JP4465478B2 - Catalyst for hydrogen production - Google Patents

Catalyst for hydrogen production Download PDF

Info

Publication number
JP4465478B2
JP4465478B2 JP2006066530A JP2006066530A JP4465478B2 JP 4465478 B2 JP4465478 B2 JP 4465478B2 JP 2006066530 A JP2006066530 A JP 2006066530A JP 2006066530 A JP2006066530 A JP 2006066530A JP 4465478 B2 JP4465478 B2 JP 4465478B2
Authority
JP
Japan
Prior art keywords
catalyst
phosphate
reaction
catalyst preparation
preparation example
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006066530A
Other languages
Japanese (ja)
Other versions
JP2006281205A (en
Inventor
勝俊 永岡
祐作 瀧田
俊和 永楽
宏泰 西口
Original Assignee
国立大学法人 大分大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 大分大学 filed Critical 国立大学法人 大分大学
Priority to JP2006066530A priority Critical patent/JP4465478B2/en
Publication of JP2006281205A publication Critical patent/JP2006281205A/en
Application granted granted Critical
Publication of JP4465478B2 publication Critical patent/JP4465478B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Description

本発明は、燃料電池等で使用する水素の製造用触媒の関するものである。 The present invention relates to a catalyst for producing hydrogen used in a fuel cell or the like.

近年、エネルギー問題、環境問題を解決するために、クリーンで高効率な燃料電池システムの早期実用化が望まれている。
低温作動型の固体高分子型の燃料電池を想定した場合、燃料は水素である。そのため、必要に応じて脱硫操作を行った後に、メタン、天然ガスや他の炭化水素(プロパンガス、液化石油ガス、ガソリン、ディーゼル、石油、灯油など)を触媒上で改質し、水素を含む生成ガスに転換する必要がある。燃料電池の効率を上げるためには、この改質による水素製造過程がキーステップであり、高活性、高耐久性を示す水素製造用触媒の開発が求められている。
これに対して中高温で作動する固体酸化物型燃料電池や溶融炭酸塩型燃料電池では炭化水素がそのまま利用できるという特徴がある。しかしながら、この場合にも炭化水素の分解により炭素析出が起こりやすい、炭化水素を用いるよりもH2を用いたほうが発電しやすいなどの理由により、やはり炭化水素を改質するための触媒が必要であることが多い。
炭化水素の改質による水素の製造方法としては部分酸化反応、スチーム改質反応、炭酸ガス改質反応、オートサーマル改質反応がある。
上記製造法のうち、オートサーマル改質は発熱反応である部分酸化反応(もしくは完全燃焼)と吸熱反応であるスチーム改質反応、炭酸ガス改質反応を組み合わせたもので、例えば反応器の触媒層前半で完全燃焼が行われ、そこで生じた熱が反応器の触媒層後半に伝わり、吸熱反応であるスチーム改質や炭酸ガス改質を促進する。そのためエネルギー効率の点においてオートサーマル改質は優れており、吸熱反応のみのスチーム改質と比較して反応速度も非常に速い。また、部分酸化反応のみの場合には完全燃焼によりホットスポットが生成し爆発の危険性があるのに対し、オートサーマル改質ではスチームの存在により爆発の危険性を低減できる。
このような背景により、炭化水素のオートサーマル改質による水素製造用触媒の開発が行われている。
特開2002−121007号公報 D。L。 Hoang、 S。H。 Chan著「Modeling of a catalytic autothermal methane reformer for fuel cell applications、 Appl。 Catal。 A、 268(2004)207-216。」
In recent years, in order to solve energy problems and environmental problems, there is a demand for early commercialization of a clean and highly efficient fuel cell system.
Assuming a low temperature operation type solid polymer fuel cell, the fuel is hydrogen. Therefore, after performing desulfurization operation as necessary, methane, natural gas and other hydrocarbons (propane gas, liquefied petroleum gas, gasoline, diesel, petroleum, kerosene, etc.) are reformed on the catalyst and contain hydrogen It is necessary to convert to product gas. In order to increase the efficiency of the fuel cell, the hydrogen production process by this reforming is a key step, and the development of a catalyst for producing hydrogen that exhibits high activity and high durability is required.
In contrast, solid oxide fuel cells and molten carbonate fuel cells that operate at medium and high temperatures are characterized in that hydrocarbons can be used as they are. However, in this case as well, a catalyst for reforming the hydrocarbon is still necessary for the reason that carbon deposition is likely to occur due to decomposition of the hydrocarbon, and that H 2 is easier to generate power than using hydrocarbon. There are often.
As a method for producing hydrogen by reforming hydrocarbons, there are a partial oxidation reaction, a steam reforming reaction, a carbon dioxide reforming reaction, and an autothermal reforming reaction.
Among the above production methods, autothermal reforming is a combination of a partial oxidation reaction (or complete combustion) that is an exothermic reaction, a steam reforming reaction that is an endothermic reaction, and a carbon dioxide reforming reaction, such as a catalyst layer of a reactor. Complete combustion is performed in the first half, and the heat generated there is transferred to the second half of the catalyst layer of the reactor to promote steam reforming and carbon dioxide reforming which are endothermic reactions. Therefore, autothermal reforming is superior in terms of energy efficiency, and the reaction rate is very fast compared to steam reforming with only endothermic reaction. Further, in the case of only the partial oxidation reaction, hot spots are generated due to complete combustion and there is a risk of explosion, whereas in autothermal reforming, the risk of explosion can be reduced due to the presence of steam.
Against this background, development of hydrogen production catalysts by autothermal reforming of hydrocarbons has been carried out.
JP 2002-121007 A D. L. Hoang, S. H. Chan "Modeling of a catalytic autothermal methane reformer for fuel cell applications, Appl. Catal. A, 268 (2004) 207-216."

そこで本発明は水素製造用触媒として、貴金属であるRu、Rh、Pd、Ir、Pt、あるいは非貴金属であるNi、Coの少なくとも1種類または混合物を活性金属とし、これまでメタン改質触媒の担体として数例しか報告のないリン酸塩を担体とし、メタンオートサーマル改質による水素製造反応(CH4/O2/Ar/H2O=2/1/4/2)を行い、リン酸塩担体の種類を最適化しようとするものである。 Therefore, the present invention uses, as a catalyst for hydrogen production, at least one kind or a mixture of Ru, Rh, Pd, Ir, Pt, which are noble metals, or Ni, Co, which are non-noble metals, as an active metal, and the carrier of a methane reforming catalyst so far. As a support, a phosphate production that has been reported only a few cases is used, and hydrogen production reaction (CH 4 / O 2 / Ar / H 2 O = 2/1/4/2) is performed by methane autothermal reforming. The type of carrier is to be optimized.

本発明はリン酸塩を担体とした貴金属であるRu、Rh、Pd、Ir、Pt、あるいは非貴金属であるNi、Coの少なくとも1種類または混合物を活性金属とした触媒によるメタンオートサーマル改質反応は、表1、 2に示す如く焼成した希土類リン酸塩担体が他に比し高く安定した活性を示すことを解明したものである。
即ち本発明の特徴とするところは、希土類リン酸塩を焼成したものを担体とし、活性金属として貴金属であるRu、Rh、Pd、Ir、Pt、あるいは非貴金属であるNi、Coの少なくとも1種類または混合物を含むことを特徴とする水素製造用触媒にある。
The present invention relates to a methane autothermal reforming reaction using a catalyst in which at least one or a mixture of Ru, Rh, Pd, Ir, Pt, which are noble metals using a phosphate as a carrier, or Ni, Co, which is a non-noble metal, or a mixture thereof, is an active metal. Table 1 and 2 clarified that the rare earth phosphate carrier fired as shown in FIG.
That is, the present invention is characterized in that a rare earth phosphate baked carrier is used as a support, and at least one of Ru, Rh, Pd, Ir, Pt, which is a noble metal as an active metal, or Ni, Co, which is a non-noble metal. Or it exists in the catalyst for hydrogen production characterized by including a mixture.

即ち、本発明の水素製造用触媒は、貴金属であるRu、Rh、Pd、Ir、Pt、あるいは非貴金属であるNi、Coの少なくとも1種類または混合物を活性金属とし、これまでメタン改質触媒の担体として数例しか報告のないリン酸塩を担体とし、メタンオートサーマル改質による水素製造反応(CH4/O2/Ar/H2O=2/1/4/2)を行い、リン酸塩担体の種類を最適化したものである。 That is, the catalyst for hydrogen production of the present invention uses at least one kind or a mixture of Ru, Rh, Pd, Ir, Pt, which are noble metals, or Ni, Co, which are non-noble metals, as an active metal. Phosphoric acid, which has been reported only a few cases as a carrier, is used as a carrier, and hydrogen production reaction (CH 4 / O 2 / Ar / H 2 O = 2/1/4/2) is performed by methane autothermal reforming. The type of salt carrier is optimized.

本発明において希土類リン酸塩を担体とした活性金属として貴金属であるRu、 Rh、Pd、Ir、Pt、あるいは非貴金属であるNi、Coの少なくとも1種類または混合物を含む触媒としては、希土類、好ましくはY、 La、 Ce、 Pr、 Nd、 Sm、 Gd、 Tb、 Dy、 Er、 Yb、より好ましくはY、 La、 Ce、 Prのうち1種類もしくは2種類以上(複合種)を含むリン酸塩、を焼成し触媒担体として、貴金属であるRu、 Rh、Pd、Ir、Pt、あるいは非貴金属であるNi、Coの少なくとも1種類または混合物を活性金属として担持した触媒をいう。さらに希土類としては特にYを用いると担体の比表面積が非常に大きくなり好ましい。そのためYと他の希土類を組み合わせた複合種も好ましい。リン酸塩としては [特許公開平8-104656]に示されているように、オルトリン酸塩類をさしリン酸一水素塩やリン酸二水素塩、縮合リン酸塩も含まれ、ピロリン酸塩(酸性オルトリン酸塩の脱水縮合による)、トリポリリン酸塩、テトラポリリン酸塩、鎖状高分子リン酸塩(ハイポリリン酸塩)、トリメタリン酸塩、テトラメタリン酸塩などの環状リン酸塩も含まれ、通常法により調製のしやすい、オルトリン酸塩が好ましい。活性金属については貴金属であるRu、 Rh、Pd、Ir、Pt を用いると、触媒は非常に高価になるが、改質ガス中の酸化性ガス(H2O、CO2、O2)に対する耐性に非常に優れるという利点がある。また非貴金属であるNiやCoでは触媒が非常に安価であるという利点がある。そのため貴金属(Ru、Rh、Pd、Ir、Pt)と非貴金属(NiやCo)の両方を含む触媒はこれら両方の利点を持つ。
本発明において、担体として用いた希土類リン酸塩焼成温度とは、600〜1200℃、好ましくは800〜1050℃である。これにより、水素雰囲気下、反応ガス雰囲気下でのリン酸塩担体の化学的安定性が増し、耐久性のある触媒とすることができる。
本発明の触媒は炭化水素を改質し、水素を含む生成ガスを製造する触媒である。ここで、炭化水素とは天然ガスや天然ガスの主成分であるメタン、プロパンガス(プロパン、ブタンなどを含む)、液化石油ガス、ガソリン、ディーゼル、石油、灯油、ナフサなどであるが、特に天然ガスやメタンが好ましい。また改質反応は、炭化水素と水蒸気、 空気、酸素、または二酸化炭素、またはこれらを組み合わせたものとの反応であるが、特に反応速度、安全性を考慮するとオートサーマル改質とよばれる炭化水素と、空気またはO2、およびスチームの混合物との反応が好ましい。さらに酸素源として空気中のO2を用いると、純O2を得る際に必要なN2とO2の分離プロセスを省くことができ、そのコストを削減できるため好ましい。
In the present invention, the catalyst containing at least one kind or a mixture of Ru, Rh, Pd, Ir, Pt, which are noble metals, or Ni, Co, which are non-noble metals, as an active metal having a rare earth phosphate as a carrier is preferably a rare earth, Is Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Er, Yb, more preferably a phosphate containing one or more of Y, La, Ce, Pr (complex species) Is a catalyst in which at least one or a mixture of Ru, Rh, Pd, Ir, Pt, which are noble metals, or Ni, Co, which are non-noble metals, or a mixture is supported as an active metal as a catalyst carrier. Further, it is particularly preferable to use Y as the rare earth because the specific surface area of the support becomes very large. Therefore, composite species combining Y and other rare earths are also preferable. As shown in [Patent Publication 8-104656], phosphates include orthophosphates such as monohydrogen phosphate, dihydrogen phosphate, and condensed phosphates. Also included are cyclic phosphates such as tripolyphosphate, tetrapolyphosphate, chain polymer phosphate (high polyphosphate), trimetaphosphate, tetrametaphosphate (by dehydration condensation of acidic orthophosphate) Orthophosphate, which is easy to prepare by ordinary methods, is preferred. For active metals, the use of precious metals such as Ru, Rh, Pd, Ir, and Pt makes the catalyst very expensive, but it is resistant to oxidizing gases (H 2 O, CO 2 , O 2 ) in the reformed gas. Has the advantage of being very good. Non-noble metals such as Ni and Co have the advantage that the catalyst is very inexpensive. Therefore, a catalyst containing both noble metals (Ru, Rh, Pd, Ir, Pt) and non-noble metals (Ni and Co) has both advantages.
In the present invention, the firing temperature of the rare earth phosphate used as the carrier is 600 to 1200 ° C, preferably 800 to 1050 ° C. As a result, the chemical stability of the phosphate carrier in a hydrogen atmosphere and a reaction gas atmosphere is increased, and a durable catalyst can be obtained.
The catalyst of the present invention is a catalyst for reforming hydrocarbons and producing a product gas containing hydrogen. Here, hydrocarbons include natural gas and methane, which is the main component of natural gas, propane gas (including propane and butane), liquefied petroleum gas, gasoline, diesel, petroleum, kerosene, naphtha, etc. Gas and methane are preferred. The reforming reaction is a reaction between hydrocarbons and water vapor, air, oxygen, carbon dioxide, or a combination of these. A hydrocarbon called autothermal reforming, especially considering the reaction rate and safety. Reaction with a mixture of air or O 2 and steam is preferred. Further, it is preferable to use O 2 in the air as an oxygen source because the separation process of N 2 and O 2 necessary for obtaining pure O 2 can be omitted and the cost can be reduced.

本発明の触媒は下記の手順で調製することができる。
(1)、 担体として用いる希土類リン酸塩の調製法には特に制限がないが、好ましくは一般的な沈殿法がよい。例えば希土類硝酸塩とリン酸の混合水溶液に、アンモニア水を滴下して中和沈殿させ、必要に応じて熟成放置する。その後、十分に水洗し、ろ過、乾燥により得られる。用いる希土類に限定はないが、好ましくはY、 La、 Ce、 Pr、 Nd、 Sm、 Gd、 Tb、 Dy、 Er、 Ybであり、より好ましくはY、 La、 Ce、 Prである。希土類は少なくとも1類であり、2種類以上の複合種を用いてもよい。さらに希土類としては特にYを用いると担体の比表面積が非常に大きくなり好ましい。そのためYと他の希土類を組み合わせた複合種も好ましい。複合種の場合にはそれぞれの塩の水溶液を調製し、リン酸と混合する。
(2)、 得られた希土類リン酸塩を焼成する。この操作によりリン酸塩結晶が安定化し、水素による反応前処理や、炭化水素改質を受けても希土類リン酸塩が破壊されにくくなる(化学的安定性の向上)と推察している。結果としてこの焼成により、活性の安定した触媒を得ることができる。焼成雰囲気は、空気、O2、He等の流通下(Ar等不活性ガスで希釈されていてもよい)、または流通ガス無しの大気雰囲気下が好ましい。また焼成温度は、600℃〜1200℃であり、好ましくは800℃〜1050℃である。
(3)、上記(2)で得られた焼成済希土類リン酸塩に貴金属であるRu、Rh、Pd、Ir、Pt、あるいは非貴金属であるNi、Coの少なくとも1種類または混合物を活性金属として担持させるために、いかなる前駆体を用いてもよい。それぞれの活性金属の担持量((それぞれの活性金属)/(その触媒に含まれる全ての活性金属酸化物+希土類リン酸塩)については貴金属では非常に高価であるため0.01〜7重量%、好ましくは0.015〜5、より好ましくは0.02〜3重量%であり、非貴金属については安価なため0.5〜50重量%、好ましくは1〜40重量%、より好ましくは10〜35重量%である。
これらの前駆体にはいかなるものを用いてもよいが、例えばRu(NO)(NO3)x(OH)y、Rh(NO3)3 2H2O、Pd(NO3)2、C15H21IrO6、Pt(C5H7O2)2、Ni(NO3)26H2O、Co(NO3)26H2Oを用いてよい。このような活性金属を担持させる方法として、含浸法など、より具体的には蒸発乾固法、incipient wetness法等により、活性金属前駆体を溶媒中に溶解させ、希土類リン酸塩に担持させる。また、例えばNi(NO3)26H2O水溶液にリン酸を加えることによりNiリン酸塩水溶液を調製し、これを担持してもよい。活性金属の混合物を担持させる際に担持の順番に特に制限がないが、例えばNiとCoの混合物では、これらを同時に担持すると、NiとCoが原子レベルでよく混合した触媒を調製できるため好ましい。
さらに(1)で、希土類リン酸塩を沈殿法により調製する際に活性金属前駆体を加えておき、担体と共に沈殿させてもよい。この場合にはこれら活性金属が担体の内部にも分散するため、最終的に活性金属微粒子を生成できる利点があるが、活性金属の一部が担体内部に残ってしまう。
(4)、活性金属前駆体に含まれる陰イオンや配位子を焼成により除去する。具体的には、空気、O2、He等の流通下(Ar等不活性ガスで希釈されていてもよい)、または流通ガス無しの大気雰囲気下で、陰イオンや配位子が除去できる温度まで加熱(重量分析法等で確認)し、その温度でそれらを完全に除去し終わるまで保持する。例えば、この温度は後述の実施例のNi硝酸塩では400℃以上であった。なお、これらの処理を行わず、次の活性化過程において、これら陰イオン、配位子を除去してもよい。このようにして得た触媒を必要に応じて成型することが好ましい。乾燥して得られた触媒を粉砕するか、または錠剤成型器を用いてタブレットにしてもよい。
また、(1)〜(4)の各段階で得られた固体を蒸留水中に分散させ、そこに多孔質成形体を含浸するなどして、多孔質成形体に担持して用いてもよい。
(5)、 次に、以上のようにして得た触媒を活性化する。(改質ガス中の炭化水素により活性金属が還元される触媒では若干活性は下がるもののこの工程を省略することができる。)この工程では触媒中の活性金属種を還元し、金属状態にする。そのため触媒にH2処理(純H2もしくは不活性ガスで希釈されたH2)を施し金属状態にする。この際、必要な処理温度は前もって熱重量分析法などによって知ることができる。600〜1100℃が好ましく、700〜1000℃がより好ましい。
(6)、 水素製造反応において、上記触媒を単独で用いても、本特許に含まれる範囲で数種類の触媒を組み合わせて用いてもよい。またこれら触媒をアルミナ等の希釈剤と混合して用いてもよい。反応温度は400〜1000℃、より好ましくは十分な炭化水素の転化率の得られる500〜950℃であり、反応圧(供給ガスの合計圧)は0.01〜3MPaであるが、高圧では炭素の析出が起こり易いため好ましくは0.01〜1MPa、さらにより好ましくは0.02〜0.35MPaであり不活性ガスを希釈ガスとして用いてもよい。触媒床は固定床、移動床、流動床などから選択できるが、固定床が好ましい。
(7)、改質器を水素ステーションや、家庭用燃料電池システム(固体高分子形燃料電池、固体酸化物形燃料電池など燃料電池の種類は問わない)内などで用いる場合、システムの起動停止に伴い、改質器の起動停止を行う場合がある。この停止〜起動時にはスチームや空気流通下で触媒層の温度をいったん100℃以下まで下げることが想定できる。酸化物を担体とした触媒では、この時スチームや空気により活性金属が担体との反応により複合酸化物を形成し不活性化しやすい。そのため起動時に再還元する必要がある。これに対し、発明した触媒は活性金属が単に酸化物に酸化されるため、起動時に炭化水素により還元され、活性な金属状態になり易いと推察している。このように発明した触媒では水素による還元処理が不必要であるという利点がある。
The catalyst of the present invention can be prepared by the following procedure.
(1) The method for preparing the rare earth phosphate used as the carrier is not particularly limited, but a general precipitation method is preferable. For example, ammonia water is dropped into a mixed aqueous solution of rare earth nitrate and phosphoric acid to neutralize and precipitate, and left to age as necessary. Thereafter, it is sufficiently washed with water, filtered and dried. The rare earth used is not limited, but preferably Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Er, and Yb, and more preferably Y, La, Ce, and Pr. The rare earth is at least one, and two or more kinds of complex species may be used. Further, it is particularly preferable to use Y as the rare earth because the specific surface area of the support becomes very large. Therefore, composite species combining Y and other rare earths are also preferable. In the case of complex species, an aqueous solution of each salt is prepared and mixed with phosphoric acid.
(2) The obtained rare earth phosphate is fired. It is speculated that this operation stabilizes the phosphate crystal, and the rare-earth phosphate is less likely to be destroyed (improved chemical stability) even when subjected to pretreatment with hydrogen or hydrocarbon reforming. As a result, a catalyst with stable activity can be obtained by this calcination. The firing atmosphere is preferably under the circulation of air, O 2 , He, or the like (which may be diluted with an inert gas such as Ar), or an atmospheric atmosphere without a circulation gas. The firing temperature is 600 ° C to 1200 ° C, preferably 800 ° C to 1050 ° C.
(3) As an active metal, the calcined rare earth phosphate obtained in (2) above contains at least one or a mixture of noble metals such as Ru, Rh, Pd, Ir, Pt, or non-noble metals Ni and Co. Any precursor may be used for loading. The supported amount of each active metal ((each active metal) / (all active metal oxides contained in the catalyst + rare earth phosphate) is 0.01 to 7% by weight, preferably because it is very expensive with noble metals. Is 0.015 to 5%, more preferably 0.02 to 3% by weight. For non-noble metals, it is 0.5 to 50% by weight, preferably 1 to 40% by weight, and more preferably 10 to 35% by weight because it is inexpensive.
Any of these precursors may be used, such as Ru (NO) (NO 3 ) x (OH) y, Rh (NO 3 ) 3 2H 2 O, Pd (NO 3 ) 2 , C 15 H 21 IrO 6 , Pt (C 5 H 7 O 2 ) 2 , Ni (NO 3 ) 2 6H 2 O, Co (NO 3 ) 2 6H 2 O may be used. As a method for supporting such an active metal, the active metal precursor is dissolved in a solvent by an impregnation method, more specifically, an evaporation to dryness method, an incipient wetness method, or the like, and is supported on a rare earth phosphate. Further, for example, a Ni phosphate aqueous solution may be prepared by adding phosphoric acid to a Ni (NO 3 ) 2 6H 2 O aqueous solution and supported thereon. The loading order is not particularly limited when the active metal mixture is supported. For example, a mixture of Ni and Co is preferably supported at the same time because a catalyst in which Ni and Co are well mixed at the atomic level can be prepared.
Further, in (1), when preparing the rare earth phosphate by a precipitation method, an active metal precursor may be added and precipitated together with the support. In this case, since these active metals are also dispersed inside the support, there is an advantage that active metal fine particles can be finally produced, but a part of the active metal remains inside the support.
(4) Anions and ligands contained in the active metal precursor are removed by firing. Specifically, the temperature at which anions and ligands can be removed under circulation of air, O 2 , He, etc. (may be diluted with an inert gas such as Ar), or in an air atmosphere without circulation gas. (Confirmed by gravimetric analysis or the like) until they are completely removed at that temperature. For example, this temperature was 400 ° C. or higher for Ni nitrates in Examples described later. In addition, you may remove these anions and ligands in the next activation process, without performing these processes. The catalyst thus obtained is preferably molded as necessary. You may grind | pulverize the catalyst obtained by drying, or you may make a tablet using a tablet molding machine.
Further, the solid obtained in each step of (1) to (4) may be dispersed in distilled water and impregnated with the porous molded body, and supported on the porous molded body.
(5) Next, the catalyst obtained as described above is activated. (Although the activity of the catalyst in which the active metal is reduced by the hydrocarbon in the reformed gas is slightly reduced, this step can be omitted.) In this step, the active metal species in the catalyst is reduced to a metallic state. Therefore catalyst to the metallic state subjected H 2 handle (H 2 diluted with pure H 2 or inert gas). At this time, the necessary processing temperature can be known in advance by thermogravimetric analysis or the like. 600-1100 degreeC is preferable and 70-1000 degreeC is more preferable.
(6) In the hydrogen production reaction, the above catalyst may be used alone, or several kinds of catalysts may be used in combination within the scope of this patent. These catalysts may be used by mixing with a diluent such as alumina. The reaction temperature is 400 to 1000 ° C., more preferably 500 to 950 ° C. at which a sufficient hydrocarbon conversion rate is obtained, and the reaction pressure (total pressure of the supply gas) is 0.01 to 3 MPa. Is preferably 0.01 to 1 MPa, and more preferably 0.02 to 0.35 MPa, and an inert gas may be used as a dilution gas. The catalyst bed can be selected from a fixed bed, a moving bed, a fluidized bed and the like, but a fixed bed is preferred.
(7) When the reformer is used in a hydrogen station or a household fuel cell system (any type of fuel cell such as a polymer electrolyte fuel cell or a solid oxide fuel cell), the system is started and stopped. As a result, the reformer may be started and stopped. At the time of this stop-start, it can be assumed that the temperature of the catalyst layer is once lowered to 100 ° C. or less under steam or air flow. In the case of a catalyst using an oxide as a support, the active metal easily forms a composite oxide by reacting with the support due to steam or air and is easily deactivated. Therefore, it is necessary to reduce again at startup. In contrast, the invented catalyst is presumed that the active metal is simply oxidized to an oxide, so that it is reduced by hydrocarbons at start-up and easily becomes an active metal state. The catalyst thus invented has the advantage that no reduction treatment with hydrogen is required.

<触媒調製例1 (20wt%Ni/(Yリン酸塩)-1)>
沈殿法によりYリン酸塩を調製した。室温において、2リットルビーカーで硝酸イットリウム(Y(NO3)36H2O) (和光純薬工業(株))103.5gを蒸留水1リットルに溶解し水溶液Aを調製した。別の1リットルビーカーで85%リン酸水溶液31.4g(和光純薬工業(株))を蒸留水1リットルに希釈した。調製したリン酸塩水溶液の全量を水溶液Aに加え、攪拌しながら10%アンモニア水を滴下し、30分でpH4.5に調整した。次に、この時できた沈殿を室温で16時間放置熟成した。沈殿に対して蒸留水で濾過洗浄を3回行った。得た固形物を乾燥機に入れ、60℃で20時間乾燥した。さらに焼成炉を用い、1000℃の温度で6時間、空気焼成しYリン酸塩 (B)を得た。
0.3リットルビーカーで4.0gのNi(NO3)26H2O(和光純薬工業(株))を蒸留水に溶解し全量を0.15 リットルとした。またYリン酸塩(B)の3.0gを秤り取り、Ni(NO3)26H2O水溶液を含むビーカーに加えた。12時間、この水溶液を室温で攪拌した後に、このビーカーを加熱攪拌し、水分を除去した。その後、オーブン中、60℃で24時間以上乾燥し触媒前駆体Cを得た。
触媒前駆体(C)を磁性の容器に入れ、横型管状炉にセットし、空気流通下で3℃/分の昇温速度で400℃まで加熱し、4時間保持し、室温まで自然冷却した。その後、錠剤成型器を用いて、939 kg/cm2でディスク成型した後に、金属メッシュを用いて0.3〜0.6mmのペレット状に粉砕した。
<触媒調製例2 (20wt%Ni/(Yリン酸塩)-2)>
Yリン酸塩の焼成を1000℃、6時間の代わりに800℃、5時間とした以外は触媒調製例1と同様の手順で触媒を調製した。
<触媒調製例3 (20wt%Ni/(Yリン酸塩)-3)>
4.0gのNi(NO3)26H2Oを65℃で加熱することにより液化させ、そこに3.0gの焼成したYリン酸塩を加え、薬さじでこれらを攪拌し、24時間室温で放置した後に、オーブン中、60℃で24時間以上乾燥し触媒前駆体を得た。これら以外は触媒調製例1と同様の手順で触媒を調製した。
<触媒調製例4 (20wt%Ni/(Yリン酸塩)-4)>
Yリン酸塩の焼成を1000℃、6時間の代わりに800℃、5時間とした。4.0gのNi(NO3)26H2Oを65℃で加熱することにより液化させ、そこに3.0gの焼成したYリン酸塩を加え、薬さじでこれらを攪拌し、24時間室温で放置した後に、オーブン中、60℃で24時間以上乾燥し触媒前駆体を得た。これら以外は触媒調製例1と同様の手順で触媒を調製した。
<触媒調製例5 (20wt%Ni/(Laリン酸塩)-1)>
硝酸イットリウム(Y(NO3)36H2O) の代わりに硝酸ランタン(La(NO3)36H2O)(和光純薬工業(株))92.8gを使用し、85%リン酸水溶液24.9gを用いた以外は触媒調製例1と同様の手順で触媒を調製した。
<触媒調製例6 (20wt%Ni/(Laリン酸塩)-2)>
硝酸イットリウム(Y(NO3)36H2O) の代わりに硝酸ランタン(La(NO3)36H2O)(和光純薬工業(株))92.8gを使用し、85%リン酸水溶液24.9gを用いた以外は触媒調製例4と同様の手順で触媒を調製した。
<触媒調製例7 (20wt%Ni/(Ceリン酸塩)-1)>
硝酸イットリウム(Y(NO3)36H2O) の代わりに硝酸セリウム(Ce(NO3)36H2O)(和光純薬工業(株))221.5gを使用し、85%リン酸水溶液57.7gを用いた以外は触媒調製例1と同様の手順で触媒を調製した。
<触媒調製例8 (20wt%Ni/(Ceリン酸塩)-2)>
硝酸イットリウム(Y(NO3)36H2O) の代わりに硝酸セリウム(Ce(NO3)36H2O)(和光純薬工業(株))221.5gを使用し、85%リン酸水溶液57.7gを用いた以外は触媒調製例4と同様の手順で触媒を調製した。
<触媒調製例9 (20wt%Ni/(Prリン酸塩)-1)>
硝酸イットリウム(Y(NO3)36H2O) の代わりに硝酸プラセオジム(Pr(NO3)36H2O)(関東化学(株))100.1gを使用し、85%リン酸水溶液26.8gを用いた以外は触媒調製例4と同様の手順で触媒を調製した。
<触媒調製例10 (20wt%Ni/(Ndリン酸塩)-1)>
硝酸イットリウム(Y(NO3)36H2O) の代わりに硝酸ネオジム(Nd(NO3)36H2O)(和光純薬工業(株))92.1gを使用し、85%リン酸水溶液24.4gを用いた以外は触媒調製例4と同様の手順で触媒を調製した。
<触媒調製例11 (20wt%Ni/(Dyリン酸塩)-1>
硝酸イットリウム(Y(NO3)36H2O) の代わりに硝酸ジスプロシウム(Dy(NO3)35H2O)(和光純薬工業(株))34.4gを使用し、85%リン酸水溶液8.96gを用いた以外は触媒調製例2と同様の手順で触媒を調製した。
<触媒調製例12 (20wt%Ni/(Erリン酸塩)-1>
硝酸イットリウム(Y(NO3)36H2O) の代わりに硝酸エルビウム(Er(NO3)35H2O)(和光純薬工業(株))34.14gを使用し、85%リン酸水溶液8.79gを用いた以外は触媒調製例2と同様の手順で触媒を調製した。
<触媒調製例13 (20wt%Ni/(Smリン酸塩)-1>
硝酸イットリウム(Y(NO3)36H2O) の代わりに硝酸サマリウム(Sm(NO3)36H2O)(和光純薬工業(株))36.6gを使用し、85%リン酸水溶液9.4gを用いた以外は触媒調製例2と同様の手順で触媒を調製した。
<触媒調製例14 (20wt%Ni/(Gdリン酸塩)-1>
硝酸イットリウム(Y(NO3)36H2O) の代わりに硝酸ガドリニウム(Gd(NO3)35H2O)(和光純薬工業(株))89.82gを使用し、85%リン酸水溶液23.06gを用いた以外は触媒調製例2と同様の手順で触媒を調製した。
<触媒調製例15 (1wt%Rh/(Ceリン酸塩)-1>
硝酸イットリウム(Y(NO3)36H2O) の代わりに硝酸セリウム(Ce(NO3)36H2O)(和光純薬工業(株))221.5gを使用し、85%リン酸水溶液57.7gを用い、4.0gのNi(NO3)26H2O(和光純薬工業(株))の代わりに0.078gのRhCl33H2O(和光純薬工業(株))を用いた以外は触媒調製例2と同様の手順で触媒を調製した。
<触媒調製例16 (1wt%Pt/(Ceリン酸塩)-1>
硝酸イットリウム(Y(NO3)36H2O) の代わりに硝酸セリウム(Ce(NO3)36H2O)(和光純薬工業(株))221.5gを使用し、85%リン酸水溶液57.7gを用い、4.0gのNi(NO3)26H2O(和光純薬工業(株))の代わりに0.081gのH2PtCl66H2O(和光純薬工業(株))を用いた以外は触媒調製例2と同様の手順で触媒を調製した。
<触媒調製例17 (1wt%Ir/(Ceリン酸塩)-1>
硝酸イットリウム(Y(NO3)36H2O) の代わりに硝酸セリウム(Ce(NO3)36H2O)(和光純薬工業(株))221.5gを使用し、85%リン酸水溶液57.7gを用い、4.0gのNi(NO3)26H2O(和光純薬工業(株))の代わりに0.053gのIrCl4(和光純薬工業(株))を用いた以外は触媒調製例2と同様の手順で触媒を調製した。
<触媒調製例18 (1wt%Pd/(Ceリン酸塩)-1>
硝酸イットリウム(Y(NO3)36H2O) の代わりに硝酸セリウム(Ce(NO3)36H2O)(和光純薬工業(株))221.5gを使用し、85%リン酸水溶液57.7gを用い、4.0gのNi(NO3)26H2O(和光純薬工業(株))の代わりに0.051gのPdCl2(和光純薬工業(株))を用いた以外は触媒調製例2と同様の手順で触媒を調製した。
<Catalyst Preparation Example 1 (20 wt% Ni / (Y phosphate) -1)>
Y phosphate was prepared by precipitation method. An aqueous solution A was prepared by dissolving 103.5 g of yttrium nitrate (Y (NO 3 ) 3 6H 2 O) (Wako Pure Chemical Industries, Ltd.) in 1 liter of distilled water at room temperature in a 2 liter beaker. In another 1 liter beaker, 31.4 g of 85% phosphoric acid aqueous solution (Wako Pure Chemical Industries, Ltd.) was diluted to 1 liter of distilled water. The total amount of the prepared aqueous phosphate solution was added to the aqueous solution A, and 10% aqueous ammonia was added dropwise with stirring to adjust the pH to 4.5 in 30 minutes. Next, the precipitate formed at this time was aged for 16 hours at room temperature. The precipitate was filtered and washed three times with distilled water. The obtained solid was put into a dryer and dried at 60 ° C. for 20 hours. Further, using a baking furnace, air baking was performed at a temperature of 1000 ° C. for 6 hours to obtain Y phosphate (B).
In a 0.3 liter beaker, 4.0 g of Ni (NO 3 ) 2 6H 2 O (Wako Pure Chemical Industries, Ltd.) was dissolved in distilled water to make a total amount of 0.15 liter. Further, 3.0 g of Y phosphate (B) was weighed and added to a beaker containing Ni (NO 3 ) 2 6H 2 O aqueous solution. After stirring the aqueous solution at room temperature for 12 hours, the beaker was heated and stirred to remove moisture. Thereafter, the catalyst precursor C was obtained by drying in an oven at 60 ° C. for 24 hours or more.
The catalyst precursor (C) was placed in a magnetic vessel, set in a horizontal tubular furnace, heated to 400 ° C. at a temperature rising rate of 3 ° C./min under air flow, held for 4 hours, and naturally cooled to room temperature. Then, after disk-molding at 939 kg / cm < 2 > using the tablet molding machine, it grind | pulverized to the pellet form of 0.3-0.6 mm using the metal mesh.
<Catalyst Preparation Example 2 (20 wt% Ni / (Y phosphate) -2)>
A catalyst was prepared in the same procedure as in Catalyst Preparation Example 1, except that the firing of Y phosphate was changed to 800 ° C. and 5 hours instead of 1000 ° C. and 6 hours.
<Catalyst Preparation Example 3 (20 wt% Ni / (Y phosphate) -3)>
4.0g Ni (NO 3 ) 2 6H 2 O was liquefied by heating at 65 ° C, added 3.0g calcined Y phosphate, stirred with a spoon, and left at room temperature for 24 hours And then dried in an oven at 60 ° C. for 24 hours or more to obtain a catalyst precursor. Except for these, a catalyst was prepared in the same procedure as in Catalyst Preparation Example 1.
<Catalyst Preparation Example 4 (20 wt% Ni / (Y phosphate) -4)>
The firing of Y phosphate was set at 800 ° C. for 5 hours instead of 1000 ° C. for 6 hours. 4.0g Ni (NO 3 ) 2 6H 2 O was liquefied by heating at 65 ° C, added 3.0g calcined Y phosphate, stirred with a spoon, and left at room temperature for 24 hours And then dried in an oven at 60 ° C. for 24 hours or more to obtain a catalyst precursor. Except for these, a catalyst was prepared in the same procedure as in Catalyst Preparation Example 1.
<Catalyst Preparation Example 5 (20 wt% Ni / (La phosphate) -1)>
Use 92.8 g of lanthanum nitrate (La (NO 3 ) 3 6H 2 O) (Wako Pure Chemical Industries, Ltd.) instead of yttrium nitrate (Y (NO 3 ) 3 6H 2 O) and add 24.9% 85% phosphoric acid aqueous solution A catalyst was prepared in the same procedure as in Catalyst Preparation Example 1 except that g was used.
<Catalyst Preparation Example 6 (20 wt% Ni / (La phosphate) -2)>
Use 92.8 g of lanthanum nitrate (La (NO 3 ) 3 6H 2 O) (Wako Pure Chemical Industries, Ltd.) instead of yttrium nitrate (Y (NO 3 ) 3 6H 2 O) and add 24.9% 85% phosphoric acid aqueous solution A catalyst was prepared by the same procedure as in Catalyst Preparation Example 4 except that g was used.
<Catalyst Preparation Example 7 (20 wt% Ni / (Ce phosphate) -1)>
Using cerium nitrate (Ce (NO 3 ) 3 6H 2 O) (Wako Pure Chemical Industries, Ltd.) 221.5g instead of yttrium nitrate (Y (NO 3 ) 3 6H 2 O) A catalyst was prepared in the same procedure as in Catalyst Preparation Example 1 except that g was used.
<Catalyst Preparation Example 8 (20 wt% Ni / (Ce phosphate) -2)>
Using cerium nitrate (Ce (NO 3 ) 3 6H 2 O) (Wako Pure Chemical Industries, Ltd.) 221.5g instead of yttrium nitrate (Y (NO 3 ) 3 6H 2 O) A catalyst was prepared by the same procedure as in Catalyst Preparation Example 4 except that g was used.
<Catalyst Preparation Example 9 (20 wt% Ni / (Pr phosphate) -1)>
Instead of yttrium nitrate (Y (NO 3 ) 3 6H 2 O), use praseodymium nitrate (Pr (NO 3 ) 3 6H 2 O) (Kanto Chemical Co., Ltd.) 100.1 g and add 26.8 g of 85% phosphoric acid aqueous solution. A catalyst was prepared by the same procedure as in Catalyst Preparation Example 4 except that it was used.
<Catalyst Preparation Example 10 (20 wt% Ni / (Nd phosphate) -1)>
Instead of yttrium nitrate (Y (NO 3 ) 3 6H 2 O), 92.1 g of neodymium nitrate (Nd (NO 3 ) 3 6H 2 O) (Wako Pure Chemical Industries, Ltd.) was used. A catalyst was prepared by the same procedure as in Catalyst Preparation Example 4 except that g was used.
<Catalyst Preparation Example 11 (20 wt% Ni / (Dy Phosphate) -1>
Using dysprosium nitrate (Dy (NO 3 ) 3 5H 2 O) (Wako Pure Chemical Industries, Ltd.) 34.4g instead of yttrium nitrate (Y (NO 3 ) 3 6H 2 O), 85% phosphoric acid aqueous solution 8.96 A catalyst was prepared in the same procedure as in Catalyst Preparation Example 2, except that g was used.
<Catalyst Preparation Example 12 (20 wt% Ni / (Er phosphate) -1 >>
Instead of yttrium nitrate (Y (NO 3 ) 3 6H 2 O), 34.14 g of erbium nitrate (Er (NO 3 ) 3 5H 2 O) (Wako Pure Chemical Industries, Ltd.) was used, and 85% phosphoric acid aqueous solution 8.79 g A catalyst was prepared in the same procedure as in Catalyst Preparation Example 2, except that g was used.
<Catalyst Preparation Example 13 (20 wt% Ni / (Sm Phosphate) -1>
Using samarium nitrate (Sm (NO 3 ) 3 6H 2 O) (Wako Pure Chemical Industries, Ltd.) 36.6 g instead of yttrium nitrate (Y (NO 3 ) 3 6H 2 O) A catalyst was prepared in the same procedure as in Catalyst Preparation Example 2, except that g was used.
<Catalyst Preparation Example 14 (20 wt% Ni / (Gd phosphate) -1>
Using 89.82g of gadolinium nitrate (Gd (NO 3 ) 3 5H 2 O) (Wako Pure Chemical Industries, Ltd.) instead of yttrium nitrate (Y (NO 3 ) 3 6H 2 O) A catalyst was prepared in the same procedure as in Catalyst Preparation Example 2, except that g was used.
<Catalyst Preparation Example 15 (1 wt% Rh / (Ce phosphate) -1 >>
Using cerium nitrate (Ce (NO 3 ) 3 6H 2 O) (Wako Pure Chemical Industries, Ltd.) 221.5g instead of yttrium nitrate (Y (NO 3 ) 3 6H 2 O) except that 0.078 g of RhCl 3 3H 2 O (Wako Pure Chemical Industries, Ltd.) was used instead of 4.0 g of Ni (NO 3 ) 2 6H 2 O (Wako Pure Chemical Industries, Ltd.). A catalyst was prepared in the same procedure as in Catalyst Preparation Example 2.
<Catalyst Preparation Example 16 (1 wt% Pt / (Ce phosphate) -1>
Using cerium nitrate (Ce (NO 3 ) 3 6H 2 O) (Wako Pure Chemical Industries, Ltd.) 221.5g instead of yttrium nitrate (Y (NO 3 ) 3 6H 2 O) g, 0.081 g of H 2 PtCl 6 6H 2 O (Wako Pure Chemical Industries, Ltd.) was used instead of 4.0 g of Ni (NO 3 ) 2 6H 2 O (Wako Pure Chemical Industries, Ltd.) A catalyst was prepared by the same procedure as in Catalyst Preparation Example 2 except for the above.
<Catalyst Preparation Example 17 (1 wt% Ir / (Ce phosphate) -1>
Using cerium nitrate (Ce (NO 3 ) 3 6H 2 O) (Wako Pure Chemical Industries, Ltd.) 221.5g instead of yttrium nitrate (Y (NO 3 ) 3 6H 2 O) Example of catalyst preparation, except that 0.053 g of IrCl 4 (Wako Pure Chemical Industries, Ltd.) was used instead of 4.0 g of Ni (NO 3 ) 2 6H 2 O (Wako Pure Chemical Industries, Ltd.) A catalyst was prepared by the same procedure as 2.
<Catalyst Preparation Example 18 (1 wt% Pd / (Ce phosphate) -1>
Using cerium nitrate (Ce (NO 3 ) 3 6H 2 O) (Wako Pure Chemical Industries, Ltd.) 221.5g instead of yttrium nitrate (Y (NO 3 ) 3 6H 2 O) Example of catalyst preparation, except that 0.051 g of PdCl 2 (Wako Pure Chemical Industries, Ltd.) was used instead of 4.0 g of Ni (NO 3 ) 2 6H 2 O (Wako Pure Chemical Industries, Ltd.) A catalyst was prepared by the same procedure as 2.

<触媒調製比較例1 (20wt%Ni/(Caリン酸塩)-1)>
硝酸イットリウム(Y(NO3)36H2O) の代わりに硝酸カルシウム(Ca(NO3)24H2O)(和光純薬工業(株))168.0gを使用し、85%リン酸水溶液57.6gを用いた以外は触媒調製例1と同様の手順で触媒を調製した。
<触媒調製比較例2 (20wt%Ni/(Caリン酸塩)-2)>
硝酸イットリウム(Y(NO3)36H2O) の代わりに硝酸カルシウム(Ca(NO3)24H2O)(和光純薬工業(株))168.0gを使用し、85%リン酸水溶液57.6gを用いた以外は触媒調製例4と同様の手順で触媒を調製した。
<触媒調製比較例3 (20wt%Ni/(Alリン酸塩)-1)>
硝酸イットリウム(Y(NO3)36H2O) の代わりに硝酸アルミニウム(Al(NO3)29H2O)(和光純薬工業(株))62.8gを使用し、85%リン酸水溶液18.9gを用いた以外は触媒調製例4と同様の手順で触媒を調製した。
<触媒調製比較例4 (20wt%Ni/(Zrリン酸塩)-1)>
硝酸イットリウム(Y(NO3)36H2O) の代わりにオキシ硝酸ジルコニウム(ZrO(NO3)22H2O)(ナカライテスク(株))37.6gを使用し、85%リン酸水溶液21.2gを用いた以外は触媒調製例4と同様の手順で触媒を調製した。
<Catalyst Preparation Comparative Example 1 (20 wt% Ni / (Ca phosphate) -1)>
Instead of yttrium nitrate (Y (NO 3 ) 3 6H 2 O), use calcium nitrate (Ca (NO 3 ) 2 4H 2 O) (Wako Pure Chemical Industries, Ltd.) 168.0 g, 85% phosphoric acid aqueous solution 57.6 A catalyst was prepared in the same procedure as in Catalyst Preparation Example 1 except that g was used.
<Catalyst Preparation Comparative Example 2 (20 wt% Ni / (Ca phosphate) -2)>
Instead of yttrium nitrate (Y (NO 3 ) 3 6H 2 O), use calcium nitrate (Ca (NO 3 ) 2 4H 2 O) (Wako Pure Chemical Industries, Ltd.) 168.0 g, 85% phosphoric acid aqueous solution 57.6 A catalyst was prepared by the same procedure as in Catalyst Preparation Example 4 except that g was used.
<Catalyst Preparation Comparative Example 3 (20 wt% Ni / (Al phosphate) -1)>
Instead of yttrium nitrate (Y (NO 3 ) 3 6H 2 O), use 62.8 g of aluminum nitrate (Al (NO 3 ) 2 9H 2 O) (Wako Pure Chemical Industries, Ltd.), 85% phosphoric acid aqueous solution 18.9 A catalyst was prepared by the same procedure as in Catalyst Preparation Example 4 except that g was used.
<Catalyst Preparation Comparative Example 4 (20 wt% Ni / (Zr phosphate) -1)>
Using 37.6 g of zirconium oxynitrate (ZrO (NO 3 ) 2 2H 2 O) (Nacalai Tesque) instead of yttrium nitrate (Y (NO 3 ) 3 6H 2 O), 21.2 g of 85% phosphoric acid aqueous solution A catalyst was prepared by the same procedure as in Catalyst Preparation Example 4 except that was used.

<反応例1>
以下の反応は、常圧固定床流通式反応装置を用いて行った。内径6mmで内側に不活性処理をした金属反応管に触媒調製例1触媒0.05gを充填し、H2(50 ml/分、0.1 MPa)を流通しながら800℃まで昇温(10℃/分)し、その温度で1時間保持することにより活性化処理を行った。次に流通ガスをAr(50 ml/分)に切り替えた。次に、以下の条件で活性測定を行った(反応条件:反応温度800℃、反応圧力0.1MPa、改質ガスCH4/O2/Ar/H2O=2/1/4/2 (モル比)、GHSV=204 l/時間g、全ガス供給速度170 ml/分、触媒量0.05g)。得られた反応生成物をTCD検出器付きガスクロマトグラフ(GC-8A(島津製作所)、カラム充填剤はPPQ及びMS-13X)により分析した。なお、CH4転化率の計算は炭素バランスを用いて行った。計算式は以下の通りである。
<Reaction Example 1>
The following reaction was performed using an atmospheric pressure fixed bed flow type reactor. A metal reaction tube with an inner diameter of 6 mm and an inert treatment inside was filled with 0.05 g of catalyst preparation catalyst 1 and heated to 800 ° C (10 ° C / min while flowing H 2 (50 ml / min, 0.1 MPa)) Then, the activation treatment was performed by holding at that temperature for 1 hour. The flow gas was then switched to Ar (50 ml / min). Next, the activity was measured under the following conditions (reaction conditions: reaction temperature 800 ° C., reaction pressure 0.1 MPa, reformed gas CH 4 / O 2 / Ar / H 2 O = 2/1/4/2 (mol Ratio), GHSV = 204 l / h, total gas feed rate 170 ml / min, catalyst amount 0.05 g). The obtained reaction product was analyzed by a gas chromatograph with a TCD detector (GC-8A (Shimadzu Corp.), column packing materials were PPQ and MS-13X). The calculation of CH 4 conversion was performed using the carbon balance. The calculation formula is as follows.

Figure 0004465478

結果を表1に示す。
<反応例2〜18>
触媒調製例2〜18触媒を用いて反応例1のように反応を行った。結果を表1に示す。
Figure 0004465478

The results are shown in Table 1.
<Reaction Examples 2 to 18>
Catalyst Preparation Examples 2 to 18 Reaction was carried out as in Reaction Example 1 using the catalyst. The results are shown in Table 1.

Figure 0004465478
<反応比較例1〜4>
触媒調製比較例1〜4触媒を用いて反応例1のように反応を行った。結果を表2に示す。
Figure 0004465478
<Reaction Comparative Examples 1 to 4>
Catalyst Preparation Comparative Examples 1-4 The reaction was carried out as in Reaction Example 1 using catalysts. The results are shown in Table 2.

Figure 0004465478
<反応例19〜20>
活性化処理後にArを流通し、その後、流通ガスをO2/Arの混合ガス(20%O2、全流速100 mL/分)に切り替え800℃で1時間保持し、酸化処理を行った。次に流通ガスを再びAr(50 mL/分)に切り替え60分保持し、その後に活性測定を行った。これら以外は反応例1と同様の手順で反応を行い、触媒調製例8、14触媒を用いて反応を行った。結果を表3に示す。
Figure 0004465478
<Reaction Examples 19 to 20>
Ar was circulated after the activation treatment, and then the circulated gas was switched to a mixed gas of O 2 / Ar (20% O 2 , total flow rate 100 mL / min) and held at 800 ° C. for 1 hour to carry out oxidation treatment. Next, the flowing gas was switched again to Ar (50 mL / min) and held for 60 minutes, and then the activity was measured. Except for these, the reaction was carried out in the same procedure as in Reaction Example 1, and the reaction was carried out using Catalyst Preparation Examples 8 and 14 catalysts. The results are shown in Table 3.

Figure 0004465478
触媒調製比較例1〜4触媒は反応初期から低活性、もしくは反応中における著しい活性低下を示し、20時間以内にほぼ完全に失活した。これに対して触媒調製例1〜18触媒では反応中に若干の活性低下が観測されたが反応初期、24時間後において高い活性を示した。特にY、 Ce、Pr、Er、Sm、Gdを含むNi触媒は、触媒調製法が適切であると、この様な高い空間速度にも関わらず、24時間反応後にも70%以上のCH4転化率を示し、メタンオートサーマル改質反応用触媒として非常に有望であることが示された。また、全てのCeリン酸塩担持貴金属触媒は高く安定した活性を示した。次に24時間後にも高いCH4転化率を示した20wt%Ni/(Yリン酸塩)-4 (触媒調製例4触媒)、および顕著な活性低下により20時間後に殆ど活性を示さなかった20wt%Ni/(Alリン酸塩)-1 (触媒調製比較例3触媒)において各処理後にXRD(粉末X線回折)パターンを測定した(H2活性化後、および反応後にガスをArに切り替え800℃で十分にパージした後に室温まで冷却した)。図1において、20wt%Ni/(Alリン酸塩)-1ではH2による活性化後に金属NiとともにNi3P相が観測された。このことは担体であるAlリン酸塩の一部が崩壊し、Ni-P結合が生成したことを示唆している。このNi3P相は活性測定後には観測されず、反応後までに大部分の金属NiがNiOへと酸化されていることが分かった。以上の結果からNi/(Alリン酸塩)ではH2活性化処理中および反応中に、リン化Ni相が生成し、これが酸化性ガスによりNiOとなり不活性化したために触媒が失活したと推察している。これに対して、図2において24時間後にも高い活性を示した20wt%Ni/(Yリン酸塩)-4ではいずれの時点でもリン化Ni種は観測されず、活性測定後にもNiは反応に活性な金属Niとしてのみ存在していた。またいずれの状態でもYはYPO4として存在することも示唆された。以上のようにリン酸塩担持Ni触媒ではリン酸塩担体の化学的安定性が活性挙動に大きな影響をおよぼすことが示唆された。希土類リン酸塩は他のリン酸塩(触媒調製比較例1〜4触媒)に比して、化学的に安定なため、本発明の触媒が優れた活性挙動を示すものと推察している。
さらに燃料電池システムの停止、再起動を想定し、反応温度で触媒をO2/Arの混合ガスで処理した後に、再活性化処理を行わずに活性測定を行った。表3に示す如く、触媒調製例8 (20wt%Ni/(Ceリン酸塩)-2)、触媒調製例14 (20wt%Ni/(Gdリン酸塩)-1触媒は高く安定した活性を示し、想定した条件でも十分に使用できることが示唆された。図3に示すように、従来の20wt%Ni/Al2O3ではO2/Arの混合ガス処理によりNiOとともに、NiOとAl2O3が反応し難還元性のNiAl2O4が生成したのに対し、発明触媒(20wt%Ni/(Ceリン酸塩)-1(触媒調製例8))では希土類リン酸塩が非常に安定であるために易還元性のNiOが生成した。そのため、発明触媒では再活性化処理を行わなくても、反応ガス中のメタンにより金属Niに還元され、高活性を示したと推察した。

次に調製した触媒上で起こる炭素の析出量を比較した。先ず、反応例1に従って、反応を行った。触媒は触媒調製例4、8、12、14触媒とした。24時間反応後、触媒層にArを0.5時間流通し、その後、室温まで冷却した。次にそれらの触媒を石英製反応管(内径7mm)に充填し、別の常圧固定床流通式反応装置に設置した。そして30 ml/分の5% O2/Arを流通しながら、触媒層を1000℃まで10℃/minで昇温した。このとき、触媒上の含炭素種はCO2やCOとして取り除かれる。これらCO2やCOを市販のNi触媒で、メタン化し、メタンの生成量をFID検出器(GC8APF((株)島津製作所))で定量した。そしてメタンの生成量から、触媒重量あたりの炭素(カーボン)析出量を計算した。表4に、結果を示す。
Figure 0004465478
Catalyst Preparation Comparative Examples 1 to 4 showed low activity from the beginning of the reaction or markedly decreased activity during the reaction, and were almost completely deactivated within 20 hours. On the other hand, in Catalyst Preparation Examples 1 to 18, a slight decrease in activity was observed during the reaction, but high activity was shown in the initial 24 hours after the reaction. In particular, Ni catalysts containing Y, Ce, Pr, Er, Sm, and Gd, when the catalyst preparation method is appropriate, in spite of such a high space velocity, more than 70% CH 4 conversion even after 24 hours reaction It was shown that it is very promising as a catalyst for methane autothermal reforming reaction. All Ce phosphate supported noble metal catalysts showed high and stable activity. Next, 20 wt% Ni / (Y phosphate) -4 (catalyst preparation example 4 catalyst) which showed high CH 4 conversion even after 24 hours, and 20 wt which showed little activity after 20 hours due to a significant decrease in activity. XRD (powder X-ray diffraction) pattern was measured after each treatment in% Ni / (Al phosphate) -1 (catalyst preparation comparative example 3 catalyst) (after H 2 activation and after reaction, the gas was switched to Ar 800 After fully purged at 0 C, it was cooled to room temperature). In FIG. 1, in 20 wt% Ni / (Al phosphate) -1, a Ni 3 P phase was observed together with metallic Ni after activation with H 2 . This suggests that a part of the Al phosphate that is the carrier has collapsed and a Ni-P bond has been formed. This Ni 3 P phase was not observed after the activity measurement, and it was found that most of the metal Ni was oxidized to NiO by the time after the reaction. From the above results, Ni / (Al phosphate) produced the Ni phosphide phase during the H 2 activation process and during the reaction, which became NiO by the oxidizing gas and deactivated the catalyst. I guess. On the other hand, in FIG. 2, 20 wt% Ni / (Y phosphate) -4, which showed high activity even after 24 hours, did not show Ni phosphide species at any time point, and Ni reacted even after the activity measurement. Existed only as active metal Ni. It was also suggested that Y exists as YPO 4 in any state. As described above, it was suggested that the chemical stability of the phosphate support greatly affects the activity behavior of phosphate-supported Ni catalysts. Since the rare earth phosphate is chemically stable as compared with other phosphates (catalyst preparation comparative examples 1 to 4), it is presumed that the catalyst of the present invention exhibits excellent activity behavior.
Furthermore, assuming that the fuel cell system was stopped and restarted, the catalyst was treated with a mixed gas of O 2 / Ar at the reaction temperature, and then the activity was measured without performing the reactivation process. As shown in Table 3, Catalyst Preparation Example 8 (20 wt% Ni / (Ce Phosphate) -2), Catalyst Preparation Example 14 (20 wt% Ni / (Gd Phosphate) -1 Catalyst show high and stable activity. As shown in Fig. 3, in the conventional 20 wt% Ni / Al 2 O 3 , NiO and Al 2 O 3 are mixed with NiO by O 2 / Ar mixed gas treatment. Reacts with the reaction, and hardly reducible NiAl 2 O 4 is produced, whereas the rare earth phosphate is very stable in the inventive catalyst (20 wt% Ni / (Ce phosphate) -1 (catalyst preparation example 8)). As a result, it was inferred that easily reduced NiO was produced, so that the inventive catalyst was reduced to metallic Ni by methane in the reaction gas without performing reactivation treatment, and showed high activity.

Next, the amount of carbon deposition occurring on the prepared catalyst was compared. First, the reaction was performed according to Reaction Example 1. The catalysts were Catalyst Preparation Examples 4, 8, 12, and 14. After reacting for 24 hours, Ar was passed through the catalyst layer for 0.5 hour, and then cooled to room temperature. Next, these catalysts were filled in a quartz reaction tube (inner diameter 7 mm) and installed in another atmospheric pressure fixed bed flow reactor. Then, the catalyst layer was heated to 1000 ° C. at 10 ° C./min while flowing 5% O 2 / Ar at 30 ml / min. At this time, carbon-containing species on the catalyst are removed as CO 2 or CO. These CO 2 and CO were methanated with a commercially available Ni catalyst, and the amount of methane produced was quantified with an FID detector (GC8APF (Shimadzu Corporation)). The amount of carbon deposited per catalyst weight was calculated from the amount of methane produced. Table 4 shows the results.

Figure 0004465478
全ての触媒で炭素析出量は極微量であり、発明触媒の優れた炭素析出抑制能が明らかとなった。
Figure 0004465478
The carbon deposition amount of all the catalysts was very small, and the excellent carbon deposition suppression ability of the inventive catalyst was revealed.

本発明の水素製造用触媒は、燃料電池用等の水素を高効率で得るプロセスを確立するものであり、産業上の利用可能性は多大のものがある。 The hydrogen production catalyst of the present invention establishes a process for obtaining hydrogen with high efficiency, such as for fuel cells, and has great industrial applicability.

20wt%Ni/(Alリン酸塩)-1 (触媒調製比較例3触媒)のXRDパターンであり、H2活性化前にはAlPO4 とNiOが、H2活性化後にはAlPO4、金属Ni, Ni3P,が、反応後にはAlPO4とNiの大部分はNiOとして一部は金属Niとして存在することを示している。A XRD pattern of the 20 wt% Ni / (Al phosphate) -1 (Catalyst Preparation Comparative Example 3 catalyst), H 2 activation before the AlPO 4 and NiO is, H is after 2 activation AlPO 4, metal Ni , Ni 3 P, shows that most of AlPO 4 and Ni are present as NiO and part as metallic Ni after the reaction. 20wt%Ni/(Yリン酸塩)-4 (触媒調製例4触媒)のXRDパターンであり、H2活性化前にはYPO4 とNiOが、H2活性化後および反応後にはYPO4、金属Niが存在することを示している。20 wt% Ni / (Y phosphate) is a XRD pattern of 4 (Catalyst Preparation Example 4 Catalyst), H 2 activation before the YPO 4 and NiO is, H 2 after activation and after reaction YPO 4, It shows that metal Ni is present. 20wt%Ni/(Ceリン酸塩)-1(触媒調製例8触媒)と20wt%Ni/Al2O3におけるH2活性化処理後にArを流通し、その後、酸化処理を行った後のXRDパターンである。20wt%Ni/Al2O3ではNiOとともにNiAl2O4が生成した。一方、触媒調製例8触媒ではNiOのみが生成したことを示している。XRD after 20 wt% Ni / (Ce phosphate) -1 (catalyst preparation example 8 catalyst) and Ar after H 2 activation treatment in 20 wt% Ni / Al 2 O 3 and then oxidation treatment It is a pattern. In 20 wt% Ni / Al 2 O 3 , NiAl 2 O 4 was formed together with NiO. On the other hand, only NiO was produced in the catalyst preparation example 8 catalyst.

符号の説明Explanation of symbols

図1
● AlPO4
金属Ni
NiO
Ni3P
図2
● YPO4
金属Ni
■ NiO
図3
● CePO4
■ NiAl2O4
▼ Al2O3
□ NiO
Figure 1
● AlPO4
Metal Ni
NiO
Ni3P
Figure 2
● YPO4
Metal Ni
■ NiO
Figure 3
● CePO 4
■ NiAl 2 O 4
▼ Al 2 O 3
□ NiO

Claims (1)

焼成した希土類リン酸塩を担体としこれに、貴金属であるRu、Rh、Pd、Ir、Pt、あるいは非貴金属であるNi、Coの少なくとも1種類または混合物を担持してなる水素製造用触媒。 A catalyst for hydrogen production comprising a calcined rare earth phosphate as a support and carrying thereon at least one kind or a mixture of Ru, Rh, Pd, Ir, Pt which are noble metals or Ni and Co which are non-noble metals.
JP2006066530A 2005-03-11 2006-03-10 Catalyst for hydrogen production Active JP4465478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006066530A JP4465478B2 (en) 2005-03-11 2006-03-10 Catalyst for hydrogen production

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005069915 2005-03-11
JP2006066530A JP4465478B2 (en) 2005-03-11 2006-03-10 Catalyst for hydrogen production

Publications (2)

Publication Number Publication Date
JP2006281205A JP2006281205A (en) 2006-10-19
JP4465478B2 true JP4465478B2 (en) 2010-05-19

Family

ID=37403656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006066530A Active JP4465478B2 (en) 2005-03-11 2006-03-10 Catalyst for hydrogen production

Country Status (1)

Country Link
JP (1) JP4465478B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100823505B1 (en) 2006-11-20 2008-04-21 삼성에스디아이 주식회사 Catalyst for fuel cell, method of preparing same membrane-electrode assembly for fuel cell and fuel cell system femprising same
JP5205434B2 (en) * 2010-09-30 2013-06-05 株式会社東芝 Cathode catalyst layer, membrane electrode assembly, and fuel cell
JP6128799B2 (en) * 2012-10-31 2017-05-17 三井金属鉱業株式会社 Optical material, method for producing the same, and aqueous dispersion
CN116493029A (en) * 2023-04-14 2023-07-28 大连理工大学 Catalyst for preparing butadiene through ethanol coupling, preparation method and application

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06234696A (en) * 1992-03-27 1994-08-23 Mitsui Toatsu Chem Inc Production of alpha,beta-unsaturated carboxylic acid
JP3786441B2 (en) * 1994-10-06 2006-06-14 昭和電工株式会社 Reaction method using phosphate catalyst
JP3813646B2 (en) * 1995-06-29 2006-08-23 株式会社コスモ総合研究所 Method for producing steam reforming catalyst and method for producing hydrogen
JPH09132406A (en) * 1995-11-07 1997-05-20 Mitsubishi Heavy Ind Ltd Fine particles of phosphate of rare earth element and their production
JP2002121007A (en) * 2000-10-12 2002-04-23 Matsushita Electric Ind Co Ltd Hydrogen generating device
JP2002220202A (en) * 2001-01-23 2002-08-09 Kansai Coke & Chem Co Ltd Method of manufacturing hydrogen

Also Published As

Publication number Publication date
JP2006281205A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
US12097482B2 (en) Systems and methods for processing ammonia
WO2002038268A1 (en) Catalyst for hydrocarbon reforming and method of reforming hydrocarbon with the same
JP3882044B2 (en) Method for preparing Fischer-Tropsch synthesis catalyst
JP2008229604A (en) Low temperature hydrogen-manufacturing catalyst, its manufacturing method, and hydrogen-manufacturing method
US11795055B1 (en) Systems and methods for processing ammonia
TWI294413B (en) Method for converting co and hydrogen into methane and water
KR20100078805A (en) Hydrocarbon reforming catalyst, preparation method thereof and fuel cell employing the catalyst
JP4648566B2 (en) Autothermal reforming catalyst and method for producing fuel gas for fuel cell
KR101008025B1 (en) Hydrocarbon reforming catalyst, preparation method thereof and fuel cell employing the catalyst
JPH11276893A (en) Metal fine particle-supported hydrocarbon modifying catalyst and its production
JP4465478B2 (en) Catalyst for hydrogen production
KR101444600B1 (en) Preparation method of porous nickel-based spinel catalysts with high activity and sulfur resistance in hydrocarbon autothermal reforming, the catalyst prepared by the method, and operation method using the catalyst
WO2014182020A1 (en) Monolith catalyst for carbon dioxide reforming reaction, production method for same, and production method for synthesis gas using same
KR101245484B1 (en) Water gas shift catalysts and method for producing syngas by Water gas shift reaction using the same
US11866328B1 (en) Systems and methods for processing ammonia
JP4525909B2 (en) Water gas shift reaction catalyst, method for producing the same, and method for producing water gas
JPWO2013132862A1 (en) Catalyst, method for producing catalyst, method for producing hydrogen-containing gas using this catalyst, hydrogen generator, fuel cell system, and silicon-supported CeZr-based oxide
KR101392996B1 (en) Mesoporous nickel-alumina-zirconia xerogel catalyst and production method of hydrogen by steam reforming of ethanol using said catalyst
JP4608659B2 (en) Method for producing direct heat supply type hydrocarbon reforming catalyst
JP2005044651A (en) Method of manufacturing hydrogen rich gas
US20240132346A1 (en) Systems and methods for processing ammonia
Mileva et al. NANOSIZED MESOPOROUS CuO-CeO 2-TiO 2 AND CuO-ZrO 2-TiO 2 COMPOSITES AS CATALYSTS FOR METHANOL DECOMPOSITION: EFFECT OF MODIFICATION PROCEDURE.
JP2004057963A (en) Hydrocarbon reforming catalyst, equipment for decomposing hydrocarbon and reformer for fuel cell
US20240132347A1 (en) Systems and methods for processing ammonia
KR101440193B1 (en) Catalyst for the mixed reforming of natural gas, preparation method thereof and method for mixed reforming of natural gas using the catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150