JP6045635B2 - Method for producing copper alloy sheet - Google Patents

Method for producing copper alloy sheet Download PDF

Info

Publication number
JP6045635B2
JP6045635B2 JP2015108770A JP2015108770A JP6045635B2 JP 6045635 B2 JP6045635 B2 JP 6045635B2 JP 2015108770 A JP2015108770 A JP 2015108770A JP 2015108770 A JP2015108770 A JP 2015108770A JP 6045635 B2 JP6045635 B2 JP 6045635B2
Authority
JP
Japan
Prior art keywords
copper alloy
cold rolling
rolling
temperature
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015108770A
Other languages
Japanese (ja)
Other versions
JP2015187308A (en
Inventor
維林 高
維林 高
章 菅原
章 菅原
良輔 宮原
良輔 宮原
久 須田
久 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2015108770A priority Critical patent/JP6045635B2/en
Publication of JP2015187308A publication Critical patent/JP2015187308A/en
Application granted granted Critical
Publication of JP6045635B2 publication Critical patent/JP6045635B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)

Description

本発明は、コネクタ、リードフレーム、リレー、スイッチなどの電気・電子部品に適した銅合金板材であって、高強度と良好な導電性を維持しながら、優れた曲げ加工性および対応力緩和特性を有する銅合金板材の製造方法に関する。   The present invention is a copper alloy plate material suitable for electrical and electronic parts such as connectors, lead frames, relays, switches, etc., and has excellent bending workability and response force relaxation characteristics while maintaining high strength and good conductivity. The present invention relates to a method for producing a copper alloy sheet having

コネクタ、リードフレーム、リレー、スイッチなどの通電部品として電気・電子部品に使用される材料には、通電によるジュール熱の発生を抑制するために良好な導電性が要求されるとともに、電気・電子機器の組立時や作動時に付与される応力に耐え得る高い強度が要求される。また、コネクタなどの電気・電子部品は、一般にプレス打ち抜き後に曲げ加工により成形されることから、優れた曲げ加工性が要求される。   Materials used for electrical and electronic parts as current-carrying parts such as connectors, lead frames, relays, and switches are required to have good conductivity in order to suppress the generation of Joule heat due to current conduction. High strength is required to withstand the stress applied during assembly and operation. In addition, since electrical / electronic parts such as connectors are generally formed by bending after press punching, excellent bending workability is required.

更に、近年、電気・電子部品が過酷な環境で使用される用途の増加に伴い、耐応力緩和性に対する要求も厳しくなっている。例えば、自動車用コネクタのように高温に曝される環境下で使用される場合、耐応力緩和性が特に重要となる。応力緩和とは、電気・電子部品を構成する素材のばね部の接触圧力が、常温では一定の状態に維持されても、比較的高温(例えば100〜200℃)の環境下では時間とともに低下するという、一種のクリープ現象である。すなわち、金属材料に応力が付与されている状態において、マトリックスを構成する原子の自己拡散や固溶原子の拡散によって転位が移動して、塑性変形が生じることにより、付与されている応力が緩和される現象である。   Furthermore, in recent years, the demand for stress relaxation resistance has become stricter with the increase in applications in which electrical and electronic parts are used in harsh environments. For example, stress relaxation resistance is particularly important when used in an environment exposed to high temperatures, such as automobile connectors. Stress relaxation means that even if the contact pressure of the spring portion of the material constituting the electric / electronic component is kept constant at room temperature, it decreases with time in a relatively high temperature (for example, 100 to 200 ° C.) environment. It is a kind of creep phenomenon. In other words, in the state where stress is applied to the metal material, dislocations move due to self-diffusion of atoms constituting the matrix or diffusion of solute atoms, and plastic deformation occurs, thereby relaxing the applied stress. It is a phenomenon.

特に近年、コネクタなどの電気・電子部品は、小型化および軽量化が進む傾向にあり、それに伴って、素材である銅合金の板材には、例えば板厚が0.15mm以下、あるいは更に0.10mm以下等、薄肉化の要求が高まっている。そのため、素材に要求される強度レベルは一層厳しくなっている。具体的には0.2%耐力が850MPa以上、好ましくは900MPa以上、更に好ましくは950MPa以上の強度レベルが望まれる。   In particular, in recent years, electrical and electronic parts such as connectors have tended to be reduced in size and weight, and accordingly, a copper alloy plate material, for example, has a plate thickness of 0.15 mm or less, or more preferably 0.00. There is an increasing demand for thinning such as 10 mm or less. For this reason, the strength level required for the material is becoming stricter. Specifically, a strength level of 0.2% proof stress of 850 MPa or more, preferably 900 MPa or more, more preferably 950 MPa or more is desired.

また、コネクタなどの電気・電子部品は、高集積化、密装化および大電流化が進む傾向にあり、それに伴って、素材である銅や銅合金の板材には、高導電率の要求が高まっている。具体的には0.2%耐力が900MPa以上を維持したうえで、30%IACS以上、好ましくは35%IACS以上の導電率レベルが望まれる。   In addition, electrical and electronic parts such as connectors tend to be highly integrated, densely packed, and have a large current. Accordingly, copper and copper alloy plate materials are required to have high electrical conductivity. It is growing. Specifically, a conductivity level of 30% IACS or more, preferably 35% IACS or more is desired while maintaining 0.2% proof stress of 900 MPa or more.

従来、高強度銅合金としては、Cu−Be系合金(例えば、C17200(Cu−2質量%Be))、Cu−Ti系銅合金(例えば、C19900(Cu−3.2質量%Ti))、Cu−Ni−Sn系銅合金(例えば、C72700(Cu−9質量%Ni−6質量%Sn))が挙げられる。   Conventionally, as a high-strength copper alloy, a Cu-Be-based alloy (for example, C17200 (Cu-2 mass% Be)), a Cu-Ti-based copper alloy (for example, C19900 (Cu-3.2 mass% Ti)), Cu-Ni-Sn based copper alloy (for example, C72700 (Cu-9 mass% Ni-6 mass% Sn)) can be mentioned.

しかしながら、コストと環境負荷の視点から、近年Cu−Be系合金を敬遠する傾向がある。また、Cu−Ti系銅合金およびCu−Ni−Sn系銅合金は、固溶元素が母相内に周期的な濃度変動を有する変調構造(スピノーダル構造)であり、強度が高いものの、導電率が10〜15%IACS程度と低い特徴がある。   However, from the viewpoint of cost and environmental burden, there is a tendency to avoid Cu-Be alloys in recent years. Further, the Cu—Ti based copper alloy and the Cu—Ni—Sn based copper alloy have a modulation structure (spinodal structure) in which the solid solution element has a periodic concentration fluctuation in the matrix phase, and the strength is high, but the conductivity However, there is a low feature of about 10 to 15% IACS.

Cu−Ni−Si系合金は、強度と導電性の間の特性バランスに比較的に優れた材料として注目されている。例えば、Cu−Ni−Si系銅合金板材は、溶体化処理、冷間圧延、時効処理、仕上げ冷間圧延および低温焼鈍を基本とする工程により、30〜50%IACS程度の比較的高い導電率を維持しながら、0.2%耐力を700MPa以上にすることができる。しかし、Cu−Ni−Si系合金板材は、例えば0.2%耐力が900MPa以上という更なる強度の向上を達成するのが困難であることが、一般的に知られている。   Cu-Ni-Si-based alloys have attracted attention as materials that are relatively excellent in the property balance between strength and conductivity. For example, a Cu-Ni-Si-based copper alloy sheet has a relatively high conductivity of about 30 to 50% IACS through processes based on solution treatment, cold rolling, aging treatment, finish cold rolling and low temperature annealing. While maintaining the above, the 0.2% proof stress can be made 700 MPa or more. However, it is generally known that it is difficult for a Cu—Ni—Si based alloy sheet to achieve further improvement in strength, for example, 0.2% proof stress is 900 MPa or more.

Cu−Ni−Si系銅合金板材において、高強度化の手段として、Ni、Siの多量添加や時効処理後の仕上げ圧延(調質処理)率の増大などの一般的手法が知られている。   In the Cu—Ni—Si based copper alloy sheet material, as a means for increasing the strength, general methods such as addition of a large amount of Ni and Si and an increase in the finish rolling (tempering treatment) rate after aging treatment are known.

しかしながら、Ni、Siの添加量の増加に伴って強度は増大するが、一定量、例えばNiが3質量%、Siが0.7質量%程度以上になると、強度の増大が飽和する傾向にあり、0.2%耐力が900MPa以上を達成することが困難である。また、Ni、Siの過量添加は、導電率の低下を伴うとともに、Ni−Si系析出物が粗大化しやすく曲げ加工性が低下しやすい。時効処理後の仕上げ圧延率を大きくすることにより、強度を向上させることはできるが、銅合金板材の曲げ加工性、特に圧延方向を曲げ軸とする曲げ(いわゆるBadWay曲げ)加工性の著しい低下を伴う。   However, the strength increases with increasing amounts of Ni and Si. However, when the amount of Ni becomes 3% by mass or more, for example, Si becomes about 0.7% by mass or more, the increase in strength tends to be saturated. It is difficult to achieve a 0.2% proof stress of 900 MPa or more. Further, addition of excessive amounts of Ni and Si is accompanied by a decrease in conductivity, and Ni—Si based precipitates are likely to be coarsened and bending workability is likely to be decreased. Although the strength can be improved by increasing the finish rolling rate after the aging treatment, the bending workability of the copper alloy sheet, particularly the bending workability (so-called BadWay bending) with the rolling direction as the bending axis, is significantly reduced. Accompany.

そのため、強度レベルが、例えば0.2%耐力が900MPa以上を達成できる程度に高くても、電気・電子部品には加工できない場合がある。   For this reason, even if the strength level is high enough to achieve, for example, a 0.2% proof stress of 900 MPa or more, there are cases where the electrical / electronic component cannot be processed.

近年、Cu−Ni−Si系銅合金板材の高強度化のために、Coを比較的多量(例えば0.5〜2.0質量%Co以上)に添加する銅合金板材、いわゆるCu−Ni−Co−Si系銅合金が、例えば特許文献1〜3等において提案されている。更に、例えば特許文献4、5等では、曲げ加工性を改善するために、双晶の存在量(結晶粒中に含まれる双晶境界の数)を制御する銅合金が提案されている。   In recent years, in order to increase the strength of Cu-Ni-Si-based copper alloy sheets, a copper alloy sheet in which Co is added in a relatively large amount (for example, 0.5 to 2.0 mass% Co or more), so-called Cu-Ni- Co-Si based copper alloys have been proposed in Patent Documents 1 to 3, for example. Further, for example, Patent Documents 4 and 5 propose copper alloys that control the abundance of twins (the number of twin boundaries included in crystal grains) in order to improve bending workability.

特開2007−169765号公報JP 2007-169765 A 特開2008−248333号公報JP 2008-248333 A 特開2009−007666号公報JP 2009-007666 A 特開2008−106356号公報JP 2008-106356 A 国際公開番号2009−123140International Publication Number 2009-123140

よく知られているように、Cu−Ni−Si系銅合金とCu−Co−Si系銅合金には、それぞれ長所と短所がある。Cu−Ni−Si系銅合金の場合、強度を向上させるためには、Ni−Si系化合物の析出に加えて更に圧延を行うと、加工硬化により強度が向上しやすく、また耐応力緩和特性が優れる。ただし、加工硬化による強化は曲げ加工性の低下を招きやすいので、圧延率をできるだけ下げることが一般的である。一方、Cu−Co−Si系銅合金の場合、Cu−Ni−Si系銅合金と比較して、同等な合金元素量では、時効後のCo−Si系化合物の析出により強度が比較的高くなるが、更に圧延を行うと、曲げ加工性の低下は少ないものの加工硬化率が低く、強度を更に向上させにくいという欠点がある。また、耐応力緩和特性がCu−Ni−Si系銅合金よりも劣る傾向がある。   As is well known, Cu—Ni—Si based copper alloys and Cu—Co—Si based copper alloys have advantages and disadvantages, respectively. In the case of a Cu-Ni-Si based copper alloy, in order to improve the strength, if rolling is performed in addition to precipitation of the Ni-Si based compound, the strength is easily improved by work hardening, and the stress relaxation resistance is improved. Excellent. However, since strengthening by work hardening tends to cause a decrease in bending workability, it is common to reduce the rolling rate as much as possible. On the other hand, in the case of a Cu—Co—Si based copper alloy, the strength is relatively high due to the precipitation of the Co—Si based compound after aging at an equivalent alloy element amount as compared with the Cu—Ni—Si based copper alloy. However, further rolling has the disadvantages that the workability is low and the strength is difficult to further improve, although the decrease in bending workability is small. Moreover, there exists a tendency for a stress relaxation resistance to be inferior to a Cu-Ni-Si type copper alloy.

従って、Cu−Ni−Co−Si系銅合金において、Ni−Si系化合物の析出とCo−Si系化合物の析出を適切に制御できれば、強度、曲げ加工性、耐応力緩和特性が同時に向上する可能性がある。   Therefore, in Cu-Ni-Co-Si-based copper alloys, strength, bending workability, and stress relaxation resistance can be improved at the same time if the precipitation of Ni-Si-based compounds and the precipitation of Co-Si-based compounds can be controlled appropriately. There is sex.

しかしながら、Ni−Si系化合物の最適な時効温度とCo−Si系化合物の最適析出温度が異なるため、この二種類を析出するための最適条件を同時に達成することが難しい。   However, since the optimum aging temperature of the Ni—Si compound and the optimum precipitation temperature of the Co—Si compound are different, it is difficult to simultaneously achieve the optimum conditions for precipitating these two types.

Ni−Si系化合物の最適な時効温度は450℃前後(一般に425〜475℃)であり、時効温度が高すぎると、いわゆる過時効といわれる状態になってピーク硬さが低くなり、またNi−Si系析出物が粗大化しやすい。時効温度が低すぎると、析出速度が遅く、析出物が粗大化しないが、析出物の生成が遅いあるいは生成しない可能性がある。   The optimum aging temperature of Ni—Si compounds is around 450 ° C. (generally, 425 to 475 ° C.). If the aging temperature is too high, so-called overaging occurs and the peak hardness is low. Si-based precipitates are easily coarsened. If the aging temperature is too low, the precipitation rate is slow and the precipitate does not coarsen, but the formation of the precipitate may be slow or not generated.

一方、Co−Si系化合物の最適析出温度はNi−Si系化合物よりも高く、520℃前後(一般に500〜550℃)である。従って、Cu−Ni−Co−Si系銅合金において、450℃前後の温度で時効処理する場合、Co−Si系化合物の析出量が少なく、520℃前後の温度で時効処理する場合、Ni−Si系析出物が粗大化してしまう。いずれにおいても、二種類の析出物を同時に利用することができない。また、中間的な温度、例えば480℃で時効処理しても、二種類の析出物の最適状態を同時に達成することが難しい。すなわち、例えば亜時効−ピーク時効−過時効の3段階に分ければ、時効時間が短い場合、Ni−Si系析出物がピーク時効で、Co−Si系析出物はまだ少ない。より長時間でCo−Si系析出物がピーク時効になると、Ni−Si系析出物が粗大化してしまって強度に寄与しない。   On the other hand, the optimum precipitation temperature of the Co—Si based compound is higher than that of the Ni—Si based compound and is around 520 ° C. (generally 500 to 550 ° C.). Therefore, in Cu—Ni—Co—Si based copper alloy, when aging is performed at a temperature of about 450 ° C., the precipitation amount of Co—Si based compound is small, and when aging is performed at a temperature of about 520 ° C., Ni—Si The system precipitate becomes coarse. In any case, two types of precipitates cannot be used simultaneously. Moreover, even if an aging treatment is performed at an intermediate temperature, for example, 480 ° C., it is difficult to achieve the optimum state of the two types of precipitates at the same time. That is, for example, if it is divided into three stages of sub-aging, peak aging and overaging, when the aging time is short, Ni-Si based precipitates are peak aging and Co-Si based precipitates are still few. If the Co—Si based precipitates reach peak aging for a longer time, the Ni—Si based precipitates become coarse and do not contribute to the strength.

特許文献1には、粗大析出物の抑制により第二相密度を制御して特性を向上させたCu−Ni−Co−Si系銅合金が開示されている。この銅合金は、導電率が41%IACS以上と比較高く、曲げ加工性が優れているものの、0.2%耐力が600〜770MPaの強度レベルである。   Patent Document 1 discloses a Cu—Ni—Co—Si based copper alloy whose characteristics are improved by controlling the density of the second phase by suppressing coarse precipitates. This copper alloy has a conductivity level higher than 41% IACS and is excellent in bending workability, but has a 0.2% proof stress at a strength level of 600 to 770 MPa.

特許文献2には、特許文献1と同様に粗大析出物の抑制により第二相密度を制御することに加え、更に加工硬化を組み合わせて強度を向上させ、0.2%耐力が810〜920MPaのCu−Ni−Co−Si系銅合金が開示されている。ただし、粗大析出物を抑制するために、熱間圧延の終了温度は850℃以上が必要であり、一般的な工業的熱間圧延設備では、コスト面で実現が困難である。また、車載用コネクタ等に使用できるレベルの応力緩和特性を得ることは困難である。   In Patent Document 2, in addition to controlling the second phase density by suppressing coarse precipitates as in Patent Document 1, the strength is further improved by combining work hardening, and the 0.2% proof stress is 810 to 920 MPa. A Cu—Ni—Co—Si based copper alloy is disclosed. However, in order to suppress coarse precipitates, the end temperature of the hot rolling needs to be 850 ° C. or more, and it is difficult to realize the cost with a general industrial hot rolling facility. In addition, it is difficult to obtain a stress relaxation characteristic at a level that can be used for a vehicle-mounted connector or the like.

特許文献3には、平均結晶粒および集合組織の制御によって特性が向上したCu−Ni−Co−Si系銅合金が開示されているが、強度レベルは0.2%耐力が652〜862MPaであり、900MPa以上には至っていない。   Patent Document 3 discloses a Cu—Ni—Co—Si based copper alloy whose properties are improved by controlling the average crystal grains and texture, but the strength level is 0.2% proof stress of 652 to 862 MPa. , 900 MPa or more has not been reached.

一方、多結晶金属の双晶の存在量(結晶粒中に含まれる双晶境界の数)が多いほど、曲げ加工性や耐応力緩和特性などに有利であることが、昨今の研究により明確になっているが、双晶の存在量の制御方法は、理論的にも試験的にもほとんど分らないのが現状である。   On the other hand, recent research clearly shows that the larger the amount of polycrystalline metal twins (the number of twin boundaries contained in a crystal grain), the more advantageous in bending workability and stress relaxation resistance. However, at present, the control method of the abundance of twins is hardly understood both theoretically and experimentally.

特許文献4、5は、双晶の存在量の測定方法が異なるが、いずれも結晶粒当たりの双晶境界の平均数が高々1〜3個程度、強度レベルは引張強さが600〜830MPaであり、特性改善の効果が限定されている。また、特許文献5には、双晶境界密度を高めるために、高温で焼鈍を行う熱処理が必要であることが記載されており、その結果結晶粒が粗大化してしまい、曲げ加工性が悪くなる。   Patent Documents 4 and 5 differ in the method of measuring the abundance of twins, but in any case, the average number of twin boundaries per crystal grain is about 1 to 3 at most, and the strength level is 600 to 830 MPa in tensile strength. Yes, the effect of improving the characteristics is limited. Patent Document 5 describes that in order to increase the twin boundary density, it is necessary to perform a heat treatment for annealing at a high temperature. As a result, the crystal grains become coarse and bending workability deteriorates. .

したがって、Ni−Si系化合物とCo−Si系化合物の最適な析出温度と時間が一致しない(ずれる)ことや、双晶生成のメカニズムが不明であることにより、公知の製造方法で二種類の析出物を同時に十分利用することはできず、また、高密度の双晶と適切な結晶粒径を有する組織になるように制御できなかった。そのため、高強度および優れた曲げ加工性と耐応力緩和特性を同時に達成することが困難であった。   Therefore, two types of precipitations are known in the known manufacturing method because the optimal precipitation temperature and time of Ni—Si compound and Co—Si compound do not match (displace) and the twinning mechanism is unknown. The material could not be fully utilized at the same time, and could not be controlled to a structure having a high density twin and an appropriate crystal grain size. Therefore, it has been difficult to simultaneously achieve high strength, excellent bending workability and stress relaxation resistance.

本発明は、このような従来の問題点に鑑み、導電率30%IACS以上、0.2%耐力900MPa以上で、優れた曲げ加工性を有し、車載用コネクタ等の過酷な使用環境での信頼性を担う耐応力緩和特性を同時に具備する銅合金板材の製造方法を提供することを目的とする。   In view of such conventional problems, the present invention has an electrical conductivity of 30% IACS or higher, 0.2% proof stress of 900 MPa or higher, excellent bending workability, and in a severe use environment such as an in-vehicle connector. It aims at providing the manufacturing method of the copper alloy board | plate material which comprises the stress relaxation characteristic which bears reliability simultaneously.

本発明者らは、Cu−Ni−Co−Si系銅合金において、析出物は主にNi−Si系とCo−Si系の二種類の化合物で構成され、ほかに少量のNi−Co−Si系の化合物が存在することが確認され、Ni−Si系とCo−Si系の二種類の析出物を制御できる方法を見出した。また、結晶粒の内部の双晶境界の密度を高めることによって、応力緩和特性と曲げ加工性を同時に改善できることを見出した。更に、異方性の少ない{100}方位(Cube方位)とする結晶粒の割合を増大させることによって、曲げ加工性を向上できると同時に、曲げ加工性の異方性を顕著に改善できる。これらによって、高導電率を維持しながら、高強度であり、更に応力緩和特性と曲げ加工性およびその異方性に顕著な改善が同時に達成できることを見出し、本発明を完成するに至った。   In the Cu—Ni—Co—Si based copper alloy, the present inventors mainly composed of two kinds of compounds of Ni—Si and Co—Si, and a small amount of Ni—Co—Si. As a result, it was confirmed that two types of precipitates, Ni-Si and Co-Si, can be controlled. It was also found that stress relaxation characteristics and bending workability can be improved at the same time by increasing the density of twin boundaries inside the crystal grains. Furthermore, by increasing the proportion of crystal grains having a {100} orientation (Cube orientation) with little anisotropy, the bending workability can be improved and the anisotropy of the bending workability can be remarkably improved. As a result, the inventors have found that the strength is high while maintaining high conductivity, and that significant improvement in stress relaxation characteristics, bending workability and anisotropy can be achieved at the same time, and the present invention has been completed.

すなわち、本発明による銅合金板材の製造方法は、1.0〜3.5質量%のNi、0.5〜2.0質量%のCo、0.5〜1.2質量%のSiを含み、かつ、Co/Ni質量比が0.15〜1.5、(Ni+Co)/Si質量比が4〜7であり、残部がCuおよび不可避不純物である組成を有する銅合金の原料を溶解して鋳造する溶解・鋳造工程と、前記溶解および鋳造工程の後に熱間圧延を行う熱間圧延工程と、前記熱間圧延工程の後に圧延率70%以上で冷間圧延を行う第1の冷間圧延工程と、前記第1の冷間圧延工程の後に加熱温度500〜650℃で熱処理を行う中間焼鈍工程と、前記中間焼鈍工程の後に圧延率70%以上で冷間圧延を行う第2の冷間圧延工程と、前記第2の冷間圧延工程の後に溶体化処理を行う溶体化処理工程と、前記溶体化処理工程の後に400〜500℃で時効処理を行う時効処理工程とからなり、前記溶体化処理工程は、800〜1020℃での加熱工程、その後500〜800℃まで10℃/s以上の冷却速度で急冷する第1の急冷工程、500〜800℃で10〜600秒間保持する保温工程、その後300℃以下まで10℃/s以上の冷却速度で急冷する第2の急冷工程を有することを特徴とする。
That is, the method for producing a copper alloy sheet according to the present invention includes 1.0 to 3.5% by mass of Ni, 0.5 to 2.0% by mass of Co, and 0.5 to 1.2% by mass of Si. And a raw material of a copper alloy having a composition in which the Co / Ni mass ratio is 0.15 to 1.5, the (Ni + Co) / Si mass ratio is 4 to 7, and the balance is Cu and inevitable impurities. A melting / casting step for casting, a hot rolling step for performing hot rolling after the melting and casting step, and a first cold rolling for performing cold rolling at a rolling rate of 70% or more after the hot rolling step. An intermediate annealing step in which heat treatment is performed at a heating temperature of 500 to 650 ° C. after the first cold rolling step, and a second cold in which cold rolling is performed at a rolling rate of 70% or more after the intermediate annealing step. A solution treatment step for performing a solution treatment after the rolling step and the second cold rolling step; Consists of a aging treatment step of performing an aging treatment at 400 to 500 ° C. after the solution treatment step, the solution treatment step, the heating step at 800 to 1020 ° C., 10 ° C. / s or higher until further 500 to 800 ° C. A first quenching step of rapidly cooling at a cooling rate of 500 ° C., a heat retaining step of holding at 500 to 800 ° C. for 10 to 600 seconds, and a second quenching step of rapidly cooling to 300 ° C. or less at a cooling rate of 10 ° C./s or more It is characterized by.

前記中間焼鈍工程の際、前記中間焼鈍工程後の導電率が40%IACS以上、ビッカース硬さがHV150以下を満たすように、500〜650℃で0.1〜20時間熱処理を行う。さらに、前記溶体化処理工程後、JIS H0501の切断法を用いて双晶境界を含まずに測定した平均結晶粒径を3〜60μmとする。さらに、圧延面において、EBSP測定による結晶粒界性格及び結晶方位の観察結果を、全結晶粒界中の双晶境界密度が40%以上、Cube方位結晶粒の面積率が20%以上とする。
In the intermediate annealing step, heat treatment is performed at 500 to 650 ° C. for 0.1 to 20 hours so that the electrical conductivity after the intermediate annealing step is 40% IACS or more and the Vickers hardness is HV150 or less. Furthermore, after the solution treatment step, the average crystal grain size measured without using the twin boundary using the cutting method of JIS H0501 is set to 3 to 60 μm. Further, on the rolled surface, the observation results of the grain boundary character and crystal orientation by EBSP measurement are set such that the twin boundary density in all the grain boundaries is 40% or more and the area ratio of Cube orientation crystal grains is 20% or more.

さらに、前記時効処理工程の後に、圧延率10〜80%で冷間圧延を行う仕上げ冷間圧延工程を有し、前記仕上げ冷間圧延工程の後に、150〜550℃で加熱処理を行う低温焼鈍工程を有する。   Furthermore, after the aging treatment step, there is a finish cold rolling step in which cold rolling is performed at a rolling rate of 10 to 80%, and low temperature annealing in which heat treatment is performed at 150 to 550 ° C. after the finishing cold rolling step. Process.

前記銅合金板材の製造方法において、前記銅合金が、更にFe、Cr、Mg、Mn、Ti、V、Zr、Sn、Zn、AL、B、P、Ag、Beおよびミッシュメタルのうち、少なくとも1種以上を合計0.5質量%以下の範囲で含んでもよい。 In the method for producing a copper alloy sheet, the copper alloy further includes at least one of Fe, Cr, Mg, Mn, Ti, V, Zr, Sn, Zn, AL, B, P, Ag, Be, and Misch metal. You may contain a seed | species or more in the range of 0.5 mass% or less in total.

本発明によれば、導電率30%IACS以上を保持しつつ、0.2%耐力900MPa以上の高強度、且つ、優れた曲げ加工性と耐応力緩和特性を同時に有する銅合金板材が実現できる。   According to the present invention, it is possible to realize a copper alloy sheet having high strength of 0.2% proof stress 900 MPa or more and excellent bending workability and stress relaxation resistance at the same time while maintaining an electrical conductivity of 30% IACS or higher.

実施例1の銅合金板材の光学顕微鏡組織写真である。2 is an optical microscopic photograph of the copper alloy plate material of Example 1. FIG. 実施例2の銅合金板材の光学顕微鏡組織写真である。3 is an optical micrograph of the copper alloy sheet material of Example 2. 比較例1の銅合金板材の光学顕微鏡組織写真である。3 is an optical micrograph of a copper alloy sheet of Comparative Example 1. 比較例2の銅合金板材の光学顕微鏡組織写真である。4 is an optical micrograph of a copper alloy sheet material of Comparative Example 2.

本発明により製造される銅合金板材は、1.0〜3.5質量%のNi、0.5〜2.0質量%のCo、0.3〜1.5質量%のSiを含み、かつCo/Ni質量比が0.15〜1.5、(Ni+Co)/Si質量比が4〜7であり、残部がCuおよび不可避不純物からなる。また、この銅合金板材の圧延面において、EBSP測定による結晶粒界性格及び結晶方位の観察結果、全結晶粒界中の双晶境界(Σ3対応晶界)の密度が40%以上、立方体方位(Cube方位)結晶粒の面積率が20%以上を有している。   The copper alloy sheet produced according to the present invention contains 1.0 to 3.5 mass% Ni, 0.5 to 2.0 mass% Co, 0.3 to 1.5 mass% Si, and The Co / Ni mass ratio is 0.15 to 1.5, the (Ni + Co) / Si mass ratio is 4 to 7, and the balance is made of Cu and inevitable impurities. In addition, on the rolled surface of this copper alloy sheet, as a result of observing the grain boundary character and crystal orientation by EBSP measurement, the density of twin boundaries (Σ3-corresponding crystal boundary) in all the grain boundaries is 40% or more, the cubic orientation ( (Cube orientation) The crystal grain area ratio is 20% or more.

この銅合金板材は、必要に応じて、Fe、Cr、Mg、Mn、Ti、V、Zr、Sn、Zn、AL、B、P、Ag、Beおよびミッシュメタルのうち、少なくとも1種以上を、合計2質量%以下の範囲で、更に含んでいる。   This copper alloy sheet is made of at least one of Fe, Cr, Mg, Mn, Ti, V, Zr, Sn, Zn, AL, B, P, Ag, Be, and Misch metal as necessary. It is further included in the range of 2% by mass or less in total.

以下、この銅合金板材およびその製造方法について詳細に説明する。   Hereinafter, this copper alloy sheet and its manufacturing method will be described in detail.

先ず、合金組成について説明する。本発明により製造される銅合金は、Cu−Ni−Co−Si系銅合金である。なお、本明細書では、Cu−Ni−Co−Siの基本成分にSn、Zn、Mg、Fe、Cr、Mn、Ti、V、Zrやその他の合金元素を添加した銅合金も、包括的にCu−Ni−Co−Si系銅合金と称する。   First, the alloy composition will be described. The copper alloy produced according to the present invention is a Cu—Ni—Co—Si based copper alloy. In this specification, a copper alloy in which Sn, Zn, Mg, Fe, Cr, Mn, Ti, V, Zr and other alloy elements are added to the basic component of Cu—Ni—Co—Si is also comprehensively included. It is called Cu-Ni-Co-Si based copper alloy.

Niは、Ni−Si系析出物を形成して、銅合金板材の強度と導電性を向上させる効果を有する。Ni含有量が1.0質量%未満の場合には、この効果を十分に発揮させるのが困難である。そのため、Ni含有量は、1.0質量%以上にするのが好ましく、1.5質量%以上にするのが更に好ましく、2.0質量%以上にするのが一層好ましい。一方、Ni含有量が多過ぎると、強度向上効果が飽和するうえ、導電率が低下する。また、粗大な析出物が生成し易く、曲げ加工時の割れの原因になる。そのため、Ni含有量は、3.5質量%以下にするのが好ましく、3.0質量%以下にするのが更に好ましい。   Ni has the effect of forming Ni—Si based precipitates and improving the strength and conductivity of the copper alloy sheet. When the Ni content is less than 1.0% by mass, it is difficult to sufficiently exhibit this effect. Therefore, the Ni content is preferably 1.0% by mass or more, more preferably 1.5% by mass or more, and even more preferably 2.0% by mass or more. On the other hand, when there is too much Ni content, the strength improvement effect will be saturated and conductivity will fall. In addition, coarse precipitates are easily generated and cause cracks during bending. Therefore, the Ni content is preferably 3.5% by mass or less, and more preferably 3.0% by mass or less.

Coは、Co−Si系の析出物を形成して、銅合金板材の強度と導電性を向上させる効果を有する。特に、Ni−Si系析出物を分散化させる効果があり、これにより二種類の析出物が共存すれば、強度向上の相乗効果がある。これらの作用を十分に発揮させるには、0.5質量%以上のCo含有量を確保することが望ましい。ただし、Coの融点はNiよりも高いので、含有量が2.0質量%以上になると、完全固溶は困難であり、未固溶の部分は強度に寄与しない。また、二種類の析出物の共存による強度向上の相乗効果を発揮するために、CoとNiの質量比Co/Niを0.15〜1.5にするのが好ましく、0.2〜1.0にするのが更に好ましい。このため、Co含有量は0.5〜1.5質量%の範囲に調整することが一層好ましい。   Co has the effect of forming a Co—Si based precipitate and improving the strength and conductivity of the copper alloy sheet. In particular, there is an effect of dispersing Ni—Si based precipitates, and if two kinds of precipitates coexist, there is a synergistic effect of improving the strength. In order to fully exhibit these effects, it is desirable to secure a Co content of 0.5 mass% or more. However, since the melting point of Co is higher than that of Ni, when the content is 2.0 mass% or more, complete solid solution is difficult, and the undissolved portion does not contribute to the strength. Moreover, in order to exhibit the synergistic effect of strength improvement by the coexistence of two kinds of precipitates, the mass ratio Co / Ni of Co and Ni is preferably 0.15 to 1.5, and 0.2 to 1. More preferably, it is zero. For this reason, it is more preferable to adjust Co content to the range of 0.5-1.5 mass%.

Siは、Ni−Si系析出物及びCo−Si系析出物を生成する。Ni−Si系析出物はNiSiを主体とする化合物であり、Co−Si系析出物はCoSiの形式であると考えられる。但し、合金中のNi、CoおよびSiは、時効処理によって全てが析出物になるとは限らず、ある程度はCuマトリックス中に固溶した状態で存在する。固溶状態のNi、CoおよびSiは、銅合金板材の強度を若干向上させるが、析出状態と比べてその効果は小さく、また、導電率を低下させる要因になる。そのため、Siの含有量は、一般的には、できるだけ析出物NiSi及びCoSiの組成比に近づけるのが好ましい。すなわち、(Ni+Co)/Si質量比を、約4.2を中心として3〜5に調整するのが一般的である。 Si produces Ni—Si based precipitates and Co—Si based precipitates. The Ni—Si based precipitate is a compound mainly composed of Ni 2 Si, and the Co—Si based precipitate is considered to be in the form of Co 2 Si. However, Ni, Co, and Si in the alloy are not necessarily all precipitated by the aging treatment, and exist to some extent in a solid solution state in the Cu matrix. Ni, Co, and Si in the solid solution state slightly improve the strength of the copper alloy sheet, but the effect is smaller than that in the precipitated state, and causes a decrease in conductivity. Therefore, in general, the Si content is preferably as close to the composition ratio of the precipitates Ni 2 Si and Co 2 Si as possible. That is, the (Ni + Co) / Si mass ratio is generally adjusted to 3 to 5 with about 4.2 as the center.

ところが、本発明者らは、Cu−Ni−Co−Si系銅合金の特性に対して、(Ni+Co)/Si質量比が及ぼす影響を詳細に調査した結果、(Ni+Co)/Si質量比が3〜7の範囲内において、最終強度と導電率はあまり変わらないが、双晶密度と集合組織が大きく変わることを知見した。また、過剰なSiによって、双晶密度とCube方位粒の面積率が低下することがわかった。すなわち、Si含有量は、(Ni+Co)/Si質量比が4〜7になるように調整する必要があり、好ましくは4.0〜6.5、更に好ましくは4.2〜5.5の範囲になるように調整するのが望ましい。従って、Si含有量は0.3〜1.5質量%の範囲にするのが好ましく、0.5〜1.2質量%の範囲にするのが更に好ましい。   However, as a result of detailed investigation of the influence of the (Ni + Co) / Si mass ratio on the characteristics of the Cu—Ni—Co—Si based copper alloy, the present inventors have found that the (Ni + Co) / Si mass ratio is 3 Within the range of ˜7, it was found that the final strength and conductivity did not change much, but the twin density and texture changed greatly. In addition, it was found that the twin density and the area ratio of the Cube-oriented grains are reduced by excessive Si. That is, the Si content needs to be adjusted so that the (Ni + Co) / Si mass ratio is 4 to 7, preferably 4.0 to 6.5, and more preferably 4.2 to 5.5. It is desirable to adjust so that Therefore, the Si content is preferably in the range of 0.3 to 1.5% by mass, and more preferably in the range of 0.5 to 1.2% by mass.

本発明により製造される銅合金板材には、必要に応じて、Fe、Cr、Mg、Mn、Ti、V、Zr、Sn、Zn、AL、B、P、Ag、Be等の元素やミッシュメタルなどを添加してもよい。例えば、SnとMgは耐応力緩和特性の向上効果があり、Znは銅合金板材のはんだ付け性および鋳造性を改善する効果があり、Fe、Cr、Mn、Ti、V、Zrなどは強度を向上させる作用を有する。そのほかに、Agは、導電率を大きく低下させることなく固溶強化する効果を有する。Pは脱酸効果を有し、Bは鋳造組織の微細化効果を有し、熱間加工性を向上させる効果を有する。また、更に、ミッシュメタルはCe、La、Dy、Nd、Yなどを含む希土類元素の混合物であり、結晶粒の微細化効果や、析出物の分散化効果を有する。   The copper alloy sheet produced according to the present invention includes elements such as Fe, Cr, Mg, Mn, Ti, V, Zr, Sn, Zn, AL, B, P, Ag, Be, and misch metal as necessary. Etc. may be added. For example, Sn and Mg have the effect of improving the stress relaxation resistance, Zn has the effect of improving the solderability and castability of the copper alloy sheet, and Fe, Cr, Mn, Ti, V, Zr, etc. have the strength. Has the effect of improving. In addition, Ag has the effect of strengthening the solid solution without greatly reducing the electrical conductivity. P has a deoxidizing effect, B has an effect of refining the cast structure, and has an effect of improving hot workability. Furthermore, misch metal is a mixture of rare earth elements including Ce, La, Dy, Nd, Y, etc., and has the effect of refining crystal grains and the effect of dispersing precipitates.

なお、銅合金板材がFe、Cr、Mg、Mn、Ti、V、Zr、Sn、Zn、AL、B、P、Ag、Beおよびミッシュメタルのうち1種以上を含有する場合には、各元素を添加した効果を十分に得るために、これらの総量が0.01質量%以上であるのが好ましい。しかし、総量が2質量%を超えると、導電率の低下、熱間加工性または冷間加工性の低下を招くうえ、コスト的にも不利になる。したがって、これらの元素の総量は2質量%以下、好ましくは1質量%以下、0.5質量%以下であるのが更に好ましい。   In addition, when the copper alloy plate material contains one or more of Fe, Cr, Mg, Mn, Ti, V, Zr, Sn, Zn, AL, B, P, Ag, Be and misch metal, each element In order to sufficiently obtain the effect of adding, it is preferable that the total amount thereof is 0.01% by mass or more. However, if the total amount exceeds 2% by mass, the electrical conductivity is lowered, the hot workability or the cold workability is lowered, and the cost is disadvantageous. Therefore, the total amount of these elements is 2% by mass or less, preferably 1% by mass or less, and more preferably 0.5% by mass or less.

次に、双晶境界について説明する。双晶とは、隣接する二つの結晶粒の結晶格子が、ある面(双晶境界と呼ばれ、一般に{111}面である)に関して鏡映対称の関係にある一対の結晶粒のことである。銅及び銅合金中の最も一般的な双晶は、結晶粒中に二つの平行な双晶境界で挟まれた、双晶帯と呼ばれる部分である。   Next, twin boundaries will be described. A twin crystal is a pair of crystal grains in which the crystal lattice of two adjacent crystal grains is in a mirror-symmetric relationship with respect to a certain plane (called a twin boundary, which is generally the {111} plane). . The most common twins in copper and copper alloys are the so-called twin zones sandwiched between two parallel twin boundaries in the crystal grains.

結晶粒界の性格は、EBSP(Electron Back Scattering Pattern)法で、隣接結晶粒の原子配向により測定される。一般的な粒界は、両側の結晶粒のそれぞれの結晶格子点の対応関係がなく、ランダム粒界とも呼ばれる。一方、粒界を挟む二つの結晶粒のそれぞれの結晶格子点のうち、ある一定の割合(Σ値で現れる)の格子点が両結晶粒で共通である方位関係にある粒界が対応粒界であり、その中のΣ3対応粒界が双晶境界である。   The character of the crystal grain boundary is measured by the atomic orientation of adjacent crystal grains by an EBSP (Electron Back Scattering Pattern) method. A general grain boundary has no corresponding relationship between crystal lattice points of crystal grains on both sides, and is also called a random grain boundary. On the other hand, among the crystal lattice points of the two crystal grains sandwiching the grain boundary, a grain boundary having an orientation relationship in which a certain percentage of lattice points (appearing as Σ values) is common to both crystal grains is the corresponding grain boundary. Among them, the grain boundary corresponding to Σ3 is a twin boundary.

双晶境界は粒界エネルギーが最も低い粒界であり、粒界としての曲げ加工性向上の役割を十分に果すことがある一方、一般的な粒界に比べて境界に沿った原子配列の乱れが少なく構造的に緻密であり、原子の拡散や不純物の偏析や析出物の形成がしにくく、境界に沿って破壊しにくいなどの性質を持つ。すなわち、双晶境界が多いほど、応力緩和特性および曲げ加工性の向上に有利である。   The twin boundary is the grain boundary with the lowest grain boundary energy, and it may play a role in improving the bending workability as a grain boundary. On the other hand, the disorder of the atomic arrangement along the boundary compared to the general grain boundary. The structure is dense and structurally dense, and is difficult to diffuse atoms, segregate impurities, and form precipitates, and is difficult to break along boundaries. That is, the more twin boundaries, the more advantageous for improving stress relaxation characteristics and bending workability.

双晶境界の密度(頻度)は、
(Σ3対応粒界の長さの総和)/(結晶粒界の長さの総和)×100%
で計算できる。双晶境界の密度は40%以上、更に50%を超えることが好ましく、60%以上が一層好ましい。
The density (frequency) of twin boundaries is
(Sum total of Σ3-compatible grain boundaries) / (Sum of grain boundary lengths) x 100%
It can be calculated with The density of twin boundaries is preferably 40% or more, more preferably more than 50%, and still more preferably 60% or more.

双晶境界の形成のメカニズムは現在解明されていないが、本発明者らの調査により、(Ni+Co)/Si質量比、溶体化(再結晶)処理前の合金元素の存在状態(固溶か析出か)および溶体化処理条件、仕上げ圧延率などに左右されることが判明した。   The mechanism of twin boundary formation has not been elucidated at present. However, according to the investigation by the present inventors, (Ni + Co) / Si mass ratio, the presence state of alloy elements before solution treatment (recrystallization) (solid solution or precipitation) It has been found that it depends on the solution treatment conditions, the finish rolling rate, and the like.

一般的な製造方法で製造した銅合金の双晶境界の密度は、10〜20%程度(光学顕微鏡組織では、結晶粒当たりの平均双晶帯の数が0.5個程度に相当)であるのに対し、本発明では、後述の合金組成と製造条件によって、60%以上(結晶粒当たりの平均双晶帯の数が3個以上に相当)を得ることができる。   The density of twin boundaries of a copper alloy manufactured by a general manufacturing method is about 10 to 20% (in the optical microscope structure, the number of average twin bands per crystal grain is equivalent to about 0.5). On the other hand, in the present invention, 60% or more (corresponding to the number of average twin bands per crystal grain of 3 or more) can be obtained depending on the alloy composition and production conditions described later.

次に、結晶方位について説明する。立方体方位({100}<001>方位)は、圧延面の厚さ方向ND、圧延方向LD、圧延方向に対して直角方向TDの三つの方向に同様な特性を示し、通常Cube方位と呼ばれる。また、LD:<001>とTD:<010>のいずれもすべりに寄与し得るすべり面とすべり方向の組み合わせは、12通り中8通りで、その全てのシュミット因子は0.41である。更に、{100}結晶面上のすべり線は、曲げ軸に対して45°および135°と対称性を良好にすることができるため、せん断帯を形成することなく曲げ変形が可能であることがわかった。すなわち、Cube方位はGoodWayとBadWayの両方の曲げ加工性がともに良好であると同時に、異方性がないという特徴がある。   Next, the crystal orientation will be described. The cube orientation ({100} <001> orientation) exhibits similar characteristics in three directions, ie, a thickness direction ND of the rolling surface, a rolling direction LD, and a direction TD perpendicular to the rolling direction, and is generally called a Cube orientation. Also, there are 8 combinations of slip planes and slip directions that can contribute to the slip in both LD: <001> and TD: <010>, and all of the Schmitt factors are 0.41. Furthermore, the slip line on the {100} crystal plane can have good symmetry at 45 ° and 135 ° with respect to the bending axis, so that bending deformation is possible without forming a shear band. all right. In other words, the Cube orientation is characterized in that both GoodWay and BadWay have good bending workability and no anisotropy.

そのため、銅合金板材の表面において、EBSP法で測定した結晶粒方位分布マップOIM(Orientation Imaging Microscopy)像に、{100}方位との方位差が10°以内にある方位を持つ結晶粒の面積分率は、20%以上が望ましく、30%以上が更に望ましい。   Therefore, on the surface of the copper alloy sheet material, the area of crystal grains having an orientation in which the orientation difference from the {100} orientation is within 10 ° in the grain orientation distribution map OIM (Orientation Imaging Microscopy) image measured by the EBSP method. The rate is preferably 20% or more, and more preferably 30% or more.

Cube方位は純銅型再結晶集合組織の主方位であることが良く知られているが、銅合金について、一般的な製造条件では、Cube方位を発達させることは困難である。しかしながら、本発明では、以下の製造工程に示すように、特定条件下での中間焼鈍工程と適切な溶体化処理条件とを組み合わせることにより、高いCube方位を有する結晶配向の銅合金板材を得ることができた。   Although it is well known that the Cube orientation is the main orientation of a pure copper-type recrystallized texture, it is difficult to develop the Cube orientation for copper alloys under general manufacturing conditions. However, in the present invention, as shown in the following manufacturing process, by combining an intermediate annealing process under specific conditions and appropriate solution treatment conditions, a crystal-oriented copper alloy sheet having a high Cube orientation is obtained. I was able to.

平均結晶粒径は、小さいほど曲げ加工性の向上に有利であるが、小さすぎるとCube方位の面積分率や耐応力緩和特性が低下しやすい。また、最終的な平均結晶粒径は、溶体化処理後の段階における結晶粒径によってほぼ決まってくる。従って、平均結晶粒径が小さすぎると、溶体化処理後に溶質元素が十分固溶されずに最終強度が低くなる可能性が高い。種々検討の結果、最終的にJIS H0501の切断法を用いて、双晶境界を含めずに測定した、通常意味の平均結晶粒径が3μm以上、好ましくは5μm以上、更に好ましくは8μmを超える値であれば、車載用コネクタの用途でも満足できるレベルの耐応力緩和特性を確保しやすく、好適であることが判明した。ただし、あまり平均結晶粒径が大きくなりすぎると曲げ部表面の肌荒れが起こりやすく、曲げ加工性の低下を招く場合があるので、60μm以下の範囲とすることが望ましい。8〜20μmの範囲に調整することが、より好ましい。最終的な平均結晶粒径は、溶体化処理後の段階における結晶粒径によってほぼ決まってくる。したがって、平均結晶粒径のコントロールは、後述の溶体化処理条件によって行うことができる。   The smaller the average crystal grain size is, the more advantageous the bending workability is. However, when the average crystal grain size is too small, the area fraction of the Cube orientation and the stress relaxation resistance are liable to be lowered. The final average crystal grain size is almost determined by the crystal grain size in the stage after the solution treatment. Therefore, if the average crystal grain size is too small, there is a high possibility that the solute elements are not sufficiently dissolved after the solution treatment and the final strength is lowered. As a result of various studies, the average grain size of the usual meaning measured without using the twin boundary is finally 3 μm or more, preferably 5 μm or more, more preferably more than 8 μm, using the cutting method of JIS H0501. Then, it has been found that it is easy to ensure a stress relaxation resistance at a level that can be satisfied even in the use of an in-vehicle connector, and is suitable. However, if the average crystal grain size becomes too large, the surface of the bent portion is likely to be rough, which may lead to a decrease in bending workability. It is more preferable to adjust to a range of 8 to 20 μm. The final average crystal grain size is almost determined by the crystal grain size in the stage after the solution treatment. Therefore, the average crystal grain size can be controlled by the solution treatment conditions described later.

次に、銅合金板材の特性について説明する。   Next, the characteristics of the copper alloy sheet will be described.

コネクタなどの電気電子部品を小型化および薄肉化するためには、素材である銅合金板材の0.2%耐力を900MPa以上にするのが好ましく、930MPa以上にするのが更に好ましい。曲げ加工性は、GoodWayおよびBadWayのいずれも、90°W曲げ試験における最小曲げ半径Rと板厚tの比R/tが2.0以下であるのが好ましく、1.5以下であるのが更に好ましい。   In order to reduce the size and thickness of electrical and electronic parts such as connectors, the 0.2% proof stress of the copper alloy sheet material is preferably 900 MPa or more, and more preferably 930 MPa or more. As for the bending workability, the ratio R / t between the minimum bending radius R and the sheet thickness t in the 90 ° W bending test is preferably 2.0 or less, and is 1.5 or less in both GoodWay and BadWay. Further preferred.

また、コネクタなどの電気電子部品は、高集積化、密装化および大電流化が進む傾向にあり、それに伴って、素材である銅や銅合金の板材には、高導電率の要求が高まっている。具体的には30%IACS以上が好ましく、更に好ましくは35%IACS以上の導電率レベルが望まれる。   In addition, electrical and electronic parts such as connectors tend to be highly integrated, densely packed, and increase in current. With this trend, the demand for high conductivity is increasing for copper and copper alloy plate materials. ing. Specifically, a conductivity level of 30% IACS or more is preferable, and a conductivity level of 35% IACS or more is more desirable.

耐応力緩和特性は、車載用コネクタなどの用途ではTDの値が特に重要であるため、長手方向がTDである試験片を用いた応力緩和率で応力緩和特性を評価することが望ましい。板材表面の最大負荷応力が0.2%耐力の80%である状態にして、150℃で1000時間保持した場合に、応力緩和率が7%以下であることが好ましく、5%以下であることが一層好ましい。   Since the value of TD is particularly important for applications such as in-vehicle connectors, it is desirable to evaluate the stress relaxation resistance with the stress relaxation rate using a test piece whose longitudinal direction is TD. When the maximum load stress on the surface of the plate material is 80% of 0.2% proof stress and kept at 150 ° C. for 1000 hours, the stress relaxation rate is preferably 7% or less, and preferably 5% or less. Is more preferable.

次に、本発明にかかる銅合金板材の製造方法について説明する。   Next, the manufacturing method of the copper alloy sheet | seat material concerning this invention is demonstrated.

上述の特性を有する銅合金板材は、本発明の銅合金板材の製造方法によって製造される。本発明による銅合金板材の製造方法は、上述の組成を有する銅合金の原料を溶解して鋳造する溶解・鋳造工程と、この溶解・鋳造工程の後に行う熱間圧延工程と、この熱間圧延工程の後に圧延率70%以上で冷間圧延を行う第1の冷間圧延工程と、この第1の冷間圧延工程の後に加熱温度500〜650℃で熱処理を行う中間焼鈍工程と、この中間焼鈍工程の後に圧延率70%以上で冷間圧延を行う第2の冷間圧延工程と、この第2の冷間圧延工程の後に溶体化処理を行う溶体化処理工程と、この溶体化処理工程の後に400〜500℃で時効処理を行う時効処理工程を有している。   The copper alloy sheet having the above-described characteristics is produced by the method for producing a copper alloy sheet of the present invention. The method for producing a copper alloy sheet according to the present invention includes a melting / casting step of melting and casting a copper alloy raw material having the above composition, a hot rolling step performed after the melting / casting step, and this hot rolling. A first cold rolling process in which cold rolling is performed at a rolling rate of 70% or more after the process, an intermediate annealing process in which heat treatment is performed at a heating temperature of 500 to 650 ° C. after the first cold rolling process, and the intermediate A second cold rolling step for performing cold rolling at a rolling rate of 70% or more after the annealing step, a solution treatment step for performing solution treatment after the second cold rolling step, and the solution treatment step Is followed by an aging treatment step of aging treatment at 400 to 500 ° C.

また、溶体化処理工程は、800〜1020℃で加熱する加熱工程、その後500〜800℃まで急冷する第1の急冷工程、500〜800℃で10〜600秒間保持する保温工程、その後300℃以下まで急冷する第2の急冷工程を有している。   In addition, the solution treatment step includes a heating step of heating at 800 to 1020 ° C, a first quenching step of rapidly cooling to 500 to 800 ° C, a heat retaining step of holding at 500 to 800 ° C for 10 to 600 seconds, and then 300 ° C or less. A second quenching step of quenching to

なお、中間焼鈍工程の際には、中間焼鈍後の銅合金板材の導電率が40%IACS以上、ビッカース硬さがHV150以下を満たすように、500〜650℃で0.1〜20時間熱処理を実施することが好ましい。   In the intermediate annealing step, heat treatment is performed at 500 to 650 ° C. for 0.1 to 20 hours so that the electrical conductivity of the copper alloy sheet after the intermediate annealing satisfies 40% IACS or more and the Vickers hardness satisfies HV150 or less. It is preferable to implement.

更に、時効処理工程の後に、圧延率10〜80%の仕上げ冷間圧延工程を有することが好ましく、仕上げ冷間圧延工程の後に、150〜550℃で加熱処理を行う低温焼鈍工程を有することが好ましい。また、熱間圧延後には、必要に応じて面削を行い、溶体化処理工程の後には、必要に応じて酸洗、研磨、脱脂等を行ってもよい。以下に、各工程について、更に詳細に説明する。   Furthermore, it is preferable to have a finish cold rolling process with a rolling rate of 10 to 80% after the aging treatment process, and to have a low temperature annealing process in which heat treatment is performed at 150 to 550 ° C. after the finish cold rolling process. preferable. Further, after hot rolling, chamfering may be performed as necessary, and after the solution treatment step, pickling, polishing, degreasing, and the like may be performed as necessary. Below, each process is demonstrated in detail.

溶解・鋳造工程
一般的な銅合金の溶製方法と同様の方法により、銅合金の原料を溶解した後、連続鋳造や半連続鋳造などにより鋳片を製造する。この工程は、SiとCoの酸化を防止するために、不活性ガス雰囲気内、または真空溶解炉で行うのがよい。
Melting / Casting Process After a copper alloy raw material is melted by the same method as a general copper alloy melting method, a slab is manufactured by continuous casting or semi-continuous casting. This step is preferably performed in an inert gas atmosphere or in a vacuum melting furnace in order to prevent oxidation of Si and Co.

熱間圧延工程
鋳片の熱間圧延は、1000℃から500℃に温度を下げながら数パスに分けて行う。トータルの圧延率は、概ね80〜95%にすればよい。熱間圧延終了後には、水冷などにより急冷するのが好ましい。また、熱間圧延後に、必要に応じて面削や酸洗を行ってもよい。
Hot rolling step The slab is hot rolled in several passes while the temperature is lowered from 1000 ° C to 500 ° C. The total rolling ratio may be approximately 80 to 95%. After the hot rolling is completed, it is preferable to quench by water cooling or the like. Further, after hot rolling, chamfering or pickling may be performed as necessary.

第1の冷間圧延工程
第1の冷間圧延工程では、圧延率を70%以上にする必要があり、80%以上にするのが更に好ましい。このような圧延率で加工された材料に対して、次工程で中間焼鈍工程を施すことにより、析出物の量を増加させることができる。
First cold rolling step In the first cold rolling step, the rolling rate needs to be 70% or more, and more preferably 80% or more. By subjecting the material processed at such a rolling rate to an intermediate annealing step in the next step, the amount of precipitates can be increased.

中間焼鈍工程
次に、析出を目的として中間焼鈍工程を行う。従来の銅合金板材の製造工程では、この中間焼鈍工程を行わないか、または、次工程の圧延負荷を軽減するために、板材を軟化あるいは再結晶させるための高温の熱処理を行っていた。ところが、これらの場合にはいずれも、溶体化処理工程後に、再結晶粒内の双晶境界の密度やCube方位を主方位成分とする再結晶集合組織の形成が不十分であった。
Intermediate annealing step Next, an intermediate annealing step is performed for the purpose of precipitation. In the conventional manufacturing process of a copper alloy sheet, this intermediate annealing process is not performed, or high-temperature heat treatment is performed to soften or recrystallize the sheet in order to reduce the rolling load in the next process. However, in any of these cases, after the solution treatment step, the density of twin boundaries in the recrystallized grains and the formation of the recrystallized texture with the Cube orientation as the main orientation component were insufficient.

本発明者らが詳細に調査、研究した結果、再結晶過程中の双晶及びCube方位の形成は、再結晶直前の母相の積層欠陥エネルギーの影響を受けることが判明した。積層欠陥エネルギーが低い方が、焼鈍双晶が形成されやすい。逆に、積層欠陥エネルギーが高い方が、Cube方位が形成されやすい。例えば、積層欠陥エネルギーが低いのは、黄銅、純銅、純アルミの順であり、黄銅は焼鈍双晶の密度が高いが、Cube方位は形成しにくい。一方、純アルミはCube方位が形成されやすいが、焼鈍双晶の密度が低い。これに対し、純銅はCube方位と焼鈍双晶の密度がともに、比較的高い。したがって、積層欠陥エネルギーが純銅に近い析出型銅合金では、焼鈍双晶とCube方位の密度をともに高く生成できる可能性がある。   As a result of detailed investigations and studies by the present inventors, it has been found that the formation of twins and Cube orientation during the recrystallization process is affected by the stacking fault energy of the parent phase immediately before the recrystallization. Annealing twins are more easily formed when the stacking fault energy is lower. Conversely, the higher the stacking fault energy, the easier it is for the Cube orientation to be formed. For example, the stacking fault energy is low in the order of brass, pure copper, and pure aluminum. Brass has a high density of annealing twins, but it is difficult to form the Cube orientation. On the other hand, although pure aluminum tends to form a Cube orientation, the density of annealing twins is low. In contrast, pure copper has a relatively high Cube orientation and annealing twin density. Therefore, in a precipitation-type copper alloy whose stacking fault energy is close to that of pure copper, there is a possibility that both the annealing twins and the density of the Cube orientation can be generated high.

焼鈍双晶とCube方位の密度をともに高く生成させるためには、中間焼鈍工程でNi、Co、Siなどを析出して固溶元素量を減少させる。これにより、積層欠陥エネルギーを高くすることができる。中間焼鈍工程を500〜650℃の温度で行い、熱処理時間が0.1〜20時間の範囲内で時効析出させると、良好な結果が得られる。   In order to generate both the annealing twin and the Cube orientation with a high density, Ni, Co, Si and the like are precipitated in the intermediate annealing step to reduce the amount of solid solution elements. Thereby, stacking fault energy can be made high. When the intermediate annealing step is performed at a temperature of 500 to 650 ° C. and the heat treatment time is aging precipitated within a range of 0.1 to 20 hours, good results are obtained.

焼鈍温度が低すぎるか、または焼鈍時間が短すぎると、十分に析出できず、固溶元素量が高くなり導電率の回復が不十分で、積層欠陥エネルギーの向上が少ない。焼鈍温度が高すぎると、固溶元素の固溶限が高くなり、焼鈍時間を長くしても、十分に析出できない。いずれにしても、焼鈍双晶とCube方位の密度をともに高く生成させることができない。具体的には、中間焼鈍工程の際に、中間焼鈍工程後の導電率が40%IACS以上、ビッカ−ス硬さがHV150以下を満たすようにすることが好ましい。   If the annealing temperature is too low, or if the annealing time is too short, sufficient precipitation cannot be achieved, the amount of solid solution elements becomes high, the electrical conductivity is not sufficiently recovered, and the stacking fault energy is little improved. If the annealing temperature is too high, the solid solubility limit of the solid solution element becomes high, and even if the annealing time is extended, sufficient precipitation cannot be achieved. In any case, both the annealing twins and the Cube orientation density cannot be generated high. Specifically, it is preferable that the electrical conductivity after the intermediate annealing step satisfies 40% IACS or higher and the Vickers hardness satisfies HV150 or lower during the intermediate annealing step.

第2の冷間圧延工程
続いて、2度目の冷間圧延である第2の冷間圧延工程を行う。第2の冷間圧延工程では、圧延率を70%以上にするのが好ましい。この第2の冷間圧延工程では、前工程による析出物の存在により、効率よく歪エネルギーを導入することができる。歪エネルギーが不足すると、溶体化処理時に生じる再結晶粒径が不均一になる可能性があるとともに、双晶境界の密度やCube方位を主方位成分とする再結晶集合組織の形成が不十分になる。
2nd cold rolling process Then, the 2nd cold rolling process which is the second cold rolling is performed. In the second cold rolling step, the rolling rate is preferably 70% or more. In the second cold rolling step, strain energy can be efficiently introduced due to the presence of precipitates from the previous step. If the strain energy is insufficient, the recrystallized grain size generated during the solution treatment may become non-uniform, and the density of twin boundaries and the formation of recrystallized texture with the Cube orientation as the main orientation component are insufficient. Become.

溶体化処理工程
従来の溶体化処理は、溶質元素のマトリックス中への再固溶と再結晶化を主目的としていたが、本発明では更に、高い密度の双晶の形成、およびCube方位を主方位成分とする再結晶集合組織の形成をも、重要な目的としている。
Solution Treatment Process Conventional solution treatments were mainly aimed at re-solution and recrystallization of solute elements in the matrix. However, in the present invention, the formation of high-density twins and the Cube orientation are mainly used. The formation of a recrystallized texture as an orientation component is also an important purpose.

この溶体化処理工程では、成分に応じ、800〜1020℃で、10〜600秒間の加熱処理を行うのが好ましい。温度が低すぎると、再結晶が不完全で溶質元素の固溶も不十分となる。また、焼鈍双晶の密度やCube方位を主方位とする成分が低くなる傾向があり、最終的に曲げ加工性に優れ且つ高強度の銅合金板材を得るのが困難になる。一方、温度が高すぎると結晶粒が粗大化してしまい、曲げ加工性の低下を招き易い。   In this solution treatment process, it is preferable to heat-process at 800-1020 degreeC for 10 to 600 second according to a component. If the temperature is too low, recrystallization is incomplete and solute elements are not sufficiently dissolved. In addition, components having an annealing twin density and a Cube orientation as the main orientation tend to be low, and it is finally difficult to obtain a copper alloy sheet material having excellent bending workability and high strength. On the other hand, if the temperature is too high, the crystal grains are coarsened, which tends to cause a decrease in bending workability.

具体的に、溶体化処理工程における加熱工程では、再結晶粒の平均結晶粒径(双晶境界を結晶粒界とみなさない)が3〜60μmとなるように、800〜1020℃域の保持時間および到達温度に設定して熱処理を実施することが望ましく、平均結晶粒径が8〜20μmとなるように調整することが一層好ましい。再結晶粒径が微細になりすぎると、焼鈍双晶の密度が低くなる。また、耐応力緩和特性を向上させる上でも不利となる。再結晶粒径が粗大になりすぎると、曲げ加工部の表面肌荒れが発生し易い。再結晶粒径は、溶体化処理前の冷間圧延率や化学組成によって変動するが、予め実験によりそれぞれの合金について溶体化処理ヒートパターンと平均結晶粒径との関係を求めておくことにより、800〜1020℃域の保持時間および到達温度を設定することができる。具体的には、本発明の化学組成の銅合金では、800〜980℃の温度で10〜600秒間保持する加熱条件が、適正条件として設定できる。   Specifically, in the heating step in the solution treatment step, the holding time in the range of 800 to 1020 ° C. so that the average crystal grain size of recrystallized grains (not considering twin boundaries as crystal grain boundaries) is 3 to 60 μm. In addition, it is desirable to perform the heat treatment at the ultimate temperature, and it is more preferable to adjust the average crystal grain size to 8 to 20 μm. If the recrystallized grain size becomes too fine, the density of the annealing twins becomes low. It is also disadvantageous in improving the stress relaxation resistance. If the recrystallized grain size becomes too large, the surface roughness of the bent portion is likely to occur. The recrystallized grain size varies depending on the cold rolling rate and chemical composition before the solution treatment, but by previously obtaining the relationship between the solution treatment heat pattern and the average crystal grain size for each alloy by experiment, The holding time and ultimate temperature in the 800 to 1020 ° C. region can be set. Specifically, in the copper alloy having the chemical composition of the present invention, a heating condition that is maintained at a temperature of 800 to 980 ° C. for 10 to 600 seconds can be set as an appropriate condition.

溶体化処理工程において、上記の加熱工程後の冷却は、冷却途中の化合物の析出を極力避けるため、析出が起こらない温度まで一気に急冷するのが一般的である。ところが、前述のように、Ni−Si系化合物とCo−Si系化合物の最適な析出温度と時間が一致しない(ずれる)ため、従来は2種類の析出物を同時に十分活用できず、それが、導電率を保持したまま900MPa以上の高い耐力と、更には良好な曲げ加工性、耐応力緩和特性を同時に実現できない原因であった。そこで、本発明では、急冷過程の特定温度域において一定時間保持した後、再度急冷する冷却パターンを用いる。すなわち、本発明では、予めNi−Si系化合物がほとんど析出しない温度域で、Co−Si系化合物を微細に析出させるように冷却を行う。   In the solution treatment step, the cooling after the heating step is generally rapidly cooled to a temperature at which precipitation does not occur in order to avoid precipitation of the compound during cooling as much as possible. However, as described above, the optimal precipitation temperature and time of the Ni—Si compound and the Co—Si compound do not match (deviate), so conventionally two types of precipitates cannot be fully utilized at the same time. This was the reason why high yield strength of 900 MPa or more while maintaining electrical conductivity, and good bending workability and stress relaxation resistance could not be realized at the same time. Therefore, in the present invention, a cooling pattern is used in which the sample is held for a certain time in a specific temperature range in the rapid cooling process and then rapidly cooled. That is, in the present invention, cooling is performed in advance so that the Co—Si compound is finely precipitated in a temperature range where the Ni—Si compound is hardly precipitated.

具体的には、800〜1020℃の加熱温度で熱処理を行う加熱工程の後の冷却パターンは、500〜800℃の温度域まで10℃/s以上、好ましくは50℃/s以上、更に好ましくは100℃/s以上の冷却速度で急冷する第1の急冷工程、その後500〜800℃の温度域で10〜600秒間保持する保温工程、更にその後300℃以下まで再び10℃/s以上、好ましくは50℃/s以上、更に好ましくは100℃/s以上の冷却速度で急冷する第2の急冷工程からなる。なお、前記第1の急冷工程の冷却速度は800〜1020℃から500〜800℃の保温工程の保持温度までの平均冷却速度であり、前記第2の急冷工程の冷却速度は保温工程の保持温度である500〜800℃から300℃以下までの平均冷却速度である。500〜800℃で10〜600秒間の範囲で行う保温工程は、Ni−Si系化合物がほとんど析出しない温度域で、Co−Si系化合物を微細に析出させるためのものである。保温工程の保持温度が高すぎると、Co−Si化合物の析出の駆動力が小さくなり、析出物が少なくなる一方で粗大化しやすい。逆に、保持温度が低すぎると、Co−Si系化合物が析出するのに長時間を要するため、実質上析出が起こらず、従来の製造方法と同様に2種類の析出物を同時に十分活用できない。すなわち、最終的に、良好な導電率を保持したまま900MPa以上の高い耐力と良好な曲げ加工性および優れた耐応力緩和特性を全て満たすことができなくなってしまう。また、保持時間が長すぎると、Co−Si系析出物が粗大化しやすく、保持時間が短すぎると、Co−Si系析出物が少なくなる。   Specifically, the cooling pattern after the heating step in which the heat treatment is performed at a heating temperature of 800 to 1020 ° C. is 10 ° C./s or more, preferably 50 ° C./s or more, more preferably up to a temperature range of 500 to 800 ° C. A first quenching step of quenching at a cooling rate of 100 ° C./s or higher, a heat retaining step of holding for 10 to 600 seconds in a temperature range of 500 to 800 ° C., and then 10 ° C./s or higher again to 300 ° C. or lower, preferably It comprises a second quenching step of quenching at a cooling rate of 50 ° C./s or more, more preferably 100 ° C./s or more. The cooling rate of the first quenching step is an average cooling rate from 800 to 1020 ° C. to the holding temperature of the heat retaining step of 500 to 800 ° C., and the cooling rate of the second quenching step is the holding temperature of the heat retaining step. The average cooling rate from 500 to 800 ° C. to 300 ° C. or less. The heat retention step performed at 500 to 800 ° C. for 10 to 600 seconds is for finely depositing the Co—Si based compound in a temperature range in which the Ni—Si based compound hardly precipitates. If the holding temperature in the heat-holding step is too high, the driving force for precipitation of the Co—Si compound is reduced, and the precipitates are reduced while being easily coarsened. On the other hand, if the holding temperature is too low, it takes a long time for the Co—Si compound to precipitate, so that substantially no precipitation occurs, and two types of precipitates cannot be fully utilized simultaneously as in the conventional manufacturing method. . That is, finally, it becomes impossible to satisfy all of the high yield strength of 900 MPa or more, the good bending workability, and the excellent stress relaxation resistance while maintaining the good electrical conductivity. Further, if the holding time is too long, the Co—Si based precipitates are likely to be coarsened, and if the holding time is too short, the Co—Si based precipitates are reduced.

具体的には、本発明の組成の銅合金では、保温工程は、500〜800℃の温度で10〜600秒間保持することが適正条件と設定できる。550℃〜750℃の温度(または550℃を超え750℃以下の温度)で20〜300秒間保持することが更に好ましく、50〜300秒間保持することが一層好ましい。   Specifically, in the copper alloy having the composition of the present invention, it can be set as an appropriate condition that the heat retention step is held at a temperature of 500 to 800 ° C. for 10 to 600 seconds. It is further preferable to hold at a temperature of 550 ° C. to 750 ° C. (or a temperature exceeding 550 ° C. and not higher than 750 ° C.) for 20 to 300 seconds, and more preferably holding for 50 to 300 seconds.

第1の急冷工程時に、800℃よりも高い温度域まで急冷を行い保温すると、Co−Si系化合物の析出、粗大化が起こりやすく、500℃よりも低い温度域まで急冷を行い保温すると、Co−Si系化合物の析出量が少ない。いずれの場合にも、最終的に高い耐力と良好な曲げ加工性および優れた耐応力緩和特性を全て満たすことができなくなってしまう。   In the first quenching step, if the temperature is kept cool by quenching to a temperature higher than 800 ° C, Co-Si compounds are likely to precipitate and coarsen. If the temperature is kept cool by quenching to a temperature lower than 500 ° C, Co -There is little precipitation amount of Si type compound. In any case, finally, it becomes impossible to satisfy all of the high yield strength, the good bending workability and the excellent stress relaxation characteristics.

溶体化処理工程は、連続炉で一連の流れの中で行うのがコスト的には望ましいが、設備等の制約のために、800〜1020℃に加熱した後300℃以下まで急冷する加熱工程および第1の急冷工程と、再び加熱して500〜800℃で10〜600秒間保持する保温工程および300℃以下まで急冷する第2の急冷工程とに工程を分けて行うこともできる。更に、2つに分けて行う場合は、Co−Si系化合物の析出を更に促進するために、それらの間に50%以下の冷間圧延加工を挟んでもよい。しかしながら、一連の流れで熱処理を行うことで組織制御が可能になるので、コスト面からは、連続炉内で行うことが望ましい。   Although it is desirable in terms of cost to perform the solution treatment step in a series of flows in a continuous furnace, due to restrictions on equipment and the like, a heating step of heating to 800 to 1020 ° C and then rapidly cooling to 300 ° C or less and The process can be divided into a first rapid cooling process, a heat retaining process that is heated again and held at 500 to 800 ° C. for 10 to 600 seconds, and a second rapid cooling process that is rapidly cooled to 300 ° C. or lower. Furthermore, in the case of carrying out two steps, a cold rolling process of 50% or less may be sandwiched between them in order to further promote the precipitation of the Co—Si based compound. However, since the structure can be controlled by performing the heat treatment in a series of flows, it is desirable to perform in a continuous furnace from the viewpoint of cost.

更に、引き続き行うNi−Si系化合物の析出を促進するために、第2の急冷工程後に、50%以下の冷間圧延加工を行ってもよい。しかしながら、熱処理後、圧延前には酸洗浄やバフ研磨など表面性状を改善する工程が必要になり、工程が複雑になると同時にコスト的にも不利になる。本発明の製造方法では、後述する時効処理条件と相まってこの冷間圧延加工を省略することができる。   Further, in order to promote the subsequent precipitation of the Ni—Si compound, a cold rolling process of 50% or less may be performed after the second quenching step. However, after heat treatment and before rolling, a process for improving surface properties such as acid cleaning and buffing is required, which complicates the process and is disadvantageous in terms of cost. In the production method of the present invention, this cold rolling process can be omitted in combination with the aging treatment conditions described later.

以上の加熱工程、第1の急冷工程、保温工程、第2の急冷工程からなる溶体化処理工程は、例えば通常の加熱ゾーンおよび冷却ゾーンで構成される溶体化処理炉を改造し、加熱ゾーン、冷却ゾーン、保温ゾーン、冷却ゾーンの4ゾーンで構成される溶体化処理炉で実施することができる。板材の加熱ゾーンと保温ゾーンの滞在時間は、ゾーンの長さと通板速度の調整で制御できる。また、冷却ゾーンでの冷却速度は冷却ファンの回転速度で制御することが可能である。なお、冷却方法は上記に限定されることなく、水冷、油冷、ガス急冷、ソルトバスによる冷却など冷却速度を制御できれば良い。   The solution treatment process consisting of the above heating process, the first quenching process, the heat retaining process, and the second quenching process is performed by modifying a solution treatment furnace constituted by, for example, a normal heating zone and a cooling zone, It can be implemented in a solution treatment furnace composed of four zones, a cooling zone, a heat retention zone, and a cooling zone. The residence time between the heating zone and the heat insulation zone of the plate can be controlled by adjusting the length of the zone and the plate passing speed. The cooling rate in the cooling zone can be controlled by the rotation speed of the cooling fan. The cooling method is not limited to the above, and it is sufficient that the cooling rate can be controlled, such as water cooling, oil cooling, gas rapid cooling, or cooling with a salt bath.

時効処理工程
続いて行う時効処理は、Ni−Si系化合物の析出が主な目的である。時効処理温度が高くなり過ぎると、Ni−Si系析出物が粗大化しやすく、同時に前述の溶体化処理工程の急冷工程で生成されたCo−Si系析出物も粗大化しやすくなる。一方、時効温度が低過ぎると、Ni−Si系化合物が十分に析出せず、また時効時間を長くする必要があるために生産性の面で不利になる。よって、合金組成に応じて時効処理で硬さがピークになる温度、時間を予め調整して条件を決めるのが好ましい。具体的には、400℃〜500℃で行うのが好ましく、425〜475℃の温度で行うのが更に好ましい。時効処理時間は、概ね1〜10時間程度で良好な結果が得られる。
Aging treatment step The subsequent aging treatment is performed mainly for precipitation of Ni-Si compounds. When the aging treatment temperature is too high, the Ni—Si based precipitates are likely to be coarsened, and at the same time, the Co—Si based precipitates generated in the rapid cooling step of the solution treatment step are also easily coarsened. On the other hand, if the aging temperature is too low, the Ni—Si compound is not sufficiently precipitated, and it is necessary to increase the aging time, which is disadvantageous in terms of productivity. Therefore, it is preferable to determine the conditions by adjusting in advance the temperature and time at which the hardness reaches a peak by aging treatment according to the alloy composition. Specifically, it is preferably performed at 400 to 500 ° C., more preferably at a temperature of 425 to 475 ° C. The aging treatment time is about 1 to 10 hours, and good results are obtained.

仕上げ冷間圧延工程
この仕上げ冷間圧延は、強度レベルの向上、特に0.2%耐力の向上のために重要である。仕上げ冷間圧延の圧延率が低過ぎると、強度を高める効果を十分に得ることができない。一方、仕上げ冷間圧延の圧延率が高過ぎると、TD方向の曲げ加工性が悪くなる可能性がある。
Finish cold rolling process This finish cold rolling is important for improving the strength level, particularly for improving 0.2% proof stress. If the rolling rate of finish cold rolling is too low, the effect of increasing the strength cannot be obtained sufficiently. On the other hand, when the rolling ratio of finish cold rolling is too high, the bending workability in the TD direction may be deteriorated.

この仕上げ冷間圧延の圧延率は、10%以上、好ましくは15%以上にする必要がある。但し、圧延率の上限は80%とし、60%を超えないように設定することが、より望ましい。最終的な板厚としては、板材の用途によるが、概ね0.05〜1.0mmにするのが好ましく、0.08〜0.5mmにするのが更に好ましい。   The rolling rate of this finish cold rolling needs to be 10% or more, preferably 15% or more. However, it is more desirable to set the upper limit of the rolling rate to 80% and not to exceed 60%. The final plate thickness is preferably about 0.05 to 1.0 mm, more preferably 0.08 to 0.5 mm, although it depends on the use of the plate material.

低温焼鈍工程
仕上げ冷間圧延工程の後に、低温焼鈍硬化による強度の向上、板条材の残留応力の低減、ばね限界値と耐応力緩和特性の向上を目的として、低温焼鈍を施すことが好ましい。加熱温度は、150〜550℃になるように設定するのが好ましい。これにより板材内部の残留応力が低減され、導電率を向上させる効果もある。この加熱温度が高過ぎると、短時間で軟化し、バッチ式でも連続式でも特性のバラツキが生じ易くなる。一方、加熱温度が低過ぎると、上述した特性を改善する効果が十分に得られない。加熱時間は5秒以上が好ましく、通常1時間以内で良好な結果が得られる。
Low-temperature annealing step After the finish cold rolling step, it is preferable to perform low-temperature annealing for the purpose of improving the strength by low-temperature annealing hardening, reducing the residual stress of the strip material, and improving the spring limit value and the stress relaxation resistance. The heating temperature is preferably set to 150 to 550 ° C. Thereby, the residual stress inside the plate material is reduced, and there is an effect of improving the electrical conductivity. If this heating temperature is too high, it softens in a short time, and variations in characteristics are likely to occur in both batch and continuous systems. On the other hand, if the heating temperature is too low, the above-described effect of improving the characteristics cannot be obtained sufficiently. The heating time is preferably 5 seconds or longer, and good results are usually obtained within 1 hour.

以下、本発明による銅合金板材の製造方法の実施例について説明する。   Hereinafter, the Example of the manufacturing method of the copper alloy board | plate material by this invention is described.

表1に示す組成の原料をそれぞれ溶解し、縦型半連続鋳造機を用いて鋳造して鋳片を得た。   Each raw material having the composition shown in Table 1 was melted and cast using a vertical semi-continuous casting machine to obtain a slab.

それぞれの鋳片を980℃に加熱し、980℃から500℃まで温度を下げながら熱間圧延を行って厚さ10mmの板材にした後、水冷(10℃/s以上の冷却速度)によって急冷し、その後、表層の酸化層を機械研磨により除去(面削)した。   Each slab is heated to 980 ° C., hot rolled while lowering the temperature from 980 ° C. to 500 ° C. to form a plate having a thickness of 10 mm, and then rapidly cooled by water cooling (cooling rate of 10 ° C./s or more). Thereafter, the surface oxide layer was removed (faced) by mechanical polishing.

次いで、それぞれ圧延率86%で第1の冷間圧延を行った後、本発明を適用した実施例1〜13については、500〜640℃で3〜8時間の中間焼鈍熱処理を行った。実施例1〜13の中間焼鈍後の導電率は40〜57%IACSで、硬さはHV96〜148であった。その後、それぞれ圧延率80〜90%で第2の冷間圧延を行った。   Next, after performing the first cold rolling at a rolling rate of 86%, Examples 1 to 13 to which the present invention was applied were subjected to intermediate annealing heat treatment at 500 to 640 ° C. for 3 to 8 hours. The electric conductivity after the intermediate annealing of Examples 1 to 13 was 40 to 57% IACS, and the hardness was HV 96 to 148. Thereafter, second cold rolling was performed at a rolling rate of 80 to 90%.

次いで、圧延板の表面における(JIS H0501の切断法による)平均結晶粒径が5μmより大きく且つ30μm以下になるように、合金の組成に応じて860〜1000℃の範囲内で調整した温度で1分間保持して、溶体化工程の加熱処理を行った。この加熱処理における温度と時間は、それぞれの実施例の合金の組成に応じて最適な温度と時間を予備実験により求め、決定した。   Next, at a temperature adjusted within the range of 860 to 1000 ° C. according to the composition of the alloy so that the average crystal grain size (by the cutting method of JIS H0501) on the surface of the rolled plate is greater than 5 μm and 30 μm or less. The solution was held for a minute and heat-treated in the solution treatment step. The temperature and time in this heat treatment were determined by determining the optimum temperature and time by preliminary experiments according to the composition of the alloy of each example.

次いで、加熱処理後に、ソルトバスへの浸漬により、700℃の温度まで15℃/s以上の冷却速度で急冷してから、700℃の温度で52秒間保持した後、50℃/s以上の冷却速度で室温まで急冷(水冷)した。その後、450℃で2〜4時間の時効処理を行った。時効処理時間は、合金組成に応じて450℃の時効で硬さがピークになる時間に調整した。   Next, after the heat treatment, it is rapidly cooled to a temperature of 700 ° C. at a cooling rate of 15 ° C./s or more by immersion in a salt bath, and then held at a temperature of 700 ° C. for 52 seconds, and then cooled to 50 ° C./s or more. Rapid cooling (water cooling) to room temperature at a speed. Thereafter, an aging treatment was performed at 450 ° C. for 2 to 4 hours. The aging treatment time was adjusted to a time when the hardness peaked at 450 ° C. according to the alloy composition.

次いで、圧延率15〜55%で仕上げ冷間圧延を行い、最後に425℃で1分間の低温焼鈍を行って、実施例1〜13の銅合金板材を得た。なお、必要に応じて途中で面削を行い、または、第2の冷間圧延工程で圧延率を80〜90%に調整して、銅合金板材の板厚を0.15mmに揃えた。製造条件を表2に示す。   Subsequently, finish cold rolling was performed at a rolling rate of 15 to 55%, and finally low temperature annealing was performed at 425 ° C. for 1 minute to obtain copper alloy sheet materials of Examples 1 to 13. In addition, it chamfered in the middle as needed, or the rolling rate was adjusted to 80 to 90% by the 2nd cold rolling process, and the plate | board thickness of the copper alloy board | plate material was arrange | equalized with 0.15 mm. The manufacturing conditions are shown in Table 2.

次に、得られた各銅合金板材から試料を採取し、双晶境界密度、Cube方位粒の面積率、平均結晶粒径、導電率、強度(0.2%耐力)、曲げ加工性、耐応力緩和特性を、以下のように調べた。   Next, a sample is taken from each of the obtained copper alloy sheet materials, twin boundary density, area ratio of Cube orientation grains, average crystal grain size, conductivity, strength (0.2% proof stress), bending workability, The stress relaxation characteristics were examined as follows.

圧延板材の表面を#1500耐水ペーパーで研磨したのち、表面に研磨ひずみを入れないために振動研磨法で仕上げ研磨し、その表面を、日本電子(株)製FESEM(電界放出形走査電子顕微鏡:Field Emission Scanning Electron Microscope)によるEBSP法により、CSL(対応粒界:Coincidence Site Lattice boundary)の分布図および結晶粒方位分マップ(OIM像)を測定した。Σ3対応粒界(双晶境界に相当)の密度(割合)は、
(Σ3対応粒界の長さの総和)/(粒界の長さの総和)×100(%)
で計算して求めた。また、結晶粒方位分布マップ(OIM像)より、{100}方位との方位差が10°以内にある方位を持つ結晶粒を抽出し、その面積率をCube方位の面積率として求めた。
After polishing the surface of the rolled plate with # 1500 water-resistant paper, the surface is finish-polished by vibration polishing to prevent polishing distortion on the surface, and the surface is FESEM (field emission scanning electron microscope: A distribution map of CSL (coincidence site lattice boundary) and a grain orientation map (OIM image) were measured by an EBSP method using a Field Emission Scanning Electron Microscope). The density (ratio) of Σ3-compatible grain boundaries (corresponding to twin boundaries) is
(Total sum of Σ3-compatible grain boundaries) / (Total sum of grain boundary lengths) x 100 (%)
Calculated with Further, from the crystal grain orientation distribution map (OIM image), crystal grains having an orientation whose orientation difference from the {100} orientation is within 10 ° were extracted, and the area ratio was obtained as the area ratio of the Cube orientation.

平均結晶粒径は、圧延板表面を研磨したのちエッチングし、その面を光学顕微鏡で観察し、JIS H0501の切断法(双晶境界を含めない)で求めた。銅合金板材の導電率は、JIS H0505の導電率測定方法に従って測定した。   The average crystal grain size was determined by polishing the surface of the rolled plate, etching it, observing the surface with an optical microscope, and cutting with JIS H0501 (not including twin boundaries). The conductivity of the copper alloy sheet was measured according to the conductivity measurement method of JIS H0505.

0.2%耐力としては、銅合金板材のLD(圧延方向)の引張試験用の試験片(JIS Z2241の5号試験片)をそれぞれ3個ずつ採取し、JIS Z2241に準拠した引張試験を行い、その平均値を求めた。   As 0.2% proof stress, specimens for tensile test of LD (rolling direction) of copper alloy sheet material (No. 5 test piece of JIS Z2241) were sampled three by 3 and a tensile test based on JIS Z2241 was conducted. The average value was obtained.

また、曲げ加工性を評価するために、銅合金板材から長手方向がLD(圧延方向)の曲げ試験片(幅10mm)とTD(圧延方向および板厚方向に対して垂直な方向)の曲げ試験片(幅10mm)をそれぞれ3個ずつ採取し、それぞれの試験片について、JIS H3110に準拠した90°W曲げ試験を行った。この試験後の試験片について、曲げ加工部の表面および断面を光学顕微鏡によって50倍の倍率で観察して、割れが発生しない最小曲げ半径Rを求め、この最小曲げ半径Rを銅合金板材の板厚tで除することによって、LDとTDのそれぞれのR/t値を求めた。LDおよびTDのそれぞれ3個の試験片のうち、それぞれ最も悪い結果の試験片の結果を採用した。   In addition, in order to evaluate the bending workability, a bending test of a bending test piece (width 10 mm) whose longitudinal direction is LD (rolling direction) and TD (a direction perpendicular to the rolling direction and the plate thickness direction) from a copper alloy plate material. Three pieces (10 mm in width) were each collected, and each test piece was subjected to a 90 ° W bending test according to JIS H3110. For the test piece after this test, the surface and cross section of the bent portion were observed with an optical microscope at a magnification of 50 times to determine the minimum bending radius R at which no cracks occurred, and this minimum bending radius R was determined from the copper alloy sheet. By dividing by the thickness t, each R / t value of LD and TD was determined. Of the three test pieces of LD and TD, the result of the worst test piece was adopted.

更に、各供試材から長手方向がTDの曲げ試験片(幅10mm)を採取し、試験片の長手方向における中央部の表面応力が0.2%耐力の80%の大きさとなるようにアーチ曲げした状態で固定した。なお、表面応力(MPa)は、6Etδ/L として求められる。ただし、Eは弾性係数(MPa)、tは試料の厚さ(mm)、δは試料のたわみ高さ(mm)である。この状態の試験片を大気中150℃の温度で1000時間保持した後の曲げ癖から、応力緩和率(%)を
(L−L)/(L−L)×100(%)
として算出した。ただし、Lは治具の長さ、すなわち試験中に固定されている試料端間の水平距離(mm)、Lは試験開始時の試料長さ(mm)、Lは試験後の試料端間の水平距離(mm)である。
Further, a bending test piece (width 10 mm) having a longitudinal direction of TD is taken from each specimen, and the arch is formed so that the surface stress of the central portion in the longitudinal direction of the test piece is 80% of 0.2% proof stress. Fixed in a bent state. The surface stress (MPa) is obtained as 6 Etδ / L 0 2 . Where E is the elastic modulus (MPa), t is the thickness (mm) of the sample, and δ is the deflection height (mm) of the sample. The stress relaxation rate (%) is (L 1 -L 2 ) / (L 1 -L 0 ) × 100 (%) from the bending habit after holding the test piece in this state at a temperature of 150 ° C. in the atmosphere for 1000 hours.
Calculated as However, L 0 is the length of the jig, that is, the horizontal distance (mm) between the sample ends fixed during the test, L 1 is the sample length (mm) at the start of the test, and L 2 is the sample after the test. Horizontal distance (mm) between ends.

以上のようにして調べた双晶境界密度、Cube方位結晶粒の面積率、平均結晶粒径、導電率、強度(0.2%耐力)、曲げ加工性、耐応力緩和特性の結果を表3に示す。   Table 3 shows the results of the twin boundary density, the area ratio of the Cube-oriented crystal grains, the average crystal grain size, the electrical conductivity, the strength (0.2% proof stress), the bending workability, and the stress relaxation resistance investigated as described above. Shown in

表3に示すように、本発明を適用した実施例1〜13は、いずれも900MPa以上の0.2%耐力、35%IACS以上の導電率、5%以下の応力緩和率、最小曲げ半径Rと板厚tの比R/tが1.5以下の曲げ加工性を有していた。また、図1および図2に示す光学顕微鏡組織写真からわかるように、双晶が極めて多く見られた。双晶境界を測定した結果、実施例1、2の双晶境界密度は、それぞれ73%、78%であった。   As shown in Table 3, in Examples 1 to 13 to which the present invention is applied, 0.2% proof stress of 900 MPa or more, conductivity of 35% IACS or more, stress relaxation rate of 5% or less, minimum bending radius R The sheet thickness t had a ratio R / t of 1.5 or less. In addition, as can be seen from the optical micrographs shown in FIG. 1 and FIG. 2, very many twins were observed. As a result of measuring twin boundaries, the twin boundary densities of Examples 1 and 2 were 73% and 78%, respectively.

また、表1〜3に示すように、本発明の範囲を外れた比較例1〜8の板材を製造し、実施例1〜13と同様に、各板材の性質を調べた。   Moreover, as shown to Tables 1-3, the board | plate material of Comparative Examples 1-8 which remove | deviated from the range of this invention was manufactured, and the property of each board | plate material was investigated similarly to Examples 1-13.

比較例1は、実施例1とほぼ同じ量のNiとCoを有し、Si量が過剰で、(Ni+Co)/Si=3.8となる組成であり、実施例1と同様の製造条件で製造した。得られた銅合金板材は、中間焼鈍後の導電率が低く、硬さの値が高くなった。その結果、図3に示すように双晶が少なく、最終の双晶境界密度、Cube方位粒の面積率ともに低くなった。また、Si量の過剰が原因で、時効処理中の析出物が少なく、結果的に導電率、0.2%耐力、曲げ加工性、耐応力緩和特性ともに、やや低い性能となった。   Comparative Example 1 has substantially the same amounts of Ni and Co as in Example 1, has a composition in which the amount of Si is excessive and (Ni + Co) /Si=3.8, and under the same production conditions as in Example 1. Manufactured. The obtained copper alloy sheet had a low conductivity after intermediate annealing and a high hardness value. As a result, as shown in FIG. 3, there were few twins, and both the final twin boundary density and the area ratio of the Cube-oriented grains were low. Further, due to the excessive amount of Si, there were few precipitates during the aging treatment, and as a result, the conductivity, 0.2% proof stress, bending workability, and stress relaxation resistance were slightly low.

比較例2〜5は、実施例2と同じ組成で、中間焼鈍を行わない場合(比較例2)、または、溶体化処理工程の冷却途中に700℃での保温工程を行わない場合(比較例3〜5)であり、従来の製造方法で製造した銅合金板材である。   Comparative Examples 2 to 5 have the same composition as in Example 2 and do not perform intermediate annealing (Comparative Example 2), or do not perform a heat retention process at 700 ° C. during cooling of the solution treatment process (Comparative Example) 3-5), which is a copper alloy sheet produced by a conventional production method.

比較例2は、中間焼鈍工程を行わないことを除く製造条件は実施例2と同様であり、図4に示すように双晶が少なく、最終の双晶境界密度、Cube方位粒の面積率ともに低くなった。また、曲げ加工性および耐応力緩和特性の性能が低くなった。   In Comparative Example 2, the manufacturing conditions except that the intermediate annealing step is not performed are the same as in Example 2, and there are few twins as shown in FIG. 4, and both the final twin boundary density and the area ratio of the Cube orientation grains are both It became low. Moreover, the performance of bending workability and stress relaxation resistance was lowered.

比較例3は、中間焼鈍工程時の温度が低いこと、および溶体化処理工程の冷却途中に700℃での保温工程を行わないこと以外の製造条件は実施例2と同様であり、最終の双晶境界密度とCube方位粒の面積率とともに低くなった。溶体化処理工程における700℃での保温工程を省略したため、Co−Si系化合物が十分に析出せず、導電率、0.2%耐力、曲げ加工性、耐応力緩和特性ともに、性能が低くなった。   In Comparative Example 3, the manufacturing conditions were the same as in Example 2 except that the temperature during the intermediate annealing process was low, and the heat retention process at 700 ° C. was not performed during the cooling of the solution treatment process. It became low with the crystal boundary density and the area ratio of the Cube-oriented grains. Since the heat retention process at 700 ° C. in the solution treatment process is omitted, the Co—Si compound is not sufficiently precipitated, and the performance is low in terms of conductivity, 0.2% proof stress, bending workability, and stress relaxation resistance. It was.

比較例4は、時効条件としてCo−Si系化合物の最適時効温度と考えられる500℃で6時間時効処理したこと以外は、比較例3と同様の製造条件で製造した。得られた銅合金板材のNi−Si系析出物が既に粗大化していたため、結果的に比較例3よりも導電率および0.2%耐力が高くなったが、本発明を適用した実施例の銅合金と比べると、特性が大幅に劣っていた。   Comparative Example 4 was produced under the same production conditions as Comparative Example 3, except that the aging treatment was performed at 500 ° C., which is considered to be the optimum aging temperature of the Co—Si-based compound, for 6 hours. Since the Ni-Si based precipitates of the obtained copper alloy sheet were already coarsened, as a result, the conductivity and 0.2% proof stress were higher than those of Comparative Example 3, but in the example to which the present invention was applied, Compared with the copper alloy, the characteristics were significantly inferior.

比較例5は、時効条件としてCo−Si系析出物とNi−Si系化合物の最適時効温度の中間位置と考えられる475℃で8時間時効処理したこと以外は、比較例3と同様の製造条件で製造した。得られた銅合金板材は、比較例3および4よりも導電率と0.2%耐力のバランスが改善されたものの、同じ組成の実施例2と比べると、導電率以外の特性が大幅に劣っていた。   Comparative Example 5 is the same production conditions as Comparative Example 3 except that aging treatment was performed at 475 ° C. for 8 hours, which is considered to be an intermediate position between the optimum aging temperatures of the Co—Si based precipitate and the Ni—Si based compound as aging conditions. Manufactured with. Although the obtained copper alloy sheet material has an improved balance between conductivity and 0.2% proof stress as compared with Comparative Examples 3 and 4, the properties other than the conductivity are significantly inferior to those of Example 2 having the same composition. It was.

比較例6は、Niが1.46質量%、Coが2.46質量%、Siが0.82質量%、残部がCu及び不可避不純物からなる組成であり、この原料を溶製し、縦型半連続鋳造機を用いて鋳造して鋳片を得た。Coの添加量が2.0質量%を超え多過ぎたことにより、鋳造過程中に形成した粗大な晶出物が熱間圧延前の加熱中に固溶せず、熱延途中に激しく割れたため、その後の工程を中断した。   Comparative Example 6 is a composition composed of 1.46% by mass of Ni, 2.46% by mass of Co, 0.82% by mass of Si, and the balance of Cu and inevitable impurities. A slab was obtained by casting using a semi-continuous casting machine. Because the amount of Co added is over 2.0% by mass, the coarse crystallized material formed during the casting process did not dissolve during heating before hot rolling and cracked violently during hot rolling. The subsequent process was interrupted.

比較例7は、実施例2と同じ組成であり、中間焼鈍条件が異なること以外は実施例2と同様の製造条件で銅合金板材を製作した。導電率と0.2%耐力は良好であったが、中間焼鈍の温度条件が高すぎたために(前述の特許文献5の条件)、結果的に双晶境界密度とCube方位粒の面積率がともに低くなり、BWの曲げ加工性と耐応力緩和特性がともに悪くなった。   The comparative example 7 was the same composition as Example 2, and manufactured the copper alloy board | plate material on the manufacturing conditions similar to Example 2 except the intermediate annealing conditions differing. Although the electrical conductivity and the 0.2% proof stress were good, the temperature condition of the intermediate annealing was too high (the condition of the above-mentioned Patent Document 5), and as a result, the twin boundary density and the area ratio of the Cube orientation grains were Both became low, and both BW bending workability and stress relaxation resistance deteriorated.

比較例8は、中間焼鈍、および、溶体化処理工程の冷却途中で700℃での保温工程を行わない場合であり、従来の製造方法で製造した銅合金板材である。なお、比較例8は、熱間圧延工程中に、析出物の粗大化を抑制するために、熱間終了温度を(圧延パス毎に、試料を900℃炉中に5min保持して)850℃以上とし、その後15℃/s以上で急冷した。更に、曲げ加工性の低下を抑制するために、時効処理後の仕上げ圧延を行わず、代わりに時効処理前(溶体化処理後)に圧延率50%の冷間圧延を行った。表2に示す製造条件以外は、実施例1と同様の製造条件で製造した。その結果、導電率、0.2%耐力と曲げ加工性は良好であったが、双晶境界密度が低くなり、耐応力緩和特性が悪くなった。   The comparative example 8 is a case where the heat treatment process at 700 ° C. is not performed during the intermediate annealing and cooling in the solution treatment process, and is a copper alloy sheet manufactured by a conventional manufacturing method. In Comparative Example 8, in order to suppress the coarsening of precipitates during the hot rolling process, the hot end temperature was kept at 850 ° C. (holding the sample in a 900 ° C. furnace for 5 min for each rolling pass). After that, it was rapidly cooled at 15 ° C./s or more. Further, in order to suppress a decrease in bending workability, finish rolling after aging treatment was not performed, and cold rolling with a rolling rate of 50% was performed instead before aging treatment (after solution treatment). It manufactured on the manufacturing conditions similar to Example 1 except the manufacturing conditions shown in Table 2. As a result, the conductivity, 0.2% proof stress and bending workability were good, but the twin boundary density was low and the stress relaxation resistance was poor.

以上のように、比較例1〜8は、組成または製造条件が本発明の範囲を外れたことにより、本発明の銅合金板材の性能を具備することができず、いずれの比較例も、本発明を適用した実施例1〜13と比較して、特性が大きく劣っていることがわかった。   As described above, Comparative Examples 1 to 8 cannot have the performance of the copper alloy sheet of the present invention because the composition or manufacturing conditions are out of the scope of the present invention. As compared with Examples 1 to 13 to which the invention was applied, it was found that the characteristics were greatly inferior.

本発明は、高導電率、高強度、および優れた曲げ加工性と耐応力緩和特性を同時に備えた銅合金板材の製造方法として適用できる。   The present invention can be applied as a method for producing a copper alloy sheet having high conductivity, high strength, and excellent bending workability and stress relaxation resistance at the same time.

Claims (2)

1.0〜3.5質量%のNi、0.5〜2.0質量%のCo、0.5〜1.2質量%のSiを含み、かつ、Co/Ni質量比が0.15〜1.5、(Ni+Co)/Si質量比が4〜7であり、残部がCuおよび不可避不純物である組成を有する銅合金の原料を溶解して鋳造する溶解・鋳造工程と、
前記溶解および鋳造工程の後に熱間圧延を行う熱間圧延工程と、
前記熱間圧延工程の後に圧延率70%以上で冷間圧延を行う第1の冷間圧延工程と、
前記第1の冷間圧延工程の後に加熱温度500〜650℃で熱処理を行う中間焼鈍工程と、
前記中間焼鈍工程の後に圧延率70%以上で冷間圧延を行う第2の冷間圧延工程と、
前記第2の冷間圧延工程の後に溶体化処理を行う溶体化処理工程と、
前記溶体化処理工程の後に400〜500℃で時効処理を行う時効処理工程と、
前記時効処理工程の後に、圧延率10〜80%で冷間圧延を行う仕上げ冷間圧延工程と、
前記仕上げ冷間圧延工程の後に、150〜550℃で加熱処理を行う低温焼鈍工程とからなり、
前記中間焼鈍工程の際、前記中間焼鈍工程後の導電率が40%IACS以上、ビッカース硬さがHV150以下を満たすように、500〜650℃で0.1〜20時間熱処理を行い、
前記溶体化処理工程は、800〜1020℃での加熱工程、その後500〜800℃まで10℃/s以上の冷却速度で急冷する第1の急冷工程、500〜800℃で10〜600秒間保持する保温工程、その後300℃以下まで10℃/s以上の冷却速度で急冷する第2の急冷工程を有し、前記溶体化処理工程後の、JIS H0501の切断法を用いて双晶境界を含まずに測定した平均結晶粒径を3〜60μmとし、
圧延面において、EBSP測定による結晶粒界性格及び結晶方位の観察結果を、全結晶粒界中の双晶境界密度が40%以上、Cube方位結晶粒の面積率が20%以上とし、
0.2%耐力が900MPa以上、導電率が30%IACS以上の銅合金板材とすることを特徴とする、銅合金板材の製造方法。
1.0-3.5 mass% Ni, 0.5-2.0 mass% Co, 0.5-1.2 mass% Si are included, and Co / Ni mass ratio is 0.15- 1.5, (Ni + Co) / Si mass ratio of 4-7, melting / casting step of melting and casting a raw material of a copper alloy having a composition in which the balance is Cu and inevitable impurities;
A hot rolling step of performing hot rolling after the melting and casting steps;
A first cold rolling step of performing cold rolling at a rolling rate of 70% or more after the hot rolling step;
An intermediate annealing step in which heat treatment is performed at a heating temperature of 500 to 650 ° C. after the first cold rolling step;
A second cold rolling step of performing cold rolling at a rolling rate of 70% or more after the intermediate annealing step;
A solution treatment step of performing a solution treatment after the second cold rolling step;
An aging treatment step of performing an aging treatment at 400 to 500 ° C. after the solution treatment step;
After the aging treatment step, a finish cold rolling step for cold rolling at a rolling rate of 10 to 80%,
After the finish cold rolling step, it comprises a low temperature annealing step in which heat treatment is performed at 150 to 550 ° C.,
In the intermediate annealing step, heat treatment is performed at 500 to 650 ° C. for 0.1 to 20 hours so that the electrical conductivity after the intermediate annealing step is 40% IACS or more and the Vickers hardness satisfies HV150 or less,
The solution treatment step is a heating step at 800 to 1020 ° C., a first rapid cooling step in which the solution is rapidly cooled to a temperature of 500 to 800 ° C. at a cooling rate of 10 ° C./s or more, and held at 500 to 800 ° C. for 10 to 600 seconds. It has a second quenching step of quenching at a cooling rate of 10 ° C./s or higher to a temperature of 300 ° C. or less, and does not include twin boundaries using the cutting method of JIS H0501 after the solution treatment step. The average crystal grain size measured in 3 to 60 μm,
On the rolling surface, the observation results of the grain boundary character and crystal orientation by EBSP measurement are such that the twin boundary density in all the grain boundaries is 40% or more, and the area ratio of the Cube orientation crystal grains is 20% or more,
A method for producing a copper alloy sheet, characterized in that a 0.2% proof stress is 900 MPa or more and a conductivity is 30% IACS or more.
前記銅合金が、更にFe、Cr、Mg、Mn、Ti、V、Zr、Sn、Zn、Al、B、P、Ag、Beおよびミッシュメタルのうち、少なくとも1種以上を合計0.5質量%以下の範囲で含むことを特徴とする、請求項1に記載の銅合金板材の製造方法。
The copper alloy further includes at least one of Fe, Cr, Mg, Mn, Ti, V, Zr, Sn, Zn, Al, B, P, Ag, Be, and Misch metal in a total amount of 0.5 % by mass. The method for producing a copper alloy sheet according to claim 1, comprising the following range.
JP2015108770A 2010-04-05 2015-05-28 Method for producing copper alloy sheet Active JP6045635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015108770A JP6045635B2 (en) 2010-04-05 2015-05-28 Method for producing copper alloy sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010087120 2010-04-05
JP2010087120 2010-04-05
JP2015108770A JP6045635B2 (en) 2010-04-05 2015-05-28 Method for producing copper alloy sheet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010123756A Division JP5961335B2 (en) 2010-04-05 2010-05-31 Copper alloy sheet and electrical / electronic components

Publications (2)

Publication Number Publication Date
JP2015187308A JP2015187308A (en) 2015-10-29
JP6045635B2 true JP6045635B2 (en) 2016-12-14

Family

ID=54429664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015108770A Active JP6045635B2 (en) 2010-04-05 2015-05-28 Method for producing copper alloy sheet

Country Status (1)

Country Link
JP (1) JP6045635B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021199848A1 (en) * 2020-03-31 2021-10-07 古河電気工業株式会社 Copper alloy sheet material and method for manufacturing same
KR102403910B1 (en) * 2021-11-29 2022-06-02 주식회사 풍산 Method for manufacturing a copper alloy sheet material for automobiles or electric and electronic parts with excellent strength, electrical conductivity and bendability and copper alloy sheet material manufactured therefrom
CN116065053B (en) * 2023-04-03 2023-07-11 凯美龙精密铜板带(河南)有限公司 Copper alloy and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030155050A1 (en) * 2001-09-21 2003-08-21 Industrial Technology Research Institute High-strength and high-conductivity Cu-(Ni, Co, Fe)-Si copper alloy for use in leadframes
US7182823B2 (en) * 2002-07-05 2007-02-27 Olin Corporation Copper alloy containing cobalt, nickel and silicon
JP4596490B2 (en) * 2008-03-31 2010-12-08 Jx日鉱日石金属株式会社 Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP4875768B2 (en) * 2008-06-03 2012-02-15 古河電気工業株式会社 Copper alloy sheet and manufacturing method thereof

Also Published As

Publication number Publication date
JP2015187308A (en) 2015-10-29

Similar Documents

Publication Publication Date Title
JP5961335B2 (en) Copper alloy sheet and electrical / electronic components
JP6039999B2 (en) Cu-Ni-Co-Si based copper alloy sheet and method for producing the same
JP4563495B1 (en) Copper alloy sheet and manufacturing method thereof
JP5578827B2 (en) High-strength copper alloy sheet and manufacturing method thereof
JP6263333B2 (en) Cu-Ti copper alloy sheet, method for producing the same, and current-carrying component
JP4596493B2 (en) Cu-Ni-Si alloy used for conductive spring material
JP5647703B2 (en) High-strength Cu-Ni-Co-Si-based copper alloy sheet, its manufacturing method, and current-carrying parts
JP5261122B2 (en) Copper alloy sheet and manufacturing method thereof
JP5479798B2 (en) Copper alloy sheet, copper alloy sheet manufacturing method, and electric / electronic component
JP5156317B2 (en) Copper alloy sheet and manufacturing method thereof
JP5657311B2 (en) Copper alloy sheet and manufacturing method thereof
JP5466879B2 (en) Copper alloy sheet and manufacturing method thereof
JP6366298B2 (en) High-strength copper alloy sheet material and manufacturing method thereof
WO2012132765A1 (en) Cu-si-co-base copper alloy for electronic materials and method for producing same
JPWO2011068126A1 (en) Copper alloy sheet and manufacturing method thereof
JP2015183263A (en) Cu-Ni-Co-Si-BASED COPPER ALLOY SHEET MATERIAL, MANUFACTURING METHOD THEREOF AND ELECTRIFICATION COMPONENT
JP6045635B2 (en) Method for producing copper alloy sheet
JP3977376B2 (en) Copper alloy
JP5002766B2 (en) High strength copper alloy sheet with excellent bending workability and manufacturing method
JP4904455B2 (en) Copper alloy and manufacturing method thereof
JP4779100B2 (en) Manufacturing method of copper alloy material
JP2012229467A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP6246454B2 (en) Cu-Ni-Si alloy and method for producing the same
JP5595961B2 (en) Cu-Ni-Si based copper alloy for electronic materials and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161115

R150 Certificate of patent or registration of utility model

Ref document number: 6045635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250