JP5972678B2 - Synthesis gas production catalyst and synthesis gas production method - Google Patents

Synthesis gas production catalyst and synthesis gas production method Download PDF

Info

Publication number
JP5972678B2
JP5972678B2 JP2012135218A JP2012135218A JP5972678B2 JP 5972678 B2 JP5972678 B2 JP 5972678B2 JP 2012135218 A JP2012135218 A JP 2012135218A JP 2012135218 A JP2012135218 A JP 2012135218A JP 5972678 B2 JP5972678 B2 JP 5972678B2
Authority
JP
Japan
Prior art keywords
catalyst
synthesis gas
producing synthesis
carbon dioxide
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012135218A
Other languages
Japanese (ja)
Other versions
JP2013255911A (en
Inventor
泰弘 藤本
泰弘 藤本
大島 一典
一典 大島
瀬戸山 亨
亨 瀬戸山
本橋 輝樹
輝樹 本橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Mitsubishi Chemical Corp
Original Assignee
Hokkaido University NUC
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Mitsubishi Chemical Corp filed Critical Hokkaido University NUC
Priority to JP2012135218A priority Critical patent/JP5972678B2/en
Publication of JP2013255911A publication Critical patent/JP2013255911A/en
Application granted granted Critical
Publication of JP5972678B2 publication Critical patent/JP5972678B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)

Description

水素と一酸化炭素との混合ガスである合成ガスは、各種石油化学製品(低級アルコール、炭化水素等)の原料として広く利用されている。合成ガスの製造方法の一つに、メタンと二酸化炭素とを使用するドライリフォーミング反応を用いた方法(以下、ドライリフォーミング法という)がある。ドライリフォーミング反応は、以下の反応式によりメタンおよび二酸化炭素から一酸化炭素および水素を製造する。
CH+CO → 2CO+2H
Syngas, which is a mixed gas of hydrogen and carbon monoxide, is widely used as a raw material for various petrochemical products (such as lower alcohols and hydrocarbons). One of the methods for producing synthesis gas is a method using a dry reforming reaction using methane and carbon dioxide (hereinafter referred to as dry reforming method). In the dry reforming reaction, carbon monoxide and hydrogen are produced from methane and carbon dioxide according to the following reaction formula.
CH 4 + CO 2 → 2CO + 2H 2

このようにドライリフォーミング法にあっては、メタンおよび二酸化炭素から合成ガスを製造できることから二酸化炭素の有効利用が可能になる利点があるが、大きな吸熱を伴う反応であるため反応系を高温(800℃以上)としなければならないという課題がある。そのため、低温でも高活性を示す触媒が求められているが、反応温度を低温化させる報告例は少ない。   As described above, the dry reforming method has an advantage that the synthesis gas can be produced from methane and carbon dioxide, so that carbon dioxide can be effectively used. However, since the reaction involves a large endotherm, the reaction system is heated to a high temperature ( There is a problem that the temperature must be 800 ° C. or higher. Therefore, there is a need for a catalyst that exhibits high activity even at low temperatures, but there are few reports on reducing the reaction temperature.

例えば、特許文献1には、ドライリフォーミング反応の触媒として、シリカ・アルミナファイバーにアルミナを被覆した担体に、ニッケル、希土類酸化物および白金族金属を担持した触媒を用いる形態が開示されており、これによれば600℃でメタンの転化率を65%とすることができる。
しかしながら、特許文献1に開示された技術にあっては、担持金属として希土類酸化物や白金族金属が必要となるため非常に高価なものであり、製造コスト上の問題があった。また、反応条件として炭酸ガスを大過剰に使用することが必要であり非効率であった。
For example, Patent Document 1 discloses a mode in which a catalyst in which nickel, a rare earth oxide, and a platinum group metal are supported on a carrier in which silica / alumina fiber is coated with alumina is used as a catalyst for dry reforming reaction, According to this, the conversion rate of methane can be 65% at 600 ° C.
However, the technique disclosed in Patent Document 1 is very expensive because it requires a rare earth oxide or a platinum group metal as a supported metal, and has a problem in manufacturing cost. Moreover, it was necessary to use a large excess of carbon dioxide as a reaction condition, which was inefficient.

或いは、特許文献2には、ドライリフォーミング反応の触媒として、高純度超微粉単結晶マグネシウムに8族金属元素(具体的にはニッケル)を担持してなる触媒を用いる形態が開示されており、600℃程度に反応温度を低下させることができる。
しかしながら、特許文献2に開示された技術にあっては、高純度超微粉単結晶マグネシウムを得るためには、酸化マグネシウム蒸気を用いた気相酸化等の複雑な製造工程が必要であり、触媒の製造方法として実用的なものではなかった。
Alternatively, Patent Document 2 discloses a form in which a catalyst obtained by supporting a Group 8 metal element (specifically, nickel) on high-purity ultrafine single crystal magnesium as a catalyst for dry reforming reaction, The reaction temperature can be lowered to about 600 ° C.
However, in the technique disclosed in Patent Document 2, in order to obtain high-purity ultrafine single crystal magnesium, a complicated manufacturing process such as vapor phase oxidation using magnesium oxide vapor is required. It was not practical as a manufacturing method.

特開平5−270802号公報Japanese Patent Laid-Open No. 5-270802 特開平5−208801号公報JP-A-5-208801

そこで本発明は、低温且つ高効率でドライリフォーミング反応を進行させ得るとともに、担持金属に安価な金属を用い、かつ容易に製造可能な合成ガス製造用触媒、並びに、当該触媒を用いた合成ガスの製造方法を提供することを課題とする。   Therefore, the present invention is capable of proceeding a dry reforming reaction at a low temperature and with high efficiency, and using a cheap metal as a supported metal and easily producing a catalyst for synthesis gas, and a synthesis gas using the catalyst It is an object to provide a manufacturing method.

本発明者らは上記の課題を解決すべく鋭意検討した結果、合成ガス製造用触媒において担持金属としてニッケルを用い、且つ、担体としてMnや所定のアルカリ土類金属等を含む酸素欠損ペロブスカイト型の複合酸化物を用いることで、触媒表面への炭素析出を抑制しつつ低温且つ高効率でドライリフォーミング反応により合成ガスを製造することができることを知見した。   As a result of intensive studies to solve the above problems, the present inventors have used an oxygen-deficient perovskite type catalyst that uses nickel as a support metal in a catalyst for syngas production and contains Mn, a predetermined alkaline earth metal, or the like as a support. It has been found that by using a composite oxide, synthesis gas can be produced by a dry reforming reaction at a low temperature and with high efficiency while suppressing carbon deposition on the catalyst surface.

本発明は上記知見に基づいてなされたものである。すなわち、
第1の本発明は、炭素数1〜5の炭化水素を含む原料ガスおよび二酸化炭素に接触させ、一酸化炭素と水素とを主成分とする合成ガスを製造する合成ガス製造用触媒であって、触媒が、下記式(1)または(2)で表される金属酸化物に、Niを担持したものであることを特徴とする合成ガス製造用触媒である。
(Ba1−x(1−y)(1+y)(Mn2−z)O5+α…(1)
(式(1)において、
A:Ba以外のアルカリ土類金属の1種または2種以上、
B:Y、希土類元素およびCaのうちの1種または2種以上、
C:FeおよびCoのうちの1種または2種、
x:0≦x≦1.0、
y:0≦y≦0.5、
z:0≦z≦2.0、
α:0≦α≦1.0である。)
(Ca2−p)(Mn2−q)O5+β…(2)
(式(2)において、
D:Ca以外のアルカリ土類金属の1種または2種以上、
E:Al、Fe、CoおよびGaのうちの1種または2種以上、
p:0≦p≦2.0、
q:0≦q≦2.0、
β:0≦β≦0.5である。)
The present invention has been made based on the above findings. That is,
A first aspect of the present invention is a synthesis gas production catalyst for producing a synthesis gas mainly composed of carbon monoxide and hydrogen by contacting a raw material gas containing a hydrocarbon having 1 to 5 carbon atoms and carbon dioxide. The catalyst for synthesis gas production is characterized in that the catalyst is a metal oxide represented by the following formula (1) or (2) and Ni is supported.
(Ba 1-x A x ) (1-y) B (1 + y) (Mn 2−z C z ) O 5 + α (1)
(In Formula (1),
A: One or more alkaline earth metals other than Ba,
B: one or more of Y, rare earth elements and Ca,
C: one or two of Fe and Co,
x: 0 ≦ x ≦ 1.0,
y: 0 ≦ y ≦ 0.5,
z: 0 ≦ z ≦ 2.0,
α: 0 ≦ α ≦ 1.0. )
(Ca 2−p D p ) (Mn 2−q E q ) O 5 + β (2)
(In Formula (2),
D: One or more alkaline earth metals other than Ca,
E: One or more of Al, Fe, Co and Ga,
p: 0 ≦ p ≦ 2.0,
q: 0 ≦ q ≦ 2.0,
β: 0 ≦ β ≦ 0.5. )

第1の本発明において、金属酸化物がBaYMn5+αであることが好ましい。 In the first aspect of the present invention, the metal oxide is preferably BaYMn 2 O 5 + α .

第1の本発明において、金属酸化物がCaAlMnO5+βであることも好ましい。 In the first aspect of the present invention, the metal oxide is preferably Ca 2 AlMnO 5 + β .

第2の本発明は、炭素数1〜5の炭化水素を含む原料ガスおよび二酸化炭素を、第1の本発明に係る合成ガス製造用触媒と接触させ、一酸化炭素および水素を主成分とする合成ガスを製造することを特徴とする、合成ガスの製造方法である。   In the second aspect of the present invention, a raw material gas containing a hydrocarbon having 1 to 5 carbon atoms and carbon dioxide are brought into contact with the synthesis gas production catalyst according to the first aspect of the present invention, and carbon monoxide and hydrogen are the main components. A method for producing synthesis gas, comprising producing synthesis gas.

第2の本発明において、原料ガスおよび二酸化炭素を接触させる際に空気または酸素を共存させることが好ましい。   In the second aspect of the present invention, it is preferable that air or oxygen coexist when the raw material gas and carbon dioxide are brought into contact with each other.

第2の本発明において、原料ガスがメタンを含むものであることが好ましい。   In the second aspect of the present invention, the raw material gas preferably contains methane.

原料ガスとしてメタンを用いる第2の本発明において、二酸化炭素のメタンに対するモル比(CO/CH)が1以上5以下であることが好ましい。 In the second aspect of the present invention in which methane is used as the source gas, the molar ratio of carbon dioxide to methane (CO 2 / CH 4 ) is preferably 1 or more and 5 or less.

本発明においては、担体としてMnを含む酸素欠損ペロブスカイト型の複合酸化物を用い、且つ、担持金属としてニッケルを用いることで、ドライリフォーミング反応を低温且つ高効率なものとすることができる。すなわち、貴金属等の高価な担持金属が不要であり、また、担体である複合酸化物も容易に製造することができるものである。そして本発明により、触媒劣化による活性低下を抑制することができる。すなわち、本発明によれば、ドライリフォーミング反応を低温且つ高効率なものとすることができ、担持金属に安価なNiを用い、かつ容易に製造可能で、寿命の長い合成ガス製造用触媒、並びに、当該触媒を用いた合成ガスの製造方法を提供することができる。   In the present invention, by using an oxygen-deficient perovskite-type composite oxide containing Mn as a carrier and using nickel as a supported metal, the dry reforming reaction can be performed at a low temperature and with high efficiency. That is, an expensive supported metal such as a noble metal is unnecessary, and a complex oxide as a support can be easily produced. And by this invention, the activity fall by catalyst deterioration can be suppressed. That is, according to the present invention, the dry reforming reaction can be performed at a low temperature and with high efficiency, inexpensive Ni can be used for the supported metal, and the catalyst can be easily manufactured and has a long life, In addition, a method for producing synthesis gas using the catalyst can be provided.

<合成ガス製造用触媒>
本発明に係る合成ガス製造用触媒は、下記式(1)または(2)で表される金属酸化物に、Niを担持したものであることを特徴とする。
(Ba1−x(1−y)(1+y)(Mn2−z)O5+α…(1)
(式(1)において、
A:Ba以外のアルカリ土類金属の1種または2種以上、
B:Y、希土類元素およびCaのうちの1種または2種以上、
C:FeおよびCoのうちの1種または2種、
x:0≦x≦1.0、
y:0≦y≦0.5、
z:0≦z≦2.0、
α:0≦α≦1.0である。)
(Ca2−p)(Mn2−q)O5+β…(2)
(式(2)において、
D:Ca以外のアルカリ土類金属の1種または2種以上、
E:Al、Fe、CoおよびGaのうちの1種または2種以上、
p:0≦p≦2.0、
q:0≦q≦2.0、
β:0≦β≦0.5である。)
<Catalyst for synthesis gas production>
The catalyst for producing synthesis gas according to the present invention is characterized in that Ni is supported on a metal oxide represented by the following formula (1) or (2).
(Ba 1-x A x ) (1-y) B (1 + y) (Mn 2−z C z ) O 5 + α (1)
(In Formula (1),
A: One or more alkaline earth metals other than Ba,
B: one or more of Y, rare earth elements and Ca,
C: one or two of Fe and Co,
x: 0 ≦ x ≦ 1.0,
y: 0 ≦ y ≦ 0.5,
z: 0 ≦ z ≦ 2.0,
α: 0 ≦ α ≦ 1.0. )
(Ca 2−p D p ) (Mn 2−q E q ) O 5 + β (2)
(In Formula (2),
D: One or more alkaline earth metals other than Ca,
E: One or more of Al, Fe, Co and Ga,
p: 0 ≦ p ≦ 2.0,
q: 0 ≦ q ≦ 2.0,
β: 0 ≦ β ≦ 0.5. )

式(1)に係る金属酸化物において、AはBa以外のアルカリ土類金属の1種または2種以上であり、Srが好ましい。BはY、希土類元素およびCaのうちの1種または2種以上であり、好ましくはY、La、Ybである。CはFeおよびCoのうちの1種または2種である。xは0≦x≦1.0であり、好ましくは0≦x≦0.5、より好ましくはx=0である。yは0≦y≦0.5であり、好ましくは0≦y≦0.25、より好ましくはy=0である。zは0≦z≦2.0であり、好ましくは0≦z≦1.0、より好ましくはz=0である。酸素量αは、0〜1.0の範囲で任意の値を取る。式(1)に係る具体的な金属酸化物としては、好ましくはBaYMn5+αである。 In the metal oxide according to the formula (1), A is one or more of alkaline earth metals other than Ba, and Sr is preferable. B is one or more of Y, rare earth elements and Ca, preferably Y, La and Yb. C is one or two of Fe and Co. x is 0 ≦ x ≦ 1.0, preferably 0 ≦ x ≦ 0.5, and more preferably x = 0. y is 0 ≦ y ≦ 0.5, preferably 0 ≦ y ≦ 0.25, and more preferably y = 0. z is 0 ≦ z ≦ 2.0, preferably 0 ≦ z ≦ 1.0, and more preferably z = 0. The oxygen amount α takes an arbitrary value in the range of 0 to 1.0. The specific metal oxide according to the formula (1) is preferably BaYMn 2 O 5 + α .

式(2)に係る金属酸化物において、DはCa以外のアルカリ土類金属の1種または2種以上であり、Srが好ましい。EはAl、Fe、CoおよびGaのうちの1種または2種以上であり、好ましくはAlである。pは0≦p≦2.0であり、好ましくは0≦p≦1.0、より好ましくはp=0である。qは0≦q≦2.0であり、好ましくは0≦q≦1.5、より好ましくはq=1である。酸素量βは、0〜0.5の範囲で任意の値をとる。式(2)に係る具体的な金属酸化物としては、好ましくはCa AlMnO 5+β である。
In the metal oxide according to the formula (2), D is one or more of alkaline earth metals other than Ca, and Sr is preferable. E is one or more of Al, Fe, Co and Ga, preferably Al. p is 0 ≦ p ≦ 2.0, preferably 0 ≦ p ≦ 1.0, and more preferably p = 0. q is 0 ≦ q ≦ 2.0, preferably 0 ≦ q ≦ 1.5, and more preferably q = 1. The oxygen amount β takes an arbitrary value in the range of 0 to 0.5. The specific metal oxide according to the formula (2) is preferably Ca 2 AlMnO 5 + β .

式(1)または(2)に係る金属酸化物は、例えば、特開2011−16684号公報や特開2011−121829号公報に開示された方法により、複雑な処理を必要とすることなく容易に得ることができる。具体的には、式(1)に係るBaYMn5+αを固相法により得る場合は、Y、BaCO、Mn等の固相法に適した出発原料を、Ba:Y:Mn=1:1:2となるように混合し、混合粉末をか焼し、前駆体を得る。得られた前駆体を、任意にFeO等の酸素ゲッター剤を設置した系内にて焼成することで単相のBaYMn5+αを得ることができる。或いは、式(2)に係るCa AlMnO 5+β を錯体重合法により得る場合は、CaCO、Al、Mn等の錯体重合法に適した出発原料を濃硝酸に溶かし、EDTA/NH溶液を加えて錯体化する。EDTA錯体溶液のpHを調整した後、加熱して乾燥し、さらに燃焼して前駆体を得る。得られた前駆体をか焼した後で焼成することで、単相のCa AlMnO 5+β を得ることができる。
The metal oxide according to the formula (1) or (2) can be easily obtained without the need for complicated processing, for example, by the method disclosed in JP2011-16684A or JP2011-121829A. Can be obtained. Specifically, when BaYMn 2 O 5 + α according to the formula (1) is obtained by a solid phase method, a starting material suitable for the solid phase method such as Y 2 O 3 , BaCO 3 , Mn 2 O 3 is used as Ba: Mixing is performed so that Y: Mn = 1: 1: 2, and the mixed powder is calcined to obtain a precursor. Single-phase BaYMn 2 O 5 + α can be obtained by firing the obtained precursor in a system in which an oxygen getter agent such as FeO is optionally installed. Alternatively, when Ca 2 AlMnO 5 + β according to formula (2) is obtained by a complex polymerization method, a starting material suitable for the complex polymerization method such as CaCO 3 , Al, Mn 2 O 3 is dissolved in concentrated nitric acid, and EDTA / NH 3 Add solution to complex. After adjusting the pH of the EDTA complex solution, it is heated and dried, and further burned to obtain a precursor. Single-phase Ca 2 AlMnO 5 + β can be obtained by calcining the obtained precursor after calcining.

ただし、本発明において上記の金属酸化物を得る方法は、これらに限定されるものではない。固相法やゾル・ゲル法、水熱合成法、無機塩分解法、共沈法等、複合酸化物の合成方法として公知の方法をいずれも採用することができる。   However, the method for obtaining the metal oxide in the present invention is not limited to these. Any known method for synthesizing a composite oxide, such as a solid phase method, a sol-gel method, a hydrothermal synthesis method, an inorganic salt decomposition method, or a coprecipitation method, can be employed.

本発明に係る合成ガス製造用触媒においては、貴金属等の高価な担持金属を必要とせず、上記の金属酸化物を担体として、ここにNiを担持するだけで、例えば600℃程度の低温域でドライリフォーミング反応を進行させることができる。担体へのNiの担持方法については特に限定されるものではなく、公知の方法をいずれも適用可能である。例えば、式(1)または(2)に係る金属酸化物の粉末を、硝酸ニッケル水溶液等のNiを含んだ水溶液に浸漬し、溶媒を蒸発させて乾固し、これを焼成することにより粉末担体にNiを担持することができる。   In the catalyst for producing synthesis gas according to the present invention, an expensive supported metal such as a noble metal is not required, and the above-mentioned metal oxide is used as a support, and Ni is supported thereon, for example, in a low temperature range of about 600 ° C. The dry reforming reaction can proceed. The method for supporting Ni on the carrier is not particularly limited, and any known method can be applied. For example, the metal oxide powder according to the formula (1) or (2) is immersed in an aqueous solution containing Ni, such as an aqueous nickel nitrate solution, evaporated to dryness, and fired. Ni can be supported on the substrate.

Niの担持量は特に限定されるものではないが、触媒全体を100質量%として、Ni量が好ましくは0.5〜20質量%、より好ましくは0.75〜10質量%となるように調製する。本発明においては、担体として所定の酸素欠損ペロブスカイト型金属酸化物を用いているため、Ni担持量が少量であっても高い触媒活性を有する合成ガス製造用触媒とすることが可能である。なお、実際にドライリフォーミング反応に供する場合は、事前に触媒を還元処理しておくことが好ましい。還元処理は水素含有雰囲気下で加熱を行う等、種々の方法を採用できる。   The amount of Ni supported is not particularly limited, but the total amount of the catalyst is 100% by mass, and the Ni amount is preferably 0.5 to 20% by mass, more preferably 0.75 to 10% by mass. To do. In the present invention, since a predetermined oxygen-deficient perovskite metal oxide is used as a carrier, a catalyst for syngas production having high catalytic activity can be obtained even if the amount of Ni supported is small. In addition, when actually subjecting to dry reforming reaction, it is preferable to reduce the catalyst in advance. For the reduction treatment, various methods such as heating in a hydrogen-containing atmosphere can be adopted.

以上の通り、本発明に係る合成ガス製造用触媒は、所定の酸素欠損ペロブスカイト型金属酸化物にNiを担持したものであればよく、その形態は粉末であってもよいし、顆粒やペレット等の成形体としてもよい。また、触媒そのものを上記形状に成形してもよいが、支持基材に担持してもよい。支持基材としては、特に限定されないが、シリカ、アルミナ、マグネシア、カルシア、ジルコニア、セリア、ゼオライト等を用いることができる。   As described above, the synthesis gas production catalyst according to the present invention may be any catalyst as long as Ni is supported on a predetermined oxygen-deficient perovskite-type metal oxide, and its form may be powder, granule, pellet, etc. It is good also as a molded object. Further, the catalyst itself may be formed into the above shape, but may be supported on a support base material. The support substrate is not particularly limited, and silica, alumina, magnesia, calcia, zirconia, ceria, zeolite, and the like can be used.

上記式(1)または(2)で表されるような酸素欠損ペロブスカイト型金属酸化物は、Mn2+とMn3+あるいはMn3+とMn4+の酸化還元反応によって、可逆的に結晶格子内に酸素を吸蔵し、また、結晶格子から格子酸素を放出する特性を有しており、本発明のようなドライリフォーミング反応により合成ガスを製造する際は、Niの表面に存在する酸素を吸収して適切に純金属表面(すなわち反応活性点)を維持させ、Niを触媒反応に継続的に寄与させることが可能である。また、酸素欠損ペロブスカイト型金属酸化物から放出された反応性の高い酸素により炭素を容易に酸化除去することができるため、触媒表面のコーキングを防止でき、長期間に亘って触媒活性を維持することが可能である。特に、本発明者らは鋭意研究の結果、式(1)または(2)に係る金属酸化物が極めて優れた酸素吸収・放出能を有し、また、触媒担体として、ドライリフォーミング反応における温度条件や反応雰囲気との相性も極めて良好であり、貴金属を用いずともNiを担持するだけで、ドライリフォーミング反応を低温にて進行させることができることを知見し、本発明を完成させたのである。 The oxygen-deficient perovskite metal oxide represented by the above formula (1) or (2) reversibly absorbs oxygen into the crystal lattice by a redox reaction of Mn 2+ and Mn 3+ or Mn 3+ and Mn 4+. It has the characteristics of occluding and releasing lattice oxygen from the crystal lattice, and when producing synthesis gas by dry reforming reaction as in the present invention, it absorbs oxygen present on the surface of Ni and appropriately It is possible to maintain the pure metal surface (that is, the reaction active point) and to continuously contribute Ni to the catalytic reaction. In addition, the highly reactive oxygen released from oxygen-deficient perovskite-type metal oxides can easily oxidize and remove carbon, thus preventing coking of the catalyst surface and maintaining the catalytic activity for a long period of time. Is possible. In particular, as a result of intensive studies, the inventors of the present invention have found that the metal oxide according to the formula (1) or (2) has an extremely excellent oxygen absorption / release capability, and as a catalyst support, the temperature in the dry reforming reaction. It was found that the compatibility with the conditions and the reaction atmosphere was extremely good, and that the dry reforming reaction could proceed at a low temperature simply by supporting Ni without using a noble metal, and the present invention was completed. .

<合成ガスの製造方法>
本発明に係る合成ガスの製造方法は、上記した合成ガス製造用触媒を用いてドライリフォーミング反応により合成ガスを製造する方法であり、具体的には、炭素数1〜5の炭化水素を含む原料ガスおよび二酸化炭素を、本発明の合成ガス製造用触媒と接触させることに特徴を有する。
<Method for producing synthesis gas>
The method for producing synthesis gas according to the present invention is a method for producing synthesis gas by a dry reforming reaction using the above-described catalyst for producing synthesis gas, and specifically includes a hydrocarbon having 1 to 5 carbon atoms. It is characterized by bringing the raw material gas and carbon dioxide into contact with the synthesis gas production catalyst of the present invention.

この場合において、原料ガスおよび二酸化炭素を触媒と接触させる際には空気または酸素を共存させることが好ましい。ドライリフォーミング反応においては大きな吸熱反応を伴う。そこで、原料ガスおよび二酸化炭素を触媒と接触させる際に、空気または酸素を共存させることで、原料である炭化水素の一部を酸化して得られる燃焼熱によってドライリフォーミングにおける吸熱反応を補助・促進することができる。また、反応系内に酸素が存在することで担体に酸素が吸蔵されるため、触媒表面において局所的に酸素が欠乏した場合でも、担体内の格子酸素を利用して炭素の酸化除去等を継続することが可能であり、コーキングによる触媒活性の劣化を防ぐことが可能である。   In this case, it is preferable that air or oxygen coexist when the source gas and carbon dioxide are brought into contact with the catalyst. The dry reforming reaction involves a large endothermic reaction. Therefore, when the source gas and carbon dioxide are brought into contact with the catalyst, air or oxygen is allowed to coexist so that the endothermic reaction in dry reforming is assisted by the combustion heat obtained by oxidizing part of the hydrocarbon as the source. Can be promoted. In addition, since oxygen is occluded in the support due to the presence of oxygen in the reaction system, even when oxygen is locally deficient on the catalyst surface, carbon is removed by oxidation using lattice oxygen in the support. It is possible to prevent deterioration of catalytic activity due to coking.

原料ガスに含まれる炭素数1〜5の炭化水素としては、例えば、メタン、エタン、プロパン、ブタン、ペンタン、エチレン、プロピレン等が挙げられる。特に分解反応を生じさせ易く、合成ガスをより容易に製造できる観点から、二重結合を有さない飽和炭化水素が好ましく、中でもメタンが最も好ましい。   Examples of the hydrocarbon having 1 to 5 carbon atoms contained in the source gas include methane, ethane, propane, butane, pentane, ethylene, and propylene. In particular, saturated hydrocarbons having no double bond are preferable, and methane is most preferable from the viewpoint of easily causing a decomposition reaction and more easily producing synthesis gas.

原料ガスにメタンを含ませる場合は、二酸化炭素のメタンに対するモル比(CO/CH)が1以上5以下となるように調整することが好ましい。より好ましくはモル比(CO/CH)が1.5以上、特に好ましくは2以上、好ましくは4以下、特に好ましくは3以下である。二酸化炭素のメタンに対するモル比を当該範囲内とすることにより、高いメタン転化率を得ることができる。また、本発明に係る合成ガスの製造方法においては、従来ほど大過剰のCOを必要とせず、製造効率に優れている。 When methane is included in the source gas, it is preferable to adjust the molar ratio of carbon dioxide to methane (CO 2 / CH 4 ) to be 1 or more and 5 or less. More preferably, the molar ratio (CO 2 / CH 4 ) is 1.5 or more, particularly preferably 2 or more, preferably 4 or less, particularly preferably 3 or less. By setting the molar ratio of carbon dioxide to methane within the range, a high methane conversion rate can be obtained. In addition, the method for producing synthesis gas according to the present invention does not require a large excess of CO 2 as in the prior art, and is excellent in production efficiency.

本発明に係る合成ガスの製造方法において、原料ガスや二酸化炭素のSV値については特に限定されるものではない。例えばSV=1000〜10000程度とすることができる。また、上述の通り、反応温度については、本発明に係る合成ガス製造用触媒を用いることで、600℃程度、具体的には500℃〜1100℃、好ましくは550℃〜900℃、より好ましくは600℃〜750℃と低温域にてドライリフォーミング反応を進行させることができる。特に、得られる合成ガスのH/CO比は低温ほど小さくなるため、本発明の触媒を用いれば、H/CO比の小さい合成ガスを容易に製造することができる。従来のドライリフォーミング触媒は、高温条件下ではH/CO比が1以下の合成ガスを得ることが難しかったが、本触媒は反応温度を低温化できるので0.5〜1程度の合成ガスを容易に合成することができる。さらに、反応圧力は0.1〜5MPaG、好ましくは0.3〜3MPaGである。また、本触媒を用いた合成ガスの製造においては、二酸化炭素とともにスチームを導入してもよく、スチームと二酸化炭素の割合(HO/CO)は特に制限されないが、0.1〜10である。 In the method for producing synthesis gas according to the present invention, the SV value of the raw material gas or carbon dioxide is not particularly limited. For example, it can be set to about SV = 1000 to 10,000. As described above, the reaction temperature is about 600 ° C., specifically 500 ° C. to 1100 ° C., preferably 550 ° C. to 900 ° C., more preferably, by using the synthesis gas production catalyst according to the present invention. The dry reforming reaction can proceed at a low temperature range of 600 ° C to 750 ° C. In particular, since the H 2 / CO ratio of the resulting synthesis gas becomes smaller at lower temperatures, a synthesis gas having a small H 2 / CO ratio can be easily produced by using the catalyst of the present invention. Conventional dry reforming catalysts have had difficulty in obtaining a synthesis gas having an H 2 / CO ratio of 1 or less under high temperature conditions, but the present catalyst can lower the reaction temperature, so a synthesis gas of about 0.5 to 1 can be obtained. Can be easily synthesized. Furthermore, the reaction pressure is 0.1 to 5 MPaG, preferably 0.3 to 3 MPaG. Further, in the production of synthesis gas using this catalyst, steam may be introduced together with carbon dioxide, and the ratio of steam to carbon dioxide (H 2 O / CO 2 ) is not particularly limited, but is 0.1 to 10 It is.

以上の通り、本発明によれば、コーキングによる触媒劣化を抑制しつつ、低温且つ高効率でドライリフォーミング反応を進行させることができ、安価で容易に製造可能な合成ガス製造用触媒、並びに、当該触媒を用いた合成ガスの製造方法を提供することができる。   As described above, according to the present invention, a catalyst for syngas production that can proceed with a dry reforming reaction at low temperature and high efficiency while suppressing catalyst deterioration due to coking, and can be easily produced at low cost, and A method for producing synthesis gas using the catalyst can be provided.

以下、実施例により本発明をさらに具体的に説明するが、本発明は、その要旨を超えない限り、以下の実施例により制限されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not restrict | limited by a following example, unless the summary is exceeded.

<触媒の調製>
(実施例1)
担体としてBaYMn5+αを準備した。BaYMn5+αは特開2011−16684号公報に記載された方法にしたがって合成した。得られたBaYMn5+αに以下の通りにNiを担持させた。
<Preparation of catalyst>
Example 1
BaYMn 2 O 5 + α was prepared as a carrier. BaYMn 2 O 5 + α was synthesized according to the method described in JP2011-16684A. The obtained BaYMn 2 O 5 + α was supported with Ni as follows.

0.297gの硝酸ニッケル・6水和物(キシダ化学社製)を純水20mlに溶解させて硝酸ニッケル水溶液とした。得られた硝酸ニッケル水溶液に2gのBaYMn5+αを加え、蒸発乾固させて前駆体を得た。得られた前駆体を空気雰囲気下、700℃で2時間焼成して実施例1に係る触媒(担体:BaYMn5+α、Ni担持量:3重量%)を得た。 0.297 g of nickel nitrate hexahydrate (manufactured by Kishida Chemical Co., Ltd.) was dissolved in 20 ml of pure water to obtain a nickel nitrate aqueous solution. 2 g of BaYMn 2 O 5 + α was added to the obtained aqueous nickel nitrate solution and evaporated to dryness to obtain a precursor. The obtained precursor was calcined at 700 ° C. for 2 hours in an air atmosphere to obtain a catalyst according to Example 1 (support: BaYMn 2 O 5 + α , Ni supported amount: 3 wt%).

(実施例2)
担体としてCa AlMnO 5+β を用いたこと以外は、実施例1と同様にしてNiを担持し、実施例2に係る触媒(担体:Ca AlMnO 5+β 、Ni担持量:3重量%)を得た。なお、Ca AlMnO 5+β は特開2011−121829号公報に記載された方法にしたがって合成した。
(Example 2)
Except that Ca 2 AlMnO 5 + β was used as a support, Ni was supported in the same manner as in Example 1 to obtain a catalyst according to Example 2 (support: Ca 2 AlMnO 5 + β , Ni supported amount: 3 wt%). . Ca 2 AlMnO 5 + β was synthesized according to the method described in JP2011-121829A.

(比較例1)
担体としてマグネシア(MgO)を用いたこと以外は、実施例1と同様にしてNiを担持し、比較例1に係る触媒(担体:MgO、Ni担持量:3重量%)を得た。なお、マグネシアは、水酸化マグネシウム(キシダ化学社製)を空気雰囲気下、800℃で2時間焼成して得られたものである。
(Comparative Example 1)
Except that magnesia (MgO) was used as a support, Ni was supported in the same manner as in Example 1 to obtain a catalyst according to Comparative Example 1 (support: MgO, Ni supported amount: 3% by weight). In addition, magnesia is obtained by baking magnesium hydroxide (Kishida Chemical Co., Ltd.) at 800 ° C. for 2 hours in an air atmosphere.

<触媒活性評価>
実施例1、2および比較例1に係る触媒について、それぞれ触媒活性評価を行った。
触媒0.1gをガラス反応管に充填し、4%水素気流中、750℃で1時間還元処理を行った。その後、モル比でCO/CH=1とした原料ガスを、大気圧下、反応温度600℃、650℃、700℃または800℃、SV値6000hr−1の条件で触媒層に流通させた。触媒層を通過したガスをmicro−GC装置(VARIAN社製CP−4900)で分析し、CH転化率およびH/CO比を求めた。なお、CH転化率は下記式により算出した。結果を表1に示す。
CH転化率=(1−生成物中のCHのモル数/原料ガス中のCHのモル数)×100
<Catalyst activity evaluation>
For the catalysts according to Examples 1 and 2 and Comparative Example 1, the catalytic activity was evaluated.
0.1 g of the catalyst was filled in a glass reaction tube and subjected to reduction treatment at 750 ° C. for 1 hour in a 4% hydrogen stream. Thereafter, a raw material gas having a molar ratio of CO 2 / CH 4 = 1 was circulated through the catalyst layer under the conditions of a reaction temperature of 600 ° C., 650 ° C., 700 ° C. or 800 ° C., and an SV value of 6000 hr −1 under atmospheric pressure. . The gas that passed through the catalyst layer was analyzed with a micro-GC apparatus (CP-4900 manufactured by VARIAN), and the CH 4 conversion rate and the H 2 / CO ratio were determined. The CH 4 conversion was calculated by the following formula. The results are shown in Table 1.
CH 4 (the number of moles of 1-product of CH 4 moles / raw material gas of CH 4) conversion = × 100

Figure 0005972678
Figure 0005972678

表1に示すように、実施例1、2に係る触媒は、いずれも600℃〜700℃で触媒活性を示した。   As shown in Table 1, the catalysts according to Examples 1 and 2 exhibited catalytic activity at 600 ° C to 700 ° C.

一方、比較例1に係る触媒は、低温域においてほとんど触媒活性を示さなかった。また、比較例1の触媒層を通過したガスを分析したところ、650℃でのメタンの転化率は4%、700℃での転化率は5%であったが、COの生成が認められず、且つ、反応後の触媒の表面を観察したところガス流入口側が黒く着色しており、コーキングが確認された。   On the other hand, the catalyst according to Comparative Example 1 showed almost no catalytic activity in the low temperature range. Further, when the gas that passed through the catalyst layer of Comparative Example 1 was analyzed, the conversion rate of methane at 650 ° C. was 4%, and the conversion rate at 700 ° C. was 5%, but no formation of CO was observed. In addition, when the surface of the catalyst after the reaction was observed, the gas inlet side was colored black and coking was confirmed.

この結果から、合成ガス製造用触媒として、担持金属としてニッケルを用い、且つ、担体としてMnを含む酸素欠損ペロブスカイト型の複合酸化物を用いることで、ドライリフォーミング反応を低温且つ高効率なものとすることができることが分かった。   From this result, as a catalyst for syngas production, by using nickel as a supported metal and using an oxygen-deficient perovskite type complex oxide containing Mn as a carrier, the dry reforming reaction can be performed at low temperature and with high efficiency. I found out that I can do it.

<触媒寿命試験>
実施例1、2の触媒について、触媒寿命試験を行った。具体的には、上記の触媒活性評価の場合と同様にして触媒を充填し、水素還元処理の後、CO/CH=1(モル比)とした原料ガスを大気圧下、反応温度700℃、SV値6000hr−1にて触媒層に流通させ、1時間後および10時間後の生成ガスをmicro−GC装置(VARIAN社製CP−4900)で分析し、CHの転化率を求めた。結果を表2に示す。
<Catalyst life test>
A catalyst life test was performed on the catalysts of Examples 1 and 2. Specifically, the catalyst is charged in the same manner as in the above-described catalytic activity evaluation, and after hydrogen reduction treatment, a raw material gas with CO 2 / CH 4 = 1 (molar ratio) is used at a reaction temperature of 700 under atmospheric pressure. The product gas after 1 hour and 10 hours was analyzed with a micro-GC apparatus (CP-4900 manufactured by VARIAN) by flowing through the catalyst layer at a temperature of 6000 hr and an SV value of 6000 hr −1 to obtain the conversion rate of CH 4 . . The results are shown in Table 2.

Figure 0005972678
Figure 0005972678

表2に示すように、実施例1、2に係る触媒は10時間経過後においても高いCH転化率を維持しており、触媒活性の低下はなかった。 As shown in Table 2, the catalysts according to Examples 1 and 2 maintained a high CH 4 conversion rate even after 10 hours, and there was no decrease in the catalytic activity.

本発明に係る触媒は、担体が高い酸素吸蔵・放出能を有する。すなわち、ドライリフォーミング反応において、Niの表面近傍に存在する酸素種についても担体に吸収され、Niがメタル状に維持されたため、反応活性が向上したものと考えられる。また、反応によって析出した炭素は、担体から放出された反応性の高い酸素によって酸化されて除去されたため、コーキングによる触媒劣化を抑制でき、長時間に亘り触媒活性が維持できたものと考えられる。   In the catalyst according to the present invention, the carrier has a high oxygen storage / release capacity. That is, in the dry reforming reaction, oxygen species present in the vicinity of the surface of Ni are also absorbed by the carrier, and Ni is maintained in a metal state, which is considered to improve the reaction activity. In addition, it is considered that carbon precipitated by the reaction was oxidized and removed by highly reactive oxygen released from the support, so that catalyst deterioration due to coking could be suppressed and catalytic activity could be maintained for a long time.

以上、現時点において、最も実践的であり、かつ、好ましいと思われる実施形態に関連して本発明を説明したが、本発明は、本願明細書中に開示された実施形態に限定されるものではなく、請求の範囲および明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う合成ガス製造用触媒および合成ガスの製造方法もまた本発明の技術的範囲に包含されるものとして理解されなければならない。   Although the present invention has been described with reference to the most practical and preferred embodiments at the present time, the present invention is not limited to the embodiments disclosed herein. However, the present invention can be modified as appropriate without departing from the spirit or concept of the invention that can be read from the claims and the entire specification, and the synthesis gas production catalyst and the synthesis gas production method that involve such changes are also disclosed in the present invention. Should be understood as being included in the scope.

本発明は、メタンと二酸化炭素とからドライリフォーミング反応により合成ガスを製造する合成ガス製造用触媒として特に好適に用いられる。   The present invention is particularly suitably used as a synthesis gas production catalyst for producing synthesis gas from methane and carbon dioxide by a dry reforming reaction.

Claims (7)

炭素数1〜5の炭化水素を含む原料ガスおよび二酸化炭素に接触させ、一酸化炭素と水素とを主成分とする合成ガスを製造する合成ガス製造用触媒であって、
前記触媒が、下記式(1)または(2)で表される酸素欠損ペロブスカイト型の金属酸化物に、Niを担持したものであることを特徴とする、合成ガス製造用触媒。
(Ba1−x(1−y)(1+y)(Mn2−z)O5+α…(1)
(式(1)において、
A:Ba以外のアルカリ土類金属の1種または2種以上、
B:Y、希土類元素およびCaのうちの1種または2種以上、
C:FeおよびCoのうちの1種または2種、
x:0≦x≦1.0、
y:0≦y≦0.5、
z:0≦z≦1.0
α:0≦α≦1.0である。)
(Ca2−p)(Mn2−q)O5+β…(2)
(式(2)において、
D:Ca以外のアルカリ土類金属の1種または2種以上、
E:Al、Fe、CoおよびGaのうちの1種または2種以上、
p:0≦p≦2.0、
q:0≦q≦1.5
β:0≦β≦0.5である。)
A catalyst for syngas production, which is brought into contact with a raw material gas containing hydrocarbons having 1 to 5 carbon atoms and carbon dioxide to produce a syngas mainly composed of carbon monoxide and hydrogen,
A catalyst for syngas production, wherein the catalyst is obtained by supporting Ni on an oxygen-deficient perovskite type metal oxide represented by the following formula (1) or (2).
(Ba 1-x A x ) (1-y) B (1 + y) (Mn 2−z C z ) O 5 + α (1)
(In Formula (1),
A: One or more alkaline earth metals other than Ba,
B: one or more of Y, rare earth elements and Ca,
C: one or two of Fe and Co,
x: 0 ≦ x ≦ 1.0,
y: 0 ≦ y ≦ 0.5,
z: 0 ≦ z ≦ 1.0 ,
α: 0 ≦ α ≦ 1.0. )
(Ca 2−p D p ) (Mn 2−q E q ) O 5 + β (2)
(In Formula (2),
D: One or more alkaline earth metals other than Ca,
E: One or more of Al, Fe, Co and Ga,
p: 0 ≦ p ≦ 2.0,
q: 0 ≦ q ≦ 1.5 ,
β: 0 ≦ β ≦ 0.5. )
前記金属酸化物がBaYMn5+αであることを特徴とする、請求項1に記載の合成ガス製造用触媒。 The catalyst for syngas production according to claim 1, wherein the metal oxide is BaYMn 2 O 5 + α . 前記金属酸化物がCaAlMnO5+βであることを特徴とする、請求項1に記載の合成ガス製造用触媒。 The catalyst for syngas production according to claim 1, wherein the metal oxide is Ca 2 AlMnO 5 + β . 炭素数1〜5の炭化水素を含む原料ガスおよび二酸化炭素を、請求項1〜3のいずれか一項に記載の合成ガス製造用触媒と接触させ、一酸化炭素と水素とを主成分とする合成ガスを製造することを特徴とする、合成ガスの製造方法。 A raw material gas containing carbon atoms of 1 to 5 and carbon dioxide are brought into contact with the catalyst for producing synthesis gas according to any one of claims 1 to 3, and carbon monoxide and hydrogen are the main components. A method for producing synthesis gas, comprising producing synthesis gas. 前記原料ガスと前記二酸化炭素とを接触させる際に、空気または酸素を共存させることを特徴とする、請求項4に記載の合成ガスの製造方法。 The method for producing synthesis gas according to claim 4, wherein air or oxygen coexists when the raw material gas and the carbon dioxide are brought into contact with each other. 前記原料ガスがメタンを含むものであることを特徴とする、請求項4または5に記載の合成ガスの製造方法。 6. The method for producing synthesis gas according to claim 4, wherein the source gas contains methane. 二酸化炭素の前記メタンに対するモル比(CO/CH)が1以上5以下であることを特徴とする、請求項6に記載の合成ガスの製造方法。 The method for producing synthesis gas according to claim 6, wherein a molar ratio of carbon dioxide to methane (CO 2 / CH 4 ) is 1 or more and 5 or less.
JP2012135218A 2012-06-14 2012-06-14 Synthesis gas production catalyst and synthesis gas production method Active JP5972678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012135218A JP5972678B2 (en) 2012-06-14 2012-06-14 Synthesis gas production catalyst and synthesis gas production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012135218A JP5972678B2 (en) 2012-06-14 2012-06-14 Synthesis gas production catalyst and synthesis gas production method

Publications (2)

Publication Number Publication Date
JP2013255911A JP2013255911A (en) 2013-12-26
JP5972678B2 true JP5972678B2 (en) 2016-08-17

Family

ID=49952815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012135218A Active JP5972678B2 (en) 2012-06-14 2012-06-14 Synthesis gas production catalyst and synthesis gas production method

Country Status (1)

Country Link
JP (1) JP5972678B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11059011B2 (en) 2018-11-07 2021-07-13 Mitsubishi Heavy Industries, Ltd. Reforming device and reforming system

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6048951B2 (en) * 2012-08-01 2016-12-21 国立大学法人 東京大学 Highly active oxygen carrier material in chemical loop process
JP6187282B2 (en) * 2014-01-23 2017-08-30 株式会社村田製作所 Hydrocarbon reforming catalyst
US9573114B2 (en) * 2014-10-17 2017-02-21 Toyota Motor Engineering & Manufacturing North America, Inc. Tune the oxygen storage properties of Ca2MnAlO5+δthrough chemical doping
JP6731199B2 (en) * 2015-02-18 2020-07-29 国立大学法人北海道大学 Catalyst for oxygen reduction reaction and air electrode for metal-air secondary battery
CN110678261B (en) 2017-05-31 2023-10-24 古河电气工业株式会社 Catalyst structure for producing synthesis gas, synthesis gas production device provided with same, and method for producing catalyst structure for producing synthesis gas
US11161101B2 (en) 2017-05-31 2021-11-02 Furukawa Electric Co., Ltd. Catalyst structure and method for producing the catalyst structure
AU2018277967B2 (en) 2017-05-31 2021-05-27 Furukawa Electric Co., Ltd. Functional structure and production method for functional structure
EP3632550A4 (en) 2017-05-31 2021-03-03 National University Corporation Hokkaido University Functional structure and production method for functional structure
EP3632539A4 (en) 2017-05-31 2021-01-06 Furukawa Electric Co., Ltd. Methanol reforming catalyst structure, methanol reforming device, production method for methanol reforming catalyst structure, and production method for at least one of olefins and aromatic hydrocarbons
EP3632542A4 (en) 2017-05-31 2021-01-06 Furukawa Electric Co., Ltd. Co shift or reverse shift catalyst structure and production method thereof, co shift or reverse shift reaction device, production method of carbon dioxide and hydrogen, and production method of carbon monoxide and water
CN110730687A (en) 2017-05-31 2020-01-24 古河电气工业株式会社 Catalyst structure for catalytic cracking or hydrodesulfurization, catalytic cracking device and hydrodesulfurization device each having the catalyst structure, and method for producing catalyst structure for catalytic cracking or hydrodesulfurization
AU2018276618B2 (en) 2017-05-31 2021-05-27 Furukawa Electric Co., Ltd. Functional structure and production method for functional structure
WO2018221696A1 (en) 2017-05-31 2018-12-06 古河電気工業株式会社 Oxidation catalyst structure for exhaust gas purification and production method thereof, exhaust gas treatment device for vehicle, catalyst molded body, and gas purification method
AU2018276617B2 (en) 2017-05-31 2021-03-25 Furukawa Electric Co., Ltd. Functional structure and production method for functional structure
JP7328145B2 (en) 2017-05-31 2023-08-16 古河電気工業株式会社 Steam reforming catalyst structure, reformer equipped with the steam reforming catalyst structure, and method for producing the steam reforming catalyst structure
WO2018221694A1 (en) 2017-05-31 2018-12-06 古河電気工業株式会社 Hydrodesulfurization catalyst structure, hydrodesulfurization device provided with said catalyst structure, and production method of hydrodesulfurization catalyst structure
CN109292899A (en) * 2018-11-14 2019-02-01 哈尔滨工程大学 A kind of photo catalytic reduction removes the catalyst and its application method of nitrate nitrogen in water removal
JPWO2020116474A1 (en) 2018-12-03 2021-10-21 古河電気工業株式会社 Equipment for producing lower olefin-containing gas and method for producing lower olefin-containing gas
FI3892374T3 (en) 2018-12-03 2024-09-30 Furukawa Electric Co Ltd Syngas-production catalyst structure
WO2020116476A1 (en) 2018-12-03 2020-06-11 古河電気工業株式会社 Production device for hydrocarbons and production method for hydrocarbons
JP2021186770A (en) 2020-06-01 2021-12-13 古河電気工業株式会社 Catalyst structure for synthetic gas manufacture, synthetic gas manufacturing apparatus and manufacturing method of catalyst structure for synthetic gas manufacture

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925101A (en) * 1995-07-10 1997-01-28 Agency Of Ind Science & Technol Method for reforming methane with carbon dioxide and catalyst used for the same
JP4505127B2 (en) * 2000-10-18 2010-07-21 独立行政法人石油天然ガス・金属鉱物資源機構 Production method of reforming catalyst and production method of synthesis gas using the same
EP1622719A1 (en) * 2003-02-05 2006-02-08 Exxonmobil Chemical Patents Inc. Combined cracking and selective hydrogen combustion for catalytic cracking
US7438889B2 (en) * 2005-06-24 2008-10-21 University Of South Carolina Use of complex metal oxides in the autothermal generation of hydrogen
JP2011016684A (en) * 2009-07-08 2011-01-27 Hokkaido Univ Oxygen deficit perovskite-type metal oxide excellent in oxygen storage capability, exhaust gas purifying catalyst and functional ceramic containing the metal oxide, and method and apparatus using the metal oxide
JP5773350B2 (en) * 2009-12-11 2015-09-02 国立大学法人北海道大学 Method for storing and / or separating oxygen using brown mirrorite type manganese oxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11059011B2 (en) 2018-11-07 2021-07-13 Mitsubishi Heavy Industries, Ltd. Reforming device and reforming system

Also Published As

Publication number Publication date
JP2013255911A (en) 2013-12-26

Similar Documents

Publication Publication Date Title
JP5972678B2 (en) Synthesis gas production catalyst and synthesis gas production method
Palma et al. Enhancing Pt-Ni/CeO2 performances for ethanol reforming by catalyst supporting on high surface silica
US20240139718A1 (en) Perovskite metal oxide catalyst, in which metal ion is substituted, for reducing carbon deposition, preparation method therefor, and methane reforming reaction method using same
Roh et al. Low temperature and H 2 selective catalysts for ethanol steam reforming
WO2002078840A1 (en) Catalyst for reforming hydrocarbon and method for preparation thereof, and process for reforming hydrocarbon using said catalyst
WO2002038268A1 (en) Catalyst for hydrocarbon reforming and method of reforming hydrocarbon with the same
JP5459322B2 (en) Redox material for thermochemical water splitting and hydrogen production method
US8435486B2 (en) Redox material for thermochemical water splitting, and method for producing hydrogen
JP5544634B2 (en) Platinum catalyst for oxidation / reduction reaction and its use
Sohrabi et al. Synthesis, characterization, and catalytic activity of Ni/CeMnO2 catalysts promoted by copper, cobalt, potassium and iron for ethanol steam reforming
JP4648566B2 (en) Autothermal reforming catalyst and method for producing fuel gas for fuel cell
JP5761710B2 (en) Ammonia decomposition method and method for regenerating catalyst for ammonia decomposition
JP6102473B2 (en) Catalyst for producing synthesis gas, method for regenerating the catalyst, and method for producing synthesis gas
KR101245484B1 (en) Water gas shift catalysts and method for producing syngas by Water gas shift reaction using the same
TWI261533B (en) Nano-gold catalyst and preparation of nano-gold catalyst
KR102092736B1 (en) Preparation Method of Reduced Carbon Poisoning Perovskite Catalyst Impregnated with Metal Ion, and Methane Reforming Method Threrewith
KR20120122544A (en) Modified nickel-based catalysts for steam reforming, method for fabricating the same and hydrogen production method using the catalysts
JP4525909B2 (en) Water gas shift reaction catalyst, method for producing the same, and method for producing water gas
JP4465478B2 (en) Catalyst for hydrogen production
JP6089894B2 (en) Catalyst for producing synthesis gas and method for producing synthesis gas
KR101570943B1 (en) A perovskite-like catalyst supported on alumina having a bimodal pore structure for combined steam and co_2 reforming reaction with methane and a preparation method thereof
KR20170027674A (en) High Efficiency Ni-based Catalyst for Steam Methane Reforming and use thereof
Navarro et al. Methane oxidation on metal oxides
JP5800719B2 (en) Hydrogen production catalyst and hydrogen production method using the same
KR102186052B1 (en) Catalyst Comprising MgO-Al2O3 Hybrid Support and The Method of Preparing Synthesis Gas from Carbon Dioxide Reforming of Acetone Using the Same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160713

R150 Certificate of patent or registration of utility model

Ref document number: 5972678

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250