してしまうので、燃料を節約する方法が検討されている。特許文献1には、この回収した揮発性有機化合物を含む脱着用水蒸気を燃焼炉に誘導し、揮発性有機化合物を燃料として燃焼させ(請求項1)、その燃焼熱を利用して、脱着用水蒸気の加熱を行うこと(請求項2)が記載されている。   In order to introduce high-temperature desorption water vapor, a large amount of fuel is consumed for its heating, so a method for saving fuel has been studied. In Patent Document 1, desorbed water vapor containing the recovered volatile organic compound is guided to a combustion furnace, and the volatile organic compound is burned as a fuel (Claim 1). It is described that the steam is heated (Claim 2).

しかし、揮発性有機化合物を含有する排ガスを吸着塔の下方から導入して、処理済みのガスを上方から排出するのに対して、脱着用水蒸気を吸着剤層の上方から導入して、吸着剤層の全部分で脱着させて、吸着剤層の下方側から抜き出すのでは、脱着用水蒸気が吸着剤層を通過するのに時間がかかりすぎてしまう。それはつまり、燃焼炉において脱着用水蒸気を生成するための加熱開始から、有機化合物が水蒸気に同伴して抜き出されて、燃焼炉(水蒸気生成装置)に到達するまでに時間が掛かりすぎてしまう。それまでの間は回収した揮発性有機化合物を燃料として用いることができず、LNGガスなどの別の燃料を使用しなければならず、無駄が生じていた。   However, exhaust gas containing a volatile organic compound is introduced from below the adsorption tower and the treated gas is discharged from above, whereas desorption water vapor is introduced from above the adsorbent layer, If the entire part of the layer is desorbed and extracted from the lower side of the adsorbent layer, it takes too much time for the desorbed water vapor to pass through the adsorbent layer. That is, it takes too much time from the start of heating to generate desorption steam in the combustion furnace until the organic compound is extracted along with the steam and reaches the combustion furnace (steam generator). Until then, the recovered volatile organic compound could not be used as fuel, and another fuel such as LNG gas had to be used, resulting in waste.

これに対し、脱着用水蒸気の吸着塔への供給口を両端方向に分かれた複数段からなるものとして、そのうちの最も吸着塔の一端側の供給口を、吸着塔の内部に吸着層が占める位置の側面に設け、吸着塔の一端側に位置する供給口から開放して脱着用水蒸気を吸着層の途中から導入し、脱着させて揮発性有機化合物を取り込んだ有機化合物含有水蒸気を吸着塔の前記一端側から抜き出す手法が、特許文献2に記載されている。この手法によると、真っ先に水蒸気を供給する供給口が排出口に近いため、吸着層の上層の一部で脱着された有機溶剤が、速やかに排出口に到達し、燃焼炉まで到達するために必要な時間が短縮される。その分、燃焼炉に有機溶剤が到達するまでに別途供給しなければならなかった燃料の消費を少なくすることができる。   On the other hand, the supply port to the adsorption tower for desorption water vapor is composed of a plurality of stages divided in both end directions, and the position where the adsorption layer occupies the supply port on the one end side of the adsorption tower most of the adsorption tower. The desorption water vapor is introduced from the middle of the adsorption layer opened from the supply port located on one end side of the adsorption tower, and the organic compound-containing water vapor, which is desorbed and takes in the volatile organic compound, is disposed in the adsorption tower. A method of extracting from one end side is described in Patent Document 2. According to this method, the first supply port for supplying water vapor is close to the discharge port, so that the organic solvent desorbed in a part of the upper layer of the adsorption layer quickly reaches the discharge port and reaches the combustion furnace. The required time is reduced. Accordingly, it is possible to reduce the consumption of fuel that had to be supplied separately until the organic solvent reaches the combustion furnace.

特開2007−222736号公報JP 2007-2222736 A 特開2011−226690号公報JP2011-226690A

しかしながら、脱着開始直後は吸着層の吸着剤が冷えているため、脱着初期に導入された脱着用水蒸気は吸着塔内で凝縮して液体となってしまい、脱着された有機溶剤を燃焼炉まで搬送する圧力を十分に生じさせなかった。このため、有機溶剤が脱着されているにも拘わらず、それを燃焼炉に到達させるには、水蒸気が凝集せずに導入された圧力をほぼ失わずに燃焼炉へと押し出すことができる程度に、吸着層が暖まるまで待たなければならなかった。   However, since the adsorbent in the adsorption layer is cold immediately after the start of desorption, the desorbed water vapor introduced at the beginning of desorption condenses into a liquid in the adsorption tower and transports the desorbed organic solvent to the combustion furnace. Did not generate enough pressure. For this reason, in order to reach the combustion furnace even though the organic solvent has been desorbed, the steam can be pushed out to the combustion furnace without substantially losing the introduced pressure without agglomeration. Had to wait until the adsorbed layer warmed up.

そこでこの発明は、加熱した脱着用水蒸気を用いて吸着塔から揮発性有機化合物を脱着し、脱着した揮発性有機化合物を燃焼炉で燃焼させるにあたり、脱着開始から燃料として利用可能にするまでのタイムラグをさらに短縮して、燃料の無駄を抑制することを目的とする。   Therefore, the present invention relates to a time lag from the start of desorption until it can be used as fuel when desorbing volatile organic compounds from an adsorption tower using heated desorption water vapor and burning the desorbed volatile organic compounds in a combustion furnace. The purpose of this is to further shorten the fuel consumption and suppress the waste of fuel.

この発明は、脱着に用いる脱着用ガスとして、常温常圧にて気体である成分を含む押出ガスを水蒸気と混合した混合ガスを、吸着塔に導入させることで上記の課題を解決したのである。このような混合ガスとすると、吸着層に接触して冷却されることで水蒸気が凝集して水になっても、押出ガスはガスのままであるため、吸着塔に供給されるガスの圧力が一部低減されながらも、外へ押し出す圧力を確保できる。すると、混合ガスによって加熱されて脱着された揮発性有機化合物を、吸着層を抜けてすぐに吸着塔の排出口から押し出し、同伴して、燃焼炉へと向かわせることができる。これにより、脱着開始から燃焼炉に揮発性有機化合物が到着するまでの時間が、従来は水蒸気が凝集されずに済む温度まで吸着層が加熱されるまで待機していた時間の分だけ短縮されて、より速やかに燃料として利用可能になり、別途燃料を消費する量を削減することができる。   The present invention solves the above-mentioned problems by introducing, as a desorption gas used for desorption, a mixed gas obtained by mixing an extrusion gas containing a gas component at normal temperature and normal pressure with water vapor into an adsorption tower. When such a mixed gas is used, the pressure of the gas supplied to the adsorption tower is reduced because the extruded gas remains as a gas even if the water vapor aggregates into water by being cooled in contact with the adsorption layer. While partially reduced, it is possible to secure the pressure to push out. Then, the volatile organic compound heated and desorbed by the mixed gas can be pushed out from the outlet of the adsorption tower as soon as it passes through the adsorption layer, and accompanied to the combustion furnace. As a result, the time from the start of desorption to the arrival of the volatile organic compound in the combustion furnace is shortened by the amount of time that was conventionally waited for the adsorption layer to be heated to a temperature at which water vapor is not agglomerated. Thus, the fuel can be used more quickly and the amount of fuel consumed can be reduced.

上記押出ガスとして、燃焼炉で生じた高温ガスを熱交換器に導入し水蒸気を生じた後の排ガスを利用できるように配管を設けてもよいし、高温ガスそのものを利用できるように配管を設けてもよいし、両方を利用できるように配管を設けても良い。高温ガス及び排ガスの主な成分は、炭化水素の燃焼により生じる水と二酸化炭素であり、このうちの二酸化炭素は常温常圧では凝縮せず気体のままである。従って、混合ガスに含めて吸着塔に導入すると、水蒸気が水になる一方で二酸化炭素はガスのままなので、吸着塔内の内圧が高まり、揮発性有機化合物を燃焼炉に向けて押し出し、又は同伴して運ぶことができる。   As the extrusion gas, a pipe may be provided so that the exhaust gas after the high temperature gas generated in the combustion furnace is introduced into the heat exchanger and water vapor is generated can be used, or the pipe is provided so that the high temperature gas itself can be used. Alternatively, piping may be provided so that both can be used. The main components of the high-temperature gas and exhaust gas are water and carbon dioxide generated by the combustion of hydrocarbons, and carbon dioxide out of them is not condensed at room temperature and normal pressure and remains a gas. Therefore, when mixed gas is introduced into the adsorption tower, water vapor becomes water while carbon dioxide remains as a gas, so the internal pressure in the adsorption tower increases, and volatile organic compounds are pushed out or entrained toward the combustion furnace. Can be carried.

上記混合ガスは、排ガス又は高温ガスを導入する配管と、熱交換器から生じる水蒸気を導入する配管を繋げることで混合させることができるが、この混合ガスが、十分に脱着が可能となる温度まで加熱できるように、熱交換器を含む経路で循環可能となるように配管を設けておくとよい。排ガスや高温ガスが含まれていても、水蒸気が十分に暖まっていないと、吸着塔に導入しても脱着が十分に進行せずに水だけが増えてしまうことになりかねないからである。ここで、導入までに循環する経路内の温度が150度以上となっていることが望ましい。   The mixed gas can be mixed by connecting a pipe for introducing exhaust gas or a high-temperature gas and a pipe for introducing water vapor generated from the heat exchanger, but the mixed gas can be sufficiently desorbed. It is good to provide piping so that it can circulate through the path | route containing a heat exchanger so that it can heat. This is because even if exhaust gas or high-temperature gas is contained, if the water vapor is not sufficiently warmed, desorption does not proceed sufficiently even if it is introduced into the adsorption tower, and only water may increase. Here, it is desirable that the temperature in the path circulating before introduction is 150 degrees or more.

この混合ガスを吸着塔に導入するにあたっては、少なくとも吸着塔に底部だけでなく、吸着層が存在する領域である側面にも供給口を設けて、二つ以上の供給口から導入可能としておき、吸着層の、脱着した揮発性有機化合物を供出する側に近い、すなわち供出口に近い供給口から上記混合ガスを導入するとよい。上記混合ガスを用いたとしても、吸着層の全域を通過しなければならない他方の端部側から導入したのでは、供出口まで揮発性有機化合物が到達するまでに時間が掛かりすぎてしまう。このため、吸着層の上記一端側のごく一部だけを通過して速やかに供出口に到達した揮発性有機化合物を燃焼炉に送り込めるようにしておくことが望ましい。   In introducing this mixed gas into the adsorption tower, at least not only the bottom of the adsorption tower, but also the side where the adsorption layer is present is provided with a supply port, which can be introduced from two or more supply ports, The mixed gas may be introduced from a supply port close to the side where the desorbed volatile organic compound is supplied, that is, close to the supply port. Even if the mixed gas is used, if it is introduced from the other end side that must pass through the entire adsorption layer, it takes too much time for the volatile organic compound to reach the outlet. For this reason, it is desirable that the volatile organic compound that has passed through only a small part of the one end side of the adsorption layer and quickly reaches the outlet is sent to the combustion furnace.

この発明を、揮発性有機化合物を含有するガスを処理する吸着塔で実施することにより、揮発性有機化合物の除去に用いる燃料の消費を抑え、省エネを図ることができる。   By implementing this invention in an adsorption tower for treating a gas containing a volatile organic compound, consumption of fuel used for removing the volatile organic compound can be suppressed and energy saving can be achieved.

この発明を実施する吸着塔及びその周辺装置の概念図Conceptual diagram of an adsorption tower and its peripheral devices for carrying out the present invention この発明を実施する脱着工程のフロー図Flow chart of desorption process for carrying out this invention この発明を実施する吸着工程及び脱着工程のフロー図Flow chart of adsorption process and desorption process for implementing this invention 実施例比較例における吸着塔及びその周辺装置の概念図Conceptual diagram of an adsorption tower and its peripheral devices in a comparative example 実施例における、燃焼炉温度のグラフGraph of combustion furnace temperature in the example 比較例における、燃焼炉温度のグラフGraph of combustion furnace temperature in comparative example

以下、この発明の実施形態を説明する。この発明は、揮発性有機化合物含有ガスの濃度を低減させて大気中へ排出可能とし、その分の揮発性有機化合物を回収して燃料として使用する揮発性有機化合物処理装置にかかるものである。図1はこの発明にかかる揮発性有機化合物処理装置の全体像の例を示す。   Embodiments of the present invention will be described below. The present invention relates to a volatile organic compound processing apparatus that reduces the concentration of a volatile organic compound-containing gas so that the gas can be discharged into the atmosphere, collects the volatile organic compound, and uses it as a fuel. FIG. 1 shows an example of an overall image of a volatile organic compound processing apparatus according to the present invention.

この発明で処理する揮発性有機化合物とは、常圧で加熱することで気体になり得る有機化合物であり、特に常温で液体であるものが吸着処理しやすい。例えば、メタノール、エタノール、イソプロピルアルコール等の炭素数が1〜8程度のアルコール、トルエン、ベンゼンなどの芳香族有機化合物などの、炭化水素系の溶剤が挙げられる。   The volatile organic compound to be treated in the present invention is an organic compound that can be converted into a gas when heated at normal pressure, and particularly, a liquid that is liquid at room temperature is easily adsorbed. Examples thereof include hydrocarbon solvents such as alcohols having about 1 to 8 carbon atoms such as methanol, ethanol and isopropyl alcohol, and aromatic organic compounds such as toluene and benzene.

この発明を実施する揮発性有機化合物処理装置は、吸着塔11と、燃焼炉13と、熱交換器14と、それらを繋ぐ配管とからなる。   The volatile organic compound processing apparatus for carrying out the present invention includes an adsorption tower 11, a combustion furnace 13, a heat exchanger 14, and a pipe connecting them.

吸着塔11は、略円筒形であり、内部は下方側の端部近傍に設けた一枚の多孔板20で仕切ってある。この多孔板上に、揮発性有機化合物を吸着し、加熱により脱着できる吸着剤を充填させた吸着層12を設けている。この吸着剤としては、例えば活性炭などが挙げられる。   The adsorption tower 11 has a substantially cylindrical shape, and the inside is partitioned by a single porous plate 20 provided in the vicinity of the lower end. An adsorption layer 12 filled with an adsorbent that adsorbs volatile organic compounds and can be desorbed by heating is provided on the perforated plate. Examples of the adsorbent include activated carbon.

吸着塔11の吸着層12より上端側には、揮発性有機化合物含有ガスAの導入口17が設けてあり、吸着層12より下端側には、揮発性有機化合物を吸着剤に吸着されて濃度が低下した処理後ガスBの排出口18が設けてある。排出口18は大気中へ放出するものである。   An inlet 17 for the volatile organic compound-containing gas A is provided at the upper end side of the adsorption layer 11 of the adsorption tower 11, and the concentration of the volatile organic compound is adsorbed by the adsorbent at the lower end side of the adsorption layer 12. A post-treatment gas B outlet 18 is provided. The discharge port 18 discharges into the atmosphere.

また、吸着塔11の吸着層12を設けた部分の側面と下端とに、複数段(図1では合計3段)からなる脱着用水蒸気Fの供給口15a〜15cが設けてある。最上段の供給口15aは吸着層12の上下方向中央よりも上で吸着層12の上端の多孔板20よりも下に位置しており、最下段の供給口15cは吸着層12の下端よりも下に位置している。また、有機化合物を脱着した水蒸気有機化合物同伴ガスKを抜き出すための供出口16が、吸着層12の上端よりも上端側に設けてある。   In addition, supply ports 15a to 15c for desorption water vapor F having a plurality of stages (a total of three stages in FIG. 1) are provided on a side surface and a lower end of a portion where the adsorption layer 12 of the adsorption tower 11 is provided. The uppermost supply port 15 a is located above the center in the vertical direction of the adsorption layer 12 and below the porous plate 20 at the upper end of the adsorption layer 12, and the lowermost supply port 15 c is lower than the lower end of the adsorption layer 12. Located below. Further, an outlet 16 for extracting the vapor organic compound accompanying gas K from which the organic compound has been desorbed is provided on the upper end side of the upper end of the adsorption layer 12.

燃焼炉13は、上記脱着用水蒸気Fを生成するための熱を発生させるものであり、燃料Dを供給する燃料供給口21と、吸着塔11の供出口16から送られてきた水蒸気有機化合物同伴ガスKを供給する含有ガス供給口22、バーナ(図示せず)、煙突61、内部温度を測定する燃焼炉温度センサ24を有する。この燃焼炉13で発生した熱が、発生した高温ガスLとして、高温ガス供出路41を通り、熱交換器14へ供給される。高温ガスLは有機化合物が燃焼したものであるため、水蒸気と二酸化炭素を主な成分とする。このうち二酸化炭素は常温常圧にて気体であり、後述する配管を通じて吸着塔11に供給されても、吸着剤に吸着されず、かつ吸着剤と接して冷却されても凝縮せずに揮発性有機化合物を移送させることができる。また、水蒸気が含まれているため、後述する脱着用水蒸気を節約することができる。さらに、燃焼により酸素が減少しているため、吸着剤の劣化を軽減することができる。   The combustion furnace 13 generates heat for generating the desorption water vapor F, and is accompanied by the water vapor organic compound sent from the fuel supply port 21 for supplying the fuel D and the outlet 16 of the adsorption tower 11. It has a contained gas supply port 22 for supplying the gas K, a burner (not shown), a chimney 61, and a combustion furnace temperature sensor 24 for measuring the internal temperature. The heat generated in the combustion furnace 13 is supplied to the heat exchanger 14 through the high temperature gas supply passage 41 as the generated high temperature gas L. Since the high temperature gas L is obtained by burning an organic compound, water vapor and carbon dioxide are the main components. Among these, carbon dioxide is a gas at normal temperature and normal pressure, and even if supplied to the adsorption tower 11 through a pipe to be described later, it is not adsorbed by the adsorbent, and is volatile without being condensed even when cooled in contact with the adsorbent. Organic compounds can be transferred. Moreover, since water vapor | steam is contained, the desorption water vapor | steam mentioned later can be saved. Furthermore, since oxygen is reduced by combustion, deterioration of the adsorbent can be reduced.

熱交換器14には、水蒸気の元となる水Eを供給する水供給口26を備え、水Eを加熱して得られた脱着用水蒸気Fを吸着塔11の供給口15a〜15cへ供給する、脱着用水蒸気供給路25と、脱着用水蒸気供給路25の内部温度を測定する水蒸気温度センサ28とを有する。なお、水供給口26は、脱着用水蒸気供給路25内に水Eを噴霧する機能を有している。また、熱交換器14に供給された高温ガスLは、水Eに熱を渡して冷却され、より低温の排ガスMとなって、排ガス放出路53から放出される。なお、排ガスMの成分は上記の高温ガスLと同じである。   The heat exchanger 14 is provided with a water supply port 26 that supplies water E that is the source of water vapor, and supplies desorption water vapor F obtained by heating the water E to the supply ports 15 a to 15 c of the adsorption tower 11. The desorption water vapor supply path 25 and the water vapor temperature sensor 28 that measures the internal temperature of the desorption water vapor supply path 25 are provided. The water supply port 26 has a function of spraying water E into the desorption water vapor supply path 25. Further, the high temperature gas L supplied to the heat exchanger 14 is cooled by passing heat to the water E, and becomes a lower temperature exhaust gas M and is discharged from the exhaust gas discharge path 53. The components of the exhaust gas M are the same as those of the high temperature gas L described above.

熱交換器14で生じた水蒸気Fが抜き出される脱着用水蒸気供給路25は、途中で分岐(27a,27b)しており、一の分岐27bは大気への開放口29に繋がるとともに、分岐27aと熱交換器14の間で循環経路を形成している。また、燃焼炉13から熱交換器14へ通じる高温ガス供出路41は、途中で分岐する高温ガス分岐点43を有している。この分岐した他方である高温ガス導入路42は脱着用水蒸気供給路25に通じており、水蒸気Fに高温ガスLを混合可能となっている。さらに、熱交換器14から排ガス放出路53へ排出される排ガスMの排ガス排出路51は、途中で分岐する排ガス分岐点54を有している。この分岐した他方である排ガス導入路52は脱着用水蒸気供給路25に通じており、水蒸気Fに排ガスMを混合可能となっている。したがって、水蒸気Fには高温ガスLと排ガスMの両方を混合可能である。   The desorption water vapor supply path 25 from which the water vapor F generated in the heat exchanger 14 is extracted is branched (27a, 27b) on the way, and one branch 27b is connected to the opening 29 to the atmosphere, and the branch 27a And the heat exchanger 14 form a circulation path. Further, the high temperature gas supply passage 41 that leads from the combustion furnace 13 to the heat exchanger 14 has a high temperature gas branch point 43 that branches in the middle. The other branched hot gas introduction path 42 leads to the desorption steam supply path 25 so that the hot gas L can be mixed with the steam F. Furthermore, the exhaust gas discharge path 51 of the exhaust gas M discharged from the heat exchanger 14 to the exhaust gas discharge path 53 has an exhaust gas branch point 54 that branches in the middle. The other branched exhaust gas introduction path 52 leads to the desorption water vapor supply path 25, and the exhaust gas M can be mixed with the water vapor F. Therefore, the steam F can be mixed with both the high temperature gas L and the exhaust gas M.

さらに図示しないが、脱着用水蒸気供給路25には、別途、常温常圧では気体であるガスを導入できる配管を有していても良い。このようなガスとしては、例えば空気、窒素、アルゴンなどが挙げられる。さらに、これらのガスは吸着剤に吸着されないため、吸着塔11内に供給されても揮発性有機化合物を確実に移送させることができる。なお、この中では特に窒素を用いると安全性が高い。これらは常温で導入するものでもよいが、排ガスMや高温ガスLなどによって暖められた上で導入する配管に供給するものであると、脱着用水蒸気Fを含む混合ガスGの温度を高く保つことが出来るので好ましい。   Further, although not shown in the drawing, the desorption water vapor supply path 25 may separately have a pipe capable of introducing a gas that is a gas at normal temperature and pressure. Examples of such a gas include air, nitrogen, and argon. Furthermore, since these gases are not adsorbed by the adsorbent, the volatile organic compound can be reliably transferred even if supplied into the adsorption tower 11. Of these, use of nitrogen is particularly safe. These may be introduced at room temperature, but if heated to the exhaust gas M or high-temperature gas L and supplied to the pipe to be introduced, the temperature of the mixed gas G including the desorption water vapor F is kept high. Is preferable.

この発明にかかる揮発性有機化合物処理装置は、まず、吸着塔11に導入された揮発性有機化合物含有ガスAに含まれる揮発性有機化合物を、吸着層12の吸着剤に吸着させる。吸着層12を通過した処理後ガスBは排出口から出て大気中へ放出される。この吸着作業を一定時間が経過するまで、又は、吸着能が一定以下になるまで行う。なお、吸着能の低下を検知して吸着を止めるには、排出口18に揮発性有機化合物の検出装置(図示せず)を設け、そこで処理後ガスBに含まれる揮発性有機化合物の濃度を測定し、予め定めた値以上になったら、吸着層12の吸着能が限界に達していると解釈して導入口17の弁へ閉める命令を出す制御回路を設ける。   In the volatile organic compound processing apparatus according to the present invention, first, the volatile organic compound contained in the volatile organic compound-containing gas A introduced into the adsorption tower 11 is adsorbed by the adsorbent of the adsorption layer 12. The treated gas B that has passed through the adsorption layer 12 exits from the outlet and is released into the atmosphere. This adsorption work is performed until a certain period of time elapses or until the adsorption capacity becomes below a certain level. In order to stop the adsorption by detecting a decrease in the adsorption capacity, a volatile organic compound detection device (not shown) is provided at the discharge port 18 where the concentration of the volatile organic compound contained in the gas B after the treatment is determined. A control circuit is provided that, when measured and exceeds a predetermined value, interprets that the adsorption capacity of the adsorption layer 12 has reached its limit and issues a command to close the valve of the inlet 17.

一方、吸着を終える前から脱着の準備を進めておく。脱着用水蒸気Fは即座に供給開始できるものではないので、吸着終了後から加熱を始めると、脱着が始まるまでの間にタイムラグが生じてしまい、本来必要な吸着工程が止まってしまうためである。なお、吸着塔11が二基以上ある場合は、一方で吸着工程を止めても他方で吸着工程を行うことができるが、その場合は常に脱着用水蒸気Fを用意していることとなる。   On the other hand, preparation for desorption is proceeded before the adsorption is completed. Since the desorption water vapor F cannot be supplied immediately, if heating is started after the completion of adsorption, a time lag occurs before the desorption begins, and the originally necessary adsorption process is stopped. In addition, when there are two or more adsorption towers 11, the adsorption process can be performed on the other side even if the adsorption process is stopped on one side, but in that case, the desorption water vapor F is always prepared.

この脱着工程を図2のフローを用いて説明する。まず、燃焼炉13で燃料Dの燃焼を開始し、脱着用水蒸気供給路25の循環経路内の空気を、経路中に設けたファン(図示せず)で循環させる(S11)。この時の空気温度を水蒸気温度センサ28で検知し、水蒸気が生成できる設定温度T1以上になったことを水制御回路30が確認したら(S12)、分岐27aから熱交換器14へ戻る脱着用水蒸気供給路25中への水Eの水供給口26の弁を開放し、水Eを噴霧して熱交換器14内で水蒸気を生成させる(S13)。熱交換器14では、水蒸気温度センサ28で生成する水蒸気の温度を検知しておき、脱着用水蒸気Fが脱着に好適な温度T2になるまで(S14)、又は吸着が終了するまで、開放口29への弁を開放して、大気中へ放出する(S15)。脱着は吸熱反応であるため、十分に高温の水蒸気でなければ脱着が速やかに進行しないからである。なお、ここで脱着用水蒸気Fとは、過熱水蒸気又は飽和水蒸気である。また、分岐27aで分岐する一部の脱着用水蒸気Fは水供給口26の経路へと通じて、熱交換器14へ循環する。   This desorption process will be described with reference to the flow of FIG. First, combustion of the fuel D is started in the combustion furnace 13, and the air in the circulation path of the desorption water vapor supply path 25 is circulated by a fan (not shown) provided in the path (S11). When the water control circuit 30 detects the air temperature at this time with the water vapor temperature sensor 28 and confirms that the water control circuit 30 has reached the set temperature T1 or higher at which water vapor can be generated (S12), the desorption water vapor that returns to the heat exchanger 14 from the branch 27a. The valve of the water supply port 26 of the water E into the supply path 25 is opened, and the water E is sprayed to generate water vapor in the heat exchanger 14 (S13). In the heat exchanger 14, the temperature of the water vapor generated by the water vapor temperature sensor 28 is detected, and the opening 29 is maintained until the desorption water vapor F reaches a temperature T2 suitable for desorption (S14) or until the adsorption is completed. The valve is opened and released into the atmosphere (S15). This is because desorption is an endothermic reaction, and desorption does not proceed quickly unless the steam is sufficiently hot. Here, the desorption water vapor F is superheated water vapor or saturated water vapor. Further, a part of the desorption water vapor F branched at the branch 27 a passes through the path of the water supply port 26 and circulates to the heat exchanger 14.

また、脱着用水蒸気供給路25には、高温ガス導入路42から高温ガスLが導入可能であり、排ガス導入路52から排ガスMが導入可能である。一方だけを導入してもよいし、両方を導入してもよい。ただし、脱着用水蒸気Fが十分に暖まるまでこれらの導入路の弁を閉鎖しておくことが望ましい。   In addition, the high temperature gas L can be introduced from the high temperature gas introduction path 42 and the exhaust gas M can be introduced from the exhaust gas introduction path 52 into the desorption water vapor supply path 25. Only one or both may be introduced. However, it is desirable to close these inlet valves until the desorption water vapor F is sufficiently warmed.

高温ガスLの温度は特に限定されないが、650℃以上であると熱交換器14にて水蒸気を生成しやすく、700℃以上であると好ましい。一方で、高温すぎると装置を傷めやすいため、900℃以下であるとよく、850℃以下であると好ましく、800℃以下であるとより好ましい。燃焼炉13から直接排出されるガスが高温である場合には、空気と混合することで温度を低下させて、上記の温度範囲に調整してから熱交換器14へ導入するとよい。また、排ガスMの温度は熱交換器の設定にもよるが、150℃以上、300℃以下程度であるとよい。それぞれの導入路(42,52)を介していずれのガスを導入する場合でも、脱着に求められる温度よりは基本的に高温であるため、これらの導入によって、混合により得られる混合ガスGの温度上昇に必要な熱量を節約することができる。   The temperature of the high-temperature gas L is not particularly limited, but when it is 650 ° C. or higher, it is easy to generate water vapor in the heat exchanger 14 and is preferably 700 ° C. or higher. On the other hand, if the temperature is too high, the device is liable to be damaged. Therefore, the temperature is preferably 900 ° C. or lower, preferably 850 ° C. or lower, and more preferably 800 ° C. or lower. When the gas directly discharged from the combustion furnace 13 is at a high temperature, the temperature may be lowered by mixing with air, adjusted to the above temperature range, and then introduced into the heat exchanger 14. Further, the temperature of the exhaust gas M is preferably about 150 ° C. or higher and 300 ° C. or lower, although it depends on the setting of the heat exchanger. Even when any gas is introduced through the respective introduction paths (42, 52), the temperature is basically higher than the temperature required for desorption, and therefore the temperature of the mixed gas G obtained by mixing by these introductions. The amount of heat required for climbing can be saved.

吸着塔11での吸着が終了し、脱着用水蒸気Fが所定の温度T2以上になったら(S14)、開放口制御回路31は、開放口29への弁を閉じるとともに、高温ガス導入路42、排ガス導入路52、その他の気体の導入路、若しくはそれらの複数の弁を開放して、脱着用水蒸気Fに、常温常圧で気体である成分を混合させ、混合ガスGを生じさせる(S16)。次いで、最も供出口16に近い供給口15aへの混合ガスGの弁を開放する(S17)。供給口15aに供給された混合ガスGは、吸着層12の上層部分に吸着した揮発性有機化合物を脱着させて、水蒸気有機化合物同伴ガスKとなって供出口16から供出させる(S18)。このとき、混合ガスGに含まれる二酸化炭素などの、常温常圧で気体であるガスは凝縮しないため、脱着した揮発性有機化合物の成分は、供給口15aからガスが供給される圧力に押され、又は同伴されて、速やかに供出口16から供出されることになる。またここで、供給口15aは吸着層12の上端に近いほど、脱着した水蒸気有機化合物同伴ガスKが吸着層12を抜けて上方の供出口16に到達するまでの時間は短くなる。ひいては、その供出口16から燃焼炉13へ通じる含有ガス供給口22に水蒸気有機化合物同伴ガスKが到達する(S19)までの時間も短縮される。   When the adsorption in the adsorption tower 11 is completed and the desorption water vapor F becomes equal to or higher than the predetermined temperature T2 (S14), the open port control circuit 31 closes the valve to the open port 29, and the high temperature gas introduction path 42, The exhaust gas introduction path 52, other gas introduction paths, or a plurality of valves thereof are opened, and the desorption water vapor F is mixed with components that are gases at normal temperature and normal pressure to generate a mixed gas G (S16). . Next, the valve of the mixed gas G to the supply port 15a closest to the outlet 16 is opened (S17). The mixed gas G supplied to the supply port 15a desorbs the volatile organic compound adsorbed on the upper layer portion of the adsorption layer 12, and is supplied from the outlet 16 as the vapor organic compound accompanying gas K (S18). At this time, since the gas that is gaseous at normal temperature and pressure, such as carbon dioxide, contained in the mixed gas G does not condense, the desorbed component of the volatile organic compound is pushed to the pressure at which the gas is supplied from the supply port 15a. , Or accompanied, and promptly delivered from the outlet 16. Here, the closer the supply port 15a is to the upper end of the adsorption layer 12, the shorter the time it takes for the desorbed vapor organic compound accompanying gas K to pass through the adsorption layer 12 and reach the upper outlet 16 is. Eventually, the time until the steam organic compound-entrained gas K reaches the contained gas supply port 22 that leads from the outlet 16 to the combustion furnace 13 (S19) is also shortened.

水蒸気有機化合物同伴ガスKが燃焼炉13に到達すると(S19)、燃焼炉13に供給される可燃物の合計量が増えるので、燃焼炉13内の温度が上昇する。この温度上昇を燃焼炉温度センサ24で検知する。燃料Dのみの燃焼の際の温度上昇の誤差分を上回るとして規定する規定の温度T3を燃料制御回路33に予め規定しておき、燃焼炉温度センサ24の検知温度がT3以上となったら(S20)、水蒸気有機化合物同伴ガスKの到達により、可燃物が増えたとみなして、燃料供給口21へ供給される燃料Dの弁を絞り、燃料Dを節約する(S21)。   When the steam organic compound entrained gas K reaches the combustion furnace 13 (S19), the total amount of combustibles supplied to the combustion furnace 13 increases, so the temperature in the combustion furnace 13 rises. This temperature rise is detected by the combustion furnace temperature sensor 24. A specified temperature T3 that is defined as exceeding the error in temperature rise during combustion of only fuel D is previously defined in the fuel control circuit 33, and when the temperature detected by the combustion furnace temperature sensor 24 is equal to or higher than T3 (S20). ) Considering that the combustibles have increased due to the arrival of the vapor organic compound accompanying gas K, the valve of the fuel D supplied to the fuel supply port 21 is throttled to save the fuel D (S21).

ただし、水蒸気有機化合物同伴ガスKに含まれる有機化合物は、供給口15a付近に吸着した揮発性有機化合物が徐々に脱着されていくにつれて減っていくので、順次供出口16に近い側の供給口15b、15cの弁を開放していき、燃焼炉13に供給される揮発性有機化合物の量が過度に低下しないようにする。この開放するタイミングは、最も供出口16側にある供給口15aを開放してからの経過時間によって決定しておいてもよいし、燃焼炉13の燃焼炉温度センサ24が予め規定した温度低下を示す、すなわち、燃やすべき可燃物の量が減少したことを検知したら、順次開放するようにしてもよい。温度低下を検知する場合、可燃物が減少して対処すべきと考えられる炉内温度T4を予め規定した供給口制御回路32が、燃焼炉温度センサ24の温度低下を検知したら(S22)、供給口15b〜15cの未開放の弁のうち、供出口16側(上端側)にある弁を開放する(S23〜S24)。一つの弁を開放して、一旦炉内温度が上昇したら、再び炉内温度を監視し、温度低下を検知したら次の弁を開放する。仮に、図1よりもさらに多段に亘って供給口15Xがある場合は、これを全ての供給口が開くまで続ける(S25)。なお、次の弁を開放したら、それまで開放していた供給口の弁は閉鎖する。   However, since the organic compound contained in the steam organic compound accompanying gas K decreases as the volatile organic compound adsorbed in the vicinity of the supply port 15a is gradually desorbed, the supply port 15b on the side closer to the supply port 16 sequentially. The valve 15c is opened so that the amount of the volatile organic compound supplied to the combustion furnace 13 is not excessively reduced. The opening timing may be determined by the elapsed time since the supply port 15a closest to the outlet 16 is opened, or the temperature decrease defined by the combustion furnace temperature sensor 24 of the combustion furnace 13 is determined in advance. As shown, that is, when it is detected that the amount of combustible material to be burned has decreased, it may be opened sequentially. When the temperature drop is detected, if the supply port control circuit 32 that preliminarily defines the furnace temperature T4 that should be dealt with by reducing combustible materials detects the temperature drop of the combustion furnace temperature sensor 24 (S22), the supply is performed. Among the unopened valves of the ports 15b to 15c, the valve on the outlet 16 side (upper end side) is opened (S23 to S24). One valve is opened, and once the furnace temperature rises, the furnace temperature is monitored again, and when the temperature drop is detected, the next valve is opened. If there are supply ports 15X in more stages than in FIG. 1, this continues until all the supply ports are opened (S25). When the next valve is opened, the supply port valve that has been opened is closed.

供給口15Xを全て開放してから、吸着層12における脱着が十分に進行する時間t1が経過したら(S26)、供給口15Xを全て閉鎖して脱着を終了する(S27)。また、吸着塔11が一基である場合には、燃料Dを供給する燃料供給口21の弁を閉めて、燃焼炉13での燃焼を終了する(S28)。また、合わせて供出口16の弁も閉じる。熱交換器14でなお生成する余剰の脱着用水蒸気Fは、開放口29の弁を開放して大気中へ放出する(S29)。さらに、高温ガス導入路42、排ガス導入路52の弁も閉鎖する(S30)。   When the time t1 at which the desorption in the adsorption layer 12 sufficiently proceeds has elapsed after all the supply ports 15X have been opened (S26), all the supply ports 15X are closed to complete the desorption (S27). If there is only one adsorption tower 11, the valve of the fuel supply port 21 for supplying the fuel D is closed, and the combustion in the combustion furnace 13 is terminated (S28). In addition, the valve of the outlet 16 is also closed. Excess desorption water vapor F still generated in the heat exchanger 14 is released into the atmosphere by opening the valve of the opening 29 (S29). Further, the valves of the high temperature gas introduction path 42 and the exhaust gas introduction path 52 are also closed (S30).

以上で吸着塔11の脱着は終了し、再び吸着層12での吸着が可能な状態になったので、揮発性有機化合物含有ガスAの導入口17を開放して吸着を開始し、一定時間吸着した後、上記と同様の手順で脱着を行う。   Thus, the desorption of the adsorption tower 11 is completed, and the adsorption layer 12 can be again adsorbed. Therefore, the inlet 17 of the volatile organic compound-containing gas A is opened to start the adsorption, and the adsorption is performed for a certain time. After that, desorption is performed in the same procedure as described above.

なお、この発明を実施する際の実施形態は、吸着塔11に設ける供給口15a〜15c、供出口16,導入口17、排出口18の位置は、上下方向が逆でもよい。また、原理上は吸着塔11が水平方向を向いた、図の形態から90度回転した形態でも実施可能である。吸着塔11がいずれの方向を向いているにせよ、吸着塔11への揮発性有機化合物含有ガスAを導入する導入口17と、水蒸気有機化合物同伴ガスKを供出する供出口16とが、吸着塔11の一方の端部側(一端側)にあり、処理後ガスBを排出する排出口18が、他方の端部側(他端側)に位置する形態は変わらない。なおかつ、この両端方向に、供給口15a、15b、……15xが複数段に分かれて設けられており、そのうちの最も一端側、すなわち最も供出口16に近い側の供給口15aが、吸着塔11の内部に吸着層12が占める位置の側面に設けるものとしてあれば、本発明は有効に実施可能である。その最も一端側に位置する供給口15aから開放することで、上記混合ガスGを吸着層12の途中から導入し、脱着させた揮発性有機化合物を、押出ガスにより速やかに前記の一端側にある供出口16へと抜き出すことができる。   In the embodiment when carrying out the present invention, the positions of the supply ports 15 a to 15 c, the supply port 16, the introduction port 17, and the discharge port 18 provided in the adsorption tower 11 may be reversed in the vertical direction. Further, in principle, the present invention can also be implemented in a form in which the adsorption tower 11 is oriented in the horizontal direction and rotated 90 degrees from the form shown in the figure. Whatever direction the adsorption tower 11 faces, the inlet 17 for introducing the volatile organic compound-containing gas A to the adsorption tower 11 and the outlet 16 for delivering the steam organic compound-containing gas K are adsorbed. There is no change in the form in which the exhaust port 18 for exhausting the treated gas B on one end side (one end side) of the tower 11 is located on the other end side (other end side). In addition, supply ports 15a, 15b,... 15x are provided in a plurality of stages in both end directions, and the supply port 15a closest to one end, that is, the side closest to the outlet 16 is the adsorption tower 11. The present invention can be effectively implemented as long as it is provided on the side surface of the position occupied by the adsorption layer 12. By opening from the supply port 15a located on the most end side, the mixed gas G is introduced from the middle of the adsorption layer 12, and the desorbed volatile organic compound is promptly placed on the one end side by the extrusion gas. It can be extracted to the outlet 16.

また、別の実施形態として、吸着塔11を二基備えた実施形態が挙げられる。吸着塔11が一基である前記の実施形態では、脱着をしている間は揮発性有機化合物含有ガスAの処理ができないので、一時的に処理を停止して蓄えておかなければならないが、吸着塔11を二基備えていると、一基で吸着を終えて脱着へ移行する間に、もう一基で吸着を開始することができるので、脱着に要する時間が吸着可能な時間よりも短ければ、揮発性有機化合物含有ガスAの処理を停止することなく続けることができる。この実施形態を実現するには、各々の吸着塔11への供給、排出等を行う口をそれぞれ設けて、個々の弁を独立に動作可能とするように前記の制御回路を用意する。   Another embodiment includes an embodiment provided with two adsorption towers 11. In the above-described embodiment in which the adsorption tower 11 is a single unit, the treatment of the volatile organic compound-containing gas A cannot be performed during desorption. Therefore, the treatment must be temporarily stopped and stored. When two adsorption towers 11 are provided, the adsorption can be started with another unit while the adsorption is completed with one unit and the desorption is started, so that the time required for the desorption is shorter than the time that can be adsorbed. Thus, the processing of the volatile organic compound-containing gas A can be continued without stopping. In order to realize this embodiment, the control circuit is prepared so that ports for supplying and discharging to each adsorption tower 11 are provided, and individual valves can be operated independently.

このような吸着塔11を二基備えた実施形態での吸着及び脱着の手順を図3に示す。まず、吸着塔αでの吸着終了とともに、吸着塔βでの吸着を開始する。吸着塔βの吸着能が低下しきるまでに、吸着塔αの吸着層12に対して脱着を開始する。まず供給口15aを開放して混合ガスGを導入し(S17)、最初の水蒸気有機化合物同伴ガスKが到達して燃焼炉13の温度が上昇したら、燃料Dの供給量を低減させる(S21)。その後、燃焼炉13の温度低下(S22)を検知するとともに、順次供給口15b〜15cを開放して(S23,S24)、吸着層12の脱着を進行させる。脱着が十分に進行したら、吸着塔αへの混合ガスGの導入を停止する(S41)。燃焼炉13には水蒸気有機化合物同伴ガスKが到達しなくなるので、足りなくなった燃焼物質分を補うために、一旦燃料Dの供給量を回復させ(S42)、燃焼を維持する。また、この間脱着用水蒸気Fは常に生成しているが、供給口15a〜15cは全て閉ざされているので、分岐27aから熱交換器14に循環させておくか、適宜開放口29から開放する。そして、吸着塔βでの吸着が終了したら、脱着により機能を回復した吸着塔αでの吸着を開始し、その間に吸着塔βへの混合ガスGの供給を開始して、同様に脱着を行う。   FIG. 3 shows adsorption and desorption procedures in an embodiment provided with two such adsorption towers 11. First, the adsorption in the adsorption tower β starts with the completion of the adsorption in the adsorption tower α. By the time the adsorption capacity of the adsorption tower β is lowered, desorption is started with respect to the adsorption layer 12 of the adsorption tower α. First, the supply port 15a is opened to introduce the mixed gas G (S17). When the first steam organic compound entrained gas K reaches and the temperature of the combustion furnace 13 rises, the supply amount of the fuel D is reduced (S21). . Thereafter, the temperature drop (S22) of the combustion furnace 13 is detected, and the supply ports 15b to 15c are sequentially opened (S23, S24), and the desorption of the adsorption layer 12 is advanced. When the desorption proceeds sufficiently, the introduction of the mixed gas G to the adsorption tower α is stopped (S41). Since the steam organic compound entrained gas K does not reach the combustion furnace 13, the supply amount of the fuel D is once recovered to compensate for the shortage of combustion substances (S42), and the combustion is maintained. Further, during this time, the desorption water vapor F is always generated, but the supply ports 15a to 15c are all closed, so that they are circulated from the branch 27a to the heat exchanger 14 or opened from the open port 29 as appropriate. When the adsorption in the adsorption tower β is completed, the adsorption in the adsorption tower α whose function is recovered by desorption is started, and the supply of the mixed gas G to the adsorption tower β is started in the meantime, and the desorption is performed in the same manner. .

次に、この発明を実際に実施した例により、この発明をより具体的に示す。
吸着塔寸法:630W×800L×1055H、充填部:630W×800L×700H(体積:352.8L)、活性炭重量:151.7kg(白鷺S2x 4/6)である吸着塔を、図4に示すような構成とした。具体的には、熱交換器14から出た脱着用水蒸気に、排ガス導入路52から排ガスを混合しうるものとし、混合ガスを、吸着塔に供給できるよう弁を設けている。また、吸着塔の供出口16から供出された揮発性有機化合物を含むガスは、燃焼炉13へと送られる。なお、供給口15は、側面(15a)と底面(15c)の二箇所のみである。
Next, the present invention will be described more specifically by examples of actual implementation of the present invention.
Adsorption tower dimensions: 630W × 800L × 1055H, packed part: 630W × 800L × 700H (volume: 352.8L), activated carbon weight: 151.7 kg (Shirakaba S2x 4/6), as shown in FIG. The configuration was Specifically, it is assumed that exhaust gas from the exhaust gas introduction path 52 can be mixed with the desorption water vapor that has come out of the heat exchanger 14, and a valve is provided so that the mixed gas can be supplied to the adsorption tower. Further, the gas containing the volatile organic compound delivered from the outlet 16 of the adsorption tower is sent to the combustion furnace 13. In addition, the supply port 15 is only two places, a side surface (15a) and a bottom face (15c).

(実施例)
予め吸着塔11に、揮発性有機化合物としてトルエンを含むガスを流し、吸着剤である活性炭に十分にトルエンを吸着させた。それと並行して、燃焼炉13で燃料を燃焼させて、735℃に温度調整した高温ガスを熱交換器14に導入して水蒸気を生成した。熱交換器14から排出される200〜250℃の排ガスと混合して混合ガスを生じさせた。混合比は体積流量比で水蒸気:排ガス=6:1〜1:1とし、混合ガスの温度は140〜150℃となった。
(Example)
A gas containing toluene as a volatile organic compound was passed through the adsorption tower 11 in advance, and toluene was sufficiently adsorbed on activated carbon as an adsorbent. At the same time, the fuel was burned in the combustion furnace 13, and high-temperature gas whose temperature was adjusted to 735 ° C. was introduced into the heat exchanger 14 to generate water vapor. The mixed gas was produced by mixing with the exhaust gas at 200 to 250 ° C. discharged from the heat exchanger 14. The mixing ratio was a volumetric flow rate ratio of steam: exhaust gas = 6: 1 to 1: 1, and the temperature of the mixed gas was 140 to 150 ° C.

吸着完了後、吸着塔11の供給口15aから混合ガスを導入し、トルエンを含んだ水蒸気有機化合物同伴ガスKを塔頂部の供出口16から排出した。また、導入開始から10分経過後に底部の供給口15cからも混合ガスの導入を開始した。このときの燃焼炉の温度変化を図5に示す。導入から7分経過後には、燃焼炉13の温度が上昇しはじめておりこの時点で揮発性有機化合物が燃焼炉に到達していることが示された。また、導入から15分後には吸着層全体から脱着された揮発性有機化合物が到着し始めたと思われる温度上昇が検出されたが、その上昇は緩やかなものとなった。   After completion of the adsorption, a mixed gas was introduced from the supply port 15a of the adsorption tower 11, and a steam organic compound-entrained gas K containing toluene was discharged from the outlet 16 at the top of the tower. Moreover, introduction of mixed gas was also started from the supply port 15c at the bottom after 10 minutes from the start of introduction. The temperature change of the combustion furnace at this time is shown in FIG. After 7 minutes from the introduction, the temperature of the combustion furnace 13 began to rise, indicating that the volatile organic compound has reached the combustion furnace at this point. Further, 15 minutes after the introduction, a temperature rise that seems to have started to arrive at the volatile organic compound desorbed from the entire adsorption layer was detected, but the rise was moderate.

(比較例)
実施例1において、排ガスを混合せず、混合ガスと同量の脱着用水蒸気を供給するようにした以外は同様の手順により脱着を行った。その際の燃焼炉の温度変化を図6に示す。側面から水蒸気を導入しているにも拘わらず、17分経過するまで燃焼炉の温度上昇が見られず、脱着したはずの揮発性有機化合物が燃焼炉に到達するまでに待ち時間が生じることが示された。また、17分経過後の温度上昇は急激であり、燃焼炉へ供給する燃料の量を速やかに抑制しなければ、燃焼炉を傷めるおそれがあった。
(Comparative example)
In Example 1, desorption was performed by the same procedure except that the exhaust gas was not mixed and the same amount of desorption water vapor as the mixed gas was supplied. The temperature change of the combustion furnace at that time is shown in FIG. Despite the introduction of water vapor from the side, the temperature of the combustion furnace does not increase until 17 minutes have elapsed, and there is a waiting time until the volatile organic compound that should have been desorbed reaches the combustion furnace. Indicated. Further, the temperature rise after 17 minutes is rapid, and the combustion furnace may be damaged unless the amount of fuel supplied to the combustion furnace is quickly suppressed.

11 吸着塔
12 吸着層
13 燃焼炉
14 熱交換器
15a〜15c 供給口
16 供出口(水蒸気有機化合物同伴ガス)
17 導入口(揮発性有機化合物含有ガス)
18 排出口(処理後ガス)
20 多孔板
21 燃料供給口
22 含有ガス供給口
24 燃焼炉温度センサ
25 脱着用水蒸気供給路
26 水供給口
27a,27b 分岐
28 水蒸気温度センサ
29 開放口
30 水制御回路
31 開放口制御回路
32 供給口制御回路
33 燃料制御回路
41 高温ガス供出路
42 高温ガス導入路
43 高温ガス分岐点
51 排ガス排出路
52 排ガス導入路
53 排ガス放出路
54 排ガス分岐点
61 煙突
A 揮発性有機化合物含有ガス
B 処理後ガス
D 燃料
E 水
F 脱着用水蒸気
G 混合ガス
H 排出水蒸気
K 水蒸気有機化合物同伴ガス
L 高温ガス
M 排ガス
DESCRIPTION OF SYMBOLS 11 Adsorption tower 12 Adsorption layer 13 Combustion furnace 14 Heat exchanger 15a-15c Supply port 16 Supply port (Water vapor organic compound accompanying gas)
17 Inlet (volatile organic compound-containing gas)
18 Outlet (Gas after treatment)
20 perforated plate 21 fuel supply port 22 containing gas supply port 24 combustion furnace temperature sensor 25 desorption water vapor supply path 26 water supply port 27a, 27b branch 28 water vapor temperature sensor 29 open port 30 water control circuit 31 open port control circuit 32 supply port Control circuit 33 Fuel control circuit 41 High-temperature gas supply path 42 High-temperature gas introduction path 43 High-temperature gas branch point 51 Exhaust gas discharge path 52 Exhaust gas introduction path 53 Exhaust gas discharge path 54 Exhaust gas branch point 61 Chimney A Volatile organic compound-containing gas B Processed gas D Fuel E Water F Desorption steam G Mixed gas H Discharged steam K Steam organic compound accompanying gas L Hot gas M Exhaust gas

Claims (4)

揮発性有機化合物を吸着する吸着剤を充填した吸着層を内部に有し、上記吸着層から上記揮発性有機化合物を脱着させる脱着用ガスを供給させ得る吸着塔と、
脱着した上記揮発性有機化合物を燃料の一部として利用可能な燃焼炉と、
上記燃焼炉で生成した高温ガスと水とを熱交換して水蒸気を生成する熱交換器とを有し、
上記脱着用ガスとして、常温常圧にて気体である成分を含む押出ガスを上記水蒸気と混合した混合ガスを用い、
上記高温ガスを上記熱交換器にて熱交換させた後の排ガスを上記押出ガスとして供給させる配管を有し、
上記混合ガスが所定温度に達した後に上記吸着塔へ供給可能とする、有機化合物処理装置。
An adsorption tower having an adsorption layer filled with an adsorbent that adsorbs a volatile organic compound, and capable of supplying a desorption gas for desorbing the volatile organic compound from the adsorption layer;
A combustion furnace capable of using the desorbed volatile organic compound as a part of the fuel;
A heat exchanger that generates water vapor by exchanging heat between the high-temperature gas and water generated in the combustion furnace,
As the desorption gas, using a mixed gas obtained by mixing an extrusion gas containing a component that is a gas at normal temperature and pressure with the water vapor,
The hot gas exhaust gases after heat exchange have a pipe that is supplied as the extrusion gas at the heat exchanger,
An organic compound processing apparatus capable of supplying the mixed gas to the adsorption tower after reaching a predetermined temperature .
上記燃焼炉で生成した高温ガスを、上記押出ガスとして供給させる配管を有する請求項1に記載の有機化合物処理装置。   The organic compound processing apparatus of Claim 1 which has piping which supplies the high temperature gas produced | generated with the said combustion furnace as said extrusion gas. 上記熱交換器を含む経路にて上記混合ガスを循環可能とする請求項1又は2に記載の有機化合物処理装置。 The organic compound processing apparatus according to claim 1 , wherein the mixed gas can be circulated through a path including the heat exchanger. 脱着用水蒸気の吸着塔への供給口を両端方向に分かれた複数段からなるものとして、
そのうちの最も吸着塔の一端側の供給口を、吸着塔の内部に吸着層が占める位置の側面に設けた、請求項1乃至3のいずれかに記載の有機化合物処理装置を運用する方法であり、
吸着塔の一端側に位置する供給口から開放して上記混合ガスを吸着層の途中から導入し、脱着させて揮発性有機化合物を取り込んだ水蒸気有機化合物同伴ガスを吸着塔の前記一端側から抜き出して上記燃焼炉へ供給する、
有機化合物処理装置の運用方法。
As the supply port to the desorption water vapor adsorption tower consists of multiple stages divided in both end directions,
It is a method of operating the organic compound processing apparatus according to any one of claims 1 to 3, wherein a supply port on one end side of the adsorption tower is provided on a side surface at a position occupied by the adsorption layer inside the adsorption tower. ,
Open from the supply port located at one end of the adsorption tower, introduce the mixed gas from the middle of the adsorption layer, and desorb the vapor organic compound entrained gas that has taken in the volatile organic compound from the one end side of the adsorption tower. Supply to the combustion furnace
Operation method of organic compound processing equipment.
JP2013041427A 2013-03-04 2013-03-04 Operation method of volatile organic compound processing equipment Active JP6139180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013041427A JP6139180B2 (en) 2013-03-04 2013-03-04 Operation method of volatile organic compound processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013041427A JP6139180B2 (en) 2013-03-04 2013-03-04 Operation method of volatile organic compound processing equipment

Publications (2)

Publication Number Publication Date
JP2014168741A JP2014168741A (en) 2014-09-18
JP6139180B2 true JP6139180B2 (en) 2017-05-31

Family

ID=51691584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013041427A Active JP6139180B2 (en) 2013-03-04 2013-03-04 Operation method of volatile organic compound processing equipment

Country Status (1)

Country Link
JP (1) JP6139180B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106693939A (en) * 2017-02-09 2017-05-24 江苏永益环保科技有限公司 Activated carbon adsorption steam desorption device
CN111780141A (en) * 2020-08-17 2020-10-16 福润得复合新材料有限公司 Treatment process and device for VOCS waste gas in steel pipe anticorrosive coating production
CN115382344B (en) * 2022-07-21 2023-11-24 宁夏宁杰橡胶再生资源循环利用科技有限公司 Rubber flue gas treatment system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5615935B2 (en) * 1973-05-31 1981-04-13
US6372018B1 (en) * 2000-03-14 2002-04-16 Harold R. Cowles VOC removal or destruction system
CA2574536C (en) * 2004-08-19 2010-09-21 Ishikawajima-Harima Heavy Industries Co., Ltd. Method of treating volatile organic compound and system for treating volatile organic compound using gas turbine
JP3956993B1 (en) * 2006-01-30 2007-08-08 石川島播磨重工業株式会社 Volatile organic compound processing method and volatile organic compound processing system using gas turbine
JP2010088728A (en) * 2008-10-09 2010-04-22 Kuraudo:Kk Deodorizing method and device thereof
JP2010240630A (en) * 2009-03-31 2010-10-28 Shinwa Corp Deodorization apparatus
JP5113207B2 (en) * 2010-03-30 2013-01-09 株式会社栗本鐵工所 Operation method of volatile organic compound processing equipment

Also Published As

Publication number Publication date
JP2014168741A (en) 2014-09-18

Similar Documents

Publication Publication Date Title
KR101401813B1 (en) Method and device for separating carbon dioxide from an exhaust gas of a fossil fired power plant
RU2335701C1 (en) Method and system for processing of volatile organic compound with application of gas turbine
US9079134B2 (en) Carbon dioxide separating and capturing apparatus
EP4132685B1 (en) A method and arrangement for capturing carbon dioxide from a gas stream using an adsorption system comprising a heat storage and recovery unit
RU2381053C2 (en) Method and system for treating volatile organic compound
KR20080005860A (en) Method of processing volatile organic compound, adsorption and desorption apparatus, and system for processing volatile organic compound
JP5113207B2 (en) Operation method of volatile organic compound processing equipment
JP6139180B2 (en) Operation method of volatile organic compound processing equipment
JP2009178711A (en) Moving-bed type continuous concentration system and method for volatile organic compound
KR20130012125A (en) Method and device for separating carbon dioxide from an exhaust gas of a fossil-fired power generating plant
JP6728875B2 (en) Carbon dioxide recovery device and natural gas combustion system
CN108993140A (en) A kind of processing fuel oil VOC containing steamsCondensation adsorption catalytic oxidizing equipment and method
CN107990334A (en) A kind of absorption vacuum desorption condensation recycling of new VOCs exhaust gas or burning processing system
KR101310174B1 (en) Method for treatment of drain in hydrogen production and hydrogen production system
JPH0568290B2 (en)
US20230201759A1 (en) Methods and devices for steam driven carbon dioxide capture
JP2015142884A (en) Volatile organic compound treatment apparatus and treatment method
JP5835662B2 (en) Control method of volatile organic compound processing apparatus
JP2016007596A (en) Control method for volatile organic compound treatment apparatus
JP5387991B2 (en) Operation method of volatile organic compound adsorption tower
JP2017056383A (en) Carbon dioxide recovery device and carbon dioxide recovery method
CN211302563U (en) Oil gas treatment system
JP7236888B2 (en) Operation method of vacuum desorption type volatile organic compound recovery equipment
JP2021133281A (en) Volatile organic compound processing apparatus and method for operating the same
JPH0639834Y2 (en) Wastewater purification device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170427

R150 Certificate of patent or registration of utility model

Ref document number: 6139180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150