JP6080710B2 - display - Google Patents

display Download PDF

Info

Publication number
JP6080710B2
JP6080710B2 JP2013141237A JP2013141237A JP6080710B2 JP 6080710 B2 JP6080710 B2 JP 6080710B2 JP 2013141237 A JP2013141237 A JP 2013141237A JP 2013141237 A JP2013141237 A JP 2013141237A JP 6080710 B2 JP6080710 B2 JP 6080710B2
Authority
JP
Japan
Prior art keywords
power supply
light emitting
circuit
emitting element
driven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013141237A
Other languages
Japanese (ja)
Other versions
JP2015014700A (en
Inventor
尚司 大塚
尚司 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013141237A priority Critical patent/JP6080710B2/en
Publication of JP2015014700A publication Critical patent/JP2015014700A/en
Application granted granted Critical
Publication of JP6080710B2 publication Critical patent/JP6080710B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of El Displays (AREA)
  • Led Devices (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Description

この発明は大型の映像表示装置などに使用される表示器に関するもので、特に動的にスキャン数を変更可能な表示器に関するものである。   The present invention relates to a display device used in a large-sized video display device, and more particularly to a display device that can dynamically change the number of scans.

従来の表示器として、複数の発光素子に対して所定間隔で各別にパルス通電を行う複数の駆動制御線と、複数の発光素子にオンまたはオフ状態に遷移するパルス電圧を供給するパルス電圧供給線とを備え、パルス電圧供給線がオン状態に遷移した期間に、複数の駆動制御線を所定時間ずつ遅れて駆動することにより、複数の発光素子のすべてを異なるタイミングで動作させ、これによりピーク電流が集中するのを排除して、電流増加に伴うノイズを抑制するようにしたものがある(特許文献1参照)。   As a conventional display, a plurality of drive control lines for individually energizing a plurality of light emitting elements at predetermined intervals, and a pulse voltage supply line for supplying a plurality of light emitting elements to a pulse voltage that changes to an on or off state And driving the plurality of drive control lines with a predetermined time delay during the period when the pulse voltage supply line transitions to the ON state, thereby operating all of the plurality of light emitting elements at different timings, thereby There is one that suppresses the concentration of noise and suppresses noise accompanying an increase in current (see Patent Document 1).

また、同様の表示器として、複数の発光素子(LED)を並列にしたLED発光部と、各LEDに対して所定間隔で順に同一パルス幅でパルス通電するLED駆動制御部とを備え、LED駆動制御部は並列接続したLED毎に、パルス通電の1周期を所定周期ずつずらして順に駆動することにより、大電流の通電に伴うノイズの発生を低減するようにしたものがある(特許文献2参照)。   In addition, as a similar display, an LED light emitting unit in which a plurality of light emitting elements (LEDs) are arranged in parallel, and an LED drive control unit for sequentially energizing each LED with a predetermined pulse width at a predetermined interval are provided, and LED driving For each LED connected in parallel, there is a controller that reduces the generation of noise associated with energization of a large current by sequentially driving one period of pulse energization by shifting by a predetermined period (see Patent Document 2). ).

特開2011−221262号公報JP 2011-221262 A 特開2008−91311号公報JP 2008-91311 A

特許文献1、2では、発光素子を時分割で駆動する場合に、遅延時間を設けて発光素子の動作させるタイミングを異なるものとすることで、ピーク電流が生じるタイミングが分散されて、電源電圧が急激に低下する不具合や電流増加によって発生するノイズを抑制することを述べている。
しかしながら、全ての発光素子の作動タイミングをずらすことによって、パルス幅駆動に伴う発光素子当たりでの発光時間が減ってしまい、発光輝度が低くなることに対する解決策は示されていない。
In Patent Documents 1 and 2, when the light emitting element is driven in a time-sharing manner, the timing at which the light emitting element is operated by providing a delay time is different, whereby the timing at which the peak current is generated is dispersed, and the power supply voltage is It describes suppression of noise that occurs due to problems that rapidly decrease and current increases.
However, by shifting the operation timings of all the light emitting elements, the light emission time per light emitting element due to the pulse width driving is reduced, and a solution for reducing the light emission luminance is not shown.

この発明は上記のような課題を解決するためになされたものであり、高輝度設定時と低輝度設定時とで発光素子の点灯数を変更することで、高輝度の実現と低輝度時の低ノイズ性、低消費電力を図るようにした表示器を提供することを目的とするものである。   The present invention has been made to solve the above-described problems. By changing the number of light-emitting elements that are turned on between high brightness setting and low brightness setting, high brightness is achieved and low brightness is achieved. It is an object of the present invention to provide a display device that achieves low noise and low power consumption.

この発明に係る表示器は、電源電圧を個別に変更できる電源部、この電源部からの電源供給を任意のタイミングでオンオフできる電源切り替え回路、この電源切り替え回路を介して電源部から電源供給を受ける複数の発光素子、この発光素子を点灯駆動するため、各発光素子にそれぞれ接続された複数の駆動回路、複数の駆動回路のうち1つの駆動回路と複数の発光素子との間に接続され、1つの駆動回路側から複数の発光素子側に流れる電流を阻止する逆流防止回路、電源部と電源切り替え回路と駆動回路を制御する制御部を備え、電源部は、高輝度時に逆流防止回路が接続された駆動回路により駆動する発光素子に供給する電源電圧を、その他の駆動回路により駆動する発光素子に供給する電源電圧よりも高くし、低輝度時に逆流防止回路が接続された駆動回路により駆動する発光素子に供給する電源電圧を、その他の駆動回路により駆動する発光素子に供給する電源電圧よりも低くすると共に、駆動回路は、高輝度時は複数の発光素子に対して同時に点灯駆動し、低輝度時は各発光素子を時分割で点灯駆動するようにしたものである。 The display according to the present invention includes a power supply unit capable of individually changing a power supply voltage, a power supply switching circuit capable of turning on / off power supply from the power supply unit at an arbitrary timing, and receiving power supply from the power supply unit via the power supply switching circuit. a plurality of light emitting elements, and therefore the light emitting element is turned on and driven, is connected between one of the drive circuit and a plurality of light emitting elements among the plurality of driver circuits, a plurality of driving circuits connected respectively to the light emitting element, 1 One of the backflow prevention circuit for preventing the current flowing through the plurality of light-emitting element side from the drive circuit side, and a control unit for controlling the driving circuit and the power supply unit and the power supply switching circuit, a power supply unit, the backflow prevention circuit is connected to a high luminance mode The power supply voltage supplied to the light emitting element driven by the drive circuit is set higher than the power supply voltage supplied to the light emitting element driven by the other drive circuit, and the backflow prevention circuit is activated at low luminance. The power supply voltage supplied to the light emitting element but is driven by the connected driver circuit, as well as lower than the power supply voltage supplied to the light emitting device driven by other driving circuit, the driving circuit, a high luminance when the plurality of light emitting elements The light-emitting elements are driven to be driven at the same time, and the light-emitting elements are driven to be driven in a time-sharing manner when the luminance is low.

この発明によれば、低輝度設定時には同時スイッチングによるノイズや大きなドロップ電圧による無駄な電力消費を抑制でき、しかも発光輝度を高くすることができる。また、電源電圧も動的に変えることにより、発光に寄与しない無効電力となるドロップ電圧分を加算しなくてもよい電源電圧にすることができるため、低消費電力に繋がる。   According to the present invention, wasteful power consumption due to noise due to simultaneous switching and a large drop voltage can be suppressed during low luminance setting, and the emission luminance can be increased. Further, by dynamically changing the power supply voltage, it is possible to obtain a power supply voltage that does not require addition of a drop voltage that becomes reactive power that does not contribute to light emission, leading to low power consumption.

この発明の表示器が適用される映像表示装置の一例の概要を示す構成図である。It is a block diagram which shows the outline | summary of an example of the video display apparatus with which the indicator of this invention is applied. この発明の表示器に使用される点灯ユニットを示す図である。It is a figure which shows the lighting unit used for the indicator of this invention. この発明の表示器に使用される点灯ユニットのスキャン例を示す図である。It is a figure which shows the example of a scan of the lighting unit used for the indicator of this invention. この発明の実施の形態1における表示器の構成を示す図である。It is a figure which shows the structure of the indicator in Embodiment 1 of this invention. この発明の実施の形態1に係る表示器の発光素子の駆動制御時の状態図である。It is a state figure at the time of drive control of the light emitting element of the display which concerns on Embodiment 1 of this invention. この発明の実施の形態1における表示器に使用される電源部の電源電圧の関係を示す図であるIt is a figure which shows the relationship of the power supply voltage of the power supply part used for the display in Embodiment 1 of this invention. この発明の実施の形態1に係る表示器の輝度とスキャンデューティの関係を示す制御模式図である。It is a control schematic diagram which shows the relationship between the brightness | luminance of a display and scan duty which concern on Embodiment 1 of this invention. この発明の実施の形態2における表示器の構成を示す図である。It is a figure which shows the structure of the indicator in Embodiment 2 of this invention. この発明の実施の形態3における表示器の構成を示す図である。It is a figure which shows the structure of the indicator in Embodiment 3 of this invention.

実施の形態1.
以下、この発明の実施の形態1における表示器を図1〜図7に基づいて説明する。
図1はこの発明の表示器が適用される映像表示装置の一例の概要を示す構成図、図2は映像表示装置の点灯ユニットを示す図、図3は点灯ユニットのスキャン例を示す図である。
まず、図1〜図3に基づいて、この発明の表示器が適用される映像表示装置の概略について説明する。
Embodiment 1 FIG.
Hereinafter, the display in Embodiment 1 of this invention is demonstrated based on FIGS.
FIG. 1 is a block diagram showing an outline of an example of a video display device to which the display of the present invention is applied, FIG. 2 is a diagram showing a lighting unit of the video display device, and FIG. 3 is a diagram showing a scanning example of the lighting unit. .
First, an outline of a video display device to which the display of the present invention is applied will be described with reference to FIGS.

図1において、大型の映像表示装置は複数の点灯ユニット1A〜1F(総称する場合は添字A〜Fを省略)を縦横に組み合わせて1つの表示装置が構成される。各点灯ユニット1A〜1Fは電源供給部2A〜2C(総称する場合は添字A〜Fを省略)から電源が供給されると共に、映像信号受信及び点灯制御部3A〜3Cからの信号によって点灯制御及び電源制御が行われる。映像信号受信及び点灯制御部3A〜3Cには映像信号源4から映像信号が供給されるようになっている。   In FIG. 1, a large video display device is configured by combining a plurality of lighting units 1 </ b> A to 1 </ b> F (the suffixes A to F are omitted in general terms) vertically and horizontally. Each of the lighting units 1A to 1F is supplied with power from power supply units 2A to 2C (generally omitted suffixes A to F), and controls lighting based on signals from the video signal reception and lighting control units 3A to 3C. Power control is performed. The video signal is supplied from the video signal source 4 to the video signal reception and lighting control units 3A to 3C.

各点灯ユニット1は、図2に示すようにマトリックス状に配置された複数のLEDなどの発光素子11と、電源部と駆動回路(図2では省略)で構成されている。これらの構成は図4で詳しく説明する。点灯ユニット1は1ライン当たり16個から32個の発光素子11で構成され、図2では1ライン当たり16個の発光素子11で構成されたものを示している。   Each lighting unit 1 includes a plurality of light emitting elements 11 such as LEDs arranged in a matrix as shown in FIG. 2, a power supply unit, and a drive circuit (not shown in FIG. 2). These configurations will be described in detail with reference to FIG. The lighting unit 1 is composed of 16 to 32 light emitting elements 11 per line, and FIG. 2 shows one composed of 16 light emitting elements 11 per line.

点灯ユニット1の発光素子11は、時分割ライン切り換えスキャン(ダイナミック)点灯で駆動制御されるようになっており、図3は4ラインを1組とした1/4デューティスキャン(Duty Scan)の制御模式図の例を示している。
図3において、黒丸は駆動される発光素子(点灯)、白丸は非駆動の発光素子(非点灯)で、左からスキャン[0]の駆動状態、スキャン[1]の駆動状態、スキャン[2]の駆動状態、スキャン[3]の駆動状態を示している。
The light emitting element 11 of the lighting unit 1 is driven and controlled by time-division line switching scan (dynamic) lighting. FIG. 3 shows control of 1/4 duty scan (Duty Scan) with four lines as one set. An example of a schematic diagram is shown.
In FIG. 3, black circles are driven light emitting elements (lighted), white circles are non-driven light emitting elements (non-lighted), and the scan [0] drive state, scan [1] drive state, and scan [2] from the left. , And the scan [3].

スキャン[0]の駆動状態では、上から1番目、5番目、9番目、13番目のラインの発光素子11が点灯駆動され、スキャン[1]の駆動状態では、上から2番目、6番目、10番目、14番目のラインの発光素子11が点灯駆動され、スキャン[2]の駆動状態では、上から3番目、7番目、11番目、15番目のラインの発光素子11が点灯駆動され、スキャン[3]の駆動状態では、上から4番目、8番目、12番目、16番目のラインの発光素子11が点灯駆動される。
スキャン[0]→スキャン[1]→スキャン[2]→スキャン[3]→スキャン[0]・・と、点灯制御するラインを高速(概ね1〜10ms程度以下)で切替えて表示すると、人間の視覚認識としては全発光素子が同時に点灯制御されているように認識される。
In the scan [0] driving state, the light emitting elements 11 of the first, fifth, ninth and thirteenth lines from the top are driven to be lit, and in the scanning [1] driving state, the second, sixth, The light emitting elements 11 of the 10th and 14th lines are lit and driven, and the light emitting elements 11 of the 3rd, 7th, 11th and 15th lines from the top are lit and driven in the scan [2] driving state. In the driving state [3], the light emitting elements 11 in the fourth, eighth, twelfth and sixteenth lines from the top are driven to light.
When the line to be turned on is switched at high speed (approximately 1 to 10 ms or less) and displayed as scan [0] → scan [1] → scan [2] → scan [3] → scan [0]. As visual recognition, it is recognized that all the light emitting elements are controlled to be turned on simultaneously.

上記のように1ラインずつ時分割で発光素子11を点灯させるのは低輝度時であって、高輝度時は4ライン全ての発光素子11を同時に点灯させる。このように4ライン全てを同時点灯させる状態と、1ラインずつ時分割で点灯させる状態を変更可能にすることを「動的にスキャン数を変更可能な表示器」と言う。
動的にスキャン数を変更する理由は、低輝度状態での4ライン同時点灯(点灯時間を短く制御)での無駄やスイッチングノイズを抑制させるためである。
また、輝度に応じてスキャンデューティを変更することも行われる。輝度とスキャンデューティの関係は図7で説明する。
As described above, the light-emitting elements 11 are turned on in a time-sharing manner for each line when the luminance is low. When the luminance is high, the light-emitting elements 11 of all four lines are turned on simultaneously. The state in which all four lines are turned on simultaneously and the state in which each line is turned on in a time-sharing manner can be changed as a “display capable of dynamically changing the number of scans”.
The reason for dynamically changing the number of scans is to suppress waste and switching noise during simultaneous lighting of four lines (controlling the lighting time short) in a low luminance state.
Also, the scan duty is changed according to the luminance. The relationship between luminance and scan duty will be described with reference to FIG.

図4はこの発明の実施の形態1における表示器(点灯ユニット)の構成を示す図であり、発光素子11A〜11D(LED-A〜LED-Dと記す場合がある)と、図1の電源供給部2からケーブルを介して供給される電圧を電源電圧(V-A、V-B、V-C、V-D)として個別に変更できる電源部12と、電源部12からの電源供給を任意のタイミングでオンオフできる複数の電源切り替え回路13A〜13D(FET-A〜FET-Dと記す場合がある)と、発光素子11A〜11Dを点灯駆動するために各発光素子にそれぞれ接続された複数の駆動回路14A〜14D(Dr-A〜Dr-Dと記す場合がある)と、複数の駆動回路のうち1つの駆動回路14Aと複数の発光素子11B〜11Dの負極側との間に接続されたダイオード15B〜15Dで構成された逆流防止回路と、電源部12と電源切り替え回路13A〜13Dと駆動回路14A〜14Dを制御する制御部16で構成されている。   FIG. 4 is a diagram showing the configuration of the display (lighting unit) in the first embodiment of the present invention. The light emitting elements 11A to 11D (may be referred to as LED-A to LED-D) and the power source of FIG. The power supply unit 12 that can individually change the voltage supplied from the supply unit 2 via the cable as a power supply voltage (V-A, V-B, V-C, V-D), and power supply from the power supply unit 12 A plurality of power supply switching circuits 13A to 13D (which may be referred to as FET-A to FET-D) that can be turned on / off at an arbitrary timing, and a plurality of light-emitting elements 11A to 11D that are connected to each light-emitting element to drive the light-emitting elements. Drive circuits 14A to 14D (may be referred to as Dr-A to Dr-D), and one of the plurality of drive circuits 14A and the negative electrodes of the plurality of light emitting elements 11B to 11D. Diodes 15B-15 And a control unit 16 that controls the power supply unit 12, the power supply switching circuits 13A to 13D, and the drive circuits 14A to 14D.

電源切り替え回路13A〜13Dは単なるスイッチで図示しているが、実際は電界効果型トランジスタ(FET)などのスイッチング素子で構成されている。逆流防止回路のダイオード15B〜15Dは、発光素子11B〜11Dに接続された端子側が正極で、駆動回路14Aに接続された端子側が負極となっている。また、発光素子11A〜11Dは、図3に一点鎖線の楕円で示す4個(4ラインの1列)分の発光素子に相当するものを示している。   Although the power supply switching circuits 13A to 13D are illustrated by simple switches, they are actually configured by switching elements such as field effect transistors (FETs). In the diodes 15B to 15D of the backflow prevention circuit, the terminal side connected to the light emitting elements 11B to 11D is a positive electrode, and the terminal side connected to the drive circuit 14A is a negative electrode. In addition, the light emitting elements 11A to 11D are equivalent to four light emitting elements (one line of four lines) indicated by a dashed line ellipse in FIG.

図5は図4に示す表示器の発光素子の駆動制御時の状態図を示し、図5(A)は高輝度時の動作、図5(B)は低輝度時の動作を示している。
図5(A)の高輝度設定時においては、電源切り替え回路13A〜13D(FET-A〜FET-D)が一括してオンとなるため、(a)に示すように駆動回路14A〜14D(Dr-A〜Dr-D)が同時に駆動されると、発光素子11A〜11D(LED-A〜LED-D)も同時に点灯される(黒塗個所がON(点灯動作)を示す)。
FIG. 5 shows a state diagram at the time of driving control of the light emitting element of the display shown in FIG. 4, FIG. 5A shows an operation at high luminance, and FIG. 5B shows an operation at low luminance.
At the time of high brightness setting in FIG. 5A, the power supply switching circuits 13A to 13D (FET-A to FET-D) are turned on all at once, so that the drive circuits 14A to 14D ( When Dr-A to Dr-D) are driven at the same time, the light emitting elements 11A to 11D (LED-A to LED-D) are also turned on at the same time (the black coating points indicate ON (lighting operation)).

このとき電源供給部2から電源部12に流れる電流量は(c)に示すように大きくなる方向に変化する。したがって電源供給部2と電源部12間のケーブルでのドロップ電圧が大きくなり、電源部12の入力電圧が(b)に示すように大きく低下する。このため、高輝度時は電源供給部2の供給電圧を少し高めにすることで、ドロップ電圧の大きさに対応する必要がある。これにより、駆動回路14A〜14D(Dr-A〜Dr-D)の出力端電圧は(d)に示すように適切な出力端子電圧に保たれることになる。   At this time, the amount of current flowing from the power supply unit 2 to the power supply unit 12 changes in an increasing direction as shown in FIG. Therefore, the drop voltage in the cable between the power supply unit 2 and the power supply unit 12 increases, and the input voltage of the power supply unit 12 greatly decreases as shown in FIG. For this reason, when the luminance is high, it is necessary to cope with the magnitude of the drop voltage by slightly increasing the supply voltage of the power supply unit 2. As a result, the output terminal voltages of the drive circuits 14A to 14D (Dr-A to Dr-D) are maintained at appropriate output terminal voltages as shown in (d).

なお、この時、電源電圧V-B、V-C、V-Dが電源電圧V-Aと同じか高い場合には、駆動回路14A(Dr-A)が逆流防止回路のダイオード15B〜15Dを通じて発光素子11B〜11D(LED-B〜LED-D)を引き込む状態となるため、電源電圧V-B、V-C、V-Dは電源電圧V-Aに比べて低く設定する。これにより駆動回路14A(Dr-A)が作動した場合に、発光素子11B〜11D(LED-B〜LED-D)が駆動回路14A(Dr-A)により駆動されない状態とする。
また、電源電圧V-Aで、発光素子11Aが、駆動回路14B〜14D(Dr-B、Dr-C、Dr-D)で駆動されないように、逆流防止回路のダイオード15B〜15Dを設けている。
即ち、駆動回路14A(Dr-A)が動作した場合は発光素子LED-Aのみが点灯し、駆動回路14B(Dr-B)が動作した場合は発光素子LED-Bのみが点灯するような構成にする。電源電圧の大きさについては図6で詳しく説明する。
At this time, when the power supply voltages V-B, V-C, and V-D are equal to or higher than the power supply voltage V-A, the drive circuit 14A (Dr-A) passes through the diodes 15B to 15D of the backflow prevention circuit. Since the light emitting elements 11B to 11D (LED-B to LED-D) are pulled in, the power supply voltages VB, VC, and VD are set lower than the power supply voltage V-A. Thereby, when the drive circuit 14A (Dr-A) is activated, the light emitting elements 11B to 11D (LED-B to LED-D) are not driven by the drive circuit 14A (Dr-A).
Also, diodes 15B to 15D of backflow prevention circuits are provided so that the light emitting element 11A is not driven by the drive circuits 14B to 14D (Dr-B, Dr-C, Dr-D) with the power supply voltage V-A. .
That is, only the light emitting element LED-A is lit when the driving circuit 14A (Dr-A) is operated, and only the light emitting element LED-B is lit when the driving circuit 14B (Dr-B) is operated. To. The magnitude of the power supply voltage will be described in detail with reference to FIG.

一方、図5(B)の低輝度設定時においては、電源切り替え回路13A〜13D(FET-A〜FET-D)は個別に順次オン制御され、また駆動回路14A(Dr-A)のみがオンとなるため、(a)に示すように1つの駆動回路14A(Dr-A)が、電源切り替え回路FET-A〜FET-Dがオン時に、それに接続された発光素子11A〜11D(LED-A〜LED-D)のみを順次点灯(時分割で点灯駆動)していく。   On the other hand, at the time of low luminance setting in FIG. 5B, the power supply switching circuits 13A to 13D (FET-A to FET-D) are sequentially turned on individually and only the drive circuit 14A (Dr-A) is turned on. Therefore, as shown in (a), when one power supply switching circuit FET-A to FET-D is turned on, one drive circuit 14A (Dr-A) is connected to the light emitting elements 11A to 11D (LED-A) connected thereto. ... (LED-D) are lit sequentially (lighted in time division).

このとき電源供給部2から電源部12に流れる電流量は(c)に示すように高輝度時(一括駆動時)に比べて1/4相当と小さく、したがって電源供給部2と電源部12間のケーブルでのドロップ電圧は電流が減少したため1/4相当と小さくなる。このため、電源部12の入力電圧は(b)に示すように低下が少なくなって大きくなり、電源供給部2の供給電圧が高輝度時と同じであれば、駆動回路14A(Dr-A)の出力端子電圧は(d)に示すように、ドロップ電圧の減った分だけ上がった出力端子電圧となり、適切な出力端子電圧に対して過剰電圧となる。この過剰電圧×駆動電流=電力は発光には直接寄与しない無効電力となり、駆動回路14Aで消費しなければならない。   At this time, the amount of current flowing from the power supply unit 2 to the power supply unit 12 is as small as 1/4 as compared with the case of high luminance (collective driving) as shown in FIG. The drop voltage in this cable becomes as small as 1/4 due to the decrease in current. For this reason, the input voltage of the power supply unit 12 decreases and increases as shown in (b). If the supply voltage of the power supply unit 2 is the same as that at the time of high luminance, the drive circuit 14A (Dr-A) As shown in (d), the output terminal voltage becomes an output terminal voltage that is increased by a reduction of the drop voltage, which is an excessive voltage with respect to an appropriate output terminal voltage. This excess voltage × drive current = power becomes reactive power that does not directly contribute to light emission, and must be consumed by the drive circuit 14A.

そこで、低輝度設定時においては、電源供給部2の供給電圧を電源供給部2と電源部12間のケーブルでのドロップ分だけ下げることにより無効電力をなくすことができ、そして電源電圧V-B、V-C、V-Dは逆流防止回路であるダイオード15B〜15Dの電圧ドロップ分だけ電源電圧V-Aより高くした電圧にすることで、駆動回路14A(Dr-A)の出力端子の駆動時電圧を高輝度時と同等の電圧にすることができ、過剰(無駄)電圧を抑制できる。   Therefore, at the time of low luminance setting, the reactive power can be eliminated by lowering the supply voltage of the power supply unit 2 by the drop amount of the cable between the power supply unit 2 and the power supply unit 12, and the power supply voltage V-B , V-C, and V-D drive the output terminal of the drive circuit 14A (Dr-A) by making the voltage higher than the power supply voltage V-A by the voltage drop of the diodes 15B to 15D which are backflow prevention circuits. The hour voltage can be made equal to that at the time of high luminance, and excessive (waste) voltage can be suppressed.

なお、駆動回路14Aが各発光素子11を時分割駆動する場合は、電源電圧の電圧を逆流防止回路であるダイオード15B〜15Dの電圧ドロップ分だけ上げる必要があるが、その値は低輝度設定時における発光素子11の時分割駆動によるケーブルでのドロップ分だけ電源電圧を下げる値と相殺される方向となる。したがって、電源電圧はダイオード15B〜15Dの電圧ドロップ分を加算しなくてよく、低消費電力に繋がる。電源電圧の大きさについては図6で詳しく説明する。   When the drive circuit 14A drives each light-emitting element 11 in a time-sharing manner, it is necessary to increase the voltage of the power supply voltage by the voltage drop of the diodes 15B to 15D that are backflow prevention circuits. The direction is offset by the value of decreasing the power supply voltage by the amount of drop in the cable by the time-division driving of the light emitting element 11 in FIG. Therefore, the power supply voltage does not have to add the voltage drop of the diodes 15B to 15D, leading to low power consumption. The magnitude of the power supply voltage will be described in detail with reference to FIG.

図5において、LED-Aは1番目のラインに相当する発光素子11A、LED-Bは2番目のラインに相当する発光素子11B、LED-Cは3番目のラインに相当する発光素子11C、LED-Dは4番目のラインに相当する発光素子11Dであるから、垂直同期信号の1周期において、高輝度時は4つの発光素子11が同時に点灯し、低輝度時は各発光素子11を時分割で点灯駆動していることになる。   In FIG. 5, LED-A is a light emitting element 11A corresponding to the first line, LED-B is a light emitting element 11B corresponding to the second line, LED-C is a light emitting element 11C corresponding to the third line, LED Since -D is the light emitting element 11D corresponding to the fourth line, in one cycle of the vertical synchronizing signal, the four light emitting elements 11 are simultaneously turned on when the luminance is high, and each light emitting element 11 is time-divided when the luminance is low. It is lit and driven.

図6は電源部12の出力である電源電圧の関係を示す図で、図6(a)は高輝度モード時の場合、図6(b)は低輝度モード時の場合を示す。
図6(a)の高輝度時の場合は、電源電圧V-Aはその基準電圧(0V)に対してV-Aの電圧差を有し、電源電圧V-B、V-C、V-Dはその基準電圧(―XV)に対してV-B、V-C、V-Dの電圧差を有しているが、電源電圧V-B、V-C、V-Dは基準電圧(0V)よりも大きく電源電圧V-Aより小さい値に設定される。
6A and 6B are diagrams showing the relationship of the power supply voltage, which is the output of the power supply unit 12. FIG. 6A shows the case in the high luminance mode, and FIG. 6B shows the case in the low luminance mode.
In the case of high brightness in FIG. 6A, the power supply voltage VA has a voltage difference of VA with respect to the reference voltage (0V), and the power supply voltages V-B, V-C, V- D has a voltage difference of V−B, V−C, and V−D with respect to the reference voltage (−XV), but the power supply voltages V−B, V−C, and V−D are the reference voltage ( 0V) and a value smaller than the power supply voltage VA.

一方、図6(b)の低輝度時の場合は、電源電圧V-B、V-C、V-Dの基準電圧は電源電圧V-Aの基準電圧(0V)と同じにし、電源電圧V-Aは基準電圧(0V)に対してV-Aの電圧差を有し、電源電圧V-B、V-C、V-Dは基準電圧(0V)に対してV-B、V-C、V-Dの電圧差を有しているが、電源電圧V-B、V-C、V-Dは電源電圧V-Aより大きい値に設定され、その値はダイオードの電圧ドロップ分だけ電源電圧V-Aより高くした電圧にする。   On the other hand, in the case of low luminance in FIG. 6B, the reference voltages of the power supply voltages V-B, V-C, and V-D are the same as the reference voltage (0 V) of the power supply voltage V-A, and the power supply voltage V -A has a voltage difference of VA with respect to the reference voltage (0V), and the power supply voltages V-B, V-C, and V-D are V-B and V-C with respect to the reference voltage (0V). , V-D, but the power supply voltages V-B, V-C, V-D are set to a value larger than the power supply voltage V-A, and the value is the power supply by the voltage drop of the diode. The voltage is set higher than the voltage VA.

以上のように発光素子11の駆動回路14の作動タイミングを、高輝度設定時と低輝度設定時で動的に変えることで、低輝度設定時にはスイッイングによるノイズや無駄な電力消費を抑制できると共に、高輝度を出せることになる。
また、大きなドロップ電圧の抑制は、駆動回路14の作動タイミングを変えるのと同時に発光素子11の駆動電圧も調整することで実現できる。
As described above, by dynamically changing the operation timing of the drive circuit 14 of the light emitting element 11 between the high luminance setting and the low luminance setting, noise and unnecessary power consumption due to switching can be suppressed at the time of low luminance setting. High brightness can be obtained.
Further, suppression of a large drop voltage can be realized by adjusting the driving voltage of the light emitting element 11 at the same time as changing the operation timing of the driving circuit 14.

発光素子11の駆動回路14の電源電圧を駆動回路群ごとに動的に変えることにより、電流の逆流防止回路であるダイオード15B〜15Dを常に逆バイアスとして、駆動回路14Aが作動したときに、駆動回路14Bが制御するべき発光素子11Bにも制御が波及しないようにする。こうすることにより、発光に寄与しない無効電力となるドロップ電圧分を加算しない電圧とできるため、低消費電力につながる。
なお、高輝度設定時は、ドロップ電圧やノイズの抑制ができない構成となるが、常用する輝度領域は大部分が中間域であるため、実際の運用においては効果がでる。
By dynamically changing the power supply voltage of the drive circuit 14 of the light-emitting element 11 for each drive circuit group, the diodes 15B to 15D, which are current backflow prevention circuits, are always reverse-biased, and the drive circuit 14A operates when the drive circuit 14A operates. The control is prevented from affecting the light emitting element 11B to be controlled by the circuit 14B. By doing so, the voltage that does not add the drop voltage that becomes reactive power that does not contribute to light emission can be obtained, leading to low power consumption.
Note that when high brightness is set, the drop voltage and noise cannot be suppressed. However, since most of the commonly used brightness area is an intermediate area, it is effective in actual operation.

次に図7において、輝度とスキャンデューティの関係について説明する。説明の単純化のため、図7では1/4デューティモードの駆動制御で、輝度レベル8、階調レベル4(0、1、2、3)とした動作としている。
図7(a)は高輝度時、図7(b)は低輝度時、図7(c)は参考のため従来方式の低輝度時の状態の制御模式図を示している。図7において黒塗り箇所は発光素子11が点灯している状態で、そこにある数字1、2、3は単なる長さの単位を示しているに過ぎない。
Next, referring to FIG. 7, the relationship between luminance and scan duty will be described. In order to simplify the description, in FIG. 7, the operation is performed with the luminance level 8 and the gradation level 4 (0, 1, 2, 3) by the drive control in the 1/4 duty mode.
FIG. 7A is a schematic control diagram of the state at the time of high luminance, FIG. 7B is at the time of low luminance, and FIG. In FIG. 7, black portions indicate the state in which the light emitting element 11 is lit, and the numbers 1, 2 and 3 there are merely units of length.

まず、図7(a)の高輝度時(輝度レベル8/8)においては、上から順に、階調レベル0ではスキャン[0]のように発光素子11は点灯されない。階調レベル2ではスキャン[1]のように発光素子11が2/3周期で点灯される。階調レベル3ではスキャン[2]のように発光素子11が3/3周期で点灯される。階調レベル1ではスキャン[3]のように発光素子11が1/3周期で点灯される。   First, at the time of high luminance (brightness level 8/8) in FIG. 7A, the light emitting element 11 is not turned on at the gradation level 0 from the top as in the scan [0]. At the gradation level 2, the light emitting element 11 is turned on in a 2/3 cycle as in scan [1]. At the gradation level 3, the light emitting element 11 is turned on in a 3/3 cycle as in scan [2]. At the gradation level 1, the light emitting element 11 is lit at 1/3 period as in scan [3].

次に、図7(b)の低輝度時(輝度レベル2/8)においては、上から順に、階調レベル0ではスキャン[0]のように発光素子11は点灯されない。階調レベル1ではスキャン[1]のようにスキャン[0]から1/4周期後に、発光素子11が1/4*1/3の周期で点灯される。階調レベル3ではスキャン[2]のようにスキャン[1]から1/4周期後に、発光素子11が1/4*3/3周期で点灯される。階調レベル2ではスキャン[3]のようにスキャン[2]から1/4周期後に、発光素子11が1/4*2/3周期で点灯される。   Next, at the time of low luminance (brightness level 2/8) in FIG. 7B, the light emitting element 11 is not turned on at the gradation level 0 in order from the top as in the scan [0]. At gradation level 1, the light emitting element 11 is turned on at a cycle of 1/4 * 1/3 after a quarter cycle from the scan [0] as in the scan [1]. At the gradation level 3, the light emitting element 11 is turned on at a period of 1/4 * 3/3 after a quarter period from the scan [1] as in the scan [2]. At the gradation level 2, like the scan [3], the light emitting element 11 is turned on at a 1/4 * 2/3 cycle after a quarter cycle from the scan [2].

次に、図7(c)の従来方式の低輝度時(輝度レベル2/8)においては、繰り返し周期の1/4周期の同じ時間帯において、上から順に、階調レベル0ではスキャン[0]のように発光素子11が点灯されない。階調レベル1ではスキャン[1]のように発光素子11が1/4*1/3の周期で点灯される。階調レベル3ではスキャン[2]のように発光素子11が1/4*3/3周期で点灯される。階調レベル2ではスキャン[3]のように発光素子11が1/4*2/3周期で点灯される。   Next, at the time of low luminance (luminance level 2/8) of the conventional method in FIG. 7C, scanning is performed at gradation level 0 in order from the top in the same time zone of 1/4 cycle of the repetition cycle [0. ], The light emitting element 11 is not turned on. At gradation level 1, the light emitting element 11 is lit at a cycle of 1/4 * 1/3 as in scan [1]. At the gradation level 3, the light emitting element 11 is lit at a period of 1/4 * 3/3 as in scan [2]. At gradation level 2, the light emitting element 11 is lit at a period of 1/4 * 2/3 as in scan [3].

このように低輝度時においては、本願発明は各発光素子11が時分割で点灯駆動されるのに対し、従来方式では各発光素子11が同時に点灯駆動されるようになっている。
したがって本願発明においては、低輝度設定時には同時スイッチングによるノイズや大きなドロップ電圧による無駄な電力消費を抑制でき、しかも高輝度が必要な場合には発光輝度を高くすることができる。従来方式では、同時スイッチングによるノイズや大きなドロップ電圧を許容して高輝度を達成するか、同時スイッチングによるノイズや大きなドロップ電圧を抑制できる代わりに高輝度での表示ができない構成とするか、を選択する必要があった。
Thus, at the time of low luminance, each light emitting element 11 is driven to be lit in a time division manner in the present invention, whereas in the conventional method, each light emitting element 11 is driven to be turned on simultaneously.
Therefore, in the present invention, it is possible to suppress unnecessary power consumption due to noise due to simultaneous switching and a large drop voltage at the time of setting low luminance, and it is possible to increase light emission luminance when high luminance is required. In the conventional method, select whether to achieve high brightness by allowing noise and large drop voltage due to simultaneous switching, or to be able to display at high brightness instead of suppressing noise and large drop voltage due to simultaneous switching. There was a need to do.

実施の形態2.
次に、この発明の実施の形態2における表示器(点灯ユニット)を図8に基づいて説明する。
図8は実施の形態2における表示器の構成を示す図であり、実施の形態1の図4に示す逆流防止回路として設けられていたダイオード15B〜15Dの代わりに、能動的に経路を切り離すことができる開閉可能な接続回路17B〜17D(Sw-B、Sw-C、Sw-D)の逆流防止回路としたものである。接続回路17B〜17Dとしては半導体スイッチング素子が使用され、制御部16からの信号でスイッチをオンオフできるようになっている。
その他の構成は実施の形態1と同じにつき、同一または相当部分には同じ符号を付して説明を省略する。
Embodiment 2. FIG.
Next, the display (lighting unit) in Embodiment 2 of this invention is demonstrated based on FIG.
FIG. 8 is a diagram showing the configuration of the display in the second embodiment, and the path is actively disconnected instead of the diodes 15B to 15D provided as the backflow prevention circuit shown in FIG. 4 of the first embodiment. This is a backflow prevention circuit of openable and closable connection circuits 17B to 17D (Sw-B, Sw-C, Sw-D). As the connection circuits 17B to 17D, semiconductor switching elements are used, and the switches can be turned on and off by signals from the control unit 16.
Other configurations are the same as those of the first embodiment, and the same or corresponding parts are denoted by the same reference numerals and description thereof is omitted.

図8においても、高輝度設定時は、電源切り替え回路13A〜13D(FET-A、FET-B、FET-C、FET-D)が一括してオンとなるため、接続回路17B〜17Dが接続(オン)状態にある場合には、駆動回路14A(Dr-A)が発光素子11B(LED-B)を引き込む状態となる。
そこで接続回路17B〜17D(Sw-B、Sw-C、Sw-D)の全部を切り離し(オフ)状態とすることで、駆動回路14A(Dr-A)が作動した場合に発光素子11B〜11D(LED-B、LED-C、LED-D)が駆動されない状態とする。
Also in FIG. 8, when the high luminance is set, the power supply switching circuits 13A to 13D (FET-A, FET-B, FET-C, FET-D) are turned on all at once, so that the connection circuits 17B to 17D are connected. In the (ON) state, the drive circuit 14A (Dr-A) is in a state of drawing the light emitting element 11B (LED-B).
Therefore, all of the connection circuits 17B to 17D (Sw-B, Sw-C, Sw-D) are disconnected (off), so that the light emitting elements 11B to 11D are activated when the drive circuit 14A (Dr-A) is activated. (LED-B, LED-C, LED-D) is not driven.

低輝度設定時は、電源切り替え回路13A〜13D(FET-A、FET-B、FET-C、FET-D)は個別にオン制御されるため、駆動回路14A(Dr-A)が発光素子11B〜11D(LED-B、LED-C、LED-D)を順次駆動するため、接続回路17B〜17Dは接続(オン)状態とする。   At the time of low luminance setting, the power supply switching circuits 13A to 13D (FET-A, FET-B, FET-C, FET-D) are individually turned on, so that the drive circuit 14A (Dr-A) is light-emitting element 11B. In order to sequentially drive ˜11D (LED-B, LED-C, LED-D), the connection circuits 17B to 17D are connected (ON).

実施の形態2の発明においても、実施の形態1と同様に、発光素子11の駆動回路14の作動タイミングを、高輝度設定時と低輝度設定時で動的に変えることで、低輝度設定時にはノイズや無駄な電力消費を抑制できると共に、高輝度を出せることになる。
また、大きなドロップ電圧の抑制は、駆動回路14の作動タイミングを変えるのと同時に発光素子11の駆動電圧も調整することで実現できる。
また、電源電圧も動的に変えることにより、発光に寄与しない無効電力となるドロップ電圧分を加算しなくてもよい電源電圧とすることができるため、低消費電力に繋がる。
Also in the second embodiment, similarly to the first embodiment, the operation timing of the drive circuit 14 of the light emitting element 11 is dynamically changed between the high luminance setting and the low luminance setting, so that the low luminance setting is performed. Noise and unnecessary power consumption can be suppressed, and high luminance can be obtained.
Further, suppression of a large drop voltage can be realized by adjusting the driving voltage of the light emitting element 11 at the same time as changing the operation timing of the driving circuit 14.
Further, by dynamically changing the power supply voltage, it is possible to obtain a power supply voltage that does not require addition of a drop voltage that becomes reactive power that does not contribute to light emission, leading to low power consumption.

この実施の形態2の発明では、一つの駆動回路14A(Dr-A)と発光素子11B〜11D(LED-B〜LED-D)の間に、逆流防止回路としての接続回路17B〜17Dを挿入する必要があるが、ダイオードを使った逆流防止回路15B〜15Dに比べて、ダイオードの順方向ドロップ電圧に起因する無効電力を削減できる効果がある。   In the invention of the second embodiment, connection circuits 17B to 17D as backflow prevention circuits are inserted between one drive circuit 14A (Dr-A) and light emitting elements 11B to 11D (LED-B to LED-D). However, as compared with the backflow prevention circuits 15B to 15D using diodes, there is an effect of reducing reactive power due to the forward drop voltage of the diodes.

実施の形態3.
次に、この発明の実施の形態3における表示器(点灯ユニット)を図9に基づいて説明する。
図9は実施の形態3における表示器の構成を示す図であり、実施の形態2の図8に示す逆流防止回路としての接続回路17B〜17D(Sw-B、Sw-C、Sw-D)を、複数の駆動回路14A〜14D(Dr-A、Dr-B、Dr-C、Dr-D)と共に、1つのICに内蔵した駆動部18としたものである。
その他の構成は実施の形態1と同じにつき、同一または相当部分には同じ符号を付して説明を省略する。
Embodiment 3 FIG.
Next, the display (lighting unit) in Embodiment 3 of this invention is demonstrated based on FIG.
FIG. 9 is a diagram showing the configuration of the display in the third embodiment, and connection circuits 17B to 17D (Sw-B, Sw-C, Sw-D) as the backflow prevention circuit shown in FIG. 8 of the second embodiment. And a plurality of driving circuits 14A to 14D (Dr-A, Dr-B, Dr-C, Dr-D) are used as a driving unit 18 built in one IC.
Other configurations are the same as those of the first embodiment, and the same or corresponding parts are denoted by the same reference numerals and description thereof is omitted.

図9においても、図8と同様に、高輝度設定時は、電源切り替え回路13A〜13D(FET-A、FET-B、FET-C、FET-D)が一括してオンとなるため、接続回路17B〜17D(Sw-B、Sw-C、Sw-D)の全部を切り離し(オフ)状態とすることで、駆動回路14A(Dr-A)が作動した場合に発光素子11B〜11D(LED-B、LED-C、LED-D)が駆動されない状態とする。
低輝度設定時は、電源切り替え回路13A〜13D(FET-A、FET-B、FET-C、FET-D)は個別にオン制御されるため、駆動回路14A(Dr-A)が発光素子11B〜11D(LED-B、LED-C、LED-D)を駆動するため、接続回路17B〜17Dは接続(オン)状態とする。
Also in FIG. 9, as in FIG. 8, the power supply switching circuits 13 </ b> A to 13 </ b> D (FET-A, FET-B, FET-C, FET-D) are turned on at a time when the high luminance is set. When all of the circuits 17B to 17D (Sw-B, Sw-C, Sw-D) are disconnected (off), and the drive circuit 14A (Dr-A) is activated, the light emitting elements 11B to 11D (LEDs) -B, LED-C, LED-D) are not driven.
At the time of low luminance setting, the power supply switching circuits 13A to 13D (FET-A, FET-B, FET-C, FET-D) are individually turned on, so that the drive circuit 14A (Dr-A) is light-emitting element 11B. In order to drive ˜11D (LED-B, LED-C, LED-D), the connection circuits 17B to 17D are in a connected (ON) state.

実施の形態3の発明は、発光素子11の駆動回路14を切り替える接続回路17B〜17Dを複数の駆動回路14と共にIC内部に設けて1つの駆動部18とし、駆動回路14の作動タイミングを、高輝度設定時と低輝度設定時で動的に変えることで、低輝度設定時にはノイズや無駄な電力消費を抑制できると共に、高輝度を出せる。
また、駆動部18のIC内部に発光素子11の駆動電流の切り替える接続回路17を設けることで、基板上への部品搭載を抑制することができると共に、駆動回路14の最適化が図りやすくなるため、より消費電力を抑制することが可能となる。
In the invention of the third embodiment, connection circuits 17B to 17D for switching the drive circuit 14 of the light emitting element 11 are provided in the IC together with the plurality of drive circuits 14 to form one drive unit 18, and the operation timing of the drive circuit 14 is increased. By dynamically changing between the luminance setting and the low luminance setting, noise and wasteful power consumption can be suppressed and high luminance can be obtained at the time of low luminance setting.
In addition, by providing the connection circuit 17 for switching the drive current of the light emitting element 11 inside the IC of the drive unit 18, it is possible to suppress the mounting of components on the board and to easily optimize the drive circuit 14. Thus, it becomes possible to further reduce power consumption.

なおこの発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。   It should be noted that the present invention can be freely combined with each other within the scope of the invention, and each embodiment can be appropriately modified or omitted.

11A〜11D(LED-A〜LED-D):発光素子、 12:電源部、
13A〜13D(FET-A〜FET-D):電源切り替え回路、
14A〜14D(Dr-A〜Dr-D):駆動回路、
15B〜15D:ダイオード(逆流防止回路)、 16:制御部、
17B〜17D(Sw-B、Sw-C、Sw-D):接続回路(逆流防止回路)、
18:駆動部。
11A to 11D (LED-A to LED-D): light emitting element, 12: power supply unit,
13A to 13D (FET-A to FET-D): power supply switching circuit,
14A to 14D (Dr-A to Dr-D): drive circuit,
15B to 15D: diode (backflow prevention circuit), 16: control unit,
17B to 17D (Sw-B, Sw-C, Sw-D): connection circuit (backflow prevention circuit),
18: Drive unit.

Claims (4)

電源電圧を個別に変更できる電源部、この電源部からの電源供給を任意のタイミングでオンオフできる電源切り替え回路、この電源切り替え回路を介して前記電源部から電源供給を受ける複数の発光素子、この発光素子を点灯駆動するため、各発光素子にそれぞれ接続された複数の駆動回路、前記複数の駆動回路のうち1つの駆動回路と前記複数の発光素子との間に接続され、前記1つの駆動回路側から前記複数の発光素子側に流れる電流を阻止する逆流防止回路、前記電源部と前記電源切り替え回路と前記駆動回路を制御する制御部を備え、前記電源部は、高輝度時に前記逆流防止回路が接続された駆動回路により駆動する発光素子に供給する電源電圧を、その他の駆動回路により駆動する発光素子に供給する電源電圧よりも高くし、低輝度時に前記逆流防止回路が接続された駆動回路により駆動する発光素子に供給する電源電圧を、その他の駆動回路により駆動する発光素子に供給する電源電圧よりも低くすると共に、前記駆動回路は、高輝度時は前記複数の発光素子に対して同時に点灯駆動し、低輝度時は各発光素子を時分割で点灯駆動するようにした表示器。 A power supply unit that can individually change the power supply voltage, a power supply switching circuit that can turn on / off power supply from the power supply unit at an arbitrary timing, a plurality of light emitting elements that receive power supply from the power supply unit via the power supply switching circuit, and the light emission A plurality of driving circuits connected to each light emitting element to drive the element, and one driving circuit among the plurality of driving circuits is connected between the plurality of light emitting elements, and the one driving circuit side A backflow prevention circuit that blocks current flowing from the plurality of light emitting elements to the plurality of light emitting elements, a control unit that controls the power supply unit, the power supply switching circuit, and the drive circuit, and the power supply unit includes the backflow prevention circuit when the luminance is high. The power supply voltage supplied to the light-emitting element driven by the connected drive circuit is set higher than the power supply voltage supplied to the light-emitting element driven by the other drive circuit to reduce the brightness. The at the power supply voltage supplied to the light emitting element backflow prevention circuit is driven by the connected driver circuit, as well as lower than the power supply voltage supplied to the light emitting device driven by other driving circuit, the driving circuit includes a high intensity A display in which the plurality of light emitting elements are driven to be turned on at the same time, and each light emitting element is driven to be turned on in a time division manner at a low luminance. 前記逆流防止回路は、前記発光素子に接続された端子側が正極で、前記駆動回路に接続された端子側が負極のダイオードで構成された請求項1に記載の表示器。   2. The display according to claim 1, wherein the backflow prevention circuit is configured by a diode having a positive electrode on a terminal side connected to the light emitting element and a negative electrode on a terminal side connected to the driving circuit. 前記逆流防止回路は、開閉可能な接続回路で構成された請求項1に記載の表示器。   The display device according to claim 1, wherein the backflow prevention circuit includes a connection circuit that can be opened and closed. 前記駆動回路と前記逆流防止回路を1つのICに内蔵した駆動部とした請求項3に記載の表示器。   The display according to claim 3, wherein the driving circuit and the backflow prevention circuit are configured as a driving unit built in one IC.
JP2013141237A 2013-07-05 2013-07-05 display Expired - Fee Related JP6080710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013141237A JP6080710B2 (en) 2013-07-05 2013-07-05 display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013141237A JP6080710B2 (en) 2013-07-05 2013-07-05 display

Publications (2)

Publication Number Publication Date
JP2015014700A JP2015014700A (en) 2015-01-22
JP6080710B2 true JP6080710B2 (en) 2017-02-15

Family

ID=52436451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013141237A Expired - Fee Related JP6080710B2 (en) 2013-07-05 2013-07-05 display

Country Status (1)

Country Link
JP (1) JP6080710B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105448248B (en) * 2016-01-15 2018-05-08 深圳市华星光电技术有限公司 Power conditioning circuitry and liquid crystal display device
CN110728938B (en) * 2019-11-22 2022-04-19 深圳市洲明科技股份有限公司 Display control system and display screen
JP7447604B2 (en) 2020-03-25 2024-03-12 富士フイルムビジネスイノベーション株式会社 Light emitting devices, optical devices, measuring devices, and information processing devices
JP2024046310A (en) 2022-09-22 2024-04-03 日亜化学工業株式会社 Display device driving circuit, display device, road sign board, and display device driving method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2241555C (en) * 1995-12-29 2006-07-11 Cree Research, Inc. True color flat panel display using an led dot matrix and led dot matrix drive method and apparatus
JP3789108B2 (en) * 2002-10-09 2006-06-21 キヤノン株式会社 Image display device
JP2005326675A (en) * 2004-05-14 2005-11-24 Fujitsu Hitachi Plasma Display Ltd Drive circuit and plasma display device
JP2012204188A (en) * 2011-03-25 2012-10-22 Fujitsu Ltd Electronic apparatus and light emitting element drive circuit

Also Published As

Publication number Publication date
JP2015014700A (en) 2015-01-22

Similar Documents

Publication Publication Date Title
JP4602194B2 (en) Backlight driving circuit and liquid crystal display device having the same
JP4993181B2 (en) LED drive device
US8797253B2 (en) Liquid crystal display device
WO2010007808A1 (en) Light emitting element driving circuit
JP2002244619A (en) Circuit for driving led display device
US20140292634A1 (en) Backlight drive circuit
US9622307B2 (en) Apparatus and technique for modular electronic display control
JP2003241711A (en) Digitally driven type display device
KR20080058821A (en) Backlight unit and liquid crystal display
EP2555184A1 (en) Liquid crystal display device and liquid crystal display method
US7315135B2 (en) Load driving device and load driving method
WO2014017384A1 (en) Display device
JP6080710B2 (en) display
US8643683B2 (en) Driver of field sequential display capable of switching current and voltage of scan signal and display signal and driving method thereof
US8823628B2 (en) Scan driving circuit and display apparatus using the same
US11132961B2 (en) Backlight driving circuit, method and device, storage medium and display device
US20070001620A1 (en) Display apparatus
JP4949777B2 (en) Light emitting diode blinking control device, lighting device, and liquid crystal display device
JP2012113900A (en) Liquid crystal display, backlight device used in the same, and backlight intensity control method
JP7101463B2 (en) Light emitting element drive device, semiconductor device, light emitting device and liquid crystal display device
JP2006119274A (en) Led display device and display control method
JP6999445B2 (en) Display device and display control method
JP4948546B2 (en) Organic EL light emitting device
TW200623020A (en) Display module
JP5904778B2 (en) Display device and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170117

R151 Written notification of patent or utility model registration

Ref document number: 6080710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees