JP5435922B2 - Manufacturing method of Schottky barrier diode - Google Patents

Manufacturing method of Schottky barrier diode Download PDF

Info

Publication number
JP5435922B2
JP5435922B2 JP2008266536A JP2008266536A JP5435922B2 JP 5435922 B2 JP5435922 B2 JP 5435922B2 JP 2008266536 A JP2008266536 A JP 2008266536A JP 2008266536 A JP2008266536 A JP 2008266536A JP 5435922 B2 JP5435922 B2 JP 5435922B2
Authority
JP
Japan
Prior art keywords
oxide film
semiconductor layer
atoms
barrier diode
schottky barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008266536A
Other languages
Japanese (ja)
Other versions
JP2010067937A (en
Inventor
雄介 前山
正章 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP2008266536A priority Critical patent/JP5435922B2/en
Publication of JP2010067937A publication Critical patent/JP2010067937A/en
Application granted granted Critical
Publication of JP5435922B2 publication Critical patent/JP5435922B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Description

本発明は、逆方向電圧印加時の漏れ電流の低減を図ったショットキーバリアダイオードの製造方法に関する。 The present invention relates to the production how the Schottky barrier diode thereby reducing the leakage current when a reverse voltage is applied.

酸化膜をショットキーバリアダイオード等のデバイスの絶縁膜として利用する場合、逆方向電圧印加時の酸化膜の信頼性は酸化膜と半導体層の界面準位に依存する。例えば、SiC(炭化珪素)酸化膜では、界面準位の密度が高く、界面準位を介した漏れ電流が流れるため、信頼性が悪い。これに対して、N(窒素)を構成元素として含む酸化膜(以下、NO酸化膜と記載する)では、界面に存在する未結合手をN原子が終端するため、界面準位の密度が低く、信頼性が高い。このNO酸化膜をデバイスに適用した例として、特許文献1にはNO酸化膜をゲート絶縁膜に使用したTFT(Thin Film Transistor)が記載されている。
特開平8−78693号公報
When an oxide film is used as an insulating film of a device such as a Schottky barrier diode, the reliability of the oxide film when a reverse voltage is applied depends on the interface state between the oxide film and the semiconductor layer. For example, in a SiC (silicon carbide) oxide film, the interface state density is high, and a leakage current flows through the interface state, so that the reliability is poor. On the other hand, in an oxide film containing N (nitrogen) as a constituent element (hereinafter referred to as a NO oxide film), N atoms terminate at dangling bonds present at the interface, so the density of interface states is low. High reliability. As an example of applying this NO oxide film to a device, Patent Document 1 describes a TFT (Thin Film Transistor) using an NO oxide film as a gate insulating film.
JP-A-8-78693

しかし、SiCからなる半導体層を有するSiCショットキーバリアダイオードにNO酸化膜を適用した場合、酸素酸化膜を適用した場合よりも逆方向電圧印加時の漏れ電流が増加するという問題がある。以下、この問題の原因を説明する。   However, when a NO oxide film is applied to a SiC Schottky barrier diode having a semiconductor layer made of SiC, there is a problem that leakage current at the time of applying a reverse voltage is higher than when an oxygen oxide film is applied. Hereinafter, the cause of this problem will be described.

図4に示すように、従来のSiCショットキーバリアダイオードの製造工程では、低濃度のN型不純物を含むSiCからなる半導体層100の表面に、P型不純物を含むSiCからなるガードリング101を形成し、さらに半導体層100およびガードリング101上にNO酸化膜102を形成する(図4(a))。NO酸化膜102を形成した後の半導体層100の表面には、N原子103が蓄積している。   As shown in FIG. 4, in the manufacturing process of the conventional SiC Schottky barrier diode, a guard ring 101 made of SiC containing P-type impurities is formed on the surface of a semiconductor layer 100 made of SiC containing low-concentration N-type impurities. Further, an NO oxide film 102 is formed on the semiconductor layer 100 and the guard ring 101 (FIG. 4A). N atoms 103 are accumulated on the surface of the semiconductor layer 100 after the NO oxide film 102 is formed.

続いて、電極を形成する位置に対応するNO酸化膜102を除去し、コンタクトホールを形成する(図4(b))。この工程によって露出した半導体層100およびガードリング101上に電極104を形成する(図4(c))。半導体層100と電極104の間にはショットキー接合が形成されている。   Subsequently, the NO oxide film 102 corresponding to the position where the electrode is to be formed is removed, and a contact hole is formed (FIG. 4B). An electrode 104 is formed on the semiconductor layer 100 and the guard ring 101 exposed by this process (FIG. 4C). A Schottky junction is formed between the semiconductor layer 100 and the electrode 104.

NO酸化膜102に電極用のコンタクトホールを形成した後に露出する半導体層の表面にはN原子103が残留している。逆方向電圧印加時には、N原子103がN型のドーパントとして作用し、電流が流れやすくなるため、逆方向電圧印加時の漏れ電流が増加すると考えられる。上述したように、NO酸化膜は、界面準位の密度が低く、逆方向電圧印加時の信頼性を向上できる性質を有していながら、従来のSiCショットキーバリアダイオードでは、その性質を発揮できていない。   N atoms 103 remain on the surface of the semiconductor layer exposed after the contact holes for electrodes are formed in the NO oxide film 102. When the reverse voltage is applied, the N atom 103 acts as an N-type dopant, and current flows easily. Therefore, it is considered that the leakage current when the reverse voltage is applied increases. As described above, the NO oxide film has the property that the density of the interface state is low and the reliability when the reverse voltage is applied can be improved, but the conventional SiC Schottky barrier diode can exhibit the property. Not.

本発明は、上記に鑑みてなされたものであって、逆方向電圧印加時の漏れ電流を低減することができるショットキーバリアダイオードの製造方法およびショットキーバリアダイオードを提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide a Schottky barrier diode manufacturing method and a Schottky barrier diode that can reduce a leakage current when a reverse voltage is applied.

本発明は、上記の課題を解決するためになされたもので、炭化珪素からなる半導体層上に、炭化珪素、酸素、および窒素を含む酸化膜を形成する第1の工程と、前記酸化膜を貫通する孔を形成する第2の工程と、前記第2の工程によって露出した前記半導体層の表面を酸素プラズマで処理することで窒素原子を除去する第3の工程と、前記第3の工程によって表面の窒素原子が除去された前記半導体層上に、前記半導体層とショットキー接合を形成する電極を形成する第4の工程と、を備えたことを特徴とするショットキーバリアダイオードの製造方法である。 The present invention has been made to solve the above-described problems. A first step of forming an oxide film containing silicon carbide, oxygen, and nitrogen on a semiconductor layer made of silicon carbide; and A second step of forming a through-hole, a third step of removing nitrogen atoms by treating the surface of the semiconductor layer exposed in the second step with oxygen plasma, and the third step. A fourth step of forming an electrode for forming a Schottky junction with the semiconductor layer on the semiconductor layer from which nitrogen atoms on the surface have been removed, and a method for manufacturing a Schottky barrier diode, comprising: is there.

本発明のショットキーバリアダイオードの製造方法によれば、電極と接触する位置にある半導体層の表面の窒素原子が除去されるので、逆方向電圧印加時の漏れ電流を低減することができる。   According to the method for manufacturing a Schottky barrier diode of the present invention, since nitrogen atoms on the surface of the semiconductor layer located in contact with the electrode are removed, leakage current when a reverse voltage is applied can be reduced.

また、本発明のショットキーバリアダイオードの製造方法は、前記第1の工程において、ドライ酸化で酸化膜を形成後に、N原子およびO原子を含むガス雰囲気でアニールすることによって、炭化珪素、酸素、および窒素を含む酸化膜を形成する、ことを特徴とする。 In addition, in the first method, the Schottky barrier diode manufacturing method of the present invention includes annealing in a gas atmosphere containing N atoms and O atoms after forming an oxide film by dry oxidation, so that silicon carbide, oxygen, And an oxide film containing nitrogen is formed.

本発明のショットキーバリアダイオードの製造方法によれば、半導体層の表面を酸素プラズマで処理することによって、逆方向電圧印加時の漏れ電流を大幅に低減することができる。   According to the method for manufacturing a Schottky barrier diode of the present invention, by treating the surface of the semiconductor layer with oxygen plasma, the leakage current when applying a reverse voltage can be greatly reduced.

また、本発明のショットキーバリアダイオードの製造方法は、前記第1の工程において、ドライ酸化で酸化膜を形成後に、N原子およびO原子を含むガス雰囲気で再酸化アニールすることによって、炭化珪素、酸素、および窒素を含む酸化膜を形成する、ことを特徴とする。 Further, in the method for manufacturing a Schottky barrier diode of the present invention, in the first step, after forming an oxide film by dry oxidation, reoxidation annealing is performed in a gas atmosphere containing N atoms and O atoms, An oxide film containing oxygen and nitrogen is formed.

本発明のショットキーバリアダイオードの製造方法によれば、電極と接触する位置にある半導体層の表面の窒素原子が除去されているので、逆方向電圧印加時の漏れ電流を低減することができる。 According to the method for manufacturing a Schottky barrier diode of the present invention, since the nitrogen atoms on the surface of the semiconductor layer located in contact with the electrode are removed, it is possible to reduce the leakage current when a reverse voltage is applied.

本発明によれば、逆方向電圧印加時の漏れ電流を低減することができるという効果が得られる。   According to the present invention, it is possible to reduce the leakage current when a reverse voltage is applied.

以下、図面を参照し、本発明の実施形態を説明する。図1および図2は、本発明の一実施形態によるSiCショットキーバリアダイオードの製造方法を示している。以下の製造方法は一例であり、これに限定する必要はない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 and 2 show a method of manufacturing a SiC Schottky barrier diode according to an embodiment of the present invention. The following manufacturing method is an example, and it is not necessary to limit to this.

まず、N型不純物を含むSiCからなる半導体層1を構成する基板を用意する(図1(a))。この半導体層1の表面にP型不純物を注入し、アニールを行うことによってガードリング2を形成する(図1(b))。さらに、半導体層1およびガードリング2上にNO酸化膜3を形成する(図1(c))。NO酸化膜3は、構成元素として、SiC、O、Nを含んでいる。NO酸化膜3を形成する方法としては、例えば酸素雰囲気中でドライ酸化を行った後、NおよびOを構成元素に含む一酸化窒素等の雰囲気中でアニールを行えばよい。あるいは、一酸化窒素等の雰囲気中で酸化を行うことによってNO酸化膜3を形成してもよい。NO酸化膜3を形成した後の半導体層1の表面には、N原子4が蓄積している。   First, a substrate constituting the semiconductor layer 1 made of SiC containing an N-type impurity is prepared (FIG. 1A). A guard ring 2 is formed by injecting a P-type impurity into the surface of the semiconductor layer 1 and performing annealing (FIG. 1B). Further, an NO oxide film 3 is formed on the semiconductor layer 1 and the guard ring 2 (FIG. 1C). The NO oxide film 3 contains SiC, O, and N as constituent elements. As a method for forming the NO oxide film 3, for example, after dry oxidation is performed in an oxygen atmosphere, annealing may be performed in an atmosphere of nitrogen monoxide containing N and O as constituent elements. Alternatively, the NO oxide film 3 may be formed by performing oxidation in an atmosphere such as nitrogen monoxide. N atoms 4 accumulate on the surface of the semiconductor layer 1 after the formation of the NO oxide film 3.

NO酸化膜3の形成時には、半導体層1の裏面にもNO酸化膜が形成されるが、図1では図示を省略している。NO酸化膜3の形成後、NO酸化膜3上に保護用のレジストを堆積し、BHF(Buffered HF)によって半導体層1の裏面のNO酸化膜を除去することが可能である。半導体層1の裏面のNO酸化膜を除去する工程については図1では図示を省略している。続いて、半導体層1の裏面上にNi(ニッケル)等の金属材料を蒸着等により堆積し、電極5を形成する(図1(d))。電極5の形成後、半導体層1と電極5のオーミック接触性を向上するために熱処理を行ってもよい。   When the NO oxide film 3 is formed, an NO oxide film is also formed on the back surface of the semiconductor layer 1, but the illustration is omitted in FIG. 1. After the formation of the NO oxide film 3, a protective resist is deposited on the NO oxide film 3, and the NO oxide film on the back surface of the semiconductor layer 1 can be removed by BHF (Buffered HF). The process of removing the NO oxide film on the back surface of the semiconductor layer 1 is not shown in FIG. Subsequently, a metal material such as Ni (nickel) is deposited on the back surface of the semiconductor layer 1 by vapor deposition or the like to form the electrode 5 (FIG. 1D). After the formation of the electrode 5, heat treatment may be performed in order to improve the ohmic contact between the semiconductor layer 1 and the electrode 5.

続いて、BHFによって、電極を形成する位置に対応するNO酸化膜3を除去し、NO酸化膜3を貫通するコンタクトホール(孔)を形成する(図2(a))。コンタクトホールを形成することによって露出した半導体層1の表面にはN原子4が残留している。酸素プラズマ6によって半導体層1の表面を処理し、半導体層1の表面に残留しているN原子4と反応させ、N原子4を除去する(図2(b))。続いて、コンタクトホールを形成することによって露出した半導体層1およびガードリング2上にNiやTi(チタン)等の金属材料を蒸着等により堆積し、電極7を形成する(図2(c))。半導体層1と電極7の間にはショットキー接合が形成されている。電極7は単層構造でもよいし、複数層からなる構造でもよい。   Subsequently, the NO oxide film 3 corresponding to the position where the electrode is formed is removed by BHF, and a contact hole (hole) penetrating the NO oxide film 3 is formed (FIG. 2A). N atoms 4 remain on the surface of the semiconductor layer 1 exposed by forming the contact holes. The surface of the semiconductor layer 1 is treated with the oxygen plasma 6 and reacted with the N atoms 4 remaining on the surface of the semiconductor layer 1 to remove the N atoms 4 (FIG. 2B). Subsequently, a metal material such as Ni or Ti (titanium) is deposited by vapor deposition or the like on the semiconductor layer 1 and the guard ring 2 exposed by forming the contact hole to form the electrode 7 (FIG. 2C). . A Schottky junction is formed between the semiconductor layer 1 and the electrode 7. The electrode 7 may have a single layer structure or a structure composed of a plurality of layers.

図3は、逆方向電圧に対する漏れ電流を示している。NO酸化膜3を除去した後に酸素プラズマによる処理を行った場合には、酸素プラズマによる処理を行わなかった場合と比較して、漏れ電流の値が約1桁低減している。   FIG. 3 shows the leakage current with respect to the reverse voltage. When the treatment with oxygen plasma is performed after the NO oxide film 3 is removed, the value of the leakage current is reduced by about one digit compared with the case where the treatment with oxygen plasma is not performed.

半導体層1の表面のN原子4を除去する他の方法として、NO酸化膜3を除去した後に900℃〜1100℃で半導体層1の表面を短時間酸化し、これによって形成された酸化膜をBHFによって除去する犠牲酸化を行ってもよい。   As another method of removing the N atoms 4 on the surface of the semiconductor layer 1, the surface of the semiconductor layer 1 is oxidized for a short time at 900 ° C. to 1100 ° C. after the NO oxide film 3 is removed. Sacrificial oxidation removed by BHF may be performed.

上述したように、本実施形態によれば、逆方向電圧印加時の漏れ電流を低減することができる。特に、NO酸化膜を除去した後に、酸素プラズマによって半導体層の表面を処理し、半導体層の表面のN原子を除去することによって、漏れ電流を大幅に低減することができる。したがって、NO酸化膜が本来有している逆方向電圧印加時の高信頼性を発揮することができる。   As described above, according to the present embodiment, it is possible to reduce a leakage current when a reverse voltage is applied. In particular, after removing the NO oxide film, the leakage current can be greatly reduced by treating the surface of the semiconductor layer with oxygen plasma and removing N atoms on the surface of the semiconductor layer. Therefore, high reliability at the time of applying the reverse voltage inherent to the NO oxide film can be exhibited.

以上、図面を参照して本発明の実施形態について詳述してきたが、具体的な構成は上記の実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。   As described above, the embodiments of the present invention have been described in detail with reference to the drawings. However, the specific configuration is not limited to the above-described embodiments, and includes design changes and the like without departing from the gist of the present invention. .

本発明の一実施形態によるショットキーバリアダイオードの製造方法を説明するための模式断面図である。It is a schematic cross section for demonstrating the manufacturing method of the Schottky barrier diode by one Embodiment of this invention. 本発明の一実施形態によるショットキーバリアダイオードの製造方法を説明するための模式断面図である。It is a schematic cross section for demonstrating the manufacturing method of the Schottky barrier diode by one Embodiment of this invention. 本発明の一実施形態によるショットキーバリアダイオードの漏れ電流特性を説明するためのグラフである。4 is a graph for explaining leakage current characteristics of a Schottky barrier diode according to an embodiment of the present invention. 従来のショットキーバリアダイオードの製造方法を説明するための模式断面図である。It is a schematic cross section for demonstrating the manufacturing method of the conventional Schottky barrier diode.

符号の説明Explanation of symbols

1,100・・・半導体層、2,101・・・ガードリング、3,102・・・NO酸化膜、4,103・・・N原子、5,7,104・・・電極、6・・・酸素プラズマ   DESCRIPTION OF SYMBOLS 1,100 ... Semiconductor layer, 2,101 ... Guard ring, 3,102 ... NO oxide film, 4,103 ... N atom, 5, 7, 104 ... Electrode, 6 ...・ Oxygen plasma

Claims (3)

炭化珪素からなる半導体層上に、炭化珪素、酸素、および窒素を含む酸化膜を形成する第1の工程と、
前記酸化膜を貫通する孔を形成する第2の工程と、
前記第2の工程によって露出した前記半導体層の表面を酸素プラズマで処理することで窒素原子を除去する第3の工程と、
前記第3の工程によって表面の窒素原子が除去された前記半導体層上に、前記半導体層とショットキー接合を形成する電極を形成する第4の工程と、
を備えたことを特徴とするショットキーバリアダイオードの製造方法。
A first step of forming an oxide film containing silicon carbide, oxygen, and nitrogen on a semiconductor layer made of silicon carbide;
A second step of forming a hole penetrating the oxide film;
A third step of removing nitrogen atoms by treating the surface of the semiconductor layer exposed in the second step with oxygen plasma;
A fourth step of forming an electrode for forming a Schottky junction with the semiconductor layer on the semiconductor layer from which nitrogen atoms on the surface have been removed by the third step;
A method for manufacturing a Schottky barrier diode, comprising:
前記第1の工程において、ドライ酸化で酸化膜を形成後に、N原子およびO原子を含むガス雰囲気でアニールすることによって、炭化珪素、酸素、および窒素を含む酸化膜を形成する、
ことを特徴とする請求項1に記載のショットキーバリアダイオードの製造方法。
In the first step, an oxide film containing silicon carbide, oxygen, and nitrogen is formed by annealing in a gas atmosphere containing N atoms and O atoms after forming the oxide film by dry oxidation.
The method of manufacturing a Schottky barrier diode according to claim 1.
前記第1の工程において、ドライ酸化で酸化膜を形成後に、N原子およびO原子を含むガス雰囲気で再酸化アニールすることによって、炭化珪素、酸素、および窒素を含む酸化膜を形成する、
ことを特徴とする請求項1に記載のショットキーバリアダイオードの製造方法。
In the first step, after forming an oxide film by dry oxidation, re-oxidation annealing is performed in a gas atmosphere containing N atoms and O atoms, thereby forming an oxide film containing silicon carbide, oxygen, and nitrogen.
The method of manufacturing a Schottky barrier diode according to claim 1.
JP2008266536A 2008-08-12 2008-10-15 Manufacturing method of Schottky barrier diode Active JP5435922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008266536A JP5435922B2 (en) 2008-08-12 2008-10-15 Manufacturing method of Schottky barrier diode

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008207795 2008-08-12
JP2008207795 2008-08-12
JP2008266536A JP5435922B2 (en) 2008-08-12 2008-10-15 Manufacturing method of Schottky barrier diode

Publications (2)

Publication Number Publication Date
JP2010067937A JP2010067937A (en) 2010-03-25
JP5435922B2 true JP5435922B2 (en) 2014-03-05

Family

ID=42193231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008266536A Active JP5435922B2 (en) 2008-08-12 2008-10-15 Manufacturing method of Schottky barrier diode

Country Status (1)

Country Link
JP (1) JP5435922B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5306392B2 (en) * 2011-03-03 2013-10-02 株式会社東芝 Semiconductor rectifier
JP2013120822A (en) * 2011-12-07 2013-06-17 Sumitomo Electric Ind Ltd Semiconductor device manufacturing method
US9496366B2 (en) * 2013-10-08 2016-11-15 Shindengen Electric Manufacturing Co., Ltd. Method for manufacturing silicon carbide (SiC) semiconductor device by introducing nitrogen concentration of 5X1019 cm-3 or more at a boundary surface between thermal oxide film and the SiC substrate and then removing the thermal oxide film
KR101598512B1 (en) * 2014-08-27 2016-03-02 메이플세미컨덕터(주) Junction barrier schottky diode having epi Re-growth pattern and method for producing same
KR101615304B1 (en) * 2014-09-12 2016-04-27 한국전기연구원 Fabrication Methods Of Schottky Barrier Diodes
JP2016178336A (en) * 2016-06-10 2016-10-06 住友電気工業株式会社 Semiconductor device manufacturing method
CN109326659B (en) * 2018-09-26 2021-04-23 南京大学 4H-SiC ultraviolet detector with high responsivity and low dark current PIN structure and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5929523A (en) * 1996-03-07 1999-07-27 3C Semiconductor Corporation Os rectifying Schottky and ohmic junction and W/WC/TiC ohmic contacts on SiC
JP4026312B2 (en) * 2000-10-20 2007-12-26 富士電機ホールディングス株式会社 Silicon carbide semiconductor Schottky diode and method for manufacturing the same
JP4042336B2 (en) * 2001-03-21 2008-02-06 富士電機ホールディングス株式会社 Silicon carbide semiconductor element
JP2003115472A (en) * 2001-10-03 2003-04-18 Denso Corp Semiconductor device manufacturing method
JP5352954B2 (en) * 2006-11-22 2013-11-27 日産自動車株式会社 Electrode film / silicon carbide structure

Also Published As

Publication number Publication date
JP2010067937A (en) 2010-03-25

Similar Documents

Publication Publication Date Title
JP5435922B2 (en) Manufacturing method of Schottky barrier diode
TWI311814B (en) Silicon carbide semiconductor device and method for producing the same
JP5408897B2 (en) Field effect transistor having germanium nanorods and method for manufacturing the same
JP4140648B2 (en) Ohmic electrode for SiC semiconductor, method for producing ohmic electrode for SiC semiconductor, semiconductor device, and method for producing semiconductor device
CN105940498B (en) Method for manufacturing silicon carbide semiconductor device and silicon carbide semiconductor device
JP5584823B2 (en) Silicon carbide semiconductor device
WO2013146326A1 (en) Silicon carbide semiconductor device
WO2013084620A1 (en) Method for manufacturing semiconductor device
TW201133573A (en) Method for manufacturing semiconductor device
WO2013145022A1 (en) Method for manufacturing silicon carbide semiconductor device
JP2014170891A (en) Silicon carbide substrate, silicon carbide substrate manufacturing method and silicon carbide semiconductor device manufacturing method
US9768260B2 (en) Fabrication method of silicon carbide semiconductor apparatus and silicon carbide semiconductor apparatus fabricated thereby
JP2009088440A (en) Semiconductor device and its manufacturing method
JP4480775B2 (en) Manufacturing method of semiconductor device
JPWO2008018342A1 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP4379305B2 (en) Semiconductor device
JP6060476B2 (en) Electrode formation method
JP4091931B2 (en) SiC semiconductor device and method of manufacturing SiC semiconductor device
JP4800239B2 (en) Manufacturing method of semiconductor device
JP2015508569A (en) Method for manufacturing MOS stack on diamond substrate
JP2016178336A (en) Semiconductor device manufacturing method
JP6648574B2 (en) Method for manufacturing silicon carbide semiconductor device
JP5090968B2 (en) Method for manufacturing silicon carbide semiconductor device
JP4415531B2 (en) Semiconductor device and manufacturing method thereof
JP6582537B2 (en) Semiconductor device and manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131210

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5435922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150