JP5709944B2 - Solid-state imaging device - Google Patents

Solid-state imaging device Download PDF

Info

Publication number
JP5709944B2
JP5709944B2 JP2013151652A JP2013151652A JP5709944B2 JP 5709944 B2 JP5709944 B2 JP 5709944B2 JP 2013151652 A JP2013151652 A JP 2013151652A JP 2013151652 A JP2013151652 A JP 2013151652A JP 5709944 B2 JP5709944 B2 JP 5709944B2
Authority
JP
Japan
Prior art keywords
pixel
photoelectric conversion
conversion unit
charge
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013151652A
Other languages
Japanese (ja)
Other versions
JP2013225704A (en
JP2013225704A5 (en
Inventor
雄一郎 山下
雄一郎 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013151652A priority Critical patent/JP5709944B2/en
Publication of JP2013225704A publication Critical patent/JP2013225704A/en
Publication of JP2013225704A5 publication Critical patent/JP2013225704A5/ja
Application granted granted Critical
Publication of JP5709944B2 publication Critical patent/JP5709944B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

本発明は、画素に光電変換部で生じた信号電荷を蓄積する電荷保持部を有する固体撮像装置の素子レイアウトに関する。   The present invention relates to an element layout of a solid-state imaging device having a charge holding unit that accumulates signal charges generated in a photoelectric conversion unit in a pixel.

固体撮像装置は、二次元状に配された画素を有する構成が知られている。このような固体撮像装置において、全画素の信号電荷蓄積の開始時刻と終了時刻を同時にするために、電子シャッタ機能を有する構成が知られている。例えば特許文献1、2などにその構成が例示されている。
電子シャッタ機能のために、画素内には、光電変換を行う光電変換部とは別に、光電変換された電荷をある程度の時間保持しておく電荷保持部が設けられている。
A solid-state imaging device has a known configuration having pixels arranged in a two-dimensional shape. In such a solid-state imaging device, a configuration having an electronic shutter function is known in order to simultaneously start and end signal charge accumulation of all pixels. For example, Patent Documents 1 and 2 exemplify the configuration.
For the electronic shutter function, a charge holding unit for holding the photoelectrically converted charge for a certain period of time is provided in the pixel separately from the photoelectric conversion unit that performs photoelectric conversion.

特開2006−246450号公報JP 2006-246450 A 特開2006−049743号公報JP 2006-049743 A

特許文献1,2に開示された構成では、画素内での各素子のレイアウトによる半導体基板内でのポテンシャル構造の最適化、及び電荷保持部への光の入射を抑制する遮光部の配置に関しては、充分な検討が成されていなかった。   In the configurations disclosed in Patent Documents 1 and 2, regarding the optimization of the potential structure in the semiconductor substrate by the layout of each element in the pixel, and the arrangement of the light shielding part that suppresses the incidence of light to the charge holding part. However, there was not enough consideration.

本発明は上記課題に鑑み、画素を構成する素子を適切に配置することで、例えば、画素に電荷保持部を有する固体撮像装置の半導体基板でのポテンシャル構造を最適化させることを目的とする。   In view of the above problems, an object of the present invention is to optimize a potential structure on a semiconductor substrate of a solid-state imaging device having, for example, a charge holding portion in a pixel by appropriately arranging elements constituting the pixel.

本発明の固体撮像装置は、上記課題に鑑み、光電変換部と、前記光電変換部で生じた信号電荷を蓄積可能な第1導電型の半導体領域と、該半導体領域上に絶縁膜を介して配された制御電極とを含み、前記信号電荷を保持可能な電荷保持部と、第1導電型のフローティングディフュージョン領域と、前記第1導電型の半導体領域と前記フローティングディフュージョン領域との導通を制御する転送部と、を含む画素が二次元状に配され、同一画素内において、前記第1導電型の半導体領域は前記光電変換部に対して第1の方向に配置され、前記フローティングディフュージョン領域は前記第1導電型の半導体領域に対して、前記第1の方向に直交する第2の方向に転送部を介して配置されており、前記複数の画素は、第1の画素と、該第1の画素と前記第1の方向に隣接して配置される第2の画素とを含み、前記第1の画素に含まれる前記第1導電型の半導体領域は、該第1の画素に含まれる光電変換部と、前記第2の画素に含まれる光電変換部の間の領域に配され、前記第1の画素に含まれる電荷保持部は遮光部で覆われており、該遮光部は、前記第1及び第2の画素に含まれる光電変換部の一部の上部まで延在して配置されていることを特徴とする。   In view of the above problems, a solid-state imaging device of the present invention includes a photoelectric conversion unit, a first conductivity type semiconductor region capable of storing signal charges generated in the photoelectric conversion unit, and an insulating film on the semiconductor region. A charge holding unit capable of holding the signal charge, a first conductivity type floating diffusion region, and a conduction between the first conductivity type semiconductor region and the floating diffusion region. A pixel including a transfer unit, and the first conductivity type semiconductor region is disposed in a first direction with respect to the photoelectric conversion unit in the same pixel, and the floating diffusion region is The first conductive type semiconductor region is disposed in a second direction orthogonal to the first direction via a transfer unit, and the plurality of pixels include the first pixel and the first Picture And a second pixel arranged adjacent to the first direction, and the first conductivity type semiconductor region included in the first pixel is a photoelectric conversion unit included in the first pixel. And a charge holding unit included in the first pixel is covered with a light shielding unit, and the light shielding unit includes the first and second photoelectric conversion units included in the second pixel. The photoelectric conversion portion included in the second pixel is arranged so as to extend to an upper portion of the photoelectric conversion portion.

本発明によれば、例えばポテンシャル構造を最適化させることが可能となり、画素ピッチを微細化することが可能となる。   According to the present invention, for example, the potential structure can be optimized, and the pixel pitch can be reduced.

固体撮像装置の回路図の一例を説明するための図である。It is a figure for demonstrating an example of the circuit diagram of a solid-state imaging device. 第1の実施形態の固体撮像装置の上面図である。It is a top view of the solid-state imaging device of a 1st embodiment. 第1の実施形態の固体撮像装置の断面図である。It is sectional drawing of the solid-state imaging device of 1st Embodiment. 第2の実施形態の固体撮像装置の断面図である。It is sectional drawing of the solid-state imaging device of 2nd Embodiment.

(第1の実施形態)
図1は本実施形態の固体撮像装置の画素回路図の例である。
(First embodiment)
FIG. 1 is an example of a pixel circuit diagram of the solid-state imaging device of the present embodiment.

101は光電変換部である。ここでは例としてフォトダイオードを示している。102は光電変換部で生じた信号電荷を保持可能な電荷保持部である。103は信号電荷を電圧に変換する電荷電圧変換部である。104は光電変換部から電荷保持部への電荷転送を制御する第1の転送部である。ここでは例としてMOSトランジスタを示している。第1の転送部は、光電変換部と電荷保持部との間の信号電荷の経路の、信号電荷に対するポテンシャルを制御する。第1の転送部の構造の1つとしては、制御電極を設けて、ポテンシャル状態を能動的に制御して信号電荷の導通を制御する構成が考えられる。他には、電荷の経路を埋め込みチャネル構造としてポテンシャル勾配を設けて、露光期間中に光電変換部から電荷保持部へ信号電荷が移動するような構成としてもよい。後者の場合には後述の電荷保持部の制御ゲートを埋め込みチャネル部まで延在させて、電荷保持部と同様のバイアスを印加させることも可能である。   Reference numeral 101 denotes a photoelectric conversion unit. Here, a photodiode is shown as an example. A charge holding unit 102 can hold signal charges generated in the photoelectric conversion unit. Reference numeral 103 denotes a charge-voltage converter that converts signal charge into voltage. A first transfer unit 104 controls charge transfer from the photoelectric conversion unit to the charge holding unit. Here, a MOS transistor is shown as an example. The first transfer unit controls the potential of the signal charge path between the photoelectric conversion unit and the charge holding unit with respect to the signal charge. As one of the structures of the first transfer unit, a configuration in which a control electrode is provided and the potential state is actively controlled to control conduction of signal charges is conceivable. Alternatively, a potential gradient may be provided by using the charge path as a buried channel structure so that the signal charge moves from the photoelectric conversion unit to the charge holding unit during the exposure period. In the latter case, it is possible to apply a bias similar to that of the charge holding portion by extending a control gate of the charge holding portion described later to the buried channel portion.

105は、電荷保持部と電荷電圧変換部との導通を制御する第2の転送部である。電荷保持部102から電荷電圧変換部103へ信号電荷を転送可能な構造となっている。ここでは例としてMOSトランジスタを示している。106は電荷電圧変換部をリセットするリセット部である。ここでは例としてMOSトランジスタを示している。   Reference numeral 105 denotes a second transfer unit that controls conduction between the charge holding unit and the charge-voltage conversion unit. The signal charge can be transferred from the charge holding unit 102 to the charge-voltage conversion unit 103. Here, a MOS transistor is shown as an example. Reference numeral 106 denotes a reset unit that resets the charge-voltage conversion unit. Here, a MOS transistor is shown as an example.

107は増幅トランジスタである。ここでは例としてMOSトランジスタを示している。このMOSトランジスタのゲートと電荷電圧変換部103とが電気的に接続されている。電荷電圧変換部で電圧に変換された信号を増幅して外部へ出力する。例えば、不図示の定電流源とともにソースフォロワ回路を構成する。   Reference numeral 107 denotes an amplification transistor. Here, a MOS transistor is shown as an example. The gate of the MOS transistor and the charge / voltage converter 103 are electrically connected. A signal converted into a voltage by the charge-voltage converter is amplified and output to the outside. For example, a source follower circuit is configured with a constant current source (not shown).

108は二次元状に配置された画素を画素行ごとに選択する選択部である。ここでは例としてMOSトランジスタを示している。109は光電変換部の電荷を外部へ排出可能な電荷排出制御部である。ここでは例として、光電変換部をソースとするオーバーフロードレインMOSトランジスタを示している。光電変換部の信号電荷と同極性の半導体領域をソース、電源電圧が供給された半導体領域をドレインとした構造である。このドレインが電荷排出部となる。   Reference numeral 108 denotes a selection unit that selects two-dimensionally arranged pixels for each pixel row. Here, a MOS transistor is shown as an example. Reference numeral 109 denotes a charge discharge control unit that can discharge the charge of the photoelectric conversion unit to the outside. Here, as an example, an overflow drain MOS transistor whose source is a photoelectric conversion unit is shown. In this structure, a semiconductor region having the same polarity as the signal charge of the photoelectric conversion portion is used as a source, and a semiconductor region supplied with a power supply voltage is used as a drain. This drain becomes a charge discharging portion.

また、本画素は1つの画素内にすべての構成要件を含む回路構成になっているが、複数の画素で増幅部、選択部、リセット部を共有するような構成としてもよい。   In addition, although the present pixel has a circuit configuration including all the constituent elements in one pixel, a configuration may be adopted in which a plurality of pixels share an amplification unit, a selection unit, and a reset unit.

次に、本画素回路の動作を説明する。まず、光電変換部101内の電荷を電荷排出制御部109を介して電荷排出部へ排出した後に、光電変換(露光期間)を開始する。光電変換部101と電荷保持部102との間の信号電荷の経路が埋め込みチャネル構造の場合には光電変換により生じた信号電荷は速やかに電荷保持部102へ移動する。そして露光期間終了直前に光電変換部101に残存する信号電荷を第1の転送部104を介して電荷保持部102に転送する。   Next, the operation of this pixel circuit will be described. First, after the charge in the photoelectric conversion unit 101 is discharged to the charge discharge unit via the charge discharge control unit 109, photoelectric conversion (exposure period) is started. When the signal charge path between the photoelectric conversion unit 101 and the charge holding unit 102 has a buried channel structure, the signal charge generated by the photoelectric conversion quickly moves to the charge holding unit 102. Then, the signal charge remaining in the photoelectric conversion unit 101 is transferred to the charge holding unit 102 via the first transfer unit 104 immediately before the exposure period ends.

次に電荷保持部102に蓄積された信号電荷を第2の転送部105を介して電荷電圧変換部103に転送し電圧に変換する。その電圧を増幅トランジスタ107で増幅し、選択部108により順次読み出す。   Next, the signal charge accumulated in the charge holding unit 102 is transferred to the charge-voltage conversion unit 103 via the second transfer unit 105 and converted into a voltage. The voltage is amplified by the amplification transistor 107 and sequentially read by the selection unit 108.

また、露光期間終了後は、電荷排出制御部109を導通させ、光電変換部と電荷排出部との間の電荷の経路のポテンシャルを光電変換部と電荷保持部との間の経路のポテンシャルよりも低い状態とする。ここでのポテンシャルは信号電荷に対してのものである。これにより、光電変換部101から電荷保持部102への信号電荷の漏れ込みを制御することが可能となる。   In addition, after the exposure period, the charge discharge control unit 109 is turned on so that the potential of the charge path between the photoelectric conversion unit and the charge discharge unit is higher than the potential of the path between the photoelectric conversion unit and the charge holding unit. Keep it low. The potential here is relative to the signal charge. This makes it possible to control the leakage of signal charges from the photoelectric conversion unit 101 to the charge holding unit 102.

図1の構成によれば、光電変換部101の電荷のリセット動作、光電変換部101から電荷保持部102への信号電荷の転送動作および電荷排出部109の導通動作を全画素同時に行うことが可能である。いわゆるグローバル電子シャッタである。   According to the configuration of FIG. 1, the charge reset operation of the photoelectric conversion unit 101, the signal charge transfer operation from the photoelectric conversion unit 101 to the charge holding unit 102, and the conduction operation of the charge discharge unit 109 can be performed simultaneously for all pixels. It is. This is a so-called global electronic shutter.

図2は、本実施形態の固体撮像装置の画素の上面図である。ここでは9画素を示しているが更に画素を配してもよい。各画素は、図1の回路図で説明した構成要素を有している。各領域は説明のために矩形であるが、各構成が矩形をしているわけではなく、この領域に各構成が少なくとも配されていることを示している。図1と同一の機能を有する部分には同一の符号を付し詳細な説明は省略する。   FIG. 2 is a top view of a pixel of the solid-state imaging device according to the present embodiment. Although nine pixels are shown here, more pixels may be arranged. Each pixel has the components described in the circuit diagram of FIG. Each region is rectangular for the sake of explanation, but each component is not rectangular, and indicates that at least each component is arranged in this region. Portions having the same functions as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

図2において、同一画素内での各素子のレイアウトは、電荷保持部102が光電変換部101に対して第1の方向に配置され、電荷電圧変換部103が電荷保持部102に対して、第1の方向に直交する第2の方向に転送部を介して配置されている。   In FIG. 2, the layout of each element in the same pixel is such that the charge holding unit 102 is arranged in the first direction with respect to the photoelectric conversion unit 101, and the charge-voltage conversion unit 103 is compared with the charge holding unit 102. It arrange | positions through the transfer part in the 2nd direction orthogonal to the direction of 1. FIG.

このような構成により、電荷電圧変換部と光電変換部との距離を離して配置されずに、隣接画素の電荷保持部の間の領域に電荷電圧変換部を配置することが可能となる。これにより、電荷保持部のポテンシャル構造を最適化することが可能となり、画素ピッチの縮小を達成することが可能となる。   With such a configuration, it is possible to arrange the charge-voltage conversion unit in a region between the charge holding units of adjacent pixels without arranging the charge-voltage conversion unit and the photoelectric conversion unit apart from each other. As a result, the potential structure of the charge holding portion can be optimized, and the pixel pitch can be reduced.

更に詳細に説明する。電荷電圧変換部は信号電荷と同極性の第1導電型からなるフローティングディフュージョン領域(FD領域)を含んで構成される。FD領域は第2導電型の半導体領域とPN接合を形成している。FD領域は通常、高濃度(不純物濃度の例として、1×1019〜1×1020cm−3)に設定され、高いリセット電圧(およそ電源電圧)に逆バイアスされていることから空乏層が大きく伸びている。このような状態で、FD領域を光電変換部に近接させた場合、FD領域から伸びる空乏層の端を光電変換部から一定量だけ離すことで、信号電荷に対するポテンシャルバリアの高さの低下を抑制する必要がある。そしてこれにより光電変換部からFD領域への光電流を十分無視できる値にする必要がある。したがって、隣接する画素の光電変換部と電荷電圧変換部とが近接して配置されるような素子レイアウトでは、画素ピッチを微細化することが難しい。通常決められた面積に決められた数の画素を配置するが、この条件を満たし、且つできるだけ光電変換部の開口を広げるように各素子を配置する。素子分離領域の幅もできるだけ狭くした方が好ましい。このような状況で仮に同一画素の光電変換部,電荷保持部,電荷電圧変換部を直線状に配置し、これを繰り返した場合には、電荷電圧変換部は隣接画素の光電変換部に近接して配置される。この場合にも素子分離領域の幅を広げればよいが、そうすると画素ピッチが広がり、上記画素数等の条件を満たすのが困難となるのである。これに対して本実施形態によれば、電荷電圧変換部と周囲画素の光電変換部との間は比較的幅の広い素子分離領域で隔てられている。また更には画素を構成するMOSトランジスタ等を間に配しても良い。 Further details will be described. The charge-voltage converter is configured to include a floating diffusion region (FD region) made of the first conductivity type having the same polarity as the signal charge. The FD region forms a PN junction with the second conductivity type semiconductor region. Since the FD region is usually set to a high concentration (1 × 10 19 to 1 × 10 20 cm −3 as an example of impurity concentration) and is reverse-biased to a high reset voltage (approximately power supply voltage), the depletion layer is It is growing greatly. In such a state, when the FD region is brought close to the photoelectric conversion unit, the end of the depletion layer extending from the FD region is separated from the photoelectric conversion unit by a certain amount, thereby suppressing the decrease in potential barrier height with respect to the signal charge. There is a need to. Thus, it is necessary to make the photocurrent from the photoelectric conversion unit to the FD region sufficiently negligible. Therefore, it is difficult to reduce the pixel pitch in an element layout in which the photoelectric conversion unit and the charge-voltage conversion unit of adjacent pixels are arranged close to each other. Usually, a predetermined number of pixels are arranged in a predetermined area, and each element is arranged so as to satisfy this condition and expand the opening of the photoelectric conversion unit as much as possible. It is preferable to make the width of the element isolation region as narrow as possible. In such a situation, if the photoelectric conversion unit, the charge holding unit, and the charge voltage conversion unit of the same pixel are arranged in a straight line, and this is repeated, the charge voltage conversion unit is close to the photoelectric conversion unit of the adjacent pixel. Arranged. In this case as well, the width of the element isolation region may be increased. However, in this case, the pixel pitch increases, and it becomes difficult to satisfy the conditions such as the number of pixels. On the other hand, according to the present embodiment, the charge-voltage conversion unit and the photoelectric conversion units of the surrounding pixels are separated by a relatively wide element isolation region. Furthermore, a MOS transistor or the like constituting the pixel may be interposed.

ここで電荷保持部を構成する第1導電型の半導体領域は、その特性上、FD領域よりも低い不純物濃度(例えば1×1017cm−3程度)であり、FD領域に供給されている電圧よりも低い電圧(電源電圧の半分程度)に逆バイアスされている場合が多い。 Here, the first conductivity type semiconductor region constituting the charge holding portion has an impurity concentration lower than that of the FD region (for example, about 1 × 10 17 cm −3 ) due to its characteristics, and the voltage supplied to the FD region. In many cases, it is reverse-biased to a lower voltage (about half of the power supply voltage).

本実施形態の構成によれば、このような電荷保持部と光電変換部との間の距離を短くすることが可能となる。したがって相対的に空乏層の伸びが小さい電荷保持部と光電変換部との間の距離を短くすることが可能となり、結果的に画素ピッチを微細化することが可能となる。   According to the configuration of the present embodiment, it is possible to shorten the distance between the charge holding unit and the photoelectric conversion unit. Accordingly, it is possible to shorten the distance between the charge holding portion and the photoelectric conversion portion where the depletion layer has a relatively small extension, and as a result, the pixel pitch can be reduced.

このような構成は、特に、光電変換中の電荷を電荷保持部に転送して蓄積する画素では、信号電荷が電荷保持部以外へ移動することを抑制する必要があるため有効である。信号電荷が電荷保持部以外に移動すると感度が低下し、さらには画素の感度が電荷保持部で保持される電荷量や入射総光量に依存して変化してしまい感度の非線形性、および画素毎のその非線形性の差による感度ばらつきが生じるためである。   Such a configuration is particularly effective in a pixel that transfers and accumulates charges during photoelectric conversion to the charge holding unit because it is necessary to suppress the movement of signal charges to other than the charge holding unit. Sensitivity decreases when the signal charge moves to other than the charge holding unit, and the sensitivity of the pixel changes depending on the amount of charge held in the charge holding unit and the total amount of incident light. This is because sensitivity variation due to the difference in the non-linearity occurs.

なお、FD領域のみならず、オーバーフロードレインMOSトランジスタ109のドレイン領域に対しても同様の課題がある。つまりこのドレイン領域も不純物濃度が高く、電源電圧近くまで逆バイアスされているために、空乏層の伸びが大きい。したがって光電変換部をこのドレイン領域に近接しないように配置しても良い。   The same problem occurs not only in the FD region but also in the drain region of the overflow drain MOS transistor 109. That is, since the drain region also has a high impurity concentration and is reverse-biased to near the power supply voltage, the depletion layer has a large elongation. Therefore, the photoelectric conversion unit may be arranged so as not to be close to the drain region.

ただし、オーバーフロードレインの機能上、自身の光電変換部とは近接させるのがよい。そのためのさらなる対策として、垂直オーバーフロードレインと呼ばれる、基板側に電荷を排出する構成をとることによって、オーバーフロードレインと光電変換部の平面での位置関係を考慮する必要が無く、さらなる画素ピッチの微細化が可能となる。   However, in view of the function of the overflow drain, it is preferable to make it close to its own photoelectric conversion unit. As a further measure for this, by adopting a structure called vertical overflow drain that discharges the charge to the substrate side, there is no need to consider the positional relationship in the plane of the overflow drain and photoelectric conversion unit, and further pixel pitch miniaturization Is possible.

さらに本実施形態では、図2の中央の列の一番下部に配された画素を第1の画素とすると、第1の画素と第1の方向(図2上方向)に隣接して配置される第2の画素とを含んでいる。そして、第1の画素の電荷保持部が、第1の画素の光電変換部と、第2の画素の光電変換部との間の領域に配置されている。そして、第1の画素に含まれる電荷保持部が遮光部304で覆われ、この遮光部が、第1及び第2の画素に含まれる光電変換部の一部の上部まで延在して配置されている。   Furthermore, in this embodiment, when the pixel arranged at the bottom of the center column in FIG. 2 is a first pixel, the pixel is arranged adjacent to the first pixel in the first direction (upward direction in FIG. 2). Second pixel. The charge holding unit of the first pixel is arranged in a region between the photoelectric conversion unit of the first pixel and the photoelectric conversion unit of the second pixel. Then, the charge holding portion included in the first pixel is covered with the light shielding portion 304, and this light shielding portion is disposed so as to extend up to a part of the photoelectric conversion portion included in the first and second pixels. ing.

電荷保持部の制御電極は、第1の転送部を構成する転送電極と同一の層で形成することが多く、その場合には厚さが等しい。更に、第1の転送部の転送電極および電荷保持部の制御電極はそれぞれ同一の半導体基板上に形成されているため、電極の厚みも等しい。その上に遮光部を堆積し、パターニングすることで、各光電変換部における光学対称性を高めることが可能となる。具体的に図2においては、第1の画素に含まれる電荷保持部は遮光部303で覆われ、遮光部303は、第1及び第2の画素に含まれる光電変換部の一部の上部まで延在して配置されている。ここで光学対称性とは、各画素の光路が並進対称となることである。画素領域の位置によって入射してくる光の角度は異なる場合もあるが、遮光部を下地が比較的平らな光電変換部まで延在させることにより、遮光部のパターンが下地の影響を受けにくくなる。   The control electrode of the charge holding unit is often formed of the same layer as the transfer electrode that constitutes the first transfer unit, and in that case, the thickness is equal. Furthermore, since the transfer electrode of the first transfer unit and the control electrode of the charge holding unit are formed on the same semiconductor substrate, the thickness of the electrodes is also equal. By depositing and patterning a light-shielding portion thereon, optical symmetry in each photoelectric conversion portion can be enhanced. Specifically, in FIG. 2, the charge holding unit included in the first pixel is covered with the light shielding unit 303, and the light shielding unit 303 extends to the upper part of the photoelectric conversion unit included in the first and second pixels. It is arranged to extend. Here, the optical symmetry means that the optical path of each pixel is translationally symmetric. Although the angle of the incident light may vary depending on the position of the pixel region, the light shielding part pattern is less affected by the ground by extending the light shielding part to the photoelectric conversion part where the ground is relatively flat. .

遮光部を素子分離領域上でパターニングすると、光学的な対称性を高めようとしたとしても、下地の素子分離領域の影響を受けて各画素で遮光パターンが変わりやすくなる場合もあるが、本実施形態によればそのような影響を低減可能である。   If the light-shielding part is patterned on the element isolation region, the light-shielding pattern may be easily changed in each pixel due to the influence of the underlying element isolation region even if an attempt is made to improve optical symmetry. According to the form, such influence can be reduced.

図3は、図2の305で示した点線A−Bに沿った断面図である。図2と同様の機能を有する部分には同一の符号を付し詳細な説明は省略する。以下、信号電荷として電子を用いる場合に関して説明する。信号電荷としてホールを用いる場合には、各半導体領域の導電型を逆にすることで対応可能である。上述した第1導電型をN型、第2導電型をP型とする。   FIG. 3 is a cross-sectional view taken along a dotted line AB indicated by 305 in FIG. Parts having the same functions as those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted. Hereinafter, a case where electrons are used as signal charges will be described. The use of holes as signal charges can be dealt with by reversing the conductivity type of each semiconductor region. The first conductivity type described above is N-type, and the second conductivity type is P-type.

401はP型の半導体基板である。もしくはN型基板に配されたP型半導体領域を用いても良い。402は光電変換部の一部を構成するN型半導体領域である。P型半導体基板401とPN接合を構成し、フォトダイオードの一部を構成する。   401 is a P-type semiconductor substrate. Alternatively, a P-type semiconductor region disposed on an N-type substrate may be used. Reference numeral 402 denotes an N-type semiconductor region that constitutes a part of the photoelectric conversion unit. A P-type semiconductor substrate 401 and a PN junction are formed, and a part of the photodiode is formed.

403は第1の転送部104の一部を構成する転送電極である。転送電極403に供給される電圧によりN型半導体領域402と後述のN型半導体領域405との間の信号電荷の経路の、信号電荷に対するポテンシャルを制御する。   Reference numeral 403 denotes a transfer electrode that constitutes a part of the first transfer unit 104. The potential of the signal charge path between the N-type semiconductor region 402 and an N-type semiconductor region 405 described later is controlled by the voltage supplied to the transfer electrode 403.

405はN型半導体領域である。光電変換部からの信号電荷を蓄積可能な半導体領域である。404はN型半導体領域405の表面の電位をコントロールする制御電極である。制御電極404はN型半導体領域上に絶縁膜を介して配されている。電荷保持部102は、制御電極404及びN型半導体領域405を含んで構成される。   Reference numeral 405 denotes an N-type semiconductor region. This is a semiconductor region capable of accumulating signal charges from the photoelectric conversion unit. Reference numeral 404 denotes a control electrode that controls the surface potential of the N-type semiconductor region 405. The control electrode 404 is disposed on the N-type semiconductor region via an insulating film. The charge holding unit 102 includes a control electrode 404 and an N-type semiconductor region 405.

406は、異なる画素の電荷保持部のN型半導体領域405と光電変換部のN型半導体領域402とを分離するための素子分離領域である。ここでは例としてSTIと呼ばれる、シリコン酸化物などの絶縁体を埋め込んだ分離構造を示している。   Reference numeral 406 denotes an element isolation region for separating the N-type semiconductor region 405 of the charge holding portion and the N-type semiconductor region 402 of the photoelectric conversion portion of different pixels. Here, as an example, an isolation structure called an STI in which an insulator such as silicon oxide is embedded is shown.

407は遮光層である。遮光層407は、電荷保持部102の全体を覆い、隣接する第1及び第2の画素に含まれる光電変換部の一部の上部まで延在して配置されている。さらには、転送電極403と制御電極404を覆うように配されている。   Reference numeral 407 denotes a light shielding layer. The light shielding layer 407 covers the entire charge holding unit 102 and extends to a part of the photoelectric conversion unit included in the adjacent first and second pixels. Furthermore, it arrange | positions so that the transfer electrode 403 and the control electrode 404 may be covered.

このような構造によれば、遮光部と半導体基板の間に生じる隙間をきわめて狭くすることができ、光の漏れ込みを抑制することが可能となる。   According to such a structure, a gap generated between the light shielding portion and the semiconductor substrate can be extremely narrowed, and light leakage can be suppressed.

以上述べたように本実施形態によれば、画素に電荷保持部を有する構成において、遮光部を素子分離領域上でパターニングせずに光電変換部まで延在させているため、画素ピッチを微細にすることが可能となる。加えて、電荷保持部に対する光の入射量を低減することが可能となる。   As described above, according to the present embodiment, in the configuration having the charge holding portion in the pixel, the light shielding portion extends to the photoelectric conversion portion without patterning on the element isolation region, so that the pixel pitch is made fine. It becomes possible to do. In addition, it is possible to reduce the amount of light incident on the charge holding portion.

(第2の実施形態)
図4は本実施形態の固体撮像装置の断面図である。平面レイアウトは、図2のレイアウトを用いることができる。図3と同様の機能を有する部分には同一の符号を付し、詳細な説明は省略する。
(Second Embodiment)
FIG. 4 is a cross-sectional view of the solid-state imaging device of the present embodiment. As the planar layout, the layout of FIG. 2 can be used. Parts having the same functions as those in FIG. 3 are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施形態においては、異なる画素の、電荷保持部102のN型半導体領域405と、光電変換部101のN型半導体領域402の間の素子分離構造を、P型半導体基板401より不純物濃度の高いP型半導体領域を用いPN接合分離としている点である。   In this embodiment, the element isolation structure between the N-type semiconductor region 405 of the charge holding unit 102 and the N-type semiconductor region 402 of the photoelectric conversion unit 101 of different pixels has a higher impurity concentration than the P-type semiconductor substrate 401. The point is that PN junction isolation is performed using a P-type semiconductor region.

PN接合で素子分離をすることで、酸化膜などを埋め込んで形成した構成に比べて更に表面の平坦性が向上する。これにより、電荷保持部の制御電極404の高さの変化を更に抑えることが可能となり、その上部に配する遮光部の形成も容易にすることが可能となる。さらに、シリコン酸化物で形成される素子分離構造とは異なり、分離部のP型半導体領域に到達した光電子は、光電変換後に多数キャリアのホールと結合し電荷保持部まで到達する前に吸収されてしまうので、遮光性能をより高めることができる。   By separating the elements by the PN junction, the flatness of the surface is further improved as compared with the structure formed by embedding an oxide film or the like. Thereby, it is possible to further suppress the change in the height of the control electrode 404 of the charge holding portion, and it is possible to easily form the light shielding portion disposed on the upper portion thereof. Furthermore, unlike the element isolation structure formed of silicon oxide, the photoelectrons that have reached the P-type semiconductor region of the isolation part are absorbed before joining the majority carrier holes and reaching the charge holding part after photoelectric conversion. Therefore, the light shielding performance can be further improved.

101 光電変換部
102 電荷保持部
103 電荷電圧変換部
104 第1の転送部
105 第2の転送部
303,304、407 遮光部
DESCRIPTION OF SYMBOLS 101 Photoelectric conversion part 102 Charge holding part 103 Charge voltage conversion part 104 1st transfer part 105 2nd transfer part 303,304,407 Light-shielding part

Claims (9)

光電変換部と、
前記光電変換部で生じた信号電荷を保持可能な第1導電型の半導体領域と、該半導体領域上に絶縁膜を介して配された制御電極とを含み、前記信号電荷を保持可能な電荷保持部と、
第1導電型のフローティングディフュージョン領域と、
前記第1導電型の半導体領域と前記フローティングディフュージョン領域との導通を制御する転送部と、
前記光電変換部をソースとし、前記光電変換部の電荷を排出するオーバーフロードレインMOSトランジスタと、
を含む画素が二次元状に複数配され、
前記複数の画素は、
第1の画素と、
前記第1の画素と第1の方向において隣接して配置される第2の画素と、
前記第1の画素と前記第1の方向に直交する第2の方向において隣接して配置される第3の画素とを含み、
同一画素において、
前記第1導電型の半導体領域は前記光電変換部に対して第1の方向に配置され、前記フローティングディフュージョン領域は前記第1導電型の半導体領域に対して、前記第2の方向に前記転送部を介して配置されており、
前記第1の画素の前記フローティングディフュージョン領域は、前記第1の画素の前記電荷保持部と、前記第3の画素の前記電荷保持部との間の領域に配置され、前記第1の画素の前記オーバーフロードレインMOSトランジスタのドレインは、前記第1の画素の前記光電変換部と、前記第3の画素の前記光電変換部との間の領域に配置され、
前記第1の画素の前記第1導電型の半導体領域は、前記第1の画素の前記光電変換部と前記第2の画素の前記光電変換部との間の領域に配置され、
前記第1の画素の前記電荷保持部は遮光部で覆われており、前記遮光部は、前記第1の画素の前記光電変換部及び前記第2の画素の前記光電変換部の一部の上部まで延在して配置され、
前記第1の画素の前記第1導電型の半導体領域と前記第2の画素の前記光電変換部との間に、絶縁体を含んで構成される素子分離領域が配されており、
前記遮光部は、前記第1の画素に含まれる前記光電変換部の上面から、前記素子分離領域の絶縁体により形成される段差に沿って且つ前記段差を乗り越えて、前記第2の画素の前記光電変換部の上面まで延在していることを特徴とする固体撮像装置。
A photoelectric conversion unit;
A charge holding unit capable of holding the signal charge, including a first conductivity type semiconductor region capable of holding a signal charge generated in the photoelectric conversion unit, and a control electrode disposed on the semiconductor region via an insulating film. And
A floating diffusion region of a first conductivity type;
A transfer unit that controls conduction between the semiconductor region of the first conductivity type and the floating diffusion region;
An overflow drain MOS transistor that uses the photoelectric conversion unit as a source and discharges the electric charge of the photoelectric conversion unit;
A plurality of pixels including are arranged two-dimensionally,
The plurality of pixels are:
A first pixel;
A second pixel disposed adjacent to the first pixel in a first direction;
Including the first pixel and a third pixel disposed adjacent to each other in a second direction orthogonal to the first direction;
In the same pixel,
The first conductivity type semiconductor region is disposed in a first direction with respect to the photoelectric conversion unit, and the floating diffusion region is disposed in the second direction with respect to the first conductivity type semiconductor region. Is placed through
The floating diffusion region of the first pixel, and the charge holding portion of the first pixel, are arranged in a region between the charge holding portion of the third pixel, said first pixel The drain of the overflow drain MOS transistor is disposed in a region between the photoelectric conversion unit of the first pixel and the photoelectric conversion unit of the third pixel,
The first conductivity type semiconductor region of the first pixel is disposed in a region between the photoelectric conversion unit of the first pixel and the photoelectric conversion unit of the second pixel,
The charge holding part of the first pixel is covered with a light shielding part, and the light shielding part is an upper part of the photoelectric conversion part of the first pixel and a part of the photoelectric conversion part of the second pixel. Arranged to extend up to
An element isolation region including an insulator is disposed between the first conductivity type semiconductor region of the first pixel and the photoelectric conversion unit of the second pixel.
The light shielding portion extends from the upper surface of the photoelectric conversion portion included in the first pixel along the step formed by the insulator of the element isolation region and over the step, and the solid-state imaging device characterized that you have extended to the upper surface of the photoelectric conversion unit.
前記オーバーフロードレインMOSトランジスタを導通状態から非導通状態とすることで、前記光電変換部における露光期間を開始することを特徴とする請求項1に記載の固体撮像装置。   The solid-state imaging device according to claim 1, wherein an exposure period in the photoelectric conversion unit is started by changing the overflow drain MOS transistor from a conductive state to a non-conductive state. 前記露光期間終了後は、前記オーバーフロードレインMOSトランジスタを導通させ、前記光電変換部と前記オーバーフロードレインMOSトランジスタのドレインとの間の電荷の経路のポテンシャルを、前記光電変換部と前記電荷保持部との間の電荷の経路のポテンシャルよりも低い状態とすることを特徴とする請求項2に記載の固体撮像装置。   After completion of the exposure period, the overflow drain MOS transistor is turned on, and the potential of the charge path between the photoelectric conversion unit and the drain of the overflow drain MOS transistor is determined between the photoelectric conversion unit and the charge holding unit. The solid-state imaging device according to claim 2, wherein the state is lower than the potential of the electric charge path between them. 前記複数の光電変換部の電荷を同時に読み出すことで、グローバル電子シャッタ動作を行なうことを特徴とする請求項1〜3のいずれか1項に記載の固体撮像装置。   The solid-state imaging device according to claim 1, wherein a global electronic shutter operation is performed by simultaneously reading out charges of the plurality of photoelectric conversion units. 前記第1導電型の半導体領域の不純物濃度は、前記オーバーフロードレインMOSトランジスタのドレインの不純物濃度よりも低いことを特徴とする請求項1〜4のいずれか1項に記載の固体撮像装置。   5. The solid-state imaging device according to claim 1, wherein an impurity concentration of the first conductivity type semiconductor region is lower than an impurity concentration of a drain of the overflow drain MOS transistor. 前記第1導電型の半導体領域及び前記ドレインは、第2導電型の半導体領域とPN接合を形成しており、前記第1導電型の半導体領域から伸びる空乏層の幅が、前記フローティングディフュージョン領域から伸びる空乏層の幅よりも小さいことを特徴とする請求項5に記載の固体撮像装置。   The semiconductor region of the first conductivity type and the drain form a PN junction with the semiconductor region of the second conductivity type, and the width of the depletion layer extending from the semiconductor region of the first conductivity type is from the floating diffusion region. The solid-state imaging device according to claim 5, wherein the solid-state imaging device is smaller than a width of the extending depletion layer. 前記画素は、増幅部を有しており、前記フローティングディフュージョン領域と、前記増幅部とが電気的に接続されていることを特徴とする請求項1〜6のいずれか1項に記載の固体撮像装置。   The solid-state imaging according to claim 1, wherein the pixel has an amplifying unit, and the floating diffusion region and the amplifying unit are electrically connected. apparatus. 前記画素は、前記フローティングディフュージョン領域の電位をリセットする、リセットトランジスタを有することを特徴とする請求項1〜7のいずれか1項に記載の固体撮像装置。   The solid-state imaging device according to claim 1, wherein the pixel includes a reset transistor that resets a potential of the floating diffusion region. 前記光電変換部の露光期間において、前記光電変換部で生じた電荷を前記電荷保持部に転送して蓄積することを特徴とする請求項1〜8のいずれか1項に記載の固体撮像装置。   9. The solid-state imaging device according to claim 1, wherein charges generated in the photoelectric conversion unit are transferred to and stored in the charge holding unit during an exposure period of the photoelectric conversion unit.
JP2013151652A 2013-07-22 2013-07-22 Solid-state imaging device Expired - Fee Related JP5709944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013151652A JP5709944B2 (en) 2013-07-22 2013-07-22 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013151652A JP5709944B2 (en) 2013-07-22 2013-07-22 Solid-state imaging device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008119737A Division JP5328224B2 (en) 2008-05-01 2008-05-01 Solid-state imaging device

Publications (3)

Publication Number Publication Date
JP2013225704A JP2013225704A (en) 2013-10-31
JP2013225704A5 JP2013225704A5 (en) 2014-02-06
JP5709944B2 true JP5709944B2 (en) 2015-04-30

Family

ID=49595518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013151652A Expired - Fee Related JP5709944B2 (en) 2013-07-22 2013-07-22 Solid-state imaging device

Country Status (1)

Country Link
JP (1) JP5709944B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4300872B2 (en) * 2003-05-09 2009-07-22 株式会社ニコン Amplification type solid-state image sensor
JP4273124B2 (en) * 2005-02-04 2009-06-03 キヤノン株式会社 Imaging apparatus and imaging system
JP2007157912A (en) * 2005-12-02 2007-06-21 Nikon Corp Solid imaging apparatus
JP2008010502A (en) * 2006-06-27 2008-01-17 Nikon Corp Solid-state imaging device and its manufacturing method

Also Published As

Publication number Publication date
JP2013225704A (en) 2013-10-31

Similar Documents

Publication Publication Date Title
JP5328224B2 (en) Solid-state imaging device
JP6541080B2 (en) Solid-state imaging device
JP6108280B2 (en) Solid-state imaging device
US10332928B2 (en) Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic apparatus
JP5864990B2 (en) Solid-state imaging device and camera
TWI645551B (en) Solid state imaging device and manufacturing method therefor, and electronic apparatus
JP6406585B2 (en) Imaging device
US9466641B2 (en) Solid-state imaging device
JP6650668B2 (en) Solid-state imaging device
JP2009253150A (en) Solid-state imaging apparatus
JP6254048B2 (en) Semiconductor device
US9601536B2 (en) Solid-state image capturing apparatus and camera
JP6689936B2 (en) Imaging device manufacturing method
JP7316046B2 (en) Photoelectric conversion device and camera
JP5709944B2 (en) Solid-state imaging device
JP6029698B2 (en) Photoelectric conversion device and imaging system using the same
JP2015026677A (en) Solid state imaging device
JP6420450B2 (en) Semiconductor device
JP2017212304A (en) Photoelectric conversion device and image reading device
CN113016071A (en) Image pickup apparatus
JP5701344B2 (en) Photoelectric conversion device and imaging system using the same
JP5725232B2 (en) Solid-state imaging device and camera
US20230420475A1 (en) Photoelectric conversion device
JP5512002B2 (en) Solid-state imaging device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150303

R151 Written notification of patent or utility model registration

Ref document number: 5709944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees