JP5796397B2 - Ferritic stainless steel with excellent thermal fatigue properties and oxidation resistance - Google Patents

Ferritic stainless steel with excellent thermal fatigue properties and oxidation resistance Download PDF

Info

Publication number
JP5796397B2
JP5796397B2 JP2011171177A JP2011171177A JP5796397B2 JP 5796397 B2 JP5796397 B2 JP 5796397B2 JP 2011171177 A JP2011171177 A JP 2011171177A JP 2011171177 A JP2011171177 A JP 2011171177A JP 5796397 B2 JP5796397 B2 JP 5796397B2
Authority
JP
Japan
Prior art keywords
less
thermal fatigue
oxidation resistance
content
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011171177A
Other languages
Japanese (ja)
Other versions
JP2012107313A (en
Inventor
徹之 中村
徹之 中村
太田 裕樹
裕樹 太田
加藤 康
康 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011171177A priority Critical patent/JP5796397B2/en
Publication of JP2012107313A publication Critical patent/JP2012107313A/en
Application granted granted Critical
Publication of JP5796397B2 publication Critical patent/JP5796397B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、自動車やオートバイの排気管、触媒外筒材や火力発電プラントの排気ダクト等の高温環境下で使用される部材用として好適な、優れた熱疲労特性と耐酸化性を兼ね備えたフェライト系ステンレス鋼に関する。   The present invention is a ferrite having excellent thermal fatigue characteristics and oxidation resistance suitable for members used in high-temperature environments such as exhaust pipes of automobiles and motorcycles, catalyst outer cylinder materials and exhaust ducts of thermal power plants. Related to stainless steel.

自動車の排気系環境で使用される、例えば、エキゾーストマニホールド、排気パイプ、コンバーターケース、マフラー等に代表される排気部材には、耐熱疲労特性や耐酸化性のような耐熱性に優れることが要求されている。このような用途には、現状では、NbとSiを添加したCr含有鋼、例えば、Type429(14Cr−0.9Si−0.4Nb系)鋼が多く使用されている。しかし、エンジン性能の向上に伴って、排ガス温度が900℃を超えるような温度まで上昇すると、Type429鋼は、熱疲労特性が不足するという問題がある。   Exhaust members such as exhaust manifolds, exhaust pipes, converter cases, and mufflers used in the exhaust system environment of automobiles are required to have excellent heat resistance such as heat fatigue resistance and oxidation resistance. ing. At present, a Cr-containing steel to which Nb and Si are added, for example, Type 429 (14Cr-0.9Si-0.4Nb series) steel is often used for such applications. However, when the exhaust gas temperature rises to a temperature exceeding 900 ° C. as the engine performance improves, Type 429 steel has a problem that the thermal fatigue characteristics are insufficient.

この問題に対しては、NbとMoを添加して高温耐力を向上させたCr含有鋼、JIS G4305に規定されるSUS444(19Cr−0.5Nb−2Mo)、Nb,Mo,Wを添加したフェライト系ステンレス鋼(例えば、特許文献1参照)等が開発されている。しかしながら、昨今におけるMo,W原料の異常なまでの高騰から、安価でSUS444と同等の耐熱性を有する材料の開発が要求されるようになってきた。   For this problem, Cr-containing steel with improved high-temperature proof stress by adding Nb and Mo, SUS444 (19Cr-0.5Nb-2Mo) specified in JIS G4305, ferrite added with Nb, Mo, W Stainless steel (see, for example, Patent Document 1) has been developed. However, due to the unusual rise in Mo and W raw materials in recent years, it has become necessary to develop materials that are inexpensive and have heat resistance equivalent to that of SUS444.

このような状況下で、高価な元素であるMoやWを用いない耐熱性に優れた材料が、例えば、特許文献2〜4に開示されている。これらに開示された鋼はいずれも、Cuを添加することによって、熱疲労特性を向上させているのが特徴である。   Under such circumstances, for example, Patent Documents 2 to 4 disclose materials having excellent heat resistance that do not use expensive elements such as Mo and W. All of the steels disclosed therein are characterized in that the thermal fatigue properties are improved by adding Cu.

しかしながら、発明者らの研究によれば、上記特許文献2〜4に開示された技術のようにCuを添加した場合には、鋼自身の耐酸化性を低下させる他、加工性も低下させるという新たな問題があることが明らかとなった。   However, according to the researches of the inventors, when Cu is added as in the techniques disclosed in Patent Documents 2 to 4, the oxidation resistance of the steel itself is lowered and the workability is also lowered. It became clear that there was a new problem.

MoやWも、Cuも用いずに耐熱性を高めた鋼としては、特許文献5〜11に開示されたものがある。これら特許文献ではVNの析出強化を利用して高耐熱化を図っている。   Steels that have improved heat resistance without using Mo, W, or Cu include those disclosed in Patent Documents 5 to 11. In these patent documents, high heat resistance is achieved by utilizing precipitation strengthening of VN.

特開2004−018921号公報JP 2004-018921 A 国際公開2003/004714号パンフレットInternational Publication 2003/004714 Pamphlet 特開2006−117985号公報JP 2006-117985 A 特開2000−297355号公報JP 2000-297355 A 特許第4369596号公報Japanese Patent No. 4369596 特開平7−70709号公報JP-A-7-70709 特開2010−156008号公報JP 2010-156008 A 特開2000−248337号公報JP 2000-248337 A 特開2010−43327号公報JP 2010-43327 A 特開2002−30346号公報JP 2002-30346 A 特開平6−184637号公報Japanese Patent Laid-Open No. 6-184637

しかしながら、上記特許文献5、7、8の技術では、Nb、V、Nの全てが適量添加されていないため熱疲労特性が未だ十分とはいえない上、鋭敏化が発生し、耐食性や耐酸化性が著しく低下する問題も有している。また、特許文献6ではV、Nが適量添加されていてもMnが適量でないため耐酸化性のみならず熱疲労特性も十分ではない。
さらに、特許文献10、11についてはV、Nが適量添加されていないため優れた熱疲労特性は得られない。
However, in the techniques of Patent Documents 5, 7, and 8 described above, all of Nb, V, and N are not added in an appropriate amount, so that the thermal fatigue characteristics are not yet sufficient, and sensitization occurs, resulting in corrosion resistance and oxidation resistance. There is also a problem that the performance is significantly reduced. In Patent Document 6, even if V and N are added in appropriate amounts, Mn is not in an appropriate amount, so that not only oxidation resistance but also thermal fatigue characteristics are not sufficient.
Further, in Patent Documents 10 and 11, since an appropriate amount of V and N is not added, excellent thermal fatigue characteristics cannot be obtained.

また近年、自動車排ガス規制に対応するため高温でエンジンが使用され、それにともなって排ガス温度が高くなることが想定される。また、排ガスが高温になることによって、触媒の作用温度が上昇し、浄化作用を大きくすることも可能になる。このように排ガス温度がさらに上昇した場合、上記特許文献5〜9の技術では耐酸化性が十分ではない。   Further, in recent years, it is assumed that the engine is used at a high temperature in order to comply with the automobile exhaust gas regulations, and accordingly the exhaust gas temperature becomes high. Further, when the exhaust gas becomes high temperature, the operating temperature of the catalyst rises, and the purification effect can be increased. In this way, when the exhaust gas temperature further increases, the techniques of Patent Documents 5 to 9 do not have sufficient oxidation resistance.

本発明はかかる事情に鑑みてなされたものであって、Mo、W、Cuを用いずに、熱疲労特性と耐酸化性に優れたフェライト系ステンレス鋼を提供することを目的とする。   This invention is made | formed in view of this situation, Comprising: It aims at providing the ferritic stainless steel excellent in the thermal fatigue characteristic and oxidation resistance, without using Mo, W, and Cu.

なお、本発明でいう「熱疲労特性と耐酸化性に優れた」とは、SUS444と同等の熱疲労特性およびSUS444を上回る1050℃耐酸化性を有することをいう。具体的には、200/850℃の熱疲労特性がSUS444と同等以上であり、大気中1050℃で異常酸化を発生しないこととする。   In the present invention, “excellent in thermal fatigue characteristics and oxidation resistance” means having thermal fatigue characteristics equivalent to SUS444 and 1050 ° C. oxidation resistance exceeding SUS444. Specifically, the thermal fatigue characteristics at 200/850 ° C. are equal to or higher than those of SUS444, and abnormal oxidation does not occur at 1050 ° C. in the atmosphere.

発明者らは、上記課題を解決すべく鋭意検討を重ねた。その結果、VNの析出強化を有効に活用して熱疲労特性を向上させるためには、Nb、V、N含有量を最適なものにする必要があること、また高温において優れた耐酸化性を得るためにはMn量を最適化した上で、Cr量を適正化することが有効であることを見出した。   The inventors have intensively studied to solve the above problems. As a result, in order to effectively utilize the precipitation strengthening of VN and improve the thermal fatigue characteristics, it is necessary to optimize the Nb, V, and N contents, and excellent oxidation resistance at high temperatures. In order to obtain it, it was found that it is effective to optimize the amount of Cr after optimizing the amount of Mn.

具体的には、mass%で、Siを1.0%以下、Mnを0.5%以下、Nbを10×(C+N)〜0.6%をベースとして、Nを0.015〜0.040%の範囲で、同時にVを0.15〜0.6%の範囲で、かつV×Nが0.003〜0.015となるように含有させることにより長時間に亘って高温における強度を維持することができ、Mo、W、Cuを含有させなくてもSUS444と同等の耐熱疲労特性が得られることを見出した。また、Mnを0.5mass%以下とすることで1000℃における耐酸化性についてもSUS444と同等以上となり、さらにCrを20mass%超23mass%以下とすることでSUS444を上回る1050℃耐酸化性が得られることを見出した。   Specifically, with mass%, Si is 1.0% or less, Mn is 0.5% or less, Nb is 10 × (C + N) to 0.6%, and N is 0.015 to 0.040. The strength at high temperature is maintained for a long time by containing V so that V is in the range of 0.15 to 0.6% and V × N is 0.003 to 0.015. It has been found that even if Mo, W and Cu are not contained, heat fatigue characteristics equivalent to SUS444 can be obtained. Further, when Mn is 0.5 mass% or less, the oxidation resistance at 1000 ° C. is equal to or higher than that of SUS444, and when Cr is more than 20 mass% and 23 mass% or less, 1050 ° C. oxidation resistance exceeding SUS444 is obtained. I found out that

本発明は、本発明者らの以上のような知見に基づいて完成されたものである。   The present invention has been completed based on the above findings of the present inventors.

すなわち、本発明は、mass%で、C:0.015%以下、Si:1.0%以下、Mn:0.5%以下、Al:0.30%以下、P:0.040%以下、S:0.010%以下、Cr:20%超23%以下、Ni:0.5%以下、N:0.015〜0.040%、Nb:10(C+N)〜0.60%、V:0.15〜0.60%、Ti:0.01%以下(0を含む)、Zr:0.01%以下(0を含む)、Ta:0.01%以下(0を含む)、Mo:0.1%以下(0を含む)、W:0.1%以下(0を含む)を含有し、かつ0.003≦V×N≦0.015を満たし、残部がFeおよび不可避的不純物からなることを特徴とする熱疲労特性と耐酸化性に優れたフェライト系ステンレス鋼を提供する。 That is, the present invention is mass%, C: 0.015% or less, Si: 1.0% or less, Mn: 0.5% or less, Al: 0.30% or less, P: 0.040% or less, S: 0.010% or less, Cr: more than 20% and 23% or less, Ni: 0.5% or less, N: 0.015 to 0.040%, Nb: 10 (C + N) to 0.60%, V: 0.15 to 0.60%, Ti: 0.01% or less (including 0) , Zr: 0.01% or less (including 0 ), Ta: 0.01% or less (including 0) , Mo: 0.1% or less (including 0) , W: 0.1% or less (including 0) , and satisfies 0.003 ≦ V × N ≦ 0.015, with the balance being Fe and inevitable impurities A ferritic stainless steel having excellent thermal fatigue characteristics and oxidation resistance is provided.

また、本発明は、上記の成分組成に加えてさらに、mass%で、B:0.0004〜0.0020%、Co:0.05〜0.1%の1種または2種を含有することを特徴とする熱疲労特性と耐酸化性に優れたフェライト系ステンレス鋼を提供する。   Moreover, in addition to said component composition, this invention contains 1 type or 2 types of B: 0.0004-0.0020% and Co: 0.05-0.1% by mass% further. Ferritic stainless steel with excellent thermal fatigue characteristics and oxidation resistance characterized by

さらに本発明は、Siを0.4〜1.0%の範囲で含有することを特徴とする熱疲労特性と耐酸化性と耐水蒸気酸化性に優れたフェライト系ステンレス鋼を提供する。   Furthermore, the present invention provides a ferritic stainless steel excellent in thermal fatigue characteristics, oxidation resistance and steam oxidation resistance, characterized by containing Si in a range of 0.4 to 1.0%.

本発明によれば、高価なMoやW、およびCuを含有させることなくSUS444と同等以上の熱疲労特性およびSUS444を上回る1050℃耐酸化性を達成することができ、自動車排気部材用等として好適なフェライト系ステンレス鋼を得ることができる。   According to the present invention, thermal fatigue characteristics equivalent to or better than SUS444 and 1050 ° C. oxidation resistance exceeding SUS444 can be achieved without containing expensive Mo, W, and Cu, and it is suitable for automobile exhaust members and the like. Ferritic stainless steel can be obtained.

熱疲労特性に及ぼすN含有量の影響を示すグラフである。It is a graph which shows the influence of N content which acts on a thermal fatigue characteristic. 熱疲労特性に及ぼすV含有量の影響を示すグラフである。It is a graph which shows the influence of V content which acts on a thermal fatigue characteristic. 熱疲労特性に及ぼすV×Nの影響を示すグラフである。It is a graph which shows the influence of VxN which acts on a thermal fatigue characteristic. 熱疲労特性に及ぼすZr、Ti、Ta含有量の影響を示すグラフである。It is a graph which shows the influence of Zr, Ti, Ta content which acts on a thermal fatigue characteristic. 耐酸化性(酸化増量)に及ぼすMn含有量の影響を示すグラフである。It is a graph which shows the influence of Mn content which affects oxidation resistance (oxidation increase). 1050℃耐酸化性(酸化増量)に及ぼすCr含有量の影響を示すグラフである。It is a graph which shows the influence of Cr content which gives to 1050 degreeC oxidation resistance (oxidation increase).

まず、本発明を完成するに至った基礎的な実験について、説明する。なお、以下の説明において、成分における%表示は全てmass%である。
最初に、熱疲労特性に及ぼすN含有量の影響を検討した。
0.005〜0.010%C−0.45〜0.55%Si−0.15〜0.25%Mn−0.040〜0.050%Al−20.5〜21.5%Cr−0.40〜0.50%Nb−0.30〜0.40%Vの成分系をベースとして、N含有量を0.007〜0.048%の範囲で種々変化させた鋼を、実験室的に溶製して鋼塊とし、この鋼塊を鍛造し、熱処理して鋼材とし、この鋼材から熱疲労試験片を作製した。そして、拘束率0.8で200/850℃の加熱・冷却を繰り返し、熱疲労寿命を評価した。熱疲労寿命は、200℃において検出された荷重が初期の荷重の80%を下回ったサイクル数とした。なお、比較として、SUS444(18%Cr−2%Mo−0.5%Nb鋼)についても同様に評価した。
First, the basic experiment that led to the completion of the present invention will be described. In the following description, all percentages in the components are mass%.
First, the influence of N content on thermal fatigue characteristics was examined.
0.005-0.010% C-0.45-0.55% Si-0.15-0.25% Mn-0.040-0.050% Al-20.5-21.5% Cr- Based on a component system of 0.40 to 0.50% Nb-0.30 to 0.40% V, steel with various changes in N content in the range of 0.007 to 0.048% was obtained in the laboratory. The steel ingot was made into a steel ingot, this steel ingot was forged and heat-treated into a steel material, and a thermal fatigue test piece was produced from this steel material. Then, heating / cooling at 200/850 ° C. was repeated at a restraint rate of 0.8 to evaluate the thermal fatigue life. The thermal fatigue life was defined as the number of cycles in which the load detected at 200 ° C. was less than 80% of the initial load. For comparison, SUS444 (18% Cr-2% Mo-0.5% Nb steel) was also evaluated in the same manner.

図1は上記熱疲労試験における熱疲労寿命に及ぼすN含有量の影響を示したものである。この図から、N含有量が0.015〜0.040%の範囲でSUS444の熱疲労寿命より優れた熱疲労寿命が得られることがわかる。したがって、優れた熱疲労特性を得るためには、N含有量が0.015〜0.040%であることが必要である。   FIG. 1 shows the influence of the N content on the thermal fatigue life in the thermal fatigue test. From this figure, it can be seen that a thermal fatigue life superior to that of SUS444 is obtained when the N content is in the range of 0.015 to 0.040%. Therefore, in order to obtain excellent thermal fatigue characteristics, it is necessary that the N content is 0.015 to 0.040%.

次に、熱疲労特性に及ぼすV含有量の影響を検討した。
0.005〜0.010%C−0.45〜0.55%Si−0.15〜0.25%Mn−0.040〜0.050%Al−20.5〜21.5%Cr−0.40〜0.50%Nb−0.015〜0.025%Nの成分系をベースとして、V含有量を0.08〜0.73%の範囲で種々変化させた鋼を、実験室的に溶製して鋼塊とし、この鋼塊を鍛造し、熱処理して鋼材とし、この鋼材から熱疲労試験片を作製した。同様に、拘束率0.8で200/850℃の加熱・冷却を繰り返し、熱疲労寿命を評価した。
Next, the influence of the V content on the thermal fatigue characteristics was examined.
0.005-0.010% C-0.45-0.55% Si-0.15-0.25% Mn-0.040-0.050% Al-20.5-21.5% Cr- Based on a component system of 0.40 to 0.50% Nb-0.015 to 0.025% N, steel with various changes in the V content in the range of 0.08 to 0.73% was obtained in the laboratory. The steel ingot was made into a steel ingot, this steel ingot was forged and heat-treated into a steel material, and a thermal fatigue test piece was produced from this steel material. Similarly, heating / cooling at 200/850 ° C. was repeated at a restraint ratio of 0.8 to evaluate the thermal fatigue life.

図2は上記熱疲労試験における熱疲労寿命に及ぼすV含有量の影響を示したものである。この図から、V含有量が0.15〜0.60%の範囲でSUS444の熱疲労寿命より優れた熱疲労寿命が得られることがわかる。したがって、優れた熱疲労特性を得るためには、V含有量が0.15〜0.60%であることが必要である。   FIG. 2 shows the influence of the V content on the thermal fatigue life in the thermal fatigue test. From this figure, it can be seen that a thermal fatigue life superior to that of SUS444 is obtained when the V content is in the range of 0.15 to 0.60%. Therefore, in order to obtain excellent thermal fatigue characteristics, the V content needs to be 0.15 to 0.60%.

次に、V×Nの最適値を検討した。
図1、2に示した実験結果に加え、同様な組成をベースとしてV、N量を変化させ、同様にして鋼塊を作製した後、鍛造し、熱処理して鋼材とし、この鋼材から熱疲労試験片を作製し、同様に、拘束率0.8で200/850℃の加熱・冷却を繰り返し、熱疲労寿命を評価した。
Next, the optimum value of V × N was examined.
In addition to the experimental results shown in FIGS. 1 and 2, V and N contents are changed based on the same composition, and a steel ingot is produced in the same manner, then forged and heat-treated to obtain a steel material. A test piece was prepared, and similarly, heating / cooling at 200/850 ° C. was repeated at a constraint ratio of 0.8 to evaluate the thermal fatigue life.

図3は上記熱疲労試験における熱疲労寿命に及ぼすV×Nの値の影響を示したものである。この図に示すように、V、Nがそれぞれ上記範囲内であっても、V×Nの値が0.003未満または0.015超であると熱疲労寿命がSUS444よりも低くなることがわかった。したがって、優れた熱疲労特性を得るためには、V、Nの含有量が上記範囲を満たすとともに、V×Nの値が0.003〜0.015の範囲であることが必要である。   FIG. 3 shows the influence of the value of V × N on the thermal fatigue life in the thermal fatigue test. As shown in this figure, it can be seen that the thermal fatigue life is lower than SUS444 when the value of V × N is less than 0.003 or more than 0.015, even if V and N are within the above ranges, respectively. It was. Therefore, in order to obtain excellent thermal fatigue characteristics, it is necessary that the contents of V and N satisfy the above range, and the value of V × N is in the range of 0.003 to 0.015.

次に、熱疲労特性に及ぼすZr、Ti、Ta含有量の影響を検討した。
0.005〜0.010%C−0.45〜0.55%Si−0.15〜0.25%Mn−0.040〜0.050%Al−20.5〜21.5%Cr−0.40〜0.50%Nb−0.30〜0.40%V−0.015〜0.025%Nの成分系をベースとして、Zr、Ti、Taの含有量を、それぞれ0.003〜0.018%、0.005〜0.018%、0.004〜0.015%の範囲で変化させた鋼を、実験室的に溶製して鋼塊とし、この鋼塊を鍛造し、熱処理して鋼材とし、この鋼材から熱疲労試験片を作製した。同様に、拘束率0.8で200/850℃の加熱・冷却を繰り返し、熱疲労寿命を評価した。
Next, the influence of Zr, Ti, and Ta contents on thermal fatigue characteristics was examined.
0.005-0.010% C-0.45-0.55% Si-0.15-0.25% Mn-0.040-0.050% Al-20.5-21.5% Cr- Based on a component system of 0.40 to 0.50% Nb-0.30 to 0.40% V-0.015 to 0.025% N, the contents of Zr, Ti, and Ta are each 0.003%. Steels changed in the range of ˜0.018%, 0.005 to 0.018%, 0.004 to 0.015% are melted in the laboratory to form steel ingots, and the steel ingots are forged. Then, heat treatment was performed to obtain a steel material, and a thermal fatigue test piece was produced from this steel material. Similarly, heating / cooling at 200/850 ° C. was repeated at a restraint ratio of 0.8 to evaluate the thermal fatigue life.

図4は上記熱疲労試験における熱疲労寿命に及ぼすZr、Ti、Ta含有量の影響を示したものである。この図に示すように、V、N、V×Nが上記範囲内であっても、Zr、Ti、Taのいずれかの含有量が0.01%を超えると熱疲労寿命がSUS444よりも低くなることがわかった。したがって、優れた熱疲労特性を得るためには、Zr、Ti、Taの含有量がいずれも0.01%以下であることが必要である。   FIG. 4 shows the influence of the Zr, Ti, and Ta contents on the thermal fatigue life in the thermal fatigue test. As shown in this figure, even if V, N, and V × N are within the above range, if the content of any of Zr, Ti, and Ta exceeds 0.01%, the thermal fatigue life is lower than SUS444. I found out that Therefore, in order to obtain excellent thermal fatigue characteristics, it is necessary that the contents of Zr, Ti, and Ta are all 0.01% or less.

次に、耐酸化性に及ぼすMn含有量の影響について検討した。
0.005〜0.010%C−0.45〜0.55%Si−0.040〜0.050%Al−20.5〜21.5%Cr−0.40〜0.50%Nb−0.30〜0.40%V−0.015〜0.025%Nの成分系をベースとして、Mn量を0.08〜0.84%の範囲で変化させた組成の鋼板から試験片を作製し、この試験片の表面を#320のエメリー紙で研磨後、大気中1000℃で200時間の連続酸化試験を行った。耐酸化性は、酸化増量により評価した。なお、比較として、SUS444(18%Cr−2%Mo−0.5%Nb鋼)についても同様に評価した。
Next, the influence of the Mn content on the oxidation resistance was examined.
0.005 to 0.010% C-0.45 to 0.55% Si-0.040 to 0.050% Al-20.5 to 21.5% Cr-0.40 to 0.50% Nb- Based on a component system of 0.30 to 0.40% V-0.015 to 0.025% N, a test piece was made from a steel plate having a composition in which the amount of Mn was changed in the range of 0.08 to 0.84%. The surface of this test piece was polished with # 320 emery paper, and then subjected to a continuous oxidation test at 1000 ° C. for 200 hours in the atmosphere. The oxidation resistance was evaluated by the amount of increase in oxidation. For comparison, SUS444 (18% Cr-2% Mo-0.5% Nb steel) was also evaluated in the same manner.

図5は上記1000℃連続酸化試験における酸化増量に及ぼすMn含有量の影響を示したものである。この図から、Mn含有量が0.5%以下でSUS444と同等以上の耐連続酸化特性が得られることがわかる。したがって、耐酸化性の観点から、Mn含有量は0.5%以下とすることが必要である。   FIG. 5 shows the influence of the Mn content on the increase in oxidation in the 1000 ° C. continuous oxidation test. From this figure, it can be seen that continuous oxidation resistance equal to or better than that of SUS444 can be obtained when the Mn content is 0.5% or less. Therefore, from the viewpoint of oxidation resistance, the Mn content needs to be 0.5% or less.

次に、さらに高温の1050℃耐酸化性に及ぼすCr含有量の影響について検討した。
0.005〜0.010%C−0.45〜0.55%Si−0.15〜0.25%Mn−0.040〜0.050%Al−0.40〜0.50%Nb−0.30〜0.40%V−0.015〜0.025%Nの成分系をベースとして、Cr含有量を17.2〜22.9%の範囲で変化させた組成の鋼板から作製した試験片を用いて、上述した連続酸化試験と同様の手法で1050℃200時間連続酸化試験を行った。
Next, the influence of the Cr content on the higher temperature 1050 ° C. oxidation resistance was examined.
0.005 to 0.010% C-0.45 to 0.55% Si-0.15 to 0.25% Mn-0.040 to 0.050% Al-0.40 to 0.50% Nb- Based on a component system of 0.30 to 0.40% V-0.015 to 0.025% N, it was produced from a steel plate having a composition in which the Cr content was changed in the range of 17.2 to 22.9%. Using the test piece, a continuous oxidation test was conducted at 1050 ° C. for 200 hours in the same manner as the above-described continuous oxidation test.

図6は1050℃連続酸化試験における酸化増量に及ぼすCr含有量の影響を示したものである。この図から、Cr含有量が20%を超えていれば、異常酸化(=酸化増量≧100g/m)が発生せず、SUS444を上回る耐酸化性が得られることがわかる。 FIG. 6 shows the influence of the Cr content on the increase in oxidation in the 1050 ° C. continuous oxidation test. From this figure, it is understood that if the Cr content exceeds 20%, abnormal oxidation (= oxidation increase ≧ 100 g / m 2 ) does not occur, and oxidation resistance exceeding SUS444 is obtained.

本発明は、以上のような基礎実験の結果に基づき、さらに検討を加えた結果完成されたものである。   The present invention has been completed as a result of further studies based on the results of the basic experiment as described above.

以下、本発明に係るフェライト系ステンレス鋼について詳細に説明する。
まず、本発明の成分組成について説明する。
Hereinafter, the ferritic stainless steel according to the present invention will be described in detail.
First, the component composition of the present invention will be described.

C:0.015%以下
Cは、鋼の強度を増加させる元素であるが、0.015%を超えて含有すると、靭性および成形性の低下が顕著となる。よって、本発明では、C含有量を0.015%以下とする。なお、成形性の観点からは、C含有量は低いほど好ましく、0.010%以下とするのが望ましい。
C: 0.015% or less C is an element that increases the strength of steel, but if it exceeds 0.015%, the toughness and formability are significantly reduced. Therefore, in the present invention, the C content is set to 0.015% or less. From the viewpoint of moldability, the C content is preferably as low as possible, and is preferably 0.010% or less.

Si:1.0%以下
Siは、耐酸化性を向上させる元素であり、脱酸材としても用いられる。一方、1.0%を超えて含有させると加工性が低下する。このため、Si含有量を1.0%以下とする。
一方、自動車排気系部材は実際には水蒸気を含んだガス中で使用されるため、耐水蒸気酸化特性も重要となる。Siは耐水蒸気酸化特性向上に有効な元素であり、0.4%以上添加することでその効果が得られる。Siによって耐水蒸気酸化性が改善される理由は十分に解明されているわけではないが、Si含有量を0.4%以上とすることにより、鋼板表面に緻密なSi酸化物層が連続的に生成し、外部からのガス成分の侵入が抑制されるためと考えられる。したがって、耐水蒸気酸化特性が必要とされる場合にはSi含有量を0.4〜1.0%とすることが好ましい。より厳しい水蒸気含有雰囲気下での耐酸化性が求められる場合には、Si含有量を0.5%以上とすることが好ましい。
Si: 1.0% or less Si is an element that improves oxidation resistance and is also used as a deoxidizer. On the other hand, if the content exceeds 1.0%, the workability decreases. For this reason, Si content shall be 1.0% or less.
On the other hand, since an automobile exhaust system member is actually used in a gas containing water vapor, steam oxidation resistance is also important. Si is an element effective for improving the steam oxidation resistance, and its effect can be obtained by adding 0.4% or more. The reason why the steam oxidation resistance is improved by Si is not fully understood, but by making the Si content 0.4% or more, a dense Si oxide layer is continuously formed on the steel sheet surface. This is considered to be due to the generation and suppression of gas components from the outside. Therefore, when steam oxidation resistance is required, the Si content is preferably 0.4 to 1.0%. When oxidation resistance under a more severe steam-containing atmosphere is required, the Si content is preferably 0.5% or more.

Mn:0.5%以下
Mnは、脱酸剤として作用するが、過剰に含有すると高温でγ相が生成しやすくなり、耐熱性を低下させるだけでなく、耐酸化性も低下させる。このため、Mn含有量を0.5%以下とする。好ましくは、0.35%以下であり、さらに好ましくは0.3%以下である。
Mn: 0.5% or less Mn acts as a deoxidizer, but if contained excessively, a γ phase is likely to be generated at a high temperature, not only reducing heat resistance but also reducing oxidation resistance. For this reason, Mn content shall be 0.5% or less. Preferably, it is 0.35% or less, more preferably 0.3% or less.

P:0.040%以下
Pは、靭性を低下させる元素であり、できるだけ低減するのが望ましい。このため、P含有量を0.040%以下とする。好ましくは、0.030%以下である。
P: 0.040% or less P is an element that lowers toughness, and is desirably reduced as much as possible. For this reason, the P content is set to 0.040% or less. Preferably, it is 0.030% or less.

S:0.010%以下
Sは、伸びおよびr値を低下させ、成形性を劣化させるとともに、ステンレス鋼の基本特性である耐食性を低下させる元素でもあり、できるだけ低減するのが望ましい。このため、S含有量を0.010%以下とする。
S: 0.010% or less S is an element that lowers elongation and r value, degrades formability, and lowers corrosion resistance, which is a basic characteristic of stainless steel, and is desirably reduced as much as possible. For this reason, S content shall be 0.010% or less.

Cr:20%超23%以下
Crは、耐酸化性を向上させる元素である。図6に示すように、Crを20%を超えて含有させると、1050℃においても異常酸化が発生しない。一方、Crは、室温において固溶強化により鋼を硬質化・低延性化し、23%を超えて含有すると、加工性が劣化する。このため、Cr含有量を20%超23%以下の範囲とする。
Cr: more than 20% and 23% or less Cr is an element that improves oxidation resistance. As shown in FIG. 6, when Cr is contained exceeding 20%, abnormal oxidation does not occur even at 1050 ° C. On the other hand, Cr hardens and lowers ductility by solid solution strengthening at room temperature, and if it exceeds 23%, workability deteriorates. For this reason, Cr content is made into the range of more than 20% and 23% or less.

N:0.015〜0.040%、V:0.15〜0.60%、かつV×N:0.003〜0.015
V、Nは本発明で重要な元素である。V、Nを含有することにより600〜800℃でこれらがVNとして微細に析出し、鋼材を高強度化することで熱疲労特性を向上させる。その効果はN含有量が0.015%以上およびV含有量が0.15%以上で認められる。しかし過剰に含有することにより鋼の靱性および成形性を劣化させるだけでなく、VNが粗大化し熱疲労寿命を低下させてしまう。このため、Nの含有量を0.015〜0.040%の範囲、Vの含有量をV:0.15〜0.60%の範囲とする。また、V、Nがそれぞれ上記の範囲内であってもV×Nが0.003〜0.015を満たさなければ所望の熱疲労寿命が得られない。このため、V×Nを0.003〜0.015とした。
N: 0.015 to 0.040%, V: 0.15 to 0.60%, and V × N: 0.003 to 0.015
V and N are important elements in the present invention. By containing V and N, these precipitate finely as VN at 600-800 degreeC, and improve a thermal fatigue characteristic by making steel materials high intensity | strength. The effect is recognized when the N content is 0.015% or more and the V content is 0.15% or more. However, excessive inclusion not only deteriorates the toughness and formability of the steel, but also causes the VN to become coarse and reduce the thermal fatigue life. Therefore, the N content is in the range of 0.015 to 0.040%, and the V content is in the range of V: 0.15 to 0.60%. Even if V and N are within the above ranges, the desired thermal fatigue life cannot be obtained unless V × N satisfies 0.003 to 0.015. For this reason, V × N was set to 0.003 to 0.015.

Nb:10(C+N)〜0.60%
Nbは、C、Nを固定し、耐鋭敏化特性、成形性、溶接部の耐粒界腐食性を高める作用を有するとともに、高温強度を上昇させて熱疲労特性を向上させる有益な元素である。しかし、その含有量が10(C+N)よりも少ないとC、Nの固定が不十分となり、鋼材の鋭敏化が認められるようになる。鋭敏化が発生すると溶接部における耐食性、耐酸化性が著しく低下するため、Nbを10(C+N)以上添加することが必要となる。Nb量によっては母材部でも同様の現象が発生することがある。一方、その含有量が0.60%を超えると、Laves相が析出しやすくなり、脆化するのみならず、本発明で重要なVNの析出が抑制され、熱疲労特性が低下してしまう。このため、Nb含有量を10(C+N)〜0.60%の範囲とする。好ましくは、0.55%以下であり、さらに好ましくは0.50%以下である。
Nb: 10 (C + N) to 0.60%
Nb is a beneficial element that fixes C and N, has an effect of enhancing sensitization characteristics, formability, and intergranular corrosion resistance of welds, and increases thermal fatigue characteristics by increasing high-temperature strength. . However, if the content is less than 10 (C + N), the fixation of C and N becomes insufficient, and sensitization of the steel material is recognized. When sensitization occurs, corrosion resistance and oxidation resistance in the welded portion are remarkably lowered, so that it is necessary to add 10 (C + N) or more of Nb. Depending on the amount of Nb, the same phenomenon may occur in the base material portion. On the other hand, if its content exceeds 0.60%, the Laves phase is likely to precipitate and not only becomes brittle, but also the precipitation of VN, which is important in the present invention, is suppressed, and the thermal fatigue characteristics deteriorate. For this reason, Nb content shall be 10 (C + N)-0.60% of range. Preferably, it is 0.55% or less, more preferably 0.50% or less.

Mo:0.1%以下(0を含む)
Moは、高価な元素であり、本発明の目的からも積極的には添加しない。溶解原料であるスクラップ等からの混入量は高々0.1%であるため、Mo含有量を0.1%以下(0を含む)とする。
Mo: 0.1% or less (including 0)
Mo is an expensive element and is not actively added for the purpose of the present invention. Since the mixing amount from scrap or the like as the melting raw material is at most 0.1%, the Mo content is set to 0.1% or less (including 0) .

W:0.1%以下(0を含む)
Wは、Moと同様に高価な元素であり、本発明の目的からも積極的には添加しない。溶解原料であるスクラップ等からの混入量は高々0.1%であるため、W含有量を0.1%以下(0を含む)とする。
W: 0.1% or less (including 0)
W is an expensive element like Mo and is not actively added for the purpose of the present invention. Since the amount of mixing from scrap, which is a melting raw material, is at most 0.1%, the W content is set to 0.1% or less (including 0) .

Ti、Zr、Ta:0.01%以下(0を含む)
Ti、Zr、Taは、C、Nを固定して、耐食性、成形性、溶接部の粒界腐食性を向上させる作用を有するが、本発明で重要なVNの析出を抑制し、たとえ本発明で規定するV、N量を満たしていても、これらが0.01%を超えて含有されると熱疲労特性を低下させてしまう。このため、Ti、Zr、Taの含有量をいずれも0.01%以下(0を含む)とする。
Ti, Zr, Ta: 0.01% or less (including 0)
Ti, Zr, and Ta have the effect of fixing C and N to improve the corrosion resistance, formability, and intergranular corrosion of the weld, but suppress the precipitation of VN, which is important in the present invention. Even if the amounts of V and N specified in the above are satisfied, if they are contained in an amount exceeding 0.01%, the thermal fatigue characteristics are deteriorated. Therefore, the contents of Ti, Zr, and Ta are all 0.01% or less (including 0) .

Al:0.30%以下
Alは、耐酸化性および耐高温塩害腐食性の向上に有効な元素である。しかし、その含有量が0.30%を超えると鋼が硬質化し、加工性の低下が顕著となる。このため、Al含有量を0.30%以下とする。より好ましくは0.03〜0.20%である。
Al: 0.30% or less Al is an element effective in improving oxidation resistance and high-temperature salt damage corrosion resistance. However, if the content exceeds 0.30%, the steel becomes hard and the workability is significantly reduced. For this reason, Al content shall be 0.30% or less. More preferably, it is 0.03 to 0.20%.

Ni:0.5%以下
Niは、靱性を向上させる元素であるが、高価であるばかりか、強力なγ相形成元素であり高温でγ相が生成し耐酸化性を低下させる。このため、Ni含有量を0.5%以下とする。
Ni: 0.5% or less Ni is an element that improves toughness, but is not only expensive, but also a strong γ-phase-forming element, and a γ-phase is formed at a high temperature to reduce oxidation resistance. Therefore, the Ni content is 0.5% or less.

本発明のフェライト系ステンレス鋼は、上記成分に加えてさらに、下記の成分を含有させてもよい。   The ferritic stainless steel of the present invention may further contain the following components in addition to the above components.

B:0.0004〜0.0020%、Co:0.05〜0.1%の1種または2種
Bは、加工性、特に二次加工性を向上させる有効な元素である。このような効果は0.0004%以上で有効に発揮されるが、0.0020%を超えて含有すると、BNを生成し、加工性が低下する。このため、Bを含有させる場合には、その含有量を0.0004〜0.0020%の範囲とする。
Coは、靭性の向上に有効な元素である。このような効果は0.05%以上で発揮されるが、Coは高価な元素であり、また、その含有量が0.1%を超えても上記効果は飽和する。このため、Coを含有させる場合は、その含有量を0.05〜0.1%とする。
One or two of B: 0.0004 to 0.0020% and Co: 0.05 to 0.1% B is an effective element that improves workability, particularly secondary workability. Such an effect is effectively exhibited at 0.0004% or more. However, when the content exceeds 0.0020%, BN is generated and workability is deteriorated. For this reason, when it contains B, the content shall be 0.0004 to 0.0020% of range.
Co is an element effective for improving toughness. Such an effect is exhibited at 0.05% or more. However, Co is an expensive element, and the above effect is saturated even if its content exceeds 0.1%. For this reason, when Co is contained, the content is set to 0.05 to 0.1%.

次に、本発明のフェライト系ステンレス鋼の製造方法について説明する。
本発明のフェライト系ステンレス鋼は、一般的なフェライト系ステンレス鋼の製造方法により製造することができ、その製造条件は特に限定されるものではない。例えば、本発明範囲内の組成の溶鋼を、転炉、電気炉等の溶製炉を利用し、あるいはさらに取鍋精錬、真空精錬等の精錬を利用した溶製方法で溶製し、連続鋳造法、造塊法で鋼片としたのち、熱間圧延、熱延板焼鈍、酸洗、冷間圧延、仕上げ焼鈍、酸洗の各工程を順次経て冷延焼鈍板とするのが好ましい。また、冷間圧延は、1回または中間焼鈍を含む2回以上の冷間圧延としてもよい。冷間圧延、仕上げ焼鈍、酸洗の工程は繰り返し行ってもよい。なお、場合によっては、熱延板焼鈍は省略してもよい。さらに、鋼板表面の光沢性が要求される場合にはスキンパス等を施しても加工性の良好な鋼板として製造できる。
Next, the manufacturing method of the ferritic stainless steel of this invention is demonstrated.
The ferritic stainless steel of the present invention can be manufactured by a general ferritic stainless steel manufacturing method, and the manufacturing conditions are not particularly limited. For example, molten steel having a composition within the scope of the present invention is smelted by a smelting method using a smelting furnace such as a converter or an electric furnace, or using a smelting method such as ladle smelting or vacuum smelting, and continuous casting. It is preferable to make a steel slab by the method and the ingot-making method, and to form a cold-rolled annealed plate through the respective steps of hot rolling, hot-rolled sheet annealing, pickling, cold rolling, finish annealing, and pickling. Further, the cold rolling may be one or two or more cold rolling including intermediate annealing. The steps of cold rolling, finish annealing, and pickling may be repeated. In some cases, the hot-rolled sheet annealing may be omitted. Furthermore, when glossiness of the steel sheet surface is required, it can be produced as a steel sheet with good workability even if a skin pass or the like is applied.

表1に示すNo.1〜40の成分組成を有する鋼を用いて、以下に示す試験を行った。No.1〜40の成分組成のうち、No.1〜17は本発明の範囲内の本発明例、No.18〜40は本発明の範囲から外れる比較例である。なお、比較例のうち、No.31、32、33、34、35は、それぞれ特許第4369596号公報(特許文献5)、特開平7−70709号公報(特許文献6)、特開平6−158162号公報、特開2000−144344号公報、特開2010−43324号公報で実施例として開示された成分組成に相当するものであり、No.36はSUS444に相当するものである。また、No.37、38、39、40は、それぞれ特開2010−156008号公報(特許文献7)、特開2010−43327号公報(特許文献9)、特開2002−30346号公報(特許文献10)、特開平6−184637号公報(特許文献11)で実施例として開示された成分組成に相当するものである。   No. shown in Table 1. The test shown below was done using the steel which has a component composition of 1-40. No. Among the component compositions of 1 to 40, No. 1 1 to 17 are examples of the present invention, No. 1 within the scope of the present invention. 18 to 40 are comparative examples that are out of the scope of the present invention. Of the comparative examples, No. 31, 32, 33, 34, and 35 are Japanese Patent No. 4369596 (Patent Document 5), Japanese Patent Laid-Open No. 7-70709 (Patent Document 6), Japanese Patent Laid-Open No. 6-158162, and Japanese Patent Laid-Open No. 2000-144344, respectively. This corresponds to the component composition disclosed as an example in Japanese Laid-Open Patent Publication No. 2010-43324, and 36 corresponds to SUS444. No. 37, 38, 39, and 40 are disclosed in JP 2010-156008 A (Patent Document 7), JP 2010-43327 A (Patent Document 9), and JP 2002-30346 A (Patent Document 10), respectively. This corresponds to the component composition disclosed as an example in Japanese Laid-Open Patent Publication No. 6-184637 (Patent Document 11).

上記No.1〜40の成分組成を有する鋼の50kg鋼塊を作製し、これら鋼塊を1170℃に加熱後、熱間圧延により5mm厚の熱延板とした。次いで、これら熱延板に対し、熱延板焼鈍(焼鈍温度:1040℃)−酸洗−冷間圧延(冷延圧下率:60%)−仕上げ焼鈍(焼鈍温度:1040℃、平均冷却速度:30℃/s)−酸洗を順次施し、2mm厚の冷延焼鈍板とした。   No. above. 50 kg steel ingots having a component composition of 1 to 40 were prepared, and these steel ingots were heated to 1170 ° C., and then hot rolled into hot rolled sheets having a thickness of 5 mm. Next, hot-rolled sheet annealing (annealing temperature: 1040 ° C.)-Pickling-cold rolling (cold rolling reduction: 60%)-finish annealing (annealing temperature: 1040 ° C., average cooling rate) for these hot-rolled sheets: 30 ° C./s)—Pickling was performed sequentially to obtain a cold-rolled annealed plate having a thickness of 2 mm.

これら冷延焼鈍板から試験片を作製し、酸化試験に供した。酸化試験は、試験片の表面を#320のエメリー紙で研磨後、大気中1000℃および1050℃で200時間の連続酸化を行い、耐酸化性はその際の酸化増量により評価した。   Test pieces were prepared from these cold-rolled annealed plates and subjected to an oxidation test. In the oxidation test, the surface of the test piece was polished with # 320 emery paper and then subjected to continuous oxidation in the atmosphere at 1000 ° C. and 1050 ° C. for 200 hours. The oxidation resistance was evaluated by the increase in oxidation at that time.

また、上記冷延焼鈍板から作製した試験片を、水蒸気雰囲気中酸化試験に供した。水蒸気雰囲気酸化試験は、各冷延焼鈍板から30mm×20mmの試験片を切り出し、試験片上部に4mmφの穴をあけ、表面および端面を#320のエメリー紙で研磨後、脱脂した。この試験片を、950℃に加熱された10%CO−20%HO−5%O−bal.Nガスを0.5L/minで流し、水蒸気雰囲気とした炉中に、200時間保持した。試験後、試験片の質量を測定し、予め測定しておいた試験前の質量との差を求め、酸化増量(g/m)を算出した。評価は2回実施し、その平均値で最終的に評価した。 Moreover, the test piece produced from the said cold-rolled annealing board was used for the oxidation test in water vapor | steam atmosphere. In the steam atmosphere oxidation test, a 30 mm × 20 mm test piece was cut out from each cold-rolled annealed plate, a hole of 4 mmφ was made in the upper part of the test piece, and the surface and end face were polished with # 320 emery paper and degreased. This test piece was heated to 950 ° C. with 10% CO 2 -20% H 2 O-5% O 2 -bal. N 2 gas was flowed at 0.5 L / min and held in a furnace in a steam atmosphere for 200 hours. After the test, the mass of the test piece was measured, the difference from the pre-test mass measured in advance was determined, and the increase in oxidation (g / m 2 ) was calculated. The evaluation was performed twice, and finally the average value was evaluated.

さらに、上記冷延焼鈍板から15mm×10mmを切り出し、L断面において、シュウ酸エッチング(JIS G 571)を行った。エッチングには10%シュウ酸溶液を用い、室温で1A/cmの電流を90min間流した。その後の組織を観察し、粒界の著しい腐食(溝状組織)が見られたものを鋭敏化材と判断した。 Further, 15 mm × 10 mm was cut out from the cold-rolled annealed plate, and oxalic acid etching (JIS G 571) was performed on the L cross section. A 10% oxalic acid solution was used for etching, and a current of 1 A / cm 2 was passed for 90 minutes at room temperature. Subsequent structures were observed, and those where significant grain boundary corrosion (grooved structures) was observed were judged as sensitizers.

一方、上記No.1〜40の成分組成を有する鋼の鋼塊を1170℃に加熱後、熱間圧延により150mm幅、35mm厚の熱延シートバーとした。鍛造加工により30mm□のバーとし、1040℃で焼鈍後、機械加工により熱疲労試験片に加工し、熱疲労寿命の評価に供した。   On the other hand, the above-mentioned No. A steel ingot having a component composition of 1 to 40 was heated to 1170 ° C. and then hot rolled to form a hot rolled sheet bar having a width of 150 mm and a thickness of 35 mm. A bar of 30 mm □ was formed by forging, annealed at 1040 ° C., then processed into a thermal fatigue test piece by machining, and used for evaluation of the thermal fatigue life.

熱疲労試験は、拘束率0.8で200℃−850℃間を繰り返し昇温・降温させた。昇温・降温は5℃/s、850℃保持時間は1分の条件で実施した。熱疲労寿命の定義は図1の評価のときと同じである。   In the thermal fatigue test, the temperature was repeatedly raised and lowered between 200 ° C. and 850 ° C. with a restraint ratio of 0.8. The temperature rise / fall was 5 ° C./s, and the 850 ° C. holding time was 1 minute. The definition of thermal fatigue life is the same as in the evaluation of FIG.

得られた結果を表2に示す。表2から明らかなように、本発明例は、いずれもSUS444と同等以上の熱疲労寿命およびSUS444を上回る1050℃耐酸化性を示しており、本願発明の目標が達成されていることが確認された。一方、本発明範囲を外れる比較例では両特性を同時に満足しておらず、本発明の目標が達成されないことが確認された。また、比較例のうちNbの含有量が10(C+N)より少ないものについては鋭敏化が発生した。   The obtained results are shown in Table 2. As is apparent from Table 2, all of the examples of the present invention showed a thermal fatigue life equal to or higher than that of SUS444 and oxidation resistance at 1050 ° C. exceeding that of SUS444, and it was confirmed that the objective of the present invention was achieved. It was. On the other hand, in the comparative example outside the scope of the present invention, both characteristics were not satisfied at the same time, and it was confirmed that the target of the present invention was not achieved. Moreover, sensitization occurred in the comparative examples having a Nb content of less than 10 (C + N).

また、本発明例のうち、Siが0.4%以上のものは、優れた耐水蒸気酸化性が得られることが確認された。   Moreover, it was confirmed that among the examples of the present invention, those having Si of 0.4% or more can obtain excellent steam oxidation resistance.

Figure 0005796397
Figure 0005796397

Figure 0005796397
Figure 0005796397

Figure 0005796397
Figure 0005796397

本発明の鋼は、自動車等の排気系部材用として好適であるだけでなく、同様の特性が要求される火力発電システムの排気系部材や固体酸化物タイプの燃料電池用部材としても好適に用いることができる。   The steel of the present invention is not only suitable for exhaust system members such as automobiles, but also suitably used as exhaust system members for thermal power generation systems and solid oxide fuel cell members that require similar characteristics. be able to.

Claims (3)

mass%で、C:0.015%以下、Si:1.0%以下、Mn:0.5%以下、Al:0.30%以下、P:0.040%以下、S:0.010%以下、Cr:20%超23%以下、Ni:0.5%以下、N:0.015〜0.040%、Nb:10(C+N)〜0.60%、V:0.15〜0.60%、Ti:0.01%以下(0を含む)、Zr:0.01%以下(0を含む)、Ta:0.01%以下(0を含む)、Mo:0.1%以下(0を含む)、W:0.1%以下(0を含む)を含有し、かつ0.003≦V×N≦0.015を満たし、残部がFeおよび不可避的不純物からなることを特徴とする熱疲労特性と耐酸化性に優れたフェライト系ステンレス鋼。 In mass%, C: 0.015% or less, Si: 1.0% or less, Mn: 0.5% or less, Al: 0.30% or less, P: 0.040% or less, S: 0.010% Hereinafter, Cr: more than 20% and 23% or less, Ni: 0.5% or less, N: 0.015 to 0.040%, Nb: 10 (C + N) to 0.60%, V: 0.15 to 0. 60%, Ti: 0.01% or less (including 0) , Zr: 0.01% or less (including 0 ), Ta: 0.01% or less (including 0) , Mo: 0.1% or less ( 0) , W: 0.1% or less (including 0) , 0.003 ≦ V × N ≦ 0.015 is satisfied, and the balance consists of Fe and inevitable impurities Ferritic stainless steel with excellent thermal fatigue characteristics and oxidation resistance. 上記の成分組成に加えてさらに、mass%で、B:0.0004〜0.0020%、Co:0.05〜0.1%の1種または2種を含有することを特徴とする請求項1に記載の熱疲労特性と耐酸化性に優れたフェライト系ステンレス鋼。   In addition to the above component composition, the composition further comprises one or two of mass%, B: 0.0004 to 0.0020%, Co: 0.05 to 0.1%. 1. Ferritic stainless steel excellent in thermal fatigue characteristics and oxidation resistance as described in 1. Siを0.4〜1.0%の範囲で含有することを特徴とする請求項1または請求項2に記載の熱疲労特性と耐酸化性と耐水蒸気酸化性に優れたフェライト系ステンレス鋼。   The ferritic stainless steel having excellent thermal fatigue characteristics, oxidation resistance, and steam oxidation resistance according to claim 1 or 2, wherein Si is contained in a range of 0.4 to 1.0%.
JP2011171177A 2010-10-26 2011-08-04 Ferritic stainless steel with excellent thermal fatigue properties and oxidation resistance Active JP5796397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011171177A JP5796397B2 (en) 2010-10-26 2011-08-04 Ferritic stainless steel with excellent thermal fatigue properties and oxidation resistance

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010239503 2010-10-26
JP2010239503 2010-10-26
JP2011171177A JP5796397B2 (en) 2010-10-26 2011-08-04 Ferritic stainless steel with excellent thermal fatigue properties and oxidation resistance

Publications (2)

Publication Number Publication Date
JP2012107313A JP2012107313A (en) 2012-06-07
JP5796397B2 true JP5796397B2 (en) 2015-10-21

Family

ID=46493216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011171177A Active JP5796397B2 (en) 2010-10-26 2011-08-04 Ferritic stainless steel with excellent thermal fatigue properties and oxidation resistance

Country Status (1)

Country Link
JP (1) JP5796397B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4386144B2 (en) * 2008-03-07 2009-12-16 Jfeスチール株式会社 Ferritic stainless steel with excellent heat resistance
JP5343446B2 (en) * 2008-08-13 2013-11-13 Jfeスチール株式会社 Ferritic stainless steel with excellent thermal fatigue properties, oxidation resistance and high temperature salt corrosion resistance
JP5417764B2 (en) * 2008-08-13 2014-02-19 Jfeスチール株式会社 Ferritic stainless steel with excellent thermal fatigue properties and oxidation resistance
JP5462583B2 (en) * 2008-10-24 2014-04-02 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for EGR cooler

Also Published As

Publication number Publication date
JP2012107313A (en) 2012-06-07

Similar Documents

Publication Publication Date Title
US9279172B2 (en) Heat-resistance ferritic stainless steel
JP5387057B2 (en) Ferritic stainless steel with excellent heat resistance and toughness
JP4702493B1 (en) Ferritic stainless steel with excellent heat resistance
JP5546911B2 (en) Ferritic stainless steel sheet with excellent heat resistance and workability
JP5141296B2 (en) Ferritic stainless steel with excellent high temperature strength and toughness
JP5540637B2 (en) Ferritic stainless steel with excellent heat resistance
JP5152387B2 (en) Ferritic stainless steel with excellent heat resistance and workability
JP5012243B2 (en) Ferritic stainless steel with excellent high-temperature strength, heat resistance and workability
JP5125600B2 (en) Ferritic stainless steel with excellent high-temperature strength, steam oxidation resistance and workability
JP5677819B2 (en) Ferritic stainless steel plate with excellent oxidation resistance
JP5796398B2 (en) Ferritic stainless steel with excellent thermal and high temperature fatigue properties
JP5239642B2 (en) Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties and oxidation resistance
JP5810722B2 (en) Ferritic stainless steel with excellent thermal fatigue characteristics and workability
JP3744403B2 (en) Soft Cr-containing steel
JP5417764B2 (en) Ferritic stainless steel with excellent thermal fatigue properties and oxidation resistance
JP4309293B2 (en) Ferritic stainless steel for automotive exhaust system parts
JP5796397B2 (en) Ferritic stainless steel with excellent thermal fatigue properties and oxidation resistance
JP5343446B2 (en) Ferritic stainless steel with excellent thermal fatigue properties, oxidation resistance and high temperature salt corrosion resistance
JP5428397B2 (en) Ferritic stainless steel with excellent heat resistance and workability
JP2009235572A (en) Ferritic stainless steel having excellent heat resistance and shape-fixability
JP5239645B2 (en) Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties, oxidation resistance and high temperature salt corrosion resistance
JP4614787B2 (en) Ferritic stainless steel sheet excellent in workability and heat resistance and method for producing the same
JP5343445B2 (en) Ferritic stainless steel with excellent thermal fatigue properties, oxidation resistance and toughness
JP5343444B2 (en) Ferritic stainless steel with excellent thermal fatigue properties, oxidation resistance and workability
JP5239644B2 (en) Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties, oxidation resistance and toughness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150803

R150 Certificate of patent or registration of utility model

Ref document number: 5796397

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250