JP5971350B2 - Control device for hybrid vehicle - Google Patents
Control device for hybrid vehicle Download PDFInfo
- Publication number
- JP5971350B2 JP5971350B2 JP2014548523A JP2014548523A JP5971350B2 JP 5971350 B2 JP5971350 B2 JP 5971350B2 JP 2014548523 A JP2014548523 A JP 2014548523A JP 2014548523 A JP2014548523 A JP 2014548523A JP 5971350 B2 JP5971350 B2 JP 5971350B2
- Authority
- JP
- Japan
- Prior art keywords
- vehicle
- data
- travel
- traffic data
- route
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000013500 data storage Methods 0.000 claims description 14
- 238000000034 method Methods 0.000 description 19
- 230000008569 process Effects 0.000 description 19
- 238000012937 correction Methods 0.000 description 18
- 238000004891 communication Methods 0.000 description 14
- 230000005540 biological transmission Effects 0.000 description 13
- 239000000446 fuel Substances 0.000 description 13
- 238000004364 calculation method Methods 0.000 description 7
- 230000009471 action Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 101001093748 Homo sapiens Phosphatidylinositol N-acetylglucosaminyltransferase subunit P Proteins 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/50—Architecture of the driveline characterised by arrangement or kind of transmission units
- B60K6/54—Transmission for changing ratio
- B60K6/547—Transmission for changing ratio the transmission being a stepped gearing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/48—Parallel type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
- B60L15/2045—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/10—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
- B60L50/16—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/10—Controlling the power contribution of each of the prime movers to meet required power demand
- B60W20/12—Controlling the power contribution of each of the prime movers to meet required power demand using control strategies taking into account route information
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/34—Route searching; Route guidance
- G01C21/3453—Special cost functions, i.e. other than distance or default speed limit of road segments
- G01C21/3469—Fuel consumption; Energy use; Emission aspects
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/60—Navigation input
- B60L2240/68—Traffic data
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/70—Interactions with external data bases, e.g. traffic centres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/40—Control modes
- B60L2260/50—Control modes by future state prediction
- B60L2260/52—Control modes by future state prediction drive range estimation, e.g. of estimation of available travel distance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/40—Control modes
- B60L2260/50—Control modes by future state prediction
- B60L2260/54—Energy consumption estimation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2556/00—Input parameters relating to data
- B60W2556/10—Historical data
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2556/00—Input parameters relating to data
- B60W2556/45—External transmission of data to or from the vehicle
- B60W2556/50—External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Combustion & Propulsion (AREA)
- Automation & Control Theory (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Hybrid Electric Vehicles (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Navigation (AREA)
Description
本発明は、走行駆動源にエンジン及びモータを備えたハイブリッド車両の制御装置に関する発明である。 The present invention relates to a control apparatus for a hybrid vehicle having an engine and a motor as a travel drive source.
従来、走行駆動源にガソリン等の燃料を使用して駆動するエンジンと、バッテリを電力源として駆動するモータを有するハイブリッド車両に搭載され、予め設定された予定走行経路上の混雑状況や車速情報を考慮して、バッテリの充放電制御を行うハイブリッド車両の制御装置が知られている(例えば、特許文献1参照)。 Conventionally, it is mounted on a hybrid vehicle having an engine driven using fuel such as gasoline as a travel drive source and a motor driven by using a battery as an electric power source. In consideration of this, a control device for a hybrid vehicle that performs charge / discharge control of a battery is known (see, for example, Patent Document 1).
しかしながら、従来のハイブリッド車両の制御装置では、予定走行経路上の混雑状況や車速情報は、対象となる予定走行経路における統計データに基づいて決定される。
そのため、この統計データを利用してハイブリッド車両のパワートレイン制御(例えば、走行モードのスケジューリングや、エンジン・モータの動力配分制御等)を行ってしまうと、自車両に固有の走行状況を反映させることができず、適切なパワートレイン制御を行うことが難しかった。そして、パワートレイン制御が自車両の走行状況に合わないため、エンジンの燃料消費量を抑制しきれず、燃費向上を図ることが難しいという問題があった。However, in the conventional hybrid vehicle control device, the congestion status and vehicle speed information on the planned travel route are determined based on statistical data on the planned planned travel route.
For this reason, if this statistical data is used to perform hybrid vehicle powertrain control (for example, scheduling of driving modes, power distribution control of engines and motors, etc.), the driving conditions unique to the host vehicle are reflected. It was difficult to perform proper powertrain control. And since powertrain control is not suitable for the driving | running | working condition of the own vehicle, there existed a problem that the fuel consumption of an engine could not be suppressed and it was difficult to aim at a fuel consumption improvement.
本発明は、上記問題に着目してなされたもので、予定走行経路における統計データを利用してパワートレイン制御を行う際に、適切なパワートレイン制御を行い、燃費向上を図ることができるハイブリッド車両の制御装置を提供することを目的とする。 The present invention has been made paying attention to the above-mentioned problem, and when performing powertrain control using statistical data on a planned travel route, a hybrid vehicle that can perform appropriate powertrain control and improve fuel efficiency. An object of the present invention is to provide a control device.
上記目的を達成するため、本発明のハイブリッド車両の制御装置は、走行駆動源としてエンジン及びモータを備えたハイブリッド車両に搭載され、走行データ記憶部と、ナビゲーターと、交通データ予測部と、パワートレイン制御部と、を備える。
前記走行データ記憶部は、走行済み経路における統計交通データに対する、同一経路における自車両の走行データの比率、或いは両者の差を記憶する。
前記ナビゲーターは、自車両の現在地から目的地までの予定走行経路を設定する。
前記交通データ予測部は、前記走行データ記憶部に記憶された統計交通データに対する自車両の走行データの比率、或いは両者の差に基づいて、前記予定走行経路での予測走行データを演算する。
前記パワートレイン制御部は、前記交通データ予測部によって予測された予測交通データに基づき、前記ハイブリッド車両のパワートレイン制御を行う。In order to achieve the above object, a hybrid vehicle control device of the present invention is mounted on a hybrid vehicle including an engine and a motor as a travel drive source, and includes a travel data storage unit, a navigator, a traffic data prediction unit, and a power train. A control unit.
The travel data storage unit stores the ratio of the travel data of the vehicle on the same route to the statistical traffic data on the traveled route, or the difference between the two.
The navigator sets a planned travel route from the current location of the host vehicle to the destination.
The traffic data prediction unit calculates predicted travel data on the planned travel route based on a ratio of the travel data of the own vehicle to the statistical traffic data stored in the travel data storage unit or a difference between the two.
The power train control unit performs power train control of the hybrid vehicle based on the predicted traffic data predicted by the traffic data prediction unit.
本発明のハイブリッド車両の制御装置では、交通データ予測部により、統計交通データと自車両の走行データとの、差或いは両者の比率に基づいて、予定走行経路での予測走行データが演算される。そして、パワートレイン制御部により、予測交通データに基づいてハイブリッド車両のパワートレイン制御が行われる。
すなわち、パワートレイン制御を行う際に参照する情報が、自車両の実際の走行データを反映したものになるため、予定走行経路での自車両の走行状態の予測精度を向上することができる。これにより、自車両に適したパワートレイン制御を実行することができ、エンジンの燃料消費量を適切に抑制して、燃費向上を図ることできる。In the hybrid vehicle control device of the present invention, the traffic data prediction unit calculates the predicted travel data on the planned travel route based on the difference between the statistical traffic data and the travel data of the host vehicle or the ratio of both. Then, the powertrain control unit performs powertrain control of the hybrid vehicle based on the predicted traffic data.
That is, since the information referred to when performing powertrain control reflects the actual travel data of the host vehicle, the prediction accuracy of the travel state of the host vehicle on the planned travel route can be improved. Thereby, powertrain control suitable for the host vehicle can be executed, and fuel consumption of the engine can be appropriately suppressed to improve fuel efficiency.
以下、本発明のハイブリッド車両の制御装置を実施するための形態を、図面に示す実施例1及び実施例2に基づいて説明する。 EMBODIMENT OF THE INVENTION Hereinafter, the form for implementing the control apparatus of the hybrid vehicle of this invention is demonstrated based on Example 1 and Example 2 which are shown in drawing.
(実施例1)
まず、実施例1のハイブリッド車両の制御装置の構成を、「ハイブリッド車両の全体システム構成」、「車両制御システムの構成」、「車両制御処理の構成」に分けて説明する。Example 1
First, the configuration of the hybrid vehicle control device according to the first embodiment will be described by dividing it into “the overall system configuration of the hybrid vehicle”, “the configuration of the vehicle control system”, and “the configuration of the vehicle control process”.
[ハイブリッド車両の全体システム構成]
図1は、実施例1のハイブリッド車両の制御装置が適用されたハイブリッド車両を示す全体システム図である。以下、図1に基づき、実施例1のハイブリッド車両の全体システム構成を説明する。[Overall system configuration of hybrid vehicle]
FIG. 1 is an overall system diagram illustrating a hybrid vehicle to which the hybrid vehicle control device of the first embodiment is applied. The overall system configuration of the hybrid vehicle according to the first embodiment will be described below with reference to FIG.
実施例1におけるハイブリッド車両は、後輪駆動によるFRハイブリッド車両(ハイブリッド車両の一例)Sである。このFRハイブリッド車両Sの駆動系は、図1に示すように、エンジンEngと、第1クラッチCL1と、モータ/ジェネレータMGと、第2クラッチCL2と、自動変速機ATと、変速機入力軸INと、プロペラシャフトPSと、ディファレンシャルDFと、左ドライブシャフトDSLと、右ドライブシャフトDSRと、左後輪RL(駆動輪)と、右後輪RR(駆動輪)と、を有する。なお、FLは左前輪、FRは右前輪である。 The hybrid vehicle in the first embodiment is a rear-wheel drive FR hybrid vehicle (an example of a hybrid vehicle) S. As shown in FIG. 1, the drive system of the FR hybrid vehicle S includes an engine Eng, a first clutch CL1, a motor / generator MG, a second clutch CL2, an automatic transmission AT, and a transmission input shaft IN. A propeller shaft PS, a differential DF, a left drive shaft DSL, a right drive shaft DSR, a left rear wheel RL (drive wheel), and a right rear wheel RR (drive wheel). Note that FL is the left front wheel and FR is the right front wheel.
前記エンジンEngは、ガソリンエンジンやディーゼルエンジンであり、車両制御部1からのエンジン制御指令に基づいて、エンジン始動制御やエンジン停止制御やスロットルバルブのバルブ開度制御やフューエルカット制御等が行われる。なお、エンジン出力軸には、フライホイールFWを介して第1クラッチCL1が接続されている。
The engine Eng is a gasoline engine or a diesel engine, and engine start control, engine stop control, throttle valve opening control, fuel cut control, and the like are performed based on an engine control command from the
前記第1クラッチCL1は、前記エンジンEngとモータ/ジェネレータMGの間に介装されたクラッチであり、車両制御部1からの制御指令に基づいて図示しない油圧ユニットにより作り出された第1クラッチ制御油圧により、締結・スリップ締結・開放が制御される。この第1クラッチCL1としては、例えば、ダイアフラムスプリングによる付勢力にて完全締結を保ち、ピストンを有する油圧アクチュエータを用いたストローク制御により、完全締結〜スリップ締結〜完全開放までが制御されるノーマルクローズの乾式単板クラッチが用いられる。なお、この第1クラッチCL1は、モータ/ジェネレータMGのみを走行駆動源とする電気自動車モードと、エンジンEngとモータ/ジェネレータMGの双方を走行駆動源とするハイブリッド車モードと、を切り替えるモード切り替え機構となっている。
The first clutch CL1 is a clutch interposed between the engine Eng and the motor / generator MG, and a first clutch control hydraulic pressure generated by a hydraulic unit (not shown) based on a control command from the
前記モータ/ジェネレータMGは、ロータに永久磁石を埋設しステータにステータコイルが巻き付けられた同期型モータ/ジェネレータであり、車両制御部1からの制御指令に基づいて、インバータ2により作り出された三相交流を印加することにより制御される。このモータ/ジェネレータMGは、バッテリ3からの電力の供給を受けて回転駆動し、エンジンEngの始動や左右後輪RL,RRの駆動を行う電動機として動作することもできる(以下、この動作状態を「力行」という)し、ロータがエンジンEngや左右後輪RL,RRから回転エネルギーを受ける場合には、ステータコイルの両端に起電力を生じさせる発電機として機能し、バッテリ3を充電することもできる(以下、この動作状態を「回生」という)。なお、このモータ/ジェネレータMGのロータは、自動変速機ATの変速機入力軸INに連結されている。
The motor / generator MG is a synchronous motor / generator in which a permanent magnet is embedded in a rotor and a stator coil is wound around a stator, and the three-phase generated by the
前記第2クラッチCL2は、前記モータ/ジェネレータMGと左右後輪RL,RRの間に介装されたクラッチであり、車両制御部1からの制御指令に基づいて図示しない油圧ユニットにより作り出された第2クラッチ制御油圧により、締結・スリップ締結・開放が制御される。この第2クラッチCL2としては、例えば、比例ソレノイドで油流量および油圧を連続的に制御できるノーマルオープンの湿式多板クラッチや湿式多板ブレーキが用いられる。
The second clutch CL2 is a clutch interposed between the motor / generator MG and the left and right rear wheels RL, RR, and is generated by a hydraulic unit (not shown) based on a control command from the
前記自動変速機ATは、モータ/ジェネレータMGと左右後輪RL,RRの間に介装され、例えば、前進7速/後退1速等の有段階の変速段を車速やアクセル開度等に応じて自動的に切り替える有段変速機である。この自動変速機ATの変速機出力軸には、プロペラシャフトPSが連結されている。そして、このプロペラシャフトPSは、ディファレンシャルDF、左ドライブシャフトDSL、右ドライブシャフトDSRを介して左右後輪RL,RRに連結されている。
なお、実施例1では、自動変速機ATの各変速段にて締結される複数の摩擦締結要素のうち、トルク伝達経路に配置されると共に所定の条件に適合する最適な摩擦係合要素(クラッチやブレーキ)を選択し、第2クラッチCL2としている。すなわち、前記第2クラッチCL2は、自動変速機ATとは独立の専用クラッチとして新たに追加したものではない。The automatic transmission AT is interposed between the motor / generator MG and the left and right rear wheels RL and RR. For example, the automatic transmission AT can change a stepped gear stage such as forward 7 speed /
In the first embodiment, among a plurality of frictional engagement elements that are engaged at each gear stage of the automatic transmission AT, an optimum frictional engagement element (clutch that is disposed on the torque transmission path and that meets a predetermined condition) Or the brake) is selected and the second clutch CL2 is selected. That is, the second clutch CL2 is not newly added as a dedicated clutch independent of the automatic transmission AT.
そして、このFRハイブリッド車両Sは、駆動形態の違い、つまり走行駆動源の違いによる走行モードとして、電気自動車モード(以下、「EVモード」という)と、ハイブリッド車モード(以下、「HEVモード」という)と、を有する。 The FR hybrid vehicle S has an electric vehicle mode (hereinafter referred to as “EV mode”) and a hybrid vehicle mode (hereinafter referred to as “HEV mode”) as a driving mode depending on a driving mode, that is, a driving drive source. And).
前記「EVモード」は、第1クラッチCL1を開放状態とし、エンジンEngを停止してモータ/ジェネレータMGの駆動力のみで走行するモードである。この「EVモード」は、モータ走行モード・回生走行モードを有する。この「EVモード」は、要求駆動トルクが低く、バッテリ3の充電残量(以下、「バッテリSOC(State Of Chargeの略)」という)が確保されているときに選択される。 The “EV mode” is a mode in which the first clutch CL1 is released, the engine Eng is stopped, and the vehicle travels only with the driving force of the motor / generator MG. The “EV mode” has a motor travel mode and a regenerative travel mode. This “EV mode” is selected when the required drive torque is low and the remaining charge of the battery 3 (hereinafter referred to as “battery SOC (abbreviation of State Of Charge)”) is secured.
前記「HEVモード」は、第1クラッチCL1を締結状態とし、エンジンEngとモータ/ジェネレータMGの双方の駆動力で走行するモードである。この「HEVモード」は、モータアシスト走行モード・発電走行モード・エンジン走行モードを有する。この「HEVモード」は、要求駆動トルクが高いとき、あるいは、バッテリSOCが不足するようなときに選択される。 The “HEV mode” is a mode in which the first clutch CL1 is engaged and the vehicle travels with the driving forces of both the engine Eng and the motor / generator MG. The “HEV mode” includes a motor assist travel mode, a power generation travel mode, and an engine travel mode. The “HEV mode” is selected when the required drive torque is high or when the battery SOC is insufficient.
[車両制御システムの構成]
実施例1におけるFRハイブリッド車両Sの車両制御システムは、図1に示すように、車両制御部1と、インバータ2と、バッテリ3と、ナビゲーションシステム(ナビゲーター)4と、通信ユニット5と、を有して構成されている。[Configuration of vehicle control system]
As shown in FIG. 1, the vehicle control system of the FR hybrid vehicle S according to the first embodiment includes a
前記車両制御部1は、本発明のハイブリッド車両の制御装置であり、複数のCPUを有するマイクロコンピュータとその周辺部品や各種アクチュエータなどを備え、エンジンEngの回転速度や出力トルク、第1クラッチCL1,第2クラッチCL2の締結・スリップ締結・開放、モータ/ジェネレータMGの回転速度や出力トルク、自動変速機ATの変速段などを制御する。また、この車両制御部1は、記憶部1aと、予測部1bと、制御部1cと、を有している。
前記記憶部1aは、走行済み経路における統計交通データ(ここでは車速)に対する、同一経路での自車両の走行データ(ここでは車速)の比率(以下、「統計比率」という)を演算する演算回路と、この演算結果を記憶するメモリによって構成され、走行データ記憶部に相当する。
前記予測部1bは、車両制御部1が有するCPUの一つによって構成され、記憶部1aに記憶された統計比率に基づいて、予定走行経路での自車両の予測走行データ(ここでは予測車速)を演算する交通データ予測部に相当する。
前記制御部1cは、車両制御部1が有するCPUの一つによって構成され、後述する車両制御処理を実行し、予測交通データ(予測車速)に基づき、FRハイブリッド車両Sのパワートレイン制御(ここでは走行モードのスケジューリング)を行うパワートレイン制御部に相当する。
さらに、この車両制御部1には、車速センサ6からの車速情報や、バッテリSOCを常時監視するSOC監視部7からのバッテリSOC情報が入力される。The
The storage unit 1a calculates a ratio (hereinafter referred to as “statistic ratio”) of the travel data (here, vehicle speed) of the host vehicle on the same route to the statistical traffic data (here, vehicle speed) on the traveled route. And a memory that stores the calculation result, and corresponds to a travel data storage unit.
The
The control unit 1c is constituted by one of the CPUs of the
Furthermore, vehicle speed information from the
前記ナビゲーションシステム4は、記憶部4aと、演算部4bと、ディスプレイ(不図示)と、を有している。前記記憶部4aは、道路曲率半径、勾配、交差点、信号、踏み切り、横断歩道、制限速度、料金所等の道路環境情報や、道路属性情報(高速道路・幹線道路・一般道・住宅街等)を含む地図情報を記憶するメモリである。前記演算部4bは、衛星からの信号を受信し、このFRハイブリッド車両Sの地球上の絶対位置を検出する。そして、記憶部4aに記憶されている地図を参照し、現在FRハブリッド車両Sが存在している位置(現在地)を特定すると共に、この現在地から目的地までの予定走行経路を設定する演算回路である。この予定走行経路及びその経路上の道路環状情報・道路属性情報は、車両制御部1に入力される。また、不図示のディスプレイは、車室内に設けられ、ドライバーから目視可能となっている。
The
前記通信ユニット5は、車両制御部1に接続されると共に、図示しない無線基地局及びインターネット等の通信ネットワークを介して、交通情報や統計交通データを有するデータセンタ8との無線通信(テレマティクス通信)を行う。この「通信」は双方向であり、通信ユニット5を介して、車両制御部1の制御部1cからデータセンタ8へと情報を送信することや、通信ユニット5を介して、データセンタ8から情報を受信して車両制御部1の制御部1cへ入力することが可能である。
なお、前記通信ユニット5としては、携帯電話機、DSRC、無線LANなど様々なものを採用することができる。また、この通信ユニット5を介して取得部1bへ入力された情報は、必要に応じてナビゲーションシステム4に入力される。The
As the
[車両制御処理の構成]
図2は、実施例1の車両制御部にて実行される車両制御処理の流れを示すフローチャートである。以下、車両制御処理内容を示す図2のフローチャートの各ステップについて説明する。[Configuration of vehicle control processing]
FIG. 2 is a flowchart illustrating a flow of a vehicle control process executed by the vehicle control unit according to the first embodiment. Hereinafter, each step of the flowchart of FIG. 2 showing the contents of the vehicle control process will be described.
ステップS1では、ナビゲーションシステム4により現在地から目的地までの予定走行経路を設定し、ステップS2へ移行する。
ここで、この予定走行経路の設定は、まず、ドライバーが手動操作によってナビゲーションシステム4に目的地を入力する。そして、ナビゲーションシステム4では、入力された目的地情報と、衛星からの信号に基づいて検出した現在地情報と、記憶部4aに記憶された地図情報に基づいて複数の走行経路を検索し、車室内に設けられたディスプレイに表示する。そして、ドライバーは検索された走行経路から予定走行経路を選択して設定する。
なお、設定された予定走行経路は、車両制御部1及び通信ユニット5を介してデータセンタ8へと送信される。In step S1, a planned travel route from the current location to the destination is set by the
Here, in setting the planned travel route, first, the driver inputs a destination to the
The set scheduled travel route is transmitted to the data center 8 via the
ステップS2では、ステップS1での予定走行経路の設定に続き、通信ユニット5を介して、データセンタ8から予定走行経路上の統計交通データを取得し、ステップS3へ移行する。
ここで、「統計交通データ」とは、データセンタ8において設定されたノードと呼ばれる道路上の基準位置間隔ごとに決められた車速である。In step S2, statistical traffic data on the planned travel route is acquired from the data center 8 via the
Here, the “statistical traffic data” is a vehicle speed determined for each reference position interval on the road called a node set in the data center 8.
ステップS3では、ステップS2での統計交通データの取得に続き、設定された予定走行経路を複数の区間に分割すると共に、分割した各区間における区間車速を取得した統計交通データをもとに演算し、ステップS4へ移行する。
なお、この経路の分割は、FRハイブリッド車両Sが取得可能な経路分割に必要な様々なLINK情報に基づいて設定される分割基準位置によって分割することで行う。In step S3, following the acquisition of the statistical traffic data in step S2, the set planned travel route is divided into a plurality of sections, and calculated based on the statistical traffic data acquired for the section vehicle speeds in each divided section. The process proceeds to step S4.
Note that this route division is performed by dividing the route by division reference positions set based on various LINK information necessary for route division that can be acquired by the FR hybrid vehicle S.
ステップS4では、ステップS3での予定走行経路の分割に続き、予定走行経路における統計交通データを補正し、ステップS5へ移行する。
ここで、統計交通データの補正とは、走行済み経路における統計データの区間車速に対する、記憶部1aに記憶された走行済み経路における自車両の区間車速(走行データ)の比率(統計比率)に基づいて、予定走行経路での自車両の予測車速(予測交通データ)を演算することである。
すなわち、記憶部1aに予め記憶された統計比率を補正係数αというとき、この補正係数αを、下記式(1)のように予定走行経路における統計データの予測車速に乗算し、予測交通データである予測車速を求める。
Vr_predict(N+1)=α×Vs(N+1) ・・・(1)
ここで、V:車速
N+1:予定走行経路
Vr_predict(N+1):自車両の予定走行経路での予測車速
α:補正係数
Vs(N+1):統計交通データの予定走行経路での予測車速
とする。In step S4, following the division of the planned travel route in step S3, the statistical traffic data in the planned travel route is corrected, and the process proceeds to step S5.
Here, the correction of the statistical traffic data is based on the ratio (statistical ratio) of the section vehicle speed (travel data) of the host vehicle on the traveled route stored in the storage unit 1a to the section vehicle speed of the statistical data on the traveled route. Thus, the predicted vehicle speed (predicted traffic data) of the host vehicle on the planned travel route is calculated.
That is, when the statistical ratio stored in advance in the storage unit 1a is referred to as a correction coefficient α, the correction coefficient α is multiplied by the predicted vehicle speed of the statistical data on the planned travel route as in the following equation (1), and the predicted traffic data Find a certain predicted vehicle speed.
Vr_predict (N + 1) = α × Vs (N + 1) (1)
Where V: vehicle speed
N + 1: Scheduled travel route
Vr_predict (N + 1): predicted vehicle speed on the planned travel route of the host vehicle
α: Correction coefficient
Vs (N + 1): Estimated vehicle speed on the planned travel route of statistical traffic data.
ステップS5では、ステップS4での統計交通データの補正に続き、予定走行経路におけるパワートレイン制御計画を演算し、ステップS6へ移行する。
なお、「パワートレイン制御計画」とは、ここでは、FRハイブリッド車両Sの走行モードのスケジューリングであり、予定走行経路における走行モードを設定する。In step S5, following the correction of the statistical traffic data in step S4, a powertrain control plan for the planned travel route is calculated, and the process proceeds to step S6.
Here, the “powertrain control plan” is scheduling of the travel mode of the FR hybrid vehicle S, and sets the travel mode on the planned travel route.
ステップS6では、ステップS5でのパワートレイン制御計画の演算に続き、FRハイブリッド車両Sが予定走行経路を実際に走行した際の実際のパワートレイン制御を、実際の走行状況に合わせて変更し、ステップS7へ移行する。
このパワートレイン制御の変更は、まず、計画において走行モードを「EVモード」に設定した場合に、そのときのモータ出力最大値「EVモード」が実現できるように設定する。そして、実際に走行した時点でのバッテリSOCと、設定したモータ出力最大値を比較し、実際の走行モードを設定(計画に対して変更或いは継続)する。In step S6, following the calculation of the powertrain control plan in step S5, the actual powertrain control when the FR hybrid vehicle S actually travels along the planned travel route is changed in accordance with the actual travel situation, The process proceeds to S7.
This change in powertrain control is first set so that the motor output maximum value “EV mode” at that time can be realized when the travel mode is set to “EV mode” in the plan. Then, the battery SOC at the time of actual traveling is compared with the set maximum motor output value, and the actual traveling mode is set (changed or continued with respect to the plan).
ステップS7では、ステップS6でのパワートレイン制御の変更に続き、実際に走行した区間での統計交通データ(ここでは車速)に対する、同一区間の走行データ(ここでは車速)の比率(統計比率)を、走行経路に関連付けて記憶部1aに記憶し、ステップS8へ移行する。 In step S7, following the change in powertrain control in step S6, the ratio (statistical ratio) of the travel data (here vehicle speed) in the same section to the statistical traffic data (here vehicle speed) in the actually traveled section is calculated. Then, it is stored in the storage unit 1a in association with the travel route, and the process proceeds to step S8.
ステップS8では、ステップS7での統計比率の記憶に続き、FRハイブリッド車両Sが目的地に到達したか否かを判断する。YES(目的に到着)の場合には、エンドへ移行し、この車両制御処理を終了する。NO(目的地に未到着)の場合には、ステップS4へ戻る。
ここで、目的地に到着したか否かの判断は、ナビゲーションシステム4によって、衛星からの信号に基づいて検出した現在地情報から判断する。In step S8, following the storing of the statistical ratio in step S7, it is determined whether or not the FR hybrid vehicle S has reached the destination. In the case of YES (arriving at the purpose), the process proceeds to the end, and this vehicle control process is terminated. If NO (no arrival at the destination), the process returns to step S4.
Here, whether or not the destination has been reached is determined from the current location information detected by the
次に、実施例1のハイブリッド車両の制御装置における車両制御作用を説明する。 Next, the vehicle control action in the hybrid vehicle control apparatus of the first embodiment will be described.
[車両制御作用]
図3は、実施例1におけるデータセンタから取得する統計交通データと、自車両の走行データを示すタイムチャートである。以下、図3に基づき、実施例1のハイブリッド車両の制御装置における車両制御作用を説明する。[Vehicle control action]
FIG. 3 is a time chart showing statistical traffic data acquired from the data center and traveling data of the host vehicle in the first embodiment. Hereinafter, based on FIG. 3, the vehicle control action in the control apparatus of the hybrid vehicle of Example 1 is demonstrated.
実施例1のFRハイブリッド車両Sでは、自車両がすでに走行した経路(走行済み経路)における統計交通データ(図3において実線で示す)に対する、自車両の走行データ(図3において一点鎖線で示す)の比率(統計比率)を、走行経路に関連付けて記憶部1aに記憶している。つまり、この統計比率は走行済み経路を区分けした各区間ごとに異なったものとなる。 In the FR hybrid vehicle S of the first embodiment, the travel data of the host vehicle (indicated by the one-dot chain line in FIG. 3) with respect to the statistical traffic data (indicated by the solid line in FIG. 3) on the route (the route that has already traveled) The ratio (statistical ratio) is stored in the storage unit 1a in association with the travel route. That is, this statistical ratio is different for each section into which the traveled route is divided.
そして、図2に示す車両制御処理において、ステップS4にて予定走行経路における統計交通データを補正する際に、この統計比率を補正係数αとして自車両の予測走行データ(上記式(1)では予定区間車速、図3において破線で示す)を演算する。そして、ステップS5→ステップS6へと進み、この予測走行データに基づいてパワートレイン制御(走行モードのスケジューリング)を実行する。 In the vehicle control process shown in FIG. 2, when the statistical traffic data on the planned travel route is corrected in step S4, the predicted travel data of the host vehicle (planned in the equation (1) above) with this statistical ratio as the correction coefficient α. The section vehicle speed (indicated by a broken line in FIG. 3) is calculated. Then, the process proceeds from step S5 to step S6, and powertrain control (travel mode scheduling) is executed based on the predicted travel data.
このように、実施例1では、予定走行経路における予測走行データに、自車両の固有の走行状況を反映させることができ、予測走行データを自車両の走行状態に合わせることができる。 As described above, in the first embodiment, the predicted travel data on the planned travel route can reflect the inherent travel situation of the host vehicle, and the predicted travel data can be matched to the travel state of the host vehicle.
すなわち、図3において実線で示すように、予定走行経路(区間N+1)における統計交通データには、自車両の走行状況が反映されていないので、補正後の予測走行データとは異なる値になっている。そのため、この統計交通データをそのまま利用してパワートレイン制御を行うと、自車両の車両状況に合わない制御になることがあり、十分な燃費向上を図ることができなくなることがある。 That is, as shown by a solid line in FIG. 3, the statistical traffic data on the planned travel route (section N + 1) does not reflect the travel state of the host vehicle, and thus has a value different from the corrected predicted travel data. Yes. Therefore, if power train control is performed using this statistical traffic data as it is, the control may not match the vehicle status of the host vehicle, and sufficient fuel consumption may not be achieved.
これに対し、実施例1では、自車両の固有の走行状況を反映させた予測走行データ(図3において破線で示す)を利用してパワートレイン制御を行うため、自車両に適したパワートレイン制御を実行することができる。この結果、燃料消費量の低減を図り、燃費を向上することができる。さらに、電気消費量の低減、運転性の改善、排気量の改善等を図ることも可能となる。 On the other hand, in the first embodiment, power train control is performed using predicted travel data (indicated by a broken line in FIG. 3) reflecting the inherent travel situation of the host vehicle, and therefore, power train control suitable for the host vehicle. Can be executed. As a result, fuel consumption can be reduced and fuel consumption can be improved. Furthermore, it is possible to reduce electricity consumption, improve drivability, improve exhaust volume, and the like.
しかも、この実施例1では、予定走行経路における統計交通データを、統計比率を補正係数αとして補正し、予定走行経路での統計交通データに自車両の走行状況を反映する際、予定走行経路における統計交通データに補正係数αを乗算する。そのため、複雑な計算を行うことなく適切な補正を行うことができ、安価な構造とすることができる。 Moreover, in the first embodiment, the statistical traffic data on the planned travel route is corrected using the statistical ratio as the correction coefficient α, and the travel status of the host vehicle is reflected in the statistical traffic data on the planned travel route. The statistical traffic data is multiplied by the correction coefficient α. Therefore, appropriate correction can be performed without performing complicated calculations, and an inexpensive structure can be obtained.
さらに、図3に示すように、走行済み経路が複数の区間(N〜N−2)によって構成されている場合には、この複数の区間におけるそれぞれの統計比率の平均値を「補正係数α」としてもよい。
このとき、記憶部1aでは、各区間における統計比率に所定の重み付けをした上で、平均値を算出し、算出した値を「補正係数α」として記憶する。この重み付けは、各区間の距離・自車両の現在地からの距離・予定走行経路における統計交通データと各区間における自車両の走行データとの差の絶対値の大きさ、等に応じて決められる。このとき、例えば各区間の距離に応じた重み付けと、自車両の現在地からの距離に応じた重み付けとを併用することも可能である。Furthermore, as shown in FIG. 3, when the traveled route is configured by a plurality of sections (N to N−2), the average value of the statistical ratios in the plurality of sections is “correction coefficient α”. It is good.
At this time, the storage unit 1a calculates a mean value after applying a predetermined weight to the statistical ratio in each section, and stores the calculated value as “correction coefficient α”. This weighting is determined according to the distance of each section, the distance from the current location of the host vehicle, the magnitude of the absolute value of the difference between the statistical traffic data in the planned travel route and the travel data of the host vehicle in each section, and the like. At this time, for example, weighting according to the distance of each section and weighting according to the distance from the current location of the host vehicle can be used in combination.
なお、各区間の距離に応じた重み付けを行う場合には下記式(2)から求めるが、このとき、区間距離が長いほど重みが増すようになる。
ここで、Vr(n):区間nでの自車両の車速
Vs(n):区間nでの統計交通データの車速
L(n):区間nの区間距離
N:現在地から直近の走行区間
N−2:直近の走行区間から2区間前の走行区間
とする。In addition, when weighting according to the distance of each section is performed, the following formula (2) is used. At this time, the weight increases as the section distance increases.
Here, Vr (n): vehicle speed of the host vehicle in section n
Vs (n): Vehicle speed of statistical traffic data in section n
L (n): Section distance of section n
N: The nearest travel section from the current location
N-2: The travel section is 2 sections before the most recent travel section.
また、自車両の現在地からの距離に応じた重み付けを行う場合には下記式(3)から求めるが、このとき、区間距離が長いほど重みが増すようになる。
ここで、Vr(n):区間nでの自車両の車速
Vs(n):区間nでの統計交通データの車速
H(n):現在の自車両の位置から区間nまでの間の距離
N:現在地から直近の走行区間
N−2:直近の走行区間から2区間前の走行区間
とする。Moreover, when weighting according to the distance from the present location of the own vehicle is performed, the following formula (3) is used. At this time, the weight increases as the section distance increases.
Here, Vr (n): vehicle speed of the host vehicle in section n
Vs (n): Vehicle speed of statistical traffic data in section n
H (n): Distance between the current position of the vehicle and section n
N: The nearest travel section from the current location
N-2: The travel section is 2 sections before the most recent travel section.
さらに、区間距離や自車両の現在地との距離に応じた重み付けを行う場合には、この区間距離や自車両との距離に応じた重み係数を係数テーブル等で別途定義してもよい。この場合には下記式(4)から求め、重み係数は下記表1によって決められる。
ここで、Vr(n):区間nでの自車両の車速
Vs(n):区間nでの統計交通データの車速
b(n):重み係数
N:現在地から直近の走行区間
N−2:直近の走行区間から2区間前の走行区間
とする。
Here, Vr (n): vehicle speed of the host vehicle in section n
Vs (n): Vehicle speed of statistical traffic data in section n
b (n): weighting factor
N: The nearest travel section from the current location
N-2: The travel section is 2 sections before the most recent travel section.
また、予定走行経路における統計交通データと各区間における自車両の走行データとの差の絶対値の大きさに応じた重み付けを行う場合には、この絶対値が小さいほど重みを増すようにする。 When weighting is performed according to the absolute value of the difference between the statistical traffic data on the planned travel route and the travel data of the host vehicle in each section, the weight is increased as the absolute value is smaller.
このように、記憶部1aにおいて、重み付けを下上で、複数の区間での各統計比率の平均値を「補正係数α」とすることで、予定走行経路での統計交通データに自車両の平均的な走行状況を反映させることができる。これにより、予定走行経路における自車両の走行状態をさらに精度よく予測することができて、自車両に適したパワートレイン制御を行うことができる。 As described above, in the storage unit 1a, the average value of each statistical ratio in a plurality of sections is set to “correction coefficient α” under the weighting, and the average traffic of the subject vehicle is included in the statistical traffic data on the planned travel route. Can reflect the typical driving situation. As a result, the traveling state of the host vehicle on the planned traveling route can be predicted with higher accuracy, and powertrain control suitable for the host vehicle can be performed.
次に、効果を説明する。
実施例1のハイブリッド車両の制御装置にあっては、下記に列挙する効果を得ることができる。Next, the effect will be described.
In the hybrid vehicle control device of the first embodiment, the following effects can be obtained.
(1) 走行駆動源としてエンジンEng及びモータ/ジェネレータ(モータ)MGを備えたFRハイブリッド車両Sに搭載され、
走行済み経路における統計交通データに対する、同一経路における自車両の走行データの比率(Vr(n)/Vs(n))を記憶する記憶部(走行データ記憶部)1aと、
自車両の現在地から目的地までの予定走行経路を設定するナビゲーションシステム(ナビゲーター)4と、
前記記憶部(走行データ記憶部)1aに記憶された統計交通データに対する自車両の走行データの比率(Vr(n)/Vs(n))に基づいて、前記予定走行経路での予測走行データ(Vr_predict(N+1))を演算する予測部(交通データ予測部)1bと、
前記予測部(交通データ予測部)1bによって予測された予測交通データ(Vr_predict(N+1))に基づき、前記FRハイブリッド車両Sのパワートレイン制御を行う制御部(パワートレイン制御部)1cと、を備える構成とした。
これにより、予定走行経路における統計データを利用してパワートレイン制御を行う際に、適切なパワートレイン制御を行い、燃費向上を図ることができる。(1) It is mounted on an FR hybrid vehicle S equipped with an engine Eng and a motor / generator (motor) MG as a travel drive source,
A storage unit (travel data storage unit) 1a for storing a ratio (Vr (n) / Vs (n)) of travel data of the vehicle on the same route to statistical traffic data on the traveled route;
A navigation system (navigator) 4 for setting a planned travel route from the current location of the vehicle to the destination;
Based on the ratio (Vr (n) / Vs (n)) of the travel data of the host vehicle to the statistical traffic data stored in the storage unit (travel data storage unit) 1a, the predicted travel data on the planned travel route ( Vr_predict (N + 1)) for calculating a prediction unit (traffic data prediction unit) 1b;
A control unit (powertrain control unit) 1c that performs powertrain control of the FR hybrid vehicle S based on the predicted traffic data (Vr_predict (N + 1)) predicted by the prediction unit (traffic data prediction unit) 1b. The configuration.
Thereby, when performing powertrain control using the statistical data in the planned travel route, appropriate powertrain control can be performed to improve fuel efficiency.
(2) 前記予測部(交通データ予測部)1bは、前記予定走行経路での統計交通データ(Vs(N+1))に対し、前記走行データ記憶部1aに記憶された統計交通データに対する自車両の走行データの比率(Vr(n)/Vs(n))を乗算することで、前記予測走行データ(Vr_predict(N+1))を演算する構成とした。
これにより、複雑な計算を行うことなく予測走行データを求めることができて、安価な構造とすることができる。(2) The prediction unit (traffic data prediction unit) 1b corresponds to the statistical traffic data stored in the travel data storage unit 1a with respect to the statistical traffic data (Vs (N + 1)) on the planned travel route. The predicted travel data (Vr_predict (N + 1)) is calculated by multiplying the travel data ratio (Vr (n) / Vs (n)).
As a result, predicted traveling data can be obtained without performing complicated calculations, and an inexpensive structure can be obtained.
(3) 前記記憶部(走行データ記憶部)1aは、前記統計交通データに対する自車両の走行データの比率(Vr(n)/Vs(n))を、複数の経路(N〜N−2)ごとに記憶した場合には、各経路における比率に所定の重み付けL(n),H(n),b(n)をした上で、平均値(補正係数α)を算出する構成とした。
これにより、予定走行経路における自車両の走行状態の予測精度を向上することができ、さらに自車両に適したパワートレイン制御を行うことができる。(3) The storage unit (running data storage unit) 1a determines the ratio (Vr (n) / Vs (n)) of the running data of the host vehicle to the statistical traffic data by a plurality of routes (N to N-2). When the data is stored for each route, the average value (correction coefficient α) is calculated after predetermined weights L (n), H (n), and b (n) are applied to the ratios in the respective routes.
Thereby, the prediction accuracy of the traveling state of the host vehicle on the planned traveling route can be improved, and further, powertrain control suitable for the host vehicle can be performed.
(実施例2)
実施例2は、予定走行経路の属性に応じて、走行済み経路でのデータを任意に利用する例である。(Example 2)
The second embodiment is an example in which data on a traveled route is arbitrarily used according to the attribute of the planned travel route.
図4は、実施例2のハイブリッド車両の制御装置におけるデータセンタから取得する統計交通データと、自車両の走行データと、車両地域分類を示すタイムチャートである。以下、図4に基づき、実施例2のハイブリッド車両の制御装置を説明する。 FIG. 4 is a time chart showing statistical traffic data acquired from the data center in the hybrid vehicle control apparatus according to the second embodiment, traveling data of the host vehicle, and vehicle region classification. Hereinafter, based on FIG. 4, the control apparatus of the hybrid vehicle of Example 2 is demonstrated.
実施例2のハイブリッド車両の車両制御装置では、予めナビゲーションシステム4が有する地図情報に、走行地域分類情報を有している。この「走行地域分類」とは、走行経路の属性の一項目であり、走行経路を分類する。ここでは住宅地・幹線道路・高速道路・山岳道路となっている。
In the vehicle control apparatus for a hybrid vehicle according to the second embodiment, the travel area classification information is included in the map information of the
そして、図4に示すように、予定走行経路(区間M+1)における走行地域分類が「住宅地」である場合において、走行済み経路における統計交通データに対する自車両の走行データの比率、すなわち補正係数αを求めるには、まず、走行済み経路における走行地域分類が、予定走行経路と合致する区間を選別する。図4では、区間M−1、M−2、M−3である。 As shown in FIG. 4, when the travel area classification in the planned travel route (section M + 1) is “residential area”, the ratio of the travel data of the own vehicle to the statistical traffic data in the traveled route, that is, the correction coefficient α. First, a section where the travel area classification on the traveled route matches the planned travel route is selected. In FIG. 4, sections M-1, M-2, and M-3.
そして、記憶部1aは、この選別された各区間(区間M−1、M−2)、及び、自車両の現在地から直近の区間(区間M)の統計走行データに対する自車両の走行データの比率の平均値を求め、この平均値を「補正係数α」として記憶する。 And the memory | storage part 1a is the ratio of the driving data of the own vehicle with respect to the statistical driving data of each section (sections M-1, M-2) and the current location of the own vehicle (section M). And the average value is stored as “correction coefficient α”.
なお、この平均値を求める際、区間距離に応じた重み付けや自車両からの距離に応じた重み付けを行ってもよい。 In addition, when calculating | requiring this average value, you may weight according to the distance from a section distance, or the distance from the own vehicle.
すなわち、区間距離に応じた重み付けをして平均値(補正係数α)を求める場合には、下記式(5)を用いる。
ここで、Vr(m):区間mでの自車両の車速
Vs(m):区間mでの統計交通データの車速
L(m):区間mの区間距離
M:現在地から直近の走行区間
M−2:直近の走行区間から2区間前の選別した走行区間
とする。That is, when the average value (correction coefficient α) is obtained by weighting according to the section distance, the following equation (5) is used.
Where Vr (m): vehicle speed of the vehicle in section m
Vs (m): Vehicle speed of statistical traffic data in section m
L (m): Section distance of section m
M: Driving section closest to current location
M-2: The selected traveling
また、自車両からの距離に応じた重み付けをして平均値(補正係数α)を求める場合には、下記式(6)を用いる。
ここで、Vr(m):区間mでの自車両の車速
Vs(m):区間mでの統計交通データの車速
H(m):現在の自車両の位置から区間mまでの間の距離
M:現在地から直近の走行区間
M−2:直近の走行区間から2区間前の選別した走行区間
とする。Moreover, when calculating | requiring the average value (correction coefficient (alpha)) by weighting according to the distance from the own vehicle, following formula (6) is used.
Where Vr (m): vehicle speed of the vehicle in section m
Vs (m): Vehicle speed of statistical traffic data in section m
H (m): Distance between current vehicle position and section m
M: Driving section closest to current location
M-2: The selected traveling
このように、予定走行経路の走行地域分類と、走行地域分類が合致する走行済み経路での統計交通データに対する自車両の走行データの比率を用いて、補正係数αを求めることで、予定走行経路での交通状況の変化に対応したパワートレイン制御を行うことができる。この結果、予定走行経路でのパワートレイン制御をさらに適切に行うことができて、更なる燃費向上を図ることができる。 In this way, by calculating the correction coefficient α by using the ratio of the travel data of the host vehicle to the statistical traffic data on the traveled route whose travel region classification matches the travel region classification of the planned travel route, the planned travel route Powertrain control corresponding to changes in traffic conditions can be performed. As a result, powertrain control on the planned travel route can be performed more appropriately, and fuel consumption can be further improved.
すなわち、実施例2の車両の制御装置にあっては、下記に列挙する効果を得ることができる。 That is, the effects listed below can be obtained in the vehicle control apparatus of the second embodiment.
(4) 前記記憶部(走行データ記憶部)1aは、前記統計交通データに対する自車両の走行データの比率を、複数の経路ごとに記憶した場合には、予定走行経路の条件(走行地域分類)に合致する任意の経路(区間M、M−1、M−2)における比率から平均値を算出する構成とした。
これにより、予定走行経路での交通状況に対応したパワートレイン制御を行うことができ、さらに適切なパワートレイン制御となって、更なる燃費向上を図ることができる。(4) When the storage unit (travel data storage unit) 1a stores the ratio of the travel data of the host vehicle to the statistical traffic data for each of a plurality of routes, the condition of the planned travel route (travel region classification) The average value is calculated from the ratio in any route (section M, M-1, M-2) that matches the above.
As a result, powertrain control corresponding to traffic conditions on the planned travel route can be performed, and further appropriate powertrain control can be achieved to further improve fuel efficiency.
以上、本発明のハイブリッド車両の制御装置を実施例1及び実施例2に基づき説明してきたが、具体的な構成については、これらの実施例に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。 As mentioned above, although the control apparatus of the hybrid vehicle of this invention was demonstrated based on Example 1 and Example 2, it is not restricted to these Examples about concrete structure, Each claim of a claim Design changes and additions are permitted without departing from the spirit of the invention.
実施例2では、予定走行経路の走行地域分類に応じて走行済み経路の各区間を選別し、この走行地域分類が合致する区間のデータを利用する例を示したが、これに限らない。走行済み経路を選別する条件は任意に設定することができる。
つまり、この条件は、例えば、予定走行経路における交通データ(交通量・エンジン起動回数・停車回数等)、予定走行経路を走行する際の曜日や時刻、今回の予定走行経路上の任意の区間、等であってもよい。さらに、自車両を運転するドライバーの情報(年齢・性別等)や、地域の交通特性等によって選別してもよい。In the second embodiment, an example is shown in which each section of the traveled route is selected according to the travel region classification of the planned travel route, and the data of the section that matches the travel region classification is used. However, the present invention is not limited to this. Conditions for selecting the traveled route can be arbitrarily set.
In other words, this condition includes, for example, traffic data (traffic volume, number of engine starts, number of stops, etc.) on the planned travel route, day and time when traveling on the planned travel route, any section on the current planned travel route, Etc. Furthermore, you may select according to the information (age, sex, etc.) of the driver who drives the own vehicle, the traffic characteristics of the area, and the like.
また、実施例1では、予定走行経路での自車両の予測車速(予測交通データ)を演算する際、予定走行経路における統計データの予測車速に記憶部1aに予め記憶された統計比率を乗算して求める例を示した。しかしながら、これに限らず、予定走行経路における統計データの予測車速に、統計比率を加算したり、減算したりすることで、予定走行経路での自車両の予測交通データを演算してもよい。 In the first embodiment, when calculating the predicted vehicle speed (predicted traffic data) of the host vehicle on the planned travel route, the predicted vehicle speed of the statistical data on the planned travel route is multiplied by the statistical ratio stored in advance in the storage unit 1a. An example to find is shown. However, the present invention is not limited to this, and the predicted traffic data of the host vehicle on the planned travel route may be calculated by adding or subtracting the statistical ratio to the predicted vehicle speed of the statistical data on the planned travel route.
また、実施例1では、パワートレイン制御として、FRハイブリッド車両Sの走行モードのスケジューリングとする例を示した。しかしながら、このパワートレイン制御は、FRハイブリッド車両Sの駆動源から駆動輪までの間のパワートレインを制御するものであればよいので、例えば、FRハイブリッド車両Sにおける減速回生量の予測に基づくモータ/ジェネレータMGの出力制御や、車両における各種部品の熱的な保護のためのエンジンEng及びモータ/ジェネレータMGの出力制御(動力配分制御)であってもよい。 Further, in the first embodiment, an example is shown in which the driving mode scheduling of the FR hybrid vehicle S is performed as the powertrain control. However, this power train control only needs to control the power train from the drive source to the drive wheels of the FR hybrid vehicle S. For example, the motor / motor based on the prediction of the deceleration regeneration amount in the FR hybrid vehicle S It may be output control of the generator MG and output control (power distribution control) of the engine Eng and the motor / generator MG for thermal protection of various parts in the vehicle.
また、上記各実施例において、複数の区間における統計データに対する自車両の走行データの比率の平均値を求める際、自車両の現在地から直近の3区間のデータを用いて演算する例を示したが、これに限らない。どの区間のデータを利用するか、また利用する区間の数、距離等は任意に設定することができる。 Further, in each of the above-described embodiments, when the average value of the ratio of the traveling data of the own vehicle to the statistical data in a plurality of sections is calculated, the calculation is performed using the data of the three sections closest to the current location of the own vehicle. Not limited to this. Which section of data is used, and the number and distance of sections to be used can be arbitrarily set.
そして、上記各実施例では、記憶部1aに、走行済み経路における統計データに対する自車両の走行データの比率を記憶しているが、両者の差、つまり、走行済み経路における統計データと、同一経路における自車両の走行データとの差、を記憶してもよい。この場合、この差を用いて予定走行経路の統計交通データを補正する。
この場合であっても、予定走行データにおける統計交通データに、自車両の走行状況を反映することができ、自車両に適したパワートレイン制御を行うことができる。In each of the above embodiments, the ratio of the travel data of the host vehicle to the statistical data on the traveled route is stored in the storage unit 1a, but the difference between them, that is, the statistical data on the traveled route and the same route The difference from the traveling data of the own vehicle in the vehicle may be stored. In this case, the statistical traffic data of the planned travel route is corrected using this difference.
Even in this case, the traveling state of the host vehicle can be reflected in the statistical traffic data in the scheduled traveling data, and powertrain control suitable for the host vehicle can be performed.
また、実施例1では、統計交通データは、通信ユニット5を介してデータセンタ8から送信されることで取得する例を示したが、これに限らない。例えば、ナビゲーションシステム4の記憶部4aが有する地図情報に、予め各区間に関連付けられた統計交通情報を有していてもよい。
この場合では、外部からの通信情報で統計交通データを取得する必要がなくなるため、通信ユニット5が不要となり、安価な構成とすることができる。In the first embodiment, the statistical traffic data is acquired by being transmitted from the data center 8 via the
In this case, since it is not necessary to acquire statistical traffic data with communication information from the outside, the
そして、実施例1では、ナビゲーションシステム4において予定走行経路を設定する際に、ドライバーが最終的に予定走行経路を選択して設定する例を示したが、これに限らない。例えば、ドライバーが予定走行経路を選択設定しなくても、走行を始めた際の走行履歴情報を参照して、予定走行経路を設定してもよい。また、その場合では、車室内に設けられたディスプレイに複数の走行経路を表示しなくてもよい。
In the first embodiment, when the planned travel route is set in the
また、実施例1では、目的地に到着したと判断したら車両制御処理を終了する例を示したが、ドライバーの手動操作によって車両制御処理を終了してもよいし、目的地を設定していなくても登録済みの自宅に到着したら車両制御処理を終了してもよい。 In the first embodiment, the vehicle control process is terminated when it is determined that the vehicle has arrived at the destination. However, the vehicle control process may be terminated by a driver's manual operation, and the destination is not set. Even when the vehicle arrives at the registered home, the vehicle control process may be terminated.
本出願は、2012年11月26日に日本国特許庁に出願された特願2012−257252に基づいて優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。 This application claims priority based on Japanese Patent Application No. 2012-257252 filed with the Japan Patent Office on November 26, 2012, the entire disclosure of which is fully incorporated herein by reference.
Claims (3)
統計交通データに対する自車両の走行データの比率、或いは両者の差を記憶する走行データ記憶部と、
自車両の現在地から目的地までの予定走行経路を設定するナビゲーターと、
前記走行データ記憶部に記憶された統計交通データに対する自車両の走行データの比率、或いは両者の差に基づいて、前記予定走行経路での予測走行データを演算する交通データ予測部と、
前記交通データ予測部によって予測された予測交通データに基づき、前記ハイブリッド車両のパワートレイン制御を行うパワートレイン制御部と、を備え、
前記走行データ記憶部は、自車両が走行した走行済み経路を複数の経路に区分けし、
前記複数の経路ごとに、当該経路における統計交通データに対する自車両の走行データの比率、或いは両者の差を求め、
前記複数の経路ごとに求めた統計交通データに対する自車両の走行データの比率、或いは両者の差に所定の重み付けを行い、
重み付けを行った前記複数の経路ごとの統計交通データに対する自車両の走行データの比率、或いは両者の差の平均値を算出し、
該平均値を、統計交通データに対する自車両の走行データの比率、或いは両者の差として記憶する
ことを特徴とするハイブリッド車両の制御装置。 It is mounted on a hybrid vehicle equipped with an engine and a motor as a travel drive source,
A ratio of the driving data of the own vehicle to the statistical traffic data, or a driving data storage unit that stores a difference between the two ,
A navigator that sets the planned travel route from the current location of the vehicle to the destination;
A traffic data prediction unit that calculates predicted travel data on the planned travel route based on a ratio of travel data of the host vehicle to statistical traffic data stored in the travel data storage unit, or a difference between the two,
A powertrain control unit that performs powertrain control of the hybrid vehicle based on the predicted traffic data predicted by the traffic data prediction unit ;
The travel data storage unit divides a traveled route traveled by the host vehicle into a plurality of routes,
For each of the plurality of routes, the ratio of the driving data of the vehicle to the statistical traffic data on the route, or the difference between the two,
Perform a predetermined weighting on the ratio of the running data of the own vehicle to the statistical traffic data obtained for each of the plurality of routes, or the difference between the two,
Calculate the ratio of the running data of the host vehicle to the statistical traffic data for each of the plurality of routes subjected to weighting, or the average value of the difference between the two,
The hybrid vehicle control apparatus , wherein the average value is stored as a ratio of travel data of the own vehicle to statistical traffic data or a difference between the two .
前記交通データ予測部は、前記予定走行経路での統計交通データに対し、前記走行データ記憶部に記憶された統計交通データに対する自車両の走行データの比率、或いは両者の差を、加減算又は乗算することで、前記予測走行データを演算する
ことを特徴とするハイブリッド車両の制御装置。 In the hybrid vehicle control device according to claim 1,
The traffic data prediction unit adds, subtracts, or multiplies the ratio of the travel data of the host vehicle to the statistical traffic data stored in the travel data storage unit or the difference between the statistical traffic data on the planned travel route. Thus, the predicted travel data is calculated. A control device for a hybrid vehicle.
前記走行データ記憶部は、前記走行済み経路における走行経路の属性が、予定走行経路の属性に合致する任意の経路における比率、或いは両者の差に所定の重み付けをした上で前記平均値を算出する
ことを特徴とするハイブリッド車両の制御装置。
In the hybrid vehicle control device according to claim 1,
The travel data storage unit calculates the average value after predetermined weighting is applied to a ratio in an arbitrary route in which the attribute of the travel route in the traveled route matches the attribute of the planned travel route or a difference between the two. A control apparatus for a hybrid vehicle characterized by the above.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012257252 | 2012-11-26 | ||
JP2012257252 | 2012-11-26 | ||
PCT/JP2013/080578 WO2014080802A1 (en) | 2012-11-26 | 2013-11-12 | Control device for hybrid vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5971350B2 true JP5971350B2 (en) | 2016-08-17 |
JPWO2014080802A1 JPWO2014080802A1 (en) | 2017-01-05 |
Family
ID=50775985
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014548523A Active JP5971350B2 (en) | 2012-11-26 | 2013-11-12 | Control device for hybrid vehicle |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5971350B2 (en) |
WO (1) | WO2014080802A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6488582B2 (en) * | 2014-07-29 | 2019-03-27 | 日産自動車株式会社 | Vehicle control apparatus and vehicle control method |
CN107624155B (en) * | 2014-12-05 | 2021-09-28 | 苹果公司 | Autonomous navigation system |
JP7176376B2 (en) * | 2018-11-30 | 2022-11-22 | トヨタ自動車株式会社 | vehicle controller |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005184867A (en) * | 2003-12-16 | 2005-07-07 | Equos Research Co Ltd | Travelling speed pattern estimator, and drive controller of hybrid vehicle |
JP2009223551A (en) * | 2008-03-14 | 2009-10-01 | Aisin Aw Co Ltd | Traveling information creating device, traveling information creating method and program |
JP2009264935A (en) * | 2008-04-25 | 2009-11-12 | Denso Corp | Link cost calculation system and route calculation system |
JP2010052652A (en) * | 2008-08-29 | 2010-03-11 | Honda Motor Co Ltd | Control device for hybrid car, and energy calculating device for vehicle |
JP2011252775A (en) * | 2010-06-01 | 2011-12-15 | Toyota Motor Corp | Vehicle information providing device and navigation device |
JP2012181183A (en) * | 2011-02-09 | 2012-09-20 | Denso Corp | Information communication system, on-vehicle device, and center device |
JP2013142647A (en) * | 2012-01-12 | 2013-07-22 | Mitsubishi Motors Corp | Vehicular information provision device |
-
2013
- 2013-11-12 JP JP2014548523A patent/JP5971350B2/en active Active
- 2013-11-12 WO PCT/JP2013/080578 patent/WO2014080802A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005184867A (en) * | 2003-12-16 | 2005-07-07 | Equos Research Co Ltd | Travelling speed pattern estimator, and drive controller of hybrid vehicle |
JP2009223551A (en) * | 2008-03-14 | 2009-10-01 | Aisin Aw Co Ltd | Traveling information creating device, traveling information creating method and program |
JP2009264935A (en) * | 2008-04-25 | 2009-11-12 | Denso Corp | Link cost calculation system and route calculation system |
JP2010052652A (en) * | 2008-08-29 | 2010-03-11 | Honda Motor Co Ltd | Control device for hybrid car, and energy calculating device for vehicle |
JP2011252775A (en) * | 2010-06-01 | 2011-12-15 | Toyota Motor Corp | Vehicle information providing device and navigation device |
JP2012181183A (en) * | 2011-02-09 | 2012-09-20 | Denso Corp | Information communication system, on-vehicle device, and center device |
JP2013142647A (en) * | 2012-01-12 | 2013-07-22 | Mitsubishi Motors Corp | Vehicular information provision device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014080802A1 (en) | 2017-01-05 |
WO2014080802A1 (en) | 2014-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6206598B2 (en) | Control device for hybrid vehicle | |
JP5958552B2 (en) | Control device for hybrid vehicle | |
US9056612B2 (en) | Driving force control device for hybrid vehicle and driving force control method for hybrid vehicle | |
EP2808213B1 (en) | Hybrid vehicle management system, hybrid vehicle control apparatus, and hybrid vehicle control method | |
WO2009122951A1 (en) | Navigation system, hybrid vehicle with same, and method for searching for path for hybrid vehicle | |
GB2448972A (en) | A System and Method for Controlling the Operation of a Vehicle | |
JP2015059639A (en) | Control device for vehicle | |
JP2011020571A (en) | Device for controlling hybrid vehicle | |
JP2017144801A (en) | Electric car | |
JP2012224238A (en) | Control device of hybrid vehicle | |
EP3648440B1 (en) | Communication control device, communication system, method of controlling communication | |
WO2011125862A1 (en) | Hybrid vehicle control device | |
JP5971350B2 (en) | Control device for hybrid vehicle | |
JP5201039B2 (en) | Gear ratio control apparatus and gear ratio control method for vehicle | |
JP5900645B2 (en) | Vehicle control device | |
JP4802715B2 (en) | Temperature rise prediction device, route guidance system including the same, vehicle equipped with the same, temperature rise prediction method, route guidance method, and thermal load prediction device | |
US20230150474A1 (en) | Hybrid vehicle state of charge control | |
JP6232597B2 (en) | Control device for hybrid vehicle | |
JP2013169915A (en) | Controller for hybrid vehicle | |
JP2022059540A (en) | Battery management system for electric vehicle and electric vehicle | |
JP2017083999A (en) | Vehicle control apparatus | |
JP5614216B2 (en) | Vehicle control system | |
JP2016055761A (en) | Hybrid-vehicular control apparatus | |
JP2023072925A (en) | vehicle | |
JP2023031349A (en) | Control method for hybrid vehicle and controller for hybrid vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160614 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160627 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5971350 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |