JP5343446B2 - Ferritic stainless steel with excellent thermal fatigue properties, oxidation resistance and high temperature salt corrosion resistance - Google Patents
Ferritic stainless steel with excellent thermal fatigue properties, oxidation resistance and high temperature salt corrosion resistance Download PDFInfo
- Publication number
- JP5343446B2 JP5343446B2 JP2008208335A JP2008208335A JP5343446B2 JP 5343446 B2 JP5343446 B2 JP 5343446B2 JP 2008208335 A JP2008208335 A JP 2008208335A JP 2008208335 A JP2008208335 A JP 2008208335A JP 5343446 B2 JP5343446 B2 JP 5343446B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- less
- thermal fatigue
- steel
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
本発明は、自動車やオートバイの排気管や触媒外筒材、火力発電プラントの排気ダクト等の高温環境下で使用される部材に用いて好適なCr含有鋼に関し、特に、優れた熱疲労特性、耐酸化性および耐高温塩害腐食性のいずれをも兼ね備えたフェライト系ステンレス鋼に関するものである。 The present invention relates to a Cr-containing steel suitable for use in a high-temperature environment such as an exhaust pipe of an automobile or motorcycle, a catalyst outer cylinder, an exhaust duct of a thermal power plant, in particular, excellent thermal fatigue characteristics, The present invention relates to a ferritic stainless steel having both oxidation resistance and high temperature salt damage corrosion resistance.
自動車のエキゾーストマニホールドや排気パイプ、コンバーターケース、マフラー等に代表される排気系環境下で使用される部材には、熱疲労特性や耐酸化性(以降、上記両特性を総称して「耐熱性」ともいう。)に優れていることが要求される。そのため、このような用途には、NbとSiを添加したType429(14Cr−0.9Si−0.4Nb系)鋼のようなCr含有鋼が多く使用されている。しかし、エンジン性能の向上に伴って、排ガス温度が上昇し、現状より高温の900℃程度まで上昇してくると、Type429鋼では、熱疲労特性が不足してくるおそれがある。 Components used in exhaust systems such as automobile exhaust manifolds, exhaust pipes, converter cases, and mufflers have thermal fatigue characteristics and oxidation resistance (hereinafter referred to collectively as “heat resistance”). It is also required to be excellent. For this reason, Cr-containing steel such as Type 429 (14Cr-0.9Si-0.4Nb series) steel to which Nb and Si are added is often used for such applications. However, if the exhaust gas temperature rises with the improvement of engine performance and rises to about 900 ° C., which is higher than the current level, Type 429 steel may have insufficient thermal fatigue characteristics.
この問題に対しては、NbとMoを複合添加して高温耐力を向上させたCr含有鋼、例えば、JIS G4305に規定されるSUS444(19Cr−2Mo−0.5Nb)鋼や、Nb,Mo,Wを複合添加したフェライト系ステンレス鋼などが開発されている。しかし、希少金属であるMo,Wの昨今における異常なまでの価格高騰から、これらの元素を用いないでも同等の耐熱性を有する材料の開発が求められるようになってきている。 For this problem, a Cr-containing steel in which Nb and Mo are added in combination to improve high-temperature yield strength, such as SUS444 (19Cr-2Mo-0.5Nb) steel defined in JIS G4305, Nb, Mo, Ferritic stainless steel with W added in combination has been developed. However, due to the unusually high price of rare metals such as Mo and W, the development of materials having the same heat resistance without using these elements has been demanded.
高価な元素であるMoやWを用いないで、耐熱性に優れた材料を得る技術としては、例えば、特許文献1〜3に開示されたものがある。これらの技術は、熱疲労特性を主にCu添加により向上させているのが特徴である。しかし、発明者らの研究によれば、Cuは、鋼自身の耐酸化性を低下させるだけでなく、加工性をも低下させる元素であることが明らかになってきた。そこで、MoやW以外に、Cuの添加をも極力控えた成分設計を行う必要性に迫られている。
As a technique for obtaining a material having excellent heat resistance without using expensive elements such as Mo and W, for example, there are those disclosed in
MoやW,Cuを用いずに耐熱性を高めた材料としては、特許文献4や特許文献5に開示された鋼がある。これらの鋼は、VN粒子の分散強化を利用して耐熱性の向上を図っているところに特徴がある。また、特許文献6には、V添加によって加工性に優れたフェライト系ステンレス鋼の製造方法が、特許文献7には、V添加によって高温疲労特性に優れたフェライト系ステンレス熱延鋼板が開示されている。
しかしながら、発明者らの研究によれば、上記特許文献4〜7に開示された鋼は、開示された技術内容に沿って製造しても、本発明が目的とする熱疲労特性や耐酸化性は得られないことがわかり、さらなる検討が必要であることが明らかになった。また、上記鋼は、SUS444と比較して耐高温塩害腐食性に劣る傾向にあることも明らかとなった。 However, according to the researches of the inventors, the steels disclosed in the above Patent Documents 4 to 7 are manufactured according to the disclosed technical contents, and the thermal fatigue characteristics and oxidation resistance aimed by the present invention are also achieved. Was not available, and it became clear that further study was necessary. It has also been clarified that the steel tends to be inferior in high temperature salt damage corrosion resistance as compared with SUS444.
そこで、本発明の目的は、VN粒子の分散強化を利用した従来鋼をさらに改良し、Mo,WおよびCuを添加することなく優れた熱疲労特性、耐酸化性および耐高温塩害腐食性の全てを兼備したフェライト系ステンレス鋼を提供することにある。ここで、本発明でいう「優れた熱疲労特性と耐酸化性」とは、SUS444と同等の特性を有すること、具体的には、200℃/850℃の熱疲労特性と1000℃における耐酸化性がSUS444と同等であることを、また、「優れた耐高温塩害腐食性」とは、700℃における高温塩害腐食試験による腐食減量がSUS444に比べて同等以上であることを意味する。 Therefore, the object of the present invention is to further improve the conventional steel using the dispersion strengthening of VN particles, and all of excellent thermal fatigue properties, oxidation resistance and high temperature salt corrosion resistance without adding Mo, W and Cu. It is to provide a ferritic stainless steel having both. Here, “excellent thermal fatigue characteristics and oxidation resistance” as used in the present invention means that they have the same characteristics as SUS444, specifically, thermal fatigue characteristics at 200 ° C./850° C. and oxidation resistance at 1000 ° C. "Superior high temperature salt corrosion resistance" means that the weight loss by high temperature salt damage corrosion test at 700 ° C is equal to or higher than that of SUS444.
発明者らは、従来のVN粒子の分散強化を利用した鋼では十分な耐熱性と耐高温塩害腐食性が得られない原因について、詳細な研究を重ねた。その結果、Nbを10×(C(mass%)+N(mass%))〜0.60mass%の範囲で含有する鋼において、Mo,WおよびCuを添加せずに高温強度を高めてSUS444と同等の熱疲労特性を実現し、併せてSUS444と同等以上の耐高温塩害腐食性を確保するためには、Nb,VおよびNの含有量を適正範囲に制御する必要があること、具体的には、Nの含有量を0.015〜0.030mass%、Vの含有量を0.30〜0.60mass%の範囲に制御し、なおかつVとNの含有量(mass%)の積(V×N)を0.003〜0.015の範囲となるよう制御し、VNの粒子分散強化能を有効に活用する必要があること、さらに、熱疲労特性をより向上させるためには、上記Nb,V以外の窒化物形成元素であるTiやZr,Taの含有量をも規制する必要があることを見出した。また、1000℃における耐酸化性を向上し、SUS444と同等とするためには、Mnの含有量を規制する、具体的には、Mnを0.5mass%以下とする必要があることを見出し、本発明を完成させた。 The inventors have repeated detailed studies on the reason why sufficient heat resistance and high temperature salt damage corrosion resistance cannot be obtained with conventional steel using dispersion strengthening of VN particles. As a result, in steel containing Nb in the range of 10 × (C (mass%) + N (mass%)) to 0.60 mass%, the high temperature strength is increased without adding Mo, W and Cu, and it is equivalent to SUS444. It is necessary to control the contents of Nb, V, and N within an appropriate range in order to achieve the thermal fatigue characteristics of SUS444 and ensure high-temperature salt damage corrosion resistance equal to or higher than SUS444. , N content is controlled to 0.015 to 0.030 mass%, V content is controlled to a range of 0.30 to 0.60 mass%, and the product of V and N content (mass%) (V × N) is controlled to be in the range of 0.003 to 0.015, and it is necessary to effectively utilize the particle dispersion strengthening ability of VN. Further, in order to further improve the thermal fatigue characteristics, Nb, T, which is a nitriding element other than V It has been found that the contents of i, Zr, and Ta also need to be regulated. Moreover, in order to improve the oxidation resistance at 1000 ° C. and make it equivalent to SUS444, the content of Mn is regulated, specifically, it is found that Mn needs to be 0.5 mass% or less, The present invention has been completed.
すなわち、本発明は、C:0.015mass%以下、Si:1.0mass%以下、Mn:0.5mass%以下、P:0.040mass%以下、S:0.010mass%以下、Al:0.03〜0.30mass%、Cr:16〜20mass%、Ni:0.5mass%以下、N:0.015〜0.030mass%、V:0.30〜0.60mass%、Nb:10(C(mass%)+N(mass%))〜0.60mass%、Ti:0.01mass%以下、Zr:0.01mass%以下、Ta:0.01mass%以下、Mo:0.1mass%以下、W:0.1mass%以下含有し、かつ、VおよびNの含有量(mass%)の積(V×N)が、(V×N):0.003〜0.015を満たして含有し、残部がFeおよび不可避的不純物からなる成分組成を有することを特徴とする熱疲労特性、耐酸化性および耐高温塩害腐食性に優れるフェライト系ステンレス鋼である。 That is, the present invention includes C: 0.015 mass% or less, Si: 1.0 mass% or less, Mn: 0.5 mass% or less, P: 0.040 mass% or less, S: 0.010 mass% or less, Al: 0. 03 to 0.30 mass%, Cr: 16 to 20 mass%, Ni: 0.5 mass% or less, N: 0.015 to 0.030 mass%, V: 0.30 to 0.60 mass%, Nb: 10 (C ( mass%) + N (mass%)) to 0.60 mass%, Ti: 0.01 mass% or less, Zr: 0.01 mass% or less, Ta: 0.01 mass% or less, Mo: 0.1 mass% or less, W: 0 0.1 mass% or less, and the product of V and N content (mass%) (V × N) satisfies (V × N): 0.003 to 0.015, and the balance is Fe And a ferritic stainless steel excellent in thermal fatigue characteristics, oxidation resistance and high temperature salt corrosion resistance, characterized by having a component composition consisting of inevitable impurities.
本発明のフェライト系ステンレス鋼は、上記成分組成に加えてさらに、B:0.0004〜0.0020mass%およびCo:0.05〜0.1mass%のうちから選ばれる1種または2種を含有することを特徴とする。 In addition to the above component composition, the ferritic stainless steel of the present invention further contains one or two selected from B: 0.0004 to 0.0020 mass% and Co: 0.05 to 0.1 mass%. It is characterized by doing.
本発明によれば、高価なMoやWを用いることなく、かつ、耐酸化性を低下させるCuを添加することなくSUS444と同等の耐熱性(熱疲労特性と耐酸化性)と、SUS444と同等以上の耐高温塩害腐食性を有するフェライト系ステンレス鋼を安価に提供することができる。したがって、本発明のフェライト系ステンレス鋼は、自動車の排気部材用として好適であり、産業上格段の効果を奏する。 According to the present invention, heat resistance (thermal fatigue characteristics and oxidation resistance) equivalent to SUS444 without using expensive Mo or W, and without adding Cu that lowers oxidation resistance, and equivalent to SUS444. The above-described ferritic stainless steel having high temperature salt damage corrosion resistance can be provided at low cost. Therefore, the ferritic stainless steel of the present invention is suitable for an automobile exhaust member, and has a remarkable industrial effect.
本発明の上記知見を得る契機となった基礎実験について説明する。
(実験1)まず、18mass%Cr含有鋼の熱疲労特性に及ぼすN含有量の影響について調査した。
C:0.005〜0.010mass%、Si:0.10〜0.30mass%、Mn:0.10〜0.30mass%、Al:0.042〜0.048mass%、Cr:17〜18.5mass%、Nb:0.38〜0.43mass%およびV:0.19〜0.22mass%を含有し、Nの含有量を0.008〜0.048mass%の範囲で種々に変化させた鋼を実験室で溶製し、得られた鋼塊を鍛造して30mm×30mmの角材とし、熱処理を施したのち、図1に示した形状、寸法の熱疲労試験片を作製した。次いで、この試験片を、図2に示したように、拘束率0.8で200℃と850℃の間で昇温・降温を繰り返す熱疲労試験に供し、200℃において検出された荷重が初期の80%を下回るまでのサイクル数で定義する「熱疲労寿命」を測定した。なお、比較材として、SUS444(18Cr−2Mo−0.5Nb鋼)についても、上記と同様にして熱疲労試験片を作製し、同様の熱疲労試験に供した。
The basic experiment that provided the opportunity to obtain the above knowledge of the present invention will be described.
(Experiment 1) First, the influence of the N content on the thermal fatigue properties of 18 mass% Cr-containing steel was investigated.
C: 0.005-0.010 mass%, Si: 0.10-0.30 mass%, Mn: 0.10-0.30 mass%, Al: 0.042-0.048 mass%, Cr: 17-18. Steel containing 5 mass%, Nb: 0.38 to 0.43 mass% and V: 0.19 to 0.22 mass%, and variously changing the N content in the range of 0.008 to 0.048 mass% Was melted in a laboratory, and the obtained steel ingot was forged into a square of 30 mm × 30 mm. After heat treatment, a thermal fatigue test piece having the shape and dimensions shown in FIG. 1 was produced. Next, as shown in FIG. 2, the test piece was subjected to a thermal fatigue test in which the temperature was increased and decreased between 200 ° C. and 850 ° C. with a restraint ratio of 0.8. “Thermal fatigue life” defined by the number of cycles to below 80% was measured. In addition, as a comparative material, also about SUS444 (18Cr-2Mo-0.5Nb steel), the thermal fatigue test piece was produced similarly to the above, and it used for the same thermal fatigue test.
図3は、上記試験結果を、熱疲労寿命とN含有量との関係として示したものである。この図3から、SUS444より優れた熱疲労寿命が得られるNの含有量は0.015〜0.040mass%の範囲であることがわかった。 FIG. 3 shows the test results as a relationship between the thermal fatigue life and the N content. From FIG. 3, it was found that the content of N that provides a thermal fatigue life superior to that of SUS444 is in the range of 0.015 to 0.040 mass%.
(実験2)次に、18mass%Cr含有鋼の熱疲労特性に及ぼすV含有量の影響について調査した。
C:0.005〜0.010mass%、Si:0.10〜0.30mass%、Mn:0.10〜0.30mass%、Al:0.042〜0.048mass%、Cr:17〜18.5mass%、Nb:0.28〜0.32mass%、N:0.019〜0.022mass%を含有し、Vの含有量を0.11〜0.71mass%の範囲で種々に変化させた鋼を実験室で溶製し、その後、上記実験1と同様にして、図1に示した熱疲労試験片を作製し、図2に示した熱疲労試験に供して、熱疲労寿命を測定した。
(Experiment 2) Next, the effect of the V content on the thermal fatigue properties of 18 mass% Cr-containing steel was investigated.
C: 0.005-0.010 mass%, Si: 0.10-0.30 mass%, Mn: 0.10-0.30 mass%, Al: 0.042-0.048 mass%, Cr: 17-18. Steel containing 5 mass%, Nb: 0.28 to 0.32 mass%, N: 0.019 to 0.022 mass%, and varying the V content in the range of 0.11 to 0.71 mass% 1 was prepared in the laboratory, and then the thermal fatigue test piece shown in FIG. 1 was produced in the same manner as in
図4は、上記試験の結果を、熱疲労寿命とV含有量との関係として示したものであり、Vの含有量が0.15〜0.60mass%の範囲においてSUS444より優れた熱疲労寿命が得られることがわかった。 FIG. 4 shows the results of the above test as the relationship between the thermal fatigue life and the V content. The thermal fatigue life superior to SUS444 in the range where the V content is 0.15 to 0.60 mass%. Was found to be obtained.
(実験3)次に、18mass%Cr含有鋼の熱疲労特性に及ぼすVとNの含有量(mass%)の積(V×N)の影響について調査した。
上記実験1および実験2に加えて、VおよびN以外の成分組成を実験1および実験2と同じくし、VとNの含有量(mass%)の積(V×N)の値を種々に変化させた鋼を実験室で溶製し、上記実験1と同様にして、図1に示した熱疲労試験片を作製し、図2に示した条件の熱疲労試験に供して、熱疲労寿命を測定した。
(Experiment 3) Next, the influence of the product (V × N) of the contents of V and N (mass%) on the thermal fatigue properties of 18 mass% Cr-containing steel was investigated.
In addition to
図5は、熱疲労寿命と(V×N)との関係を示したものである。この図5から、V,Nの含有量がそれぞれ実験1および2で得られた好適範囲内にある場合でも、(V×N)の値が0.003未満もしくは0.015超えであるときには、SUS444と同等の熱疲労寿命は得られない、したがって、SUS444と同等の熱疲労寿命を得るためには、V,Nの含有量を上記実験1および2で得られた好適範囲に制御すると共に、(V×N)を0.003〜0.015の範囲に制御する必要があることがわかった。
FIG. 5 shows the relationship between the thermal fatigue life and (V × N). From FIG. 5, even when the contents of V and N are within the preferred ranges obtained in
このように、VとNの含有量(mass%)の積(V×N)に熱疲労寿命を高める最適範囲が存在する理由は、(V×N)の値が小さ過ぎると、600〜800℃の温度で鋼中に微細に析出するVNの量が少な過ぎるため、鋼を高強度化し熱疲労特性を向上する効果に乏しく、一方、(V×N)の値が大きくなり過ぎると、析出したVNが粗大化し、却って熱疲労特性を低下させてしまうためと考えている。 Thus, the reason why there is an optimum range for increasing the thermal fatigue life in the product (V × N) of the content (mass%) of V and N is that when the value of (V × N) is too small, 600 to 800 Since the amount of VN that precipitates finely in the steel at a temperature of ° C. is too small, the effect of improving the strength of the steel and improving the thermal fatigue properties is poor, while if the value of (V × N) becomes too large, This is thought to be because the VN becomes coarse and the thermal fatigue properties are reduced.
(実験4)次に、Nbと同様、窒化物を形成するZr,TiおよびTaが、18mass%Cr含有鋼の熱疲労寿命に及ぼす影響について調査した。
C:0.005〜0.010mass%、Si:0.19〜0.22mass%、Mn:0.25〜0.29mass%、Al:0.042〜0.048mass%、Cr:17.9〜18.1mass%、Nb:0.34〜0.37mass%、V:0.19〜0.24mass%、N:0.0.19〜0.022mass%を含有し、Zr,TiおよびTaの含有量をそれぞれ0.003〜0.020mass%、0.003〜0.014mass%、0.003〜0.015mass%の範囲で種々に変化させた鋼を実験室で溶製し、上記実験1と同様にして、図1に示した熱疲労試験片を作製し、図2に示した条件で熱疲労試験に供し、熱疲労寿命を測定した。
(Experiment 4) Next, as with Nb, the effect of Zr, Ti and Ta forming nitrides on the thermal fatigue life of 18 mass% Cr-containing steel was investigated.
C: 0.005-0.010 mass%, Si: 0.19-0.22 mass%, Mn: 0.25-0.29 mass%, Al: 0.042-0.048 mass%, Cr: 17.9- 18.1 mass%, Nb: 0.34 to 0.37 mass%, V: 0.19 to 0.24 mass%, N: 0.0.19 to 0.022 mass%, Zr, Ti and Ta Steels with various amounts varied in the range of 0.003 to 0.020 mass%, 0.003 to 0.014 mass%, and 0.003 to 0.015 mass%, respectively, were melted in the laboratory. Similarly, the thermal fatigue test piece shown in FIG. 1 was produced and subjected to the thermal fatigue test under the conditions shown in FIG. 2, and the thermal fatigue life was measured.
図6は、熱疲労寿命に及ぼすZr,TiおよびTaの含有量の影響を示したものである。図6から、Zr,TiおよびTaがそれぞれ0.01mass%を超えて含有すると、SUS444と同等の熱疲労寿命は得られないことがわかる。この理由は、Zr,TiおよびTaを過剰に添加すると、VNの析出が抑制されて、本発明の特徴であるVN析出による分散強化効果が得られなくなるためと考えられる。したがって、熱疲労寿命を改善するためには、前述したV,Nの含有量および(V×N)の値を適正化するだけでなく、Zr,TiおよびTaの含有量をも適正化する、具体的には、Zr,TiおよびTaのそれぞれを0.01mass%以下に規制する必要があることがわかった。 FIG. 6 shows the influence of the contents of Zr, Ti and Ta on the thermal fatigue life. From FIG. 6, it can be seen that when Zr, Ti and Ta are each contained in an amount exceeding 0.01 mass%, a thermal fatigue life equivalent to that of SUS444 cannot be obtained. The reason for this is considered that when Zr, Ti and Ta are added excessively, the precipitation of VN is suppressed and the effect of dispersion strengthening due to the VN precipitation, which is a feature of the present invention, cannot be obtained. Therefore, in order to improve the thermal fatigue life, not only the above-described contents of V and N and the value of (V × N) are optimized, but also the contents of Zr, Ti and Ta are optimized. Specifically, it has been found that each of Zr, Ti, and Ta must be regulated to 0.01 mass% or less.
(実験5)次に、排気系部材に用いられる鋼において、熱疲労特性と並んで重要な特性である耐酸化性に及ぼすMn含有量の影響について調査した。
C:0.005〜0.010mass%、Si:0.19〜0.22mass%、Al:0.042〜0.048mass%、Cr:17.9〜18.1mass%、Nb:0.29〜0.43mass%、V:0.19〜0.24mass%、N:0.019〜0.022mass%Nを含有し、Mnの含有量を0.13〜0.97mass%の範囲で種々に変化させた鋼を実験室で溶製し、得られた鋼塊を熱間圧延し、冷間圧延し、仕上焼鈍して板厚2mmの冷延焼鈍板を得た。この冷延焼鈍板から30mm×20mm×板厚の酸化試験用サンプルを採取し、このサンプルの表面を#320のエメリー紙で研磨した後、1000℃に保持された大気雰囲気の炉中で200時間の連続酸化試験を行い、酸化試験前後における質量変化(酸化増量)から、耐酸化性を評価した。なお、比較材としてSUS444についても、同様の連続酸化試験を行い、耐酸化性を評価した。
(Experiment 5) Next, in steel used for exhaust system members, the influence of the Mn content on the oxidation resistance, which is an important characteristic along with the thermal fatigue characteristics, was investigated.
C: 0.005 to 0.010 mass%, Si: 0.19 to 0.22 mass%, Al: 0.042 to 0.048 mass%, Cr: 17.9 to 18.1 mass%, Nb: 0.29 to 0.43 mass%, V: 0.19 to 0.24 mass%, N: 0.019 to 0.022 mass% N, Mn content varied in the range of 0.13 to 0.97 mass% The obtained steel was melted in a laboratory, and the obtained steel ingot was hot-rolled, cold-rolled and finish-annealed to obtain a cold-rolled annealed plate having a thickness of 2 mm. A sample for an oxidation test having a thickness of 30 mm × 20 mm × thickness was taken from this cold-rolled annealed plate, and the surface of this sample was polished with # 320 emery paper, and then in an oven maintained at 1000 ° C. for 200 hours. The oxidation resistance was evaluated from the mass change (oxidation increase) before and after the oxidation test. In addition, the same continuous oxidation test was done also about SUS444 as a comparative material, and oxidation resistance was evaluated.
図7は、酸化増量とMn含有量との関係を示したものである。この図7から、SUS444と同等以上の耐連続酸化性を得るには、Mnの含有量を0.5mass%以下に制限する必要があることがわかった。 FIG. 7 shows the relationship between the oxidation increase and the Mn content. From FIG. 7, it was found that the Mn content must be limited to 0.5 mass% or less in order to obtain a continuous oxidation resistance equal to or higher than that of SUS444.
(実験6)次に、18mass%Cr含有鋼の高温塩害腐食性に及ぼすNおよびVの含有量の影響について調査した。この高温塩害腐食性とは、高温で生成したCr2O3、(Fe,Cr)2O3などの酸化物がNaなどと反応して水溶性の化合物となり、溶解・消失と酸化が繰り返されて生じる腐食のことである。
C:0.005〜0.010mass%、Si:0.10〜0.30mass%、Mn:0.10〜0.30mass%、Al:0.042〜0.048mass%、Cr:17〜18.5mass%、Nb:0.47〜0.53mass%を含有し、Vの含有量を0.19〜0.22mass%としてNの含有量を0.009〜0.048mass%の範囲で種々に変化させた鋼、および、Nの含有量を0.019〜0.022mass%としてVの含有量を0.11〜0.71mass%の範囲で種々に変化させた鋼を実験室で溶製し、得られた鋼塊を熱間圧延し、熱延板焼鈍し、酸洗し、冷間圧延し、仕上焼鈍して板厚2mmの冷延焼鈍板を得た。この冷延焼鈍板から、30mm×20mm×板厚のサンプルを採取し、このサンプルの表面を#320のエメリー紙で研磨した後、Dip & Dry試験に供した。このDip & Dry試験は、上記サンプルを飽和食塩水(室温)に5分間浸漬し、700℃で2時間加熱保持し、冷却する工程からなる腐食試験を10サイクル行い、その後、10%クエン酸アンモニウム水溶液へ浸漬し、ナイロンブラシでブラッシングして試験片表面の腐食生成物を除去し、腐食試験前後の質量変化を測定して腐食減量を算出する試験方法である。
(Experiment 6) Next, the influence of the contents of N and V on the high temperature salt corrosion resistance of 18 mass% Cr-containing steel was investigated. This high temperature salt corrosion property means that oxides such as Cr 2 O 3 and (Fe, Cr) 2 O 3 produced at high temperatures react with Na to form water-soluble compounds, and dissolution / disappearance and oxidation are repeated. This is the corrosion that occurs.
C: 0.005-0.010 mass%, Si: 0.10-0.30 mass%, Mn: 0.10-0.30 mass%, Al: 0.042-0.048 mass%, Cr: 17-18. 5 mass%, Nb: 0.47 to 0.53 mass%, V content is 0.19 to 0.22 mass%, N content is variously changed in the range of 0.009 to 0.048 mass% And steel in which the content of N was varied in the range of 0.11 to 0.71 mass% with the N content being 0.019 to 0.022 mass%, The obtained steel ingot was hot-rolled, hot-rolled sheet annealed, pickled, cold-rolled, and finish-annealed to obtain a cold-rolled annealed sheet having a thickness of 2 mm. A sample of 30 mm × 20 mm × plate thickness was collected from the cold-rolled annealed plate, and the surface of this sample was polished with # 320 emery paper, and then subjected to a Dip & Dry test. In this Dip & Dry test, the above sample was immersed in a saturated saline solution (room temperature) for 5 minutes, heated and maintained at 700 ° C. for 2 hours, and subjected to 10 cycles of corrosion test, and then 10% ammonium citrate. It is a test method in which corrosion weight loss is calculated by immersing in an aqueous solution, brushing with a nylon brush to remove corrosion products on the surface of the test piece, and measuring the mass change before and after the corrosion test.
図9および図10は、上記Dip & Dry試験の結果を示したものであり、これらの図から、塩害による腐食減量をSUS444よりも少なくするには、N含有量は0.03mass%以下、V含有量は0.30mass%以上でなければならないことがわかった。 9 and 10 show the results of the above Dip & Dry test. From these figures, in order to reduce the corrosion weight loss due to salt damage to less than SUS444, the N content is 0.03 mass% or less, V It was found that the content must be 0.30 mass% or more.
(実験7)次に、18mass%Cr含有鋼の高温塩害腐食性に及ぼすAl含有量の影響について調査した。
C:0.005〜0.010mass%、Si:0.19〜0.22mass%、Mn:0.18〜0.22mass%、Cr:17.9〜18.1mass%、Nb:0.29〜0.33mass%、V:0.33〜0.35mass%、N:0.019〜0.022mass%を含有し、Alの含有量を0.06〜0.36mass%の範囲で種々に変化させた鋼を実験室で溶製し、上記実験6と同様にして、Dip & Dry試験を行い、腐食減量を測定した。
(Experiment 7) Next, the influence of the Al content on the high temperature salt corrosion resistance of 18 mass% Cr-containing steel was investigated.
C: 0.005 to 0.010 mass%, Si: 0.19 to 0.22 mass%, Mn: 0.18 to 0.22 mass%, Cr: 17.9 to 18.1 mass%, Nb: 0.29 to 0.33 mass%, V: 0.33 to 0.35 mass%, N: 0.019 to 0.022 mass%, Al content varied in the range of 0.06 to 0.36 mass% Steel was melted in the laboratory, and the Dip & Dry test was performed in the same manner as in Experiment 6 to measure the corrosion weight loss.
図11は、Dip & Dry試験の結果の結果を示したものであり、この図から、塩害による腐食減量をSUS444よりも少なくするには、Al含有量は0.03mass%でなければならないことがわかった。
本発明は、上記の知見にさらに検討を加えてなされたものである。
FIG. 11 shows the result of the Dip & Dry test. From this figure, in order to reduce the corrosion weight loss due to salt damage to less than SUS444, the Al content must be 0.03 mass%. all right.
The present invention has been made by further studying the above findings.
次に、本発明のフェライト系ステンレス鋼の成分組成について説明する。
C:0.015mass%以下
Cは、鋼の強度を高める元素であり、所望の強度を得るためには、0.001mass%以上含有することが好ましい。しかし、0.015mass%を超えて含有すると、靱性および加工性の劣化が顕著となるので、上限を0.015mass%とする。なお、加工性をより求める場合には、Cは低いほど望ましく、0.008mass%以下であることが好ましい。より好ましくは、0.002〜0.008mass%の範囲である。
Next, the component composition of the ferritic stainless steel of the present invention will be described.
C: 0.015 mass% or less C is an element that enhances the strength of steel, and in order to obtain a desired strength, it is preferable to contain 0.001 mass% or more. However, if the content exceeds 0.015 mass%, the toughness and workability deteriorate significantly, so the upper limit is made 0.015 mass%. In addition, when calculating | requiring workability more, C is so desirable that it is low, and it is preferable that it is 0.008 mass% or less. More preferably, it is the range of 0.002-0.008 mass%.
Si:1.0mass%以下
Siは、鋼の耐酸化性を向上する元素であり、脱酸剤としても添加される元素である。しかし、過剰な添加は加工性を低下させる。よって、Siは、1.0mass%以下とする。
Si: 1.0 mass% or less Si is an element that improves the oxidation resistance of steel, and is also an element added as a deoxidizer. However, excessive addition reduces processability. Therefore, Si is set to 1.0 mass% or less.
Mn:0.5mass%以下
Mnは、脱酸剤としての効果を有する元素である。しかし、過剰な添加は、高温でのγ相の生成を促進し、耐熱性(耐酸化性)を低下させる。よって、Mnは、0.5mass%以下とする。好ましくは、0.35mass%以下である。
Mn: 0.5 mass% or less Mn is an element having an effect as a deoxidizer. However, excessive addition promotes the formation of a γ phase at a high temperature and reduces heat resistance (oxidation resistance). Therefore, Mn is 0.5 mass% or less. Preferably, it is 0.35 mass% or less.
P:0.040mass%以下
Pは、鋼の靱性を低下させる元素であり、できる限り低減するのが望ましい。よって、本発明では、Pは0.040mass%以下とする。好ましくは0.030mass%以下である。
P: 0.040 mass% or less P is an element that lowers the toughness of steel, and is desirably reduced as much as possible. Therefore, in the present invention, P is set to 0.040 mass% or less. Preferably it is 0.030 mass% or less.
S:0.010mass%以下
Sは、鋼の伸びおよびr値を低下させて成形性を劣化させるとともに、ステンレス鋼の基本特性である耐食性を低下させる元素であり、できる限り低減するのが望ましい。よって、本発明では、Sを0.010mass%以下に制限する。
S: 0.010 mass% or less S is an element that lowers the elongation and r value of steel and degrades formability and lowers the corrosion resistance, which is a basic characteristic of stainless steel, and is desirably reduced as much as possible. Therefore, in the present invention, S is limited to 0.010 mass% or less.
Al:0.03〜0.30mass%
Alは、鋼の耐酸化性および高温での耐塩害腐食性の向上に有効な元素であり、SUS444と同等以上の耐塩害腐食性を得るには、0.03mass%以上添加する必要がある。一方、耐高温塩害腐食性に対するAlの効果は0.2mass%程度でほぼ飽和するが、0.3mass%を超える添加は、鋼が硬質化し、加工性の低下を招く。よって、Alは0.03〜0.30mass%の範囲とする。
Al: 0.03-0.30 mass%
Al is an element effective for improving the oxidation resistance of steel and the salt corrosion resistance at high temperatures. To obtain the salt corrosion resistance equivalent to or higher than SUS444, it is necessary to add 0.03 mass% or more. On the other hand, the effect of Al on the high temperature salt corrosion resistance is almost saturated at about 0.2 mass%, but the addition exceeding 0.3 mass% hardens the steel and causes a decrease in workability. Therefore, Al is set to a range of 0.03 to 0.30 mass%.
Cr:16〜20mass%
Crは、鋼の耐酸化性を向上させる重要な元素である。斯かる効果を得るためには、16mass%以上の添加が必要である。一方、Crは、鋼に固溶し、室温において硬質化、低延性化して加工性が低下し、特に、20mass%を超えるとその傾向が顕著となる。よって、Crは16〜20mass%の範囲とする。なお、特に優れた延性を得るためには、Crは18.5mass%以下にするのが好ましい。
Cr: 16-20 mass%
Cr is an important element that improves the oxidation resistance of steel. In order to acquire such an effect, addition of 16 mass% or more is necessary. On the other hand, Cr dissolves in steel and becomes hard and low ductile at room temperature to deteriorate workability. In particular, when it exceeds 20 mass%, the tendency becomes remarkable. Therefore, Cr is set to a range of 16 to 20 mass%. In order to obtain particularly excellent ductility, the Cr content is preferably 18.5 mass% or less.
Ni:0.5mass%以下
Niは、鋼の靱性を向上させる元素であるが、高価である他、強力なγ相形成元素であるため、高温でのγ相の生成を促進し、耐酸化性を低下させる。よって、Niは0.5mass%以下とする。
Ni: 0.5 mass% or less Ni is an element that improves the toughness of steel. However, it is expensive and is a strong γ-phase-forming element, so it promotes the formation of γ-phase at high temperatures and is resistant to oxidation. Reduce. Therefore, Ni is made 0.5 mass% or less.
N:0.015〜0.030mass%、V:0.30〜0.60mass%、かつ、(V×N):0.003〜0.015
VおよびNは、本発明では、鋼を高強度化し、熱疲労特性の向上を図るために重要な元素である。図3〜5に示したように、SUS444と同等以上の熱疲労特性を得るには、N:0.015〜0.040mass%、V:0.15〜0.60mass%およびVとNの含有量(mass%)の積(V×N):0.003〜0.015の全てを満たす必要がある。N含有量が0.015mass%未満、V含有量が0.15mass%未満あるいは(V×N)の値が0.003未満では、600〜800℃の温度でVNが鋼中に微細に析出しないため、本発明が目的とする熱疲労特性の改善効果が得られない。一方、N含有量が0.040mass%超え、V含有量が0.60mass%超えあるいは(V×N)が0.015超えでは、微細に析出したVNが粗大化し、却って熱疲労特性を低下させてしまうからである。
また、良好な熱疲労特性と同時に、SUS444より良好な耐高温塩害腐食性を得るには、図9,10に示したように、N含有量およびV含有量をそれぞれ0.03mass%以下、0.30mass%以上を満たす必要がある。よって、本発明では、N:0.015〜0.030mass%、V:0.30〜0.60mass%の範囲とする。
N: 0.015-0.030 mass%, V: 0.30-0.60 mass%, and (V × N): 0.003-0.015
In the present invention, V and N are important elements for increasing the strength of the steel and improving the thermal fatigue characteristics. As shown in FIGS. 3 to 5, N: 0.015 to 0.040 mass%, V: 0.15 to 0.60 mass%, and the contents of V and N are obtained in order to obtain thermal fatigue characteristics equivalent to or higher than those of SUS444. Product of quantity (mass%) (V × N): It is necessary to satisfy all of 0.003 to 0.015. When the N content is less than 0.015 mass%, the V content is less than 0.15 mass%, or the value of (V × N) is less than 0.003, VN does not precipitate finely in the steel at a temperature of 600 to 800 ° C. For this reason, the effect of improving the thermal fatigue characteristics aimed by the present invention cannot be obtained. On the other hand, when the N content exceeds 0.040 mass% and the V content exceeds 0.60 mass% or (V × N) exceeds 0.015, the finely precipitated VN becomes coarse, and on the other hand, the thermal fatigue characteristics are reduced. Because it will end up.
In addition, in order to obtain good high temperature salt corrosion resistance better than SUS444 at the same time as good thermal fatigue characteristics, as shown in FIGS. 9 and 10, the N content and the V content are 0.03 mass% or less, 0 It is necessary to satisfy 30 mass% or more. Therefore, in this invention, it is set as the range of N: 0.015-0.030 mass% and V: 0.30-0.60 mass%.
Nb:10(C(mass%)+N(mass%))〜0.60mass%
Nbは、C,Nを固定し、鋼の耐鋭敏化性、成形性、溶接部の粒界腐食性を高める作用を有するとともに、高温強度を高めて熱疲労特性を向上するのに有効な元素である。しかし、Nbの含有量がCとNの合計含有量(mass%)の10倍未満、即ち、10(C+N)未満では、鋼の鋭敏化を抑制する効果が得られない。一方、0.60mass%を超える添加は、Laves相の析出を促進して、脆化を起こし易くする。さらに、Nbの過剰添加は、本発明において重要なVNの析出が抑制され、熱疲労特性向上効果が得られなくなる。よって、Nbの含有量は、10(C+N)〜0.60mass%の範囲とする。好ましくは、10(C+N)〜0.55mass%の範囲である。
Nb: 10 (C (mass%) + N (mass%)) to 0.60 mass%
Nb is an element effective for fixing C and N and enhancing the thermal fatigue properties by increasing the high-temperature strength and having the effect of enhancing the steel's sensitization, formability, and intergranular corrosion of the welded portion. It is. However, if the Nb content is less than 10 times the total content (mass%) of C and N, that is, less than 10 (C + N), the effect of suppressing steel sensitization cannot be obtained. On the other hand, the addition exceeding 0.60 mass% promotes precipitation of the Laves phase and easily causes embrittlement. Further, excessive addition of Nb suppresses the precipitation of VN, which is important in the present invention, and the effect of improving thermal fatigue characteristics cannot be obtained. Therefore, the Nb content is in the range of 10 (C + N) to 0.60 mass%. Preferably, it is in the range of 10 (C + N) to 0.55 mass%.
Ti:0.01mass%以下、Zr:0.01mass%以下およびTa:0.01mass%以下
Ti,ZrおよびTaは、Nb,Vと同様、C,Nを固定して、耐食性、成形性、溶接部の粒界腐食性を向上させる作用を有する元素である。しかし、これらの元素がそれぞれ0.01mass%以上含有していると、本発明において重要役割を果たすVNの析出を抑制し、VNの析出効果を享受することができなくなり、熱疲労特性が低下してしまう。よって、本発明では、これらの元素はそれぞれ0.01mass%以下とする。
Ti: 0.01 mass% or less, Zr: 0.01 mass% or less, and Ta: 0.01 mass% or less Ti, Zr and Ta, like Nb and V, fix C and N, corrosion resistance, formability, welding It is an element having the effect of improving the intergranular corrosion property of the part. However, if each of these elements is contained in an amount of 0.01 mass% or more, the precipitation of VN, which plays an important role in the present invention, is suppressed, and the VN precipitation effect cannot be enjoyed, resulting in a decrease in thermal fatigue characteristics. End up. Therefore, in the present invention, these elements are each 0.01% by mass or less.
Mo:0.1mass%以下、W:0.1mass%以下
MoおよびWは、高温疲労特性および耐酸化性の向上に有効な元素であるが、いずれも高価な元素であり、安価な材料開発という本発明の目的から、積極的には添加しない。したがって、これらの元素は、製鉄原料のスクラップ等から混入する程度であり、その含有量は多くても0.1mass%以下である。よって、本発明では、MoおよびWの含有量はそれぞれ0.1mass%以下とする。
Mo: 0.1 mass% or less, W: 0.1 mass% or less Mo and W are effective elements for improving high-temperature fatigue characteristics and oxidation resistance, but both are expensive elements and are called inexpensive material development. For the purposes of the present invention, it is not actively added. Therefore, these elements are mixed only from scraps of iron making raw materials, and their content is at most 0.1 mass%. Therefore, in the present invention, the contents of Mo and W are each 0.1 mass% or less.
本発明のフェライト系ステンレス鋼は、上記必須とする成分に加えてさらに、BおよびCoを下記の範囲で含有することができる。
B:0.0004〜0.0020mass%
Bは、加工性、とくに2次加工性を向上させるのに有効な元素である。この効果は、0.0004mass%以上の添加で発現する。しかし、0.0020mass%を超える添加は、BNを生成し、加工性の低下を招く。よって、Bを添加する場合は、0.0004〜0.0020mass%の範囲とする。
The ferritic stainless steel of the present invention can further contain B and Co in the following ranges in addition to the essential components.
B: 0.0004 to 0.0020 mass%
B is an element effective for improving workability, particularly secondary workability. This effect is manifested by the addition of 0.0004 mass% or more. However, addition exceeding 0.0020 mass% generates BN and causes deterioration of workability. Therefore, when adding B, it is set as the range of 0.0004-0.0020 mass%.
Co:0.05〜0.1mass%
Coは、鋼の低温靭性向上に有効な元素であり、その効果は0.05mass%以上の添加で認められる。しかし、Coは、高価な元素であり、0.1mass%を超えて添加しても上記効果は飽和してしまう。よって、低温靭性の向上を目的としてCoを添加する場合は、0.05〜0.1mass%の範囲とするのが好ましい。
本発明のフェライト系ステンレス鋼において、上記以外の成分は、Feおよび不可避的不純物である。
Co: 0.05 to 0.1 mass%
Co is an element effective for improving the low temperature toughness of steel, and the effect is recognized by addition of 0.05 mass% or more. However, Co is an expensive element, and the above effect is saturated even if it is added in excess of 0.1 mass%. Therefore, when Co is added for the purpose of improving low temperature toughness, it is preferably in the range of 0.05 to 0.1 mass%.
In the ferritic stainless steel of the present invention, components other than those described above are Fe and inevitable impurities.
次に、本発明のフェライト系ステンレス鋼の製造方法について説明する。
本発明鋼の製造方法は、特に限定されるものではなく、フェライト系ステンレス鋼の製造方法として一般的なものであれば、いずれも好適に用いることができる。例えば、前述した本発明に適合する成分組成の鋼を転炉、電気炉等の溶製炉、あるいはさらに取鍋精錬、真空精錬等の二次精錬を適用して溶製し、連続鋳造法あるいは造塊−分塊圧延法で鋼片(スラブ)とし、その後、熱間圧延、熱延板焼鈍、酸洗、冷間圧延、仕上焼鈍、酸洗等の各工程を経て冷延焼鈍板とするのが好ましい。上記方法において、冷間圧延は、1回または中間焼鈍を挟む2回以上でもよい。また、冷間圧延、仕上焼鈍、酸洗の各工程は、必要に応じて繰り返し行ってもよく、熱延板焼鈍は、省略してもよい。さらに、鋼板表面の光沢性が要求される場合には、スキンパス等を施してもよい。
Next, the manufacturing method of the ferritic stainless steel of this invention is demonstrated.
The method for producing the steel of the present invention is not particularly limited, and any method can be suitably used as long as it is a general method for producing ferritic stainless steel. For example, the above-described steel having a composition suitable for the present invention is melted by applying a secondary refining such as a converter, a smelting furnace such as an electric furnace, or a ladle refining, vacuum refining, etc. It is made into a steel slab (slab) by the ingot-making and ingot rolling method, and then made into a cold-rolled annealed plate through various processes such as hot rolling, hot-rolled sheet annealing, pickling, cold rolling, finish annealing, pickling. Is preferred. In the above method, the cold rolling may be performed once or twice or more with intermediate annealing. Moreover, each process of cold rolling, finish annealing, and pickling may be repeated as needed, and hot-rolled sheet annealing may be omitted. Furthermore, when the gloss of the steel plate surface is required, a skin pass or the like may be applied.
表1−1および表1−2に示した成分組成を有する鋼を真空溶解炉で溶製して50kg鋼塊とし、2分割し、その一方の鋼塊を1170℃に加熱後、熱間圧延して150mm幅×35mm厚の熱延シートバーとし、これを鍛造して30mm×30mmの角材とし、1040℃の焼鈍を施した。その後、その角材から、機械加工により図1に示した形状、寸法の熱疲労試験片を作製し、図2に示したように、拘束率0.8で200℃−850℃間を繰り返し昇温・降温させる熱疲労試験に供して、熱疲労寿命を測定した。なお、昇温・降温速度は5℃/sとし、850℃の保持時間は1分、200℃の保持時間は0分とした。また、熱疲労寿命の定義は、200℃において検出された荷重が、初期の80%を下回るまでのサイクル数とした。
また、参考例として、特許文献4〜7に開示された成分組成を有する鋼(No.1〜4)、およびSUS444(No.5)についても、上記と同様にして熱疲労特性を評価した。
Steel having the composition shown in Table 1-1 and Table 1-2 is melted in a vacuum melting furnace to form a 50 kg steel ingot, divided into two parts, one of the steel ingots is heated to 1170 ° C., and then hot rolled. Then, a hot-rolled sheet bar having a width of 150 mm × 35 mm was formed, which was forged into a square member of 30 mm × 30 mm, and annealed at 1040 ° C. Thereafter, a thermal fatigue test piece having the shape and dimensions shown in FIG. 1 was produced from the square bar by machining, and as shown in FIG. 2, the temperature was repeatedly raised between 200 ° C. and 850 ° C. at a restraint ratio of 0.8. -It was subjected to a thermal fatigue test to lower the temperature, and the thermal fatigue life was measured. The temperature increase / decrease rate was 5 ° C./s, the retention time at 850 ° C. was 1 minute, and the retention time at 200 ° C. was 0 minute. The definition of the thermal fatigue life is defined as the number of cycles until the load detected at 200 ° C. falls below the initial 80%.
Further, as reference examples, the thermal fatigue characteristics of steels (No. 1 to 4) and SUS444 (No. 5) having the component compositions disclosed in Patent Documents 4 to 7 were also evaluated in the same manner as described above.
実施例1で得たもう一方の鋼塊を1170℃に加熱後、熱間圧延して5mm厚の熱延板とした。次いで、この熱延板を、熱延板焼鈍(焼鈍温度:1040℃)し、酸洗し、冷間圧延(冷延圧下率:60%)し、仕上げ焼鈍(焼鈍温度:1040℃、平均冷却速度:30℃/s)し、酸洗して板厚2mmの冷延焼鈍板とした。
次いで、上記のようにして得た各冷延焼鈍板から、30mm×20mm×板厚のサンプルを切り出し、サンプル上部に4mmφの穴を開けてから、その表面および端面を#320のエメリー紙で研磨し、脱脂した。その後、そのサンプルを、1000℃に加熱・保持した大気雰囲気の炉内に吊り下げて200時間保持する大気中連続酸化試験に供した。試験後、サンプルの重量を測定し、試験前の重量との差を算出して、酸化増量を求めた。上記連続酸化試験は、各冷延焼鈍板のそれぞれについて2回実施し、その平均値で耐酸化性を評価した。
また、実施例1と同様、参考例として、従来鋼(No.1〜4)およびSUS444(No.5)についても、上記と同様にして耐酸化性を評価した。
The other steel ingot obtained in Example 1 was heated to 1170 ° C. and hot-rolled to obtain a hot-rolled sheet having a thickness of 5 mm. Subsequently, this hot-rolled sheet is subjected to hot-rolled sheet annealing (annealing temperature: 1040 ° C.), pickling, cold rolling (cold rolling reduction ratio: 60%), and finish annealing (annealing temperature: 1040 ° C., average cooling). (Speed: 30 ° C./s) and pickled to obtain a cold-rolled annealed plate having a thickness of 2 mm.
Next, from each of the cold-rolled annealed plates obtained as described above, a sample of 30 mm × 20 mm × thickness was cut out, a hole of 4 mmφ was made in the upper part of the sample, and the surface and end face were polished with # 320 emery paper And degreased. Thereafter, the sample was subjected to an atmospheric continuous oxidation test suspended in an atmospheric furnace heated and held at 1000 ° C. and held for 200 hours. After the test, the weight of the sample was measured, and the difference from the weight before the test was calculated to obtain the oxidation increase. The said continuous oxidation test was implemented twice about each cold-rolled annealing board, and oxidation resistance was evaluated by the average value.
Further, as in Example 1, as a reference example, oxidation resistance was also evaluated for conventional steel (No. 1 to 4) and SUS444 (No. 5) in the same manner as described above.
実施例2で得た板厚が2mmの冷延焼鈍板から、30mm×20mm×板厚のサンプルを採取し、このサンプルの表面を#320のエメリー紙で研磨した後、耐高温塩害腐食性を評価するため、Dip & Dry試験に供した。このDip & Dry試験は、上記サンプルを飽和食塩水(室温)に5分間浸漬し、700℃で2時間加熱保持し、冷却する工程からなる腐食試験を10サイクル行い、その後、10%クエン酸アンモニウム水溶液へ浸漬し、ナイロンブラシでブラッシングして試験片表面の腐食生成物を除去し、腐食試験前後の質量変化を測定して腐食減量を算出する試験方法である。
また、実施例1と同様、参考例として、従来鋼(No.1〜4)およびSUS444(No.5)についても、上記と同様にして耐高温塩害腐食性を評価した。
A sample with a thickness of 30 mm × 20 mm × thickness was taken from the cold-rolled annealed plate with a thickness of 2 mm obtained in Example 2, and the surface of this sample was polished with # 320 emery paper, and then the high temperature salt corrosion resistance was obtained. In order to evaluate, it used for the Dip & Dry test. In this Dip & Dry test, the above sample was immersed in a saturated saline solution (room temperature) for 5 minutes, heated and maintained at 700 ° C. for 2 hours, and subjected to 10 cycles of corrosion test, and then 10% ammonium citrate. It is a test method in which corrosion weight loss is calculated by immersing in an aqueous solution, brushing with a nylon brush to remove corrosion products on the surface of the test piece, and measuring the mass change before and after the corrosion test.
As in Example 1, as a reference example, the conventional steel (No. 1 to 4) and SUS444 (No. 5) were also evaluated for high temperature salt corrosion resistance in the same manner as described above.
上記実施例1〜3の結果を、表1−2に併記して示した。この結果から、本発明の成分組成に適合する発明例の鋼(No.32〜47)は、いずれも、SUS444と同等以上の耐熱疲労特性(熱疲労寿命:520サイクル以上)と耐酸化性(酸化増量:33g/m2以下)および耐高温塩害腐食性(腐食減量:0.4kg/m2未満)を兼備していることがわかる。一方、本発明の成分組成を満たさない比較例の鋼(No.6〜31)および参考例の従来鋼(No.1〜4)は、耐熱疲労特性、耐酸化性、耐高温塩害腐食性のいずれか1以上の特性がSUS444(No.5)より劣っており、本発明の目標が達成されていない。 The results of Examples 1 to 3 are shown together in Table 1-2. From these results, all of the steels of the invention examples (Nos. 32-47) suitable for the component composition of the present invention have the same or better heat fatigue characteristics (thermal fatigue life: 520 cycles or more) and oxidation resistance (SUS 444). It can be seen that both the increase in oxidation: 33 g / m 2 or less) and the high temperature salt corrosion resistance (corrosion loss: less than 0.4 kg / m 2 ) are combined. On the other hand, comparative steels (No. 6 to 31) that do not satisfy the component composition of the present invention and conventional steels (No. 1 to 4) of reference examples have heat fatigue characteristics, oxidation resistance, and high temperature salt corrosion resistance. Any one or more characteristics are inferior to SUS444 (No. 5), and the target of the present invention is not achieved.
本発明のフェライト系ステンレス鋼は、自動車の排気部材用に限定されるものではなく、本発明の鋼と同様の特性が要求される火力発電システムの排気経路部材や固体酸化物タイプの燃料電池用部材としても好適に用いることができる。 The ferritic stainless steel of the present invention is not limited to automobile exhaust members, but is used for exhaust path members of thermal power generation systems and solid oxide fuel cells that require the same characteristics as the steel of the present invention. It can also be suitably used as a member.
Claims (2)
Si:1.0mass%以下、
Mn:0.5mass%以下、
P:0.040mass%以下、
S:0.010mass%以下、
Al:0.03〜0.30mass%、
Cr:16〜20mass%、
Ni:0.5mass%以下、
N:0.015〜0.030mass%、
V:0.30〜0.60mass%、
Nb:10(C(mass%)+N(mass%))〜0.60mass%、
Ti:0.01mass%以下、
Zr:0.01mass%以下、
Ta:0.01mass%以下、
Mo:0.1mass%以下、
W:0.1mass%以下含有し、かつ、
VおよびNの含有量(mass%)の積(V×N)が、
(V×N):0.003〜0.015を満たして含有し、
残部がFeおよび不可避的不純物からなる成分組成を有することを特徴とする熱疲労特性、耐酸化性および耐高温塩害腐食性に優れるフェライト系ステンレス鋼。 C: 0.015 mass% or less,
Si: 1.0 mass% or less,
Mn: 0.5 mass% or less,
P: 0.040 mass% or less,
S: 0.010 mass% or less,
Al: 0.03-0.30 mass%,
Cr: 16-20 mass%,
Ni: 0.5 mass% or less,
N: 0.015-0.030 mass%,
V: 0.30-0.60 mass%,
Nb: 10 (C (mass%) + N (mass%)) to 0.60 mass%,
Ti: 0.01 mass% or less,
Zr: 0.01 mass% or less,
Ta: 0.01 mass% or less,
Mo: 0.1 mass% or less,
W: 0.1 mass% or less, and
The product (V × N) of the content (mass%) of V and N is
(V × N): containing 0.003 to 0.015,
A ferritic stainless steel excellent in thermal fatigue characteristics, oxidation resistance and high temperature salt corrosion resistance, characterized in that the balance has a component composition consisting of Fe and inevitable impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008208335A JP5343446B2 (en) | 2008-08-13 | 2008-08-13 | Ferritic stainless steel with excellent thermal fatigue properties, oxidation resistance and high temperature salt corrosion resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008208335A JP5343446B2 (en) | 2008-08-13 | 2008-08-13 | Ferritic stainless steel with excellent thermal fatigue properties, oxidation resistance and high temperature salt corrosion resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010043327A JP2010043327A (en) | 2010-02-25 |
JP5343446B2 true JP5343446B2 (en) | 2013-11-13 |
Family
ID=42014925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008208335A Expired - Fee Related JP5343446B2 (en) | 2008-08-13 | 2008-08-13 | Ferritic stainless steel with excellent thermal fatigue properties, oxidation resistance and high temperature salt corrosion resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5343446B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5796398B2 (en) * | 2010-10-26 | 2015-10-21 | Jfeスチール株式会社 | Ferritic stainless steel with excellent thermal and high temperature fatigue properties |
JP5796397B2 (en) * | 2010-10-26 | 2015-10-21 | Jfeスチール株式会社 | Ferritic stainless steel with excellent thermal fatigue properties and oxidation resistance |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2959934B2 (en) * | 1993-09-02 | 1999-10-06 | 新日本製鐵株式会社 | Heat-resistant ferritic stainless steel |
JP3269799B2 (en) * | 1998-02-20 | 2002-04-02 | 川崎製鉄株式会社 | Ferritic stainless steel for engine exhaust parts with excellent workability, intergranular corrosion resistance and high-temperature strength |
JP4369596B2 (en) * | 2000-05-09 | 2009-11-25 | 日新製鋼株式会社 | Heat resistant ferritic stainless steel |
-
2008
- 2008-08-13 JP JP2008208335A patent/JP5343446B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010043327A (en) | 2010-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4386144B2 (en) | Ferritic stainless steel with excellent heat resistance | |
JP5387057B2 (en) | Ferritic stainless steel with excellent heat resistance and toughness | |
JP4702493B1 (en) | Ferritic stainless steel with excellent heat resistance | |
KR101744432B1 (en) | Heat-resistant austenitic stainless steel sheet | |
JP5609571B2 (en) | Ferritic stainless steel with excellent oxidation resistance | |
JP5141296B2 (en) | Ferritic stainless steel with excellent high temperature strength and toughness | |
EP2617854B1 (en) | Heat-resistant ferritic stainless steel sheet having excellent oxidation resistance | |
JP5540637B2 (en) | Ferritic stainless steel with excellent heat resistance | |
JP5125600B2 (en) | Ferritic stainless steel with excellent high-temperature strength, steam oxidation resistance and workability | |
US10400318B2 (en) | Ferritic stainless steel | |
JP5343446B2 (en) | Ferritic stainless steel with excellent thermal fatigue properties, oxidation resistance and high temperature salt corrosion resistance | |
JP5417764B2 (en) | Ferritic stainless steel with excellent thermal fatigue properties and oxidation resistance | |
JP5239642B2 (en) | Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties and oxidation resistance | |
JP2009235570A (en) | Ferritic stainless steel having excellent heat resistance and weldability | |
JP5239645B2 (en) | Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties, oxidation resistance and high temperature salt corrosion resistance | |
JP5343445B2 (en) | Ferritic stainless steel with excellent thermal fatigue properties, oxidation resistance and toughness | |
JP5343444B2 (en) | Ferritic stainless steel with excellent thermal fatigue properties, oxidation resistance and workability | |
JP5796398B2 (en) | Ferritic stainless steel with excellent thermal and high temperature fatigue properties | |
JP2009235572A (en) | Ferritic stainless steel having excellent heat resistance and shape-fixability | |
JP5428397B2 (en) | Ferritic stainless steel with excellent heat resistance and workability | |
JP5810722B2 (en) | Ferritic stainless steel with excellent thermal fatigue characteristics and workability | |
JP5239644B2 (en) | Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties, oxidation resistance and toughness | |
JP5796397B2 (en) | Ferritic stainless steel with excellent thermal fatigue properties and oxidation resistance | |
JP5239643B2 (en) | Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties, oxidation resistance and workability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110421 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130319 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130716 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130729 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5343446 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |