JP5324265B2 - Hydrocarbon partial oxidation catalyst and method and apparatus for producing hydrogen-containing gas using the same - Google Patents

Hydrocarbon partial oxidation catalyst and method and apparatus for producing hydrogen-containing gas using the same Download PDF

Info

Publication number
JP5324265B2
JP5324265B2 JP2009058540A JP2009058540A JP5324265B2 JP 5324265 B2 JP5324265 B2 JP 5324265B2 JP 2009058540 A JP2009058540 A JP 2009058540A JP 2009058540 A JP2009058540 A JP 2009058540A JP 5324265 B2 JP5324265 B2 JP 5324265B2
Authority
JP
Japan
Prior art keywords
catalyst
partial oxidation
reaction
gas
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009058540A
Other languages
Japanese (ja)
Other versions
JP2010207757A (en
Inventor
えり子 矢ヶ崎
俊光 鈴木
直也 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP2009058540A priority Critical patent/JP5324265B2/en
Publication of JP2010207757A publication Critical patent/JP2010207757A/en
Application granted granted Critical
Publication of JP5324265B2 publication Critical patent/JP5324265B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Description

本発明は、炭化水素の部分酸化反応に係る触媒、例えばメタン、エタン、プロパンもしくはそれらのガスを主成分とする混合ガス、又は天然ガスから部分酸化反応により水素を含有する混合ガスを製造する触媒と、それを用いて水素を含有する混合ガスを製造する方法と装置に関するものである。   The present invention relates to a catalyst for a partial oxidation reaction of hydrocarbons, for example, a catalyst for producing a mixed gas containing methane, ethane, propane, or a gas thereof as a main component, or a mixed gas containing hydrogen from natural gas by a partial oxidation reaction. And a method and an apparatus for producing a mixed gas containing hydrogen using the same.

メタンガスや天然ガスを水素と一酸化炭素に転換する反応は、化学製品原料の合成ガスを得る方法として有用であるだけでなく、クリーンエネルギー源である水素の製造方法としても重要である。   The reaction of converting methane gas or natural gas into hydrogen and carbon monoxide is not only useful as a method for obtaining synthesis gas as a raw material for chemical products, but also important as a method for producing hydrogen as a clean energy source.

一方、燃料電池は発電の際に水しか排出せず、振動や騒音がないことから、エネルギー問題、環境問題の改善に大きく貢献すると期待されているが、燃料である水素の供給に問題があった。特に、小規模ビルや家庭用、船舶用等の比較的小型で分散配置された燃料電池については、その場で燃料を供給できる小型の燃料供給装置が求められている。   Fuel cells, on the other hand, emit only water during power generation and are free of vibrations and noise, so they are expected to make a significant contribution to improving energy and environmental issues. However, there are problems with the supply of hydrogen as a fuel. It was. In particular, for fuel cells that are relatively small and dispersedly arranged for small buildings, homes, ships, etc., there is a demand for small fuel supply devices that can supply fuel on the spot.

天然ガス等の化石燃料からの水素製造は、従来から、主として水蒸気改質法によって大規模に行われているが、水蒸気改質自体が吸熱反応であるため大量のエネルギー投入を必要とし、さらに副生物である二酸化炭素を大量に大気に放出するなどの問題点があった。このような大規模な水素製造装置を分散配置された小型燃料電池に接続することは不可能であり、また大規模に製造された水素をボンベで供給するにしても、運搬費用が高価となり、小型燃料電池の普及を妨げている。   Conventionally, hydrogen production from fossil fuels such as natural gas has been carried out on a large scale mainly by the steam reforming method. However, since the steam reforming itself is an endothermic reaction, it requires a large amount of energy input. There were problems such as releasing a large amount of carbon dioxide, a living organism, into the atmosphere. It is impossible to connect such a large-scale hydrogen production apparatus to small fuel cells that are dispersedly arranged, and even if hydrogen produced on a large scale is supplied by a cylinder, the transportation cost becomes expensive, This hinders the spread of small fuel cells.

水蒸気改質法以外に炭化水素から合成ガスや水素を製造する方法として、部分酸化法がある。飽和炭化水素の部分酸化から水素を製造する反応は次式のようになる。
x2(x+1)+(x/2)O2→xCO+(x+1)H2
In addition to the steam reforming method, there is a partial oxidation method as a method for producing synthesis gas or hydrogen from hydrocarbons. The reaction for producing hydrogen from the partial oxidation of saturated hydrocarbons is as follows:
C x H 2 (x + 1 ) + (x / 2) O 2 → xCO + (x + 1) H 2

部分酸化反応は発熱反応であるため外部からの大量のエネルギー投入は必要ないが、反応温度が高温になりやすく、高温に耐えうる反応容器材料に制約があり装置寿命も短くなる。そのため、比較的低い温度で反応を進める触媒が求められている。   Since the partial oxidation reaction is an exothermic reaction, it is not necessary to input a large amount of energy from the outside. However, the reaction temperature tends to be high, the reaction vessel material that can withstand the high temperature is limited, and the life of the apparatus is shortened. Therefore, there is a demand for a catalyst that proceeds the reaction at a relatively low temperature.

メタンと酸素から合成ガスや水素を製造するための部分酸化触媒としては、Ru又はRhをジルコニア又は安定化ジルコニアに担持させたもの(特許文献1参照。)や、Irを酸化チタンに担持させたもの(非特許文献1参照。)等が報告されているが、これらの触媒活性金属であるRu、Rh及びIrはいずれも高価な希少貴金属であり、実用的にはより安価な部分酸化触媒が求められていた。   As a partial oxidation catalyst for producing synthesis gas and hydrogen from methane and oxygen, Ru or Rh supported on zirconia or stabilized zirconia (see Patent Document 1), or Ir supported on titanium oxide. However, these catalytically active metals, Ru, Rh, and Ir are all expensive rare noble metals, and practically cheaper partial oxidation catalysts are available. It was sought after.

また、触媒による炭化水素の部分酸化反応では、炭素析出が起こりやすい。これらの提案の部分酸化触媒はメタンと酸素を原料ガスとして連続的に供給しながら触媒の活性の続く限り反応を継続させるのが原則であるので、触媒表面に炭素が析出すれば触媒が不活性化され短寿命となる問題点があった。   In the partial oxidation reaction of hydrocarbons by a catalyst, carbon deposition is likely to occur. In these proposed partial oxidation catalysts, in principle, the reaction is continued as long as the activity of the catalyst continues while continuously supplying methane and oxygen as raw material gases. Therefore, if carbon is deposited on the catalyst surface, the catalyst is inactive. There has been a problem of shortening the service life.

触媒活性金属として貴金属より安価なCoをアルミナに担持したCo/Al23部分酸化触媒も提案されている(非特許文献2参照。)。しかし、アルミナを担体とするCo担持触媒では、燃料ガスの転化率や生成物の水素選択率について、実用に堪えうるものは未だ得られていない。 There has also been proposed a Co / Al 2 O 3 partial oxidation catalyst in which Co, which is cheaper than a noble metal as a catalytically active metal, is supported on alumina (see Non-Patent Document 2). However, a Co-supported catalyst using alumina as a carrier has not yet been able to be practically used for the conversion rate of fuel gas and the hydrogen selectivity of the product.

本発明の対象とする部分酸化反応ではないが、メタンのCO2改質反応に対してCeO2−Al23担体にNiを担持した触媒を使用した報告がある(非特許文献3参照。)。そこでは、Ni担持量を5重量%に固定した上でCeO2が1〜5重量%のときが最適であると結論しており、しかも、その触媒が部分酸化反応に対しても有効であるかどうかは不明であった。 Although it is not the partial oxidation reaction which is the subject of the present invention, there is a report using a catalyst in which Ni is supported on a CeO 2 -Al 2 O 3 support for the CO 2 reforming reaction of methane (see Non-Patent Document 3). ). There, it is concluded that it is optimal when the amount of CeO 2 is 1 to 5% by weight with the Ni loading fixed at 5% by weight, and the catalyst is also effective for partial oxidation reaction. Whether it was unknown.

また従来の部分酸化法においては、メタンとともに純酸素を供給する必要があった。このためには部分酸化反応装置に大規模な酸素製造装置からガスラインを接続するか、酸素ボンベを運搬して接続する必要があり、システムが大型化かつ高コスト化してしまうという問題点があった。   In the conventional partial oxidation method, pure oxygen must be supplied together with methane. For this purpose, it is necessary to connect a gas line from a large-scale oxygen production apparatus to the partial oxidation reaction apparatus, or to transport and connect an oxygen cylinder, which increases the size and cost of the system. It was.

メタンの部分酸化反応に必要な酸素を、純酸素からではなく、触媒自身から供給する考え方もある。酸化物を触媒とし、その格子酸素を利用するものである。水素の貯蔵材料として大塚らによって研究された四酸化三鉄(Fe34)も、メタン分解による水素生成も行っていることから、このような触媒の例として考えることができる(非特許文献4、5参照。)。 There is a concept of supplying oxygen necessary for the partial oxidation reaction of methane not from pure oxygen but from the catalyst itself. An oxide is used as a catalyst, and lattice oxygen is used. Triiron tetroxide (Fe 3 O 4 ), which was studied by Otsuka et al. As a hydrogen storage material, can also be considered as an example of such a catalyst because it also produces hydrogen by methane decomposition (non-patent literature). 4 and 5).

また、触媒としてペロブスカイト酸化物を用い、触媒自身の酸素を使ってメタンを部分酸化し合成ガスを得るという研究結果が最近報告された(非特許文献6参照。)が、反応に900℃という高温を要するなど、実用的なシステムを設計するにはコスト面で問題となる課題が多い。   In addition, research results have recently been reported in which a perovskite oxide is used as a catalyst and methane is partially oxidized using the catalyst's own oxygen to obtain a synthesis gas (see Non-Patent Document 6). In order to design a practical system, there are many problems that are problematic in terms of cost.

本発明者らは、上記のような問題点を改良した部分酸化触媒として、酸化第二鉄を触媒活性成分とする新規触媒を開発し公表した(非特許文献7)。その発明によれば、担体としてはイットリアを含むことが必要であり、また貴金属であるロジウムの添加により高性能な部分酸化触媒が得られた。ロジウム添加量はわずかであり、活性主成分は安価な鉄の酸化物であるから、その発明の触媒は決して高価なものではない。しかし、より安価かつ希少性のない原料から触媒を製造することができれば、工業的にさらに有用であることは当然である。   The present inventors have developed and published a novel catalyst using ferric oxide as a catalytic active component as a partial oxidation catalyst that has improved the above problems (Non-patent Document 7). According to the invention, it was necessary to contain yttria as a support, and a high-performance partial oxidation catalyst was obtained by adding rhodium which is a noble metal. Since the amount of rhodium added is small and the active main component is an inexpensive iron oxide, the catalyst of the invention is never expensive. However, if the catalyst can be produced from a cheaper and less scarce raw material, it is naturally useful industrially.

特開平5−221602号公報JP-A-5-221602

K. Nakagawa, T. Suzuki, T. Kobayashi and M. Haruta, Chem. Lett., (1996) 1029K. Nakagawa, T. Suzuki, T. Kobayashi and M. Haruta, Chem. Lett., (1996) 1029 S. Teng, J. Lin and K.L. Tan, Catalysis Letter 59 (1999) 129-135S. Teng, J. Lin and K.L. Tan, Catalysis Letter 59 (1999) 129-135 S. Wang and G. Q. Lu, Applied Catalysis B, 19, (1998) 267-277S. Wang and G. Q. Lu, Applied Catalysis B, 19, (1998) 267-277 竹中 壮、三津 愛子、山中 一郎、大塚 潔、触媒, 42 (2000) 351Takenaka So, Mitsuko Aiko, Yamanaka Ichiro, Otsuka Kiyoshi, Catalyst, 42 (2000) 351 竹中 壮、Van Tho Dinh Son、花泉 紀子、山中 一郎、大塚 潔、触媒, 46 (2004) 146Takenaka So, Van Tho Dinh Son, Hanaizumi Noriko, Yamanaka Ichiro, Otsuka Kiyoshi, Catalyst, 46 (2004) 146 SHEN Shikong, LI Ranjia, ZHOU Jiping and YU Changchun, Chinese J. Chem. Eng., 11 (2003) 649-655SHEN Shikong, LI Ranjia, ZHOU Jiping and YU Changchun, Chinese J. Chem. Eng., 11 (2003) 649-655 Osami Nakayama, Na-oki Ikenaga, Takanori Miyake, Eriko Yagasaki and Toshimitsu Suzuki, Europacat VIII, P.11-44 (26-31 Aug. 2007, Finland)Osami Nakayama, Na-oki Ikenaga, Takanori Miyake, Eriko Yagasaki and Toshimitsu Suzuki, Europacat VIII, P.11-44 (26-31 Aug. 2007, Finland)

メタンガスなどの炭化水素を原料として触媒自身の酸素により部分酸化を行うことができ、かつ再生することのできる触媒を見つけることができれば、従来の水蒸気改質法に替わる省エネルギーかつコンパクトで迅速起動可能な水素や合成ガスの製造につながる。このような水素製造は、クリーンな分散型電源である小型燃料電池への水素供給に最適であり、社会へのエネルギーの安定供給及び環境の改善に資する。   If hydrocarbons such as methane gas can be used as raw materials to perform partial oxidation with the catalyst's own oxygen and a catalyst that can be regenerated can be found, energy-saving, compact, and quick start-up can replace the conventional steam reforming method. This leads to the production of hydrogen and synthesis gas. Such hydrogen production is optimal for supplying hydrogen to small fuel cells, which are clean distributed power sources, and contributes to the stable supply of energy to society and the improvement of the environment.

本発明の第1の目的は、炭化水素の部分酸化反応による水素含有ガス製造に関して、部分酸化反応工程では酸素供給を必要とせず、安価で、炭素析出を抑えることができ、かつ再生可能な触媒を提供することである。   The first object of the present invention relates to the production of a hydrogen-containing gas by a partial oxidation reaction of hydrocarbons, which does not require oxygen supply in the partial oxidation reaction step, is inexpensive, can suppress carbon deposition, and can be regenerated. Is to provide.

本発明の第2の目的は、その触媒を使用して水素含有ガスを製造する方法を提供することである。   The second object of the present invention is to provide a method for producing a hydrogen-containing gas using the catalyst.

本発明の第3の目的は、その触媒を使用して水素含有ガスを製造する装置を提供することである。   A third object of the present invention is to provide an apparatus for producing a hydrogen-containing gas using the catalyst.

本発明者らは、鋭意検討を重ねた結果、鉄とクロムの酸化物を含有する触媒を使用すれば、触媒自身の格子酸素を用いてメタンなど炭化水素の部分酸化反応が進行し、生成物中の水素選択率が高くなること、またこの触媒は再生が容易であり、酸素、空気等で再生できることを確認し、本発明を完成するに至った。   As a result of intensive studies, the present inventors have conducted a partial oxidation reaction of hydrocarbons such as methane using the lattice oxygen of the catalyst itself, using a catalyst containing an oxide of iron and chromium, and the product It was confirmed that the hydrogen selectivity in the catalyst was high and that the catalyst was easily regenerated and could be regenerated with oxygen, air, etc., and the present invention was completed.

すなわち、本発明の第1の形態は、鉄とクロムの酸化物からなる二元系触媒である。   That is, the first embodiment of the present invention is a binary catalyst made of an oxide of iron and chromium.

この二元系触媒について詳しく検討していくと、炭素析出が多いことがわかった。しかし、この触媒は酸素、空気等で再生させる再生工程を伴なうので、生成した炭素はその再生工程中に二酸化炭素ガスとして除去される。そのため、この触媒においては、炭素析出は重大な欠点とはならない。それでも、再生工程までの使用時間を長くするためには、炭素析出は少ない方が好ましい。そのような観点から、炭素析出を抑える方策を検討した結果、第3の触媒成分としてマグネシウムを添加するのが有効であることを見出した。   When this binary catalyst was examined in detail, it was found that there was much carbon deposition. However, since this catalyst is accompanied by a regeneration step in which the catalyst is regenerated with oxygen, air or the like, the produced carbon is removed as carbon dioxide gas during the regeneration step. For this reason, carbon deposition is not a significant drawback in this catalyst. Nevertheless, in order to lengthen the use time until the regeneration step, it is preferable that the carbon deposition is small. From such a viewpoint, as a result of studying measures for suppressing carbon deposition, it was found that it is effective to add magnesium as the third catalyst component.

そこで、本発明の第2の形態は、鉄とクロムにさらにマグネシウムを含む三元系の酸化物触媒である。そのような三元系触媒とすることにより、第1の形態の鉄とクロムの酸化物からなる二元系触媒よりも炭素析出を抑えることができる。   Therefore, the second embodiment of the present invention is a ternary oxide catalyst containing magnesium in addition to iron and chromium. By setting it as such a ternary catalyst, carbon deposition can be suppressed rather than the binary catalyst which consists of an oxide of iron and chromium of the first form.

本発明の部分酸化触媒は、外部から酸素を供給する必要なしに、メタンなどの炭化水素の部分酸化反応に対して良好な活性を示すことを主眼として開発されたものであり、炭化水素を部分酸化して水素と一酸化炭素を含有する混合ガスを生成させるものであって、鉄とクロムの酸化物を含む触媒、又はさらにマグネシウムの酸化物を含有することを特徴とする。   The partial oxidation catalyst of the present invention was developed mainly for showing good activity for partial oxidation reaction of hydrocarbons such as methane without the need to supply oxygen from the outside. Oxidized to produce a mixed gas containing hydrogen and carbon monoxide, characterized by containing a catalyst containing an oxide of iron and chromium, or further containing an oxide of magnesium.

メタンなどの炭化水素ガスと触媒自身を構成する酸化物の格子酸素が反応して、水素及び一酸化炭素を主成分とする合成ガスを生成する部分酸化反応を進行させることが可能であり、さらに反応で消費された格子酸素は、反応後の触媒を酸素、空気等で酸化することにより再生させることができるため、触媒の繰り返し使用が可能である。   It is possible for hydrocarbon gas such as methane and the lattice oxygen of the oxide constituting the catalyst itself to react to proceed a partial oxidation reaction that produces synthesis gas mainly composed of hydrogen and carbon monoxide, Lattice oxygen consumed in the reaction can be regenerated by oxidizing the catalyst after the reaction with oxygen, air, etc., so that the catalyst can be used repeatedly.

鉄とクロムの酸化物、又は鉄とクロムとマグネシウムの酸化物以外に、本発明の触媒を形成するために、例えば比表面積を大きくすることなどを目的として、いわゆる担体となる成分を含有することは差し支えない。担体の成分としては、通常の触媒に用いられる種々の酸化物を用いることができる。   In addition to the oxide of iron and chromium or the oxide of iron, chromium and magnesium, in order to form the catalyst of the present invention, for example, for the purpose of increasing the specific surface area, it contains a so-called carrier component. Is fine. As the component of the support, various oxides used for ordinary catalysts can be used.

本発明の水素含有ガス製造方法は、炭化水素を含む原料ガスを加熱下で本発明の部分酸化触媒に接触させ、部分酸化触媒中の金属酸化物を構成する格子酸素により炭化水素を部分酸化して水素と一酸化炭素を含有する混合ガスを生成させる部分酸化工程と、部分酸化工程を経た部分酸化触媒を加熱下で酸素含有ガスと接触させて部分酸化触媒を再生する再生工程とを含んでいる。   In the method for producing a hydrogen-containing gas of the present invention, a raw material gas containing hydrocarbon is brought into contact with the partial oxidation catalyst of the present invention under heating, and the hydrocarbon is partially oxidized by lattice oxygen constituting the metal oxide in the partial oxidation catalyst. A partial oxidation step for generating a mixed gas containing hydrogen and carbon monoxide, and a regeneration step for regenerating the partial oxidation catalyst by contacting the partial oxidation catalyst that has undergone the partial oxidation step with an oxygen-containing gas under heating. Yes.

再生工程で使用する酸素含有ガスは、純酸素ガスでもよいが、実施例に示されているように、酸素と不活性なガスとの混合ガスでもよく、水蒸気や空気でもよい。コストの面からは空気を使用するのが最も好ましいが、本触媒の利用箇所で酸素ガスが容易に調達できる場合には酸素ガスを使用すればよい。   The oxygen-containing gas used in the regeneration process may be pure oxygen gas, but as shown in the examples, it may be a mixed gas of oxygen and an inert gas, or may be water vapor or air. From the viewpoint of cost, it is most preferable to use air, but oxygen gas may be used when oxygen gas can be easily procured at the location where the catalyst is used.

純酸素ガスを使用しなくても、空気を使って炭化水素ガスから水素を含む混合ガスや、窒素を含まない合成ガスを製造できることは顕著な効果ということができる。すなわち、触媒自体の酸素を使用しない他の触媒で炭化水素を部分酸化して合成ガスを製造しようとすると反応ガスとして酸素含有ガスが必要となる。もし、純酸素ガスに代えて空気を反応ガスとして使用すると生成する合成ガス中に大量の窒素が混入してくる。しかし、本発明の触媒では純酸素ガスに代えて空気を使用するとしても、空気は触媒の再生工程で使用されるだけであり、部分酸化反応工程では酸素含有ガスは必要ではなく触媒中の酸素が使用されるので、生成する合成ガスに窒素が混入することはない。   Even if pure oxygen gas is not used, it can be said that it is a remarkable effect that a mixed gas containing hydrogen or a synthesis gas containing no nitrogen can be produced from hydrocarbon gas using air. That is, if an attempt is made to produce a synthesis gas by partially oxidizing hydrocarbons with another catalyst that does not use oxygen of the catalyst itself, an oxygen-containing gas is required as a reaction gas. If air is used as a reaction gas instead of pure oxygen gas, a large amount of nitrogen is mixed in the generated synthesis gas. However, even if air is used in place of pure oxygen gas in the catalyst of the present invention, air is only used in the regeneration process of the catalyst. In the partial oxidation reaction process, oxygen-containing gas is not required and oxygen in the catalyst is not used. Is used, nitrogen is not mixed into the generated synthesis gas.

本発明の水素含有ガス製造装置は、本発明の部分酸化触媒が保持された反応管と、その触媒を加熱する加熱炉と、メタンなどの炭化水素を含む原料ガスを反応管に送り触媒と接触させる原料ガス供給流路と、触媒再生に用いる酸素含有ガスを反応管に送り触媒と接触させる再生ガス供給流路とを備え、反応管中で触媒中の酸化物を構成する格子酸素により原料ガスの炭化水素を部分酸化して水素と一酸化炭素を含有する混合ガスを生成させる。   The hydrogen-containing gas production apparatus of the present invention comprises a reaction tube holding the partial oxidation catalyst of the present invention, a heating furnace for heating the catalyst, and a raw material gas containing hydrocarbons such as methane is sent to the reaction tube and brought into contact with the catalyst. A raw material gas supply channel, and a regeneration gas supply channel for sending an oxygen-containing gas used for catalyst regeneration to the reaction tube to contact the catalyst, and the raw material gas by lattice oxygen constituting oxides in the catalyst in the reaction tube The hydrocarbon is partially oxidized to produce a mixed gas containing hydrogen and carbon monoxide.

触媒反応管を2系列もてば、一方の部分酸化反応中に他方の触媒を再生することも可能であり、これにより連続的な水素含有ガス製造装置を実現できる。すなわち、その場合は、反応管と加熱炉の組が2組備えられ、原料ガス供給流路と再生ガス供給流路は切替え弁を介して両反応管に接続されており、加熱炉と切替え弁の制御により、一方の反応管での部分酸化反応中に他方の反応管での触媒を再生するようにするとともに、その操作を交互に切り替えることができるようになっている。   If two catalyst reaction tubes are used, it is possible to regenerate the other catalyst during one partial oxidation reaction, thereby realizing a continuous hydrogen-containing gas production apparatus. That is, in that case, two sets of reaction tubes and heating furnaces are provided, and the source gas supply flow path and the regeneration gas supply flow path are connected to both reaction tubes via switching valves, and the heating furnace and switching valve are By controlling this, the catalyst in the other reaction tube is regenerated during the partial oxidation reaction in one reaction tube, and the operation can be switched alternately.

原料となる炭化水素としては、実施例ではメタンのみを取りあげているが、メタンに限るものではない。エタンやプロパンなどの飽和炭化水素であってもよい。しかし、メタンは天然ガスの主成分であるので、低コストな水素含有ガス製造という観点から、メタンないし天然ガスが最も好ましい。   In the examples, only methane is taken up as a hydrocarbon as a raw material, but it is not limited to methane. It may be a saturated hydrocarbon such as ethane or propane. However, since methane is a main component of natural gas, methane or natural gas is most preferable from the viewpoint of low-cost hydrogen-containing gas production.

本発明の部分酸化触媒は、部分酸化反応のための酸素供給ガスラインや酸素ボンベを接続する必要なしに、触媒自身のもつ酸素を利用して部分酸化法により水素と一酸化炭素を含む混合ガスを製造することができ、触媒は空気などにより再生することができる。得られた混合ガスから水素を分離したり、水素と一酸化炭素の混合ガスを合成ガスとして有機化合物合成の原料に供したりすることができる。   The partial oxidation catalyst of the present invention is a mixed gas containing hydrogen and carbon monoxide by a partial oxidation method using oxygen of the catalyst itself without the need to connect an oxygen supply gas line or an oxygen cylinder for partial oxidation reaction. The catalyst can be regenerated with air or the like. Hydrogen can be separated from the obtained mixed gas, or a mixed gas of hydrogen and carbon monoxide can be used as a synthesis gas for a raw material for organic compound synthesis.

本発明の部分酸化触媒を用いた水素含有ガスの製造方法及び装置は、水素や合成ガスを製造するための原料となる水素含有混合ガスを製造するのに利用することができる。特に、そこで用いる本発明の触媒は、部分酸化反応においては触媒自身を構成する酸化物の格子酸素を利用し、反応後の触媒は空気中などでの酸化により再生するため、極めてコンパクトかつ安価な水素含有混合ガス製造装置を構築することができる。かかる水素含有混合ガス製造装置は、例えば分散型電源としての燃料電池への燃料供給装置として好適である。   The method and apparatus for producing a hydrogen-containing gas using the partial oxidation catalyst of the present invention can be used to produce a hydrogen-containing mixed gas that is a raw material for producing hydrogen or synthesis gas. In particular, the catalyst of the present invention used therein utilizes the lattice oxygen of the oxide constituting the catalyst itself in the partial oxidation reaction, and the catalyst after the reaction is regenerated by oxidation in the air or the like, so that it is extremely compact and inexpensive. An apparatus for producing a hydrogen-containing mixed gas can be constructed. Such a hydrogen-containing mixed gas production apparatus is suitable, for example, as a fuel supply apparatus for a fuel cell as a distributed power source.

触媒反応管を2系列組み込んで一方を反応に供している間に他方を再生するようにしたり、触媒反応管を移動床にして反応部と再生部の間で触媒を循環させるようにしたりすることにより、連続運転が可能となる。   Incorporating two series of catalyst reaction tubes so that one is regenerated while the other is being used for the reaction, or using the catalyst reaction tube as a moving bed to circulate the catalyst between the reaction section and the regeneration section Thus, continuous operation becomes possible.

また、例えば日中に水素含有混合ガスを使用し、夜間は休止するような利用法が望まれるシステムでは、触媒を1系列のみ持ち、運転中に部分酸化反応を行い、夜間休止中に触媒再生を行うというコンパクトな装置構成が可能である。   For example, in a system that uses a hydrogen-containing mixed gas during the day and wants to stop during the night, only one series of catalyst is used, a partial oxidation reaction is performed during operation, and the catalyst is regenerated during the night out. A compact device configuration is possible.

触媒を評価するための反応装置を示す概略構成図である。It is a schematic block diagram which shows the reaction apparatus for evaluating a catalyst. 実施例2の触媒の部分酸化反応前後と再生後のX線回折パターンを示す図である。It is a figure which shows the X-ray-diffraction pattern before and behind the partial oxidation reaction of the catalyst of Example 2, and after reproduction | regeneration. 水素含有ガス製造装置の一実施例を示す概略構成図である。It is a schematic block diagram which shows one Example of a hydrogen containing gas manufacturing apparatus. 水素含有ガス製造装置の他の実施例を示す概略構成図である。It is a schematic block diagram which shows the other Example of the hydrogen containing gas manufacturing apparatus.

本発明に記載の触媒組成は、他に一般的に触媒に求められる特性、例えば機械的強度の向上などを得るための成分を、本発明の触媒組成に混合して触媒調製することを排除するものではない。また、本発明に記載の触媒組成は、触媒の製造工程で不可避的に混入する微量不純物成分を排除するものでもない。   The catalyst composition described in the present invention excludes the preparation of a catalyst by mixing other components for obtaining characteristics generally required for a catalyst, such as improvement in mechanical strength, with the catalyst composition of the present invention. It is not a thing. Further, the catalyst composition described in the present invention does not exclude trace impurity components inevitably mixed in the catalyst production process.

(1)本発明の触媒の調製
鉄及びクロムからなる二元系触媒を調製するときは、所定量の硝酸鉄[Fe(H2O)6](NO3)及び硝酸クロムCr(NO33・9H2Oの水溶液を混合し、一夜放置後に蒸発乾固により乾燥させた。その後、空気流通下で800℃まで昇温し、焼成して触媒とした。
(1) Preparation of catalyst of the present invention When preparing a binary catalyst composed of iron and chromium, predetermined amounts of iron nitrate [Fe (H 2 O) 6 ] (NO 3 ) and chromium nitrate Cr (NO 3 ) 3 · 9H 2 O-aqueous were combined and dried by evaporation to dryness after standing overnight. Then, it heated up to 800 degreeC under air circulation, and baked to make the catalyst.

鉄、マグネシウム及びクロムからなる三元系触媒を調製するときは、所定量の硝酸鉄[Fe(H2O)6](NO3)、硝酸マグネシウム(Mg(NO32・6H2O)及び硝酸クロムCr(NO33・9H2Oの水溶液を混合し、一夜放置後に蒸発乾固により乾燥させた。その後、空気流通下で800℃まで昇温し、焼成して触媒とした。 When preparing a ternary catalyst comprising iron, magnesium and chromium, a predetermined amount of iron nitrate [Fe (H 2 O) 6 ] (NO 3 ), magnesium nitrate (Mg (NO 3 ) 2 .6H 2 O) And an aqueous solution of chromium nitrate Cr (NO 3 ) 3 .9H 2 O were mixed and left to stand overnight to dry by evaporation to dryness. Then, it heated up to 800 degreeC under air circulation, and baked to make the catalyst.

(2)評価のための実験装置
評価のための実験装置として、図1に示される反応装置を使用した。ただし、この反応装置はあくまで評価のための実験装置であり、実際にこの触媒を使用して水素含有ガスを製造する装置はこの反応装置に限定されるものではなく、各部の配置や規模は目的に応じて適宜変更することができる。
(2) Experimental apparatus for evaluation The reaction apparatus shown in FIG. 1 was used as an experimental apparatus for evaluation. However, this reactor is only an experimental device for evaluation, and an apparatus for actually producing a hydrogen-containing gas using this catalyst is not limited to this reactor. It can be changed as appropriate according to the situation.

図1の反応装置において、反応管2は石英ガラス管であり、例えばその内径が10mm、長さが250mmであり、内部には部分酸化触媒層4が充填されている。触媒層4は両側から石英製グラスウールで挟み込まれて反応管2内に固定されている。反応管2を加熱するために電気炉6が設けられており、反応管2が電気炉6中に収納されるように電気炉6に対して反応管2が位置決めされている。触媒層4に対して石英ガラス製熱電対保護管(図示略)が設置され、その中に熱電対(図示略)が通されて触媒層4と接触している。触媒層4の温度はその熱電対により検出され、その検出された温度が設定温度になるように、温度コントローラ(図示略)により電気炉6への通電が制御される。   In the reaction apparatus of FIG. 1, the reaction tube 2 is a quartz glass tube, and has an inner diameter of 10 mm and a length of 250 mm, for example, and is filled with the partial oxidation catalyst layer 4. The catalyst layer 4 is sandwiched between quartz glass wool from both sides and fixed in the reaction tube 2. An electric furnace 6 is provided for heating the reaction tube 2, and the reaction tube 2 is positioned with respect to the electric furnace 6 so that the reaction tube 2 is accommodated in the electric furnace 6. A quartz glass thermocouple protective tube (not shown) is installed for the catalyst layer 4, and a thermocouple (not shown) is passed through it to contact the catalyst layer 4. The temperature of the catalyst layer 4 is detected by the thermocouple, and energization to the electric furnace 6 is controlled by a temperature controller (not shown) so that the detected temperature becomes a set temperature.

反応管2の一端には部分酸化反応のための原料ガスとしてメタンを供給する原料ガス供給流路8と、触媒再生時に酸素含有ガスとして酸素とアルゴンの混合ガス、水蒸気又は空気を供給する再生ガス供給流路10が、三方切替弁12により切り替えてガスを供給することができるように接続されている。いずれの流路8,10もそれぞれのガスを一定流量で供給するための質量流量制御器14,18を備えている。それぞれの質量流量制御器14,18の上流には開閉弁16,20が配置されている。   At one end of the reaction tube 2, a raw material gas supply flow path 8 for supplying methane as a raw material gas for partial oxidation reaction, and a regeneration gas for supplying a mixed gas of oxygen and argon, water vapor or air as an oxygen-containing gas at the time of catalyst regeneration. The supply flow path 10 is connected so that gas can be supplied by being switched by the three-way switching valve 12. Each of the flow paths 8 and 10 includes mass flow controllers 14 and 18 for supplying respective gases at a constant flow rate. On-off valves 16 and 20 are arranged upstream of the respective mass flow controllers 14 and 18.

反応管2の他端は三方バルブ22を介してガスクロマトグラフ24及び質量分析計26に接続されている。質量分析計26として四重極質量分析計を用いているが他の形式の質量分析計でもよい。三方バルブ22の切替えにより、反応管2からの反応ガスをガスクロマトグラフ24又は質量分析計26に導いて適宜分析する。しかしながら、このような分析装置の配置は実験データ収集のための配置であり、実用化システムに不可欠なものではない。   The other end of the reaction tube 2 is connected to a gas chromatograph 24 and a mass spectrometer 26 via a three-way valve 22. Although a quadrupole mass spectrometer is used as the mass spectrometer 26, other types of mass spectrometers may be used. By switching the three-way valve 22, the reaction gas from the reaction tube 2 is led to the gas chromatograph 24 or the mass spectrometer 26 and analyzed as appropriate. However, such an arrangement of analyzers is an arrangement for collecting experimental data and is not indispensable for a practical system.

なお、分析装置の使用条件の制約から、実験に用いるガスを希釈するときは、希釈ガスとしてアルゴンを用いた。これは、質量分析計で一酸化炭素を分析しようとすると、一酸化炭素と同じ質量数をもつ窒素は希釈ガスとしては使用できないからである。そして、アルゴンは不活性ガスであるため、触媒反応にはなんら影響しないことを確認済みである。   In addition, when diluting the gas used for the experiment, argon was used as the diluting gas because of restrictions on the use conditions of the analyzer. This is because, when attempting to analyze carbon monoxide with a mass spectrometer, nitrogen having the same mass number as carbon monoxide cannot be used as a diluent gas. And since argon is an inert gas, it has been confirmed that it has no influence on the catalytic reaction.

(3)本発明の部分酸化触媒を用いたメタンからの水素製造反応
製造した触媒は、メタンの部分酸化反応によって評価した。なお、分析装置の感度・分解能の制約から、メタンは不活性ガスであるアルゴンで希釈して導入したが、アルゴンは触媒活性の評価にはなんら影響するものではない。
(3) Hydrogen production reaction from methane using the partial oxidation catalyst of the present invention The produced catalyst was evaluated by a partial oxidation reaction of methane. Note that methane was diluted and introduced with argon, an inert gas, due to restrictions on the sensitivity and resolution of the analyzer, but argon has no effect on the evaluation of catalyst activity.

(4)本発明の触媒の再生反応
メタンの部分酸化による水素製造反応をある時間実施した後の触媒は、アルゴンで希釈した酸素ガス、又は空気により酸化し、再びメタンの部分酸化反応に供し、その性能によって完全に再生されたことを評価した。また、後で説明する図2に示すように、触媒のX線回折の結果によっても本発明の触媒は酸化によって再生することが確認された。
(4) Regeneration reaction of the catalyst of the present invention The catalyst after carrying out the hydrogen production reaction by partial oxidation of methane for a certain period of time is oxidized with oxygen gas diluted with argon or air, and again subjected to partial oxidation reaction of methane, It was evaluated that it was completely regenerated by its performance. Further, as shown in FIG. 2 to be described later, it was confirmed that the catalyst of the present invention was regenerated by oxidation also from the result of X-ray diffraction of the catalyst.

実際の部分酸化実験は、調製した触媒の0.5gを反応管に充填し、アルゴン:メタン=4:1の混合ガスを流量25ml/分、流速SV=3,000ml/g−cat・h(SVは空間速度)で流す環境下で、触媒温度を毎分10℃の速度で750〜800℃まで昇温した後、その温度に所定時間保持して行った。部分酸化と触媒再生を交互に繰り返して実験を行う場合には、上記の部分酸化反応を所定時間実施した後、同温度においてガスをアルゴン:酸素=4:1の混合ガスに切り替えて、25ml/分、空間速度SV=3,000ml/g−cat・hで部分酸化と同じ時間だけ反応させ、触媒を再生した。   In an actual partial oxidation experiment, 0.5 g of the prepared catalyst was charged into a reaction tube, a mixed gas of argon: methane = 4: 1 was supplied at a flow rate of 25 ml / min, and a flow rate SV = 3,000 ml / g-cat · h ( The temperature of the catalyst was raised to 750 to 800 ° C. at a rate of 10 ° C. per minute in an environment where SV is flowing at a space velocity), and then held at that temperature for a predetermined time. When the experiment is performed by alternately repeating partial oxidation and catalyst regeneration, after performing the partial oxidation reaction for a predetermined time, the gas is switched to a mixed gas of argon: oxygen = 4: 1 at the same temperature, and 25 ml / The catalyst was regenerated by reacting at a space velocity of SV = 3,000 ml / g-cat · h for the same time as the partial oxidation.

以上の反応条件はあくまで評価のための実験条件であり、実際に工業的に製造する際には目的に合せて適宜変更する。   The above reaction conditions are experimental conditions for evaluation, and are appropriately changed according to the purpose when actually producing industrially.

以下、本発明を実施例によりさらに詳述する。なお、実施例1の触媒はマグネシウムを含有していないので、本発明には含まれない。実施例1は参考例と解釈されるべきものである。以下の触媒の表記中のFe(16)のような括弧内の数字は、触媒中のCr231gあたりを基準として含有された金属元素の量をミリモル(mmol)単位で表したものである。 Hereinafter, the present invention will be described in more detail with reference to examples. In addition, since the catalyst of Example 1 does not contain magnesium, it is not included in the present invention. Example 1 should be interpreted as a reference example. The numbers in parentheses such as Fe (16) in the following catalyst notation represent the amount of metal element contained in units of millimolar (mmol) based on 1 g of Cr 2 O 3 in the catalyst. is there.

鉄とクロムの酸化物からなる二元系触媒として、Fe(16)−Cr23触媒(Cr231gあたり16mmolのFe含有されたもの)からFe(32)−Cr23触媒(Cr231gあたり32mmolのFe含有されたもの)の範囲でFeの含有量を変化させた触媒を調製した。これらの触媒は、FeとCrの硝酸塩を総て溶解させた水溶液から上述の方法により焼成温度800℃で調製した。
これらの触媒を用いてメタンの部分酸化反応一触媒再生を実施した。反応及び再生時間は10分ずつ、反応温度は800℃である。結果を表1と表2に示す。表1に示す触媒は部分酸化反応一触媒再生を3回ずつ繰り返した。表2はFeのみの触媒と、Feと組み合わせる金属をCr以外の金属とした場合との比較をするためのものである。
As a binary catalyst composed of an oxide of iron and chromium, Fe (16) -Cr 2 O 3 catalyst (containing 16 mmol of Fe per 1 g of Cr 2 O 3 ) to Fe (32) -Cr 2 O 3 catalyst A catalyst was prepared in which the Fe content was changed in the range of (containing 32 mmol of Fe per 1 g of Cr 2 O 3 ). These catalysts were prepared at a calcination temperature of 800 ° C. by the above-mentioned method from an aqueous solution in which all of Fe and Cr nitrates were dissolved.
Using these catalysts, methane partial oxidation reaction-one catalyst regeneration was carried out. The reaction and regeneration time is 10 minutes each, and the reaction temperature is 800 ° C. The results are shown in Tables 1 and 2. For the catalysts shown in Table 1, partial oxidation reaction and one catalyst regeneration were repeated three times. Table 2 shows a comparison between a catalyst containing only Fe and a case where the metal combined with Fe is a metal other than Cr.

Figure 0005324265
Figure 0005324265

Figure 0005324265
Figure 0005324265

Fe(16)−Cr23触媒からFe(32)−Cr23触媒は、メタンの転化率としてほぼ50%以上、格子酸素の転化率30%前後が得られた。またCO選択率はあまり高くはなく炭素析出量が多いが、H2選択率が高い。CO2選択率が低いことから、合成ガス(H2+CO)を生成する部分酸化反応が進行していることがわかる。析出した炭素は再生工程で除去される。 From the Fe (16) -Cr 2 O 3 catalyst to the Fe (32) -Cr 2 O 3 catalyst, a methane conversion rate of approximately 50% or more and a lattice oxygen conversion rate of approximately 30% were obtained. The CO selectivity is not so high and the amount of carbon deposition is large, but the H 2 selectivity is high. Since the CO 2 selectivity is low, it can be seen that the partial oxidation reaction for generating synthesis gas (H 2 + CO) proceeds. The precipitated carbon is removed in the regeneration process.

表2の結果から、Feのみの触媒はCO2選択率が高く、完全酸化が主反応になっていることが窺われる。Feと他の金属との二元触媒では、Crに代えてNi又はCoを使用した触媒も完全酸化が主反応となっている。また、FeとAlとの二元触媒は部分酸化も起こっているが、メタンの転化率が低いことから触媒活性が低いことがわかる。 From the results of Table 2, it can be seen that the Fe-only catalyst has a high CO 2 selectivity and complete oxidation is the main reaction. In the binary catalyst of Fe and another metal, complete oxidation is the main reaction in the catalyst using Ni or Co instead of Cr. Further, although the binary catalyst of Fe and Al is also partially oxidized, it can be seen that the catalytic activity is low because the conversion rate of methane is low.

このように、部分酸化触媒としてのFeを含む二元触媒では、FeとCrの組合せが最も好ましいものであり、その組成としてCr231gあたりのFeの含有量が少なくとも16〜32mmolの範囲では良好な結果を示している。 Thus, in the binary catalyst containing Fe as the partial oxidation catalyst, the combination of Fe and Cr is most preferable, and the content of Fe per 1 g of Cr 2 O 3 is in the range of at least 16 to 32 mmol. Shows good results.

実施例1の触媒を用いて、800℃での部分酸化反応と800℃での再生反応を3回繰り返す実験を行った。表1に示す結果のように、3回の反応−再生を繰り返しても安定して反応が進行することが確認できた。   Using the catalyst of Example 1, an experiment was performed in which a partial oxidation reaction at 800 ° C. and a regeneration reaction at 800 ° C. were repeated three times. As shown in Table 1, it was confirmed that the reaction proceeded stably even when the reaction-regeneration was repeated three times.

焼成温度800℃で調製したFe(16)−Mg(3)−Cr23触媒(Cr231gあたり16mmolのFeと3mmolのMgOが含有されるよう、Fe、Mg、Crの硝酸塩を総て溶解させた水溶液から調製した触媒)を用い、メタンの部分酸化反応一触媒再生を実施した。反応及び再生時間は10分ずつ、反応温度は800℃である。結果を表3、表4に示す。 Fe (16) -Mg (3) -Cr 2 O 3 catalyst prepared at a calcining temperature of 800 ° C. (Fe, Mg and Cr nitrates were added so that 16 mmol of Fe and 3 mmol of MgO were contained per 1 g of Cr 2 O 3. Using a catalyst prepared from a completely dissolved aqueous solution, partial oxidation reaction of methane and one catalyst regeneration were carried out. The reaction and regeneration time is 10 minutes each, and the reaction temperature is 800 ° C. The results are shown in Tables 3 and 4.

Figure 0005324265
Figure 0005324265

Figure 0005324265
Figure 0005324265

メタンの転化率として52.9%、格子酸素の転化率46.8%が得られた。またCO選択率が高い一方、CO2選択率が低いことから、合成ガス(H2+CO)を生成する部分酸化反応が進行していることがわかる。 A methane conversion of 52.9% and lattice oxygen conversion of 46.8% were obtained. The one CO selectivity is high, since the CO 2 selectivity is low, it can be seen that the partial oxidation reaction to produce synthesis gas (H 2 + CO) is in progress.

実施例2の触媒を用いて、800℃での部分酸化反応と800℃での再生反応を3回繰り返す実験を行った。表4に示す結果のように、3回の反応一再生を繰り返しても安定して反応が進行することが確認できた。   Using the catalyst of Example 2, an experiment was performed in which a partial oxidation reaction at 800 ° C. and a regeneration reaction at 800 ° C. were repeated three times. As shown in Table 4, it was confirmed that the reaction proceeded stably even after repeating one reaction and three regenerations.

焼成温度800℃で調製したFe(12)−Mg(3)−Cr23触媒(Cr231gあたり12mmolのFeと3mmolのMgOが含有されるよう、Fe、Mg、Crの硝酸塩を総て溶解させた水溶液から調製した触媒)についても、800℃での部分酸化反応と800℃での再生反応を3回繰り返す実験を行った。この実験の結果も表4に示す。
3回の繰り返し実験を通してメタン転化率は70%以上、水素選択率とCO選択率はとも安定して高い値で推移しており、活性・寿命ともに優れた触媒であることを示した。ただし、実施例2に比べると、やや炭素析出が多い。
Fe (12) -Mg (3) -Cr 2 O 3 catalyst prepared at a calcination temperature of 800 ° C. (Fe, Mg, Cr nitrates were added so that 12 mmol of Fe and 3 mmol of MgO were contained per 1 g of Cr 2 O 3. For all the catalysts prepared from the dissolved aqueous solution, an experiment was conducted in which a partial oxidation reaction at 800 ° C. and a regeneration reaction at 800 ° C. were repeated three times. The results of this experiment are also shown in Table 4.
Through three repeated experiments, the methane conversion was over 70%, and the hydrogen selectivity and CO selectivity were both stable and high, indicating that the catalyst was excellent in both activity and life. However, compared with Example 2, there is a little more carbon deposition.

焼成温度800℃で調製したFe(8)−Mg(3)−Cr23触媒(Cr231gあたり8mmolのFeと3mmolのMgOが含有されるよう、Fe、Mg、Crの硝酸塩を総て溶解させた水溶液から調製した触媒)についても、800℃での部分酸化反応と800℃での再生反応を3回繰り返す実験を行った。この実験の結果も表4に示す。3回の繰り返し実験を通してメタン転化率と格子酸素転化率はともに高く、水素選択率・CO選択率とも安定して高い値で推移しているが、実施例2、3と比べて炭素析出が多い結果となった。 Fe (8) -Mg (3) -Cr 2 O 3 catalyst prepared at a firing temperature of 800 ° C. (Fe, Mg and Cr nitrates were added so that 8 mmol of Fe and 3 mmol of MgO per 1 g of Cr 2 O 3 were contained. For all the catalysts prepared from the dissolved aqueous solution, an experiment was conducted in which a partial oxidation reaction at 800 ° C. and a regeneration reaction at 800 ° C. were repeated three times. The results of this experiment are also shown in Table 4. Through three repeated experiments, both the methane conversion rate and the lattice oxygen conversion rate are high, and both the hydrogen selectivity and the CO selectivity are stable and high. However, there is more carbon deposition than in Examples 2 and 3. As a result.

焼成温度800℃で調製したFe(32)−Mg(3)−Cr23触媒(Cr231gあたり32mmolのFeと3mmolのMgOが含有されるよう、Fe、Mg、Crの硝酸塩を総て溶解させた水溶液から調製した触媒)についても、800℃での部分酸化反応と800℃での再生反応を3回繰り返す実験を行った。この実験の結果も表4に示す。実施例2、3と比べて炭素析出は微少に抑えられるが、メタン転化率と格子酸素転化率が低下し、水素発生も低下し、CO2発生が増加している。 Fe (32) -Mg (3) -Cr 2 O 3 catalyst prepared at a calcination temperature of 800 ° C. (Fe, Mg and Cr nitrates were added so that 32 mmol of Fe and 3 mmol of MgO were contained per 1 g of Cr 2 O 3. For all the catalysts prepared from the dissolved aqueous solution, an experiment was conducted in which a partial oxidation reaction at 800 ° C. and a regeneration reaction at 800 ° C. were repeated three times. The results of this experiment are also shown in Table 4. Compared with Examples 2 and 3, carbon deposition is suppressed to a slight level, but the methane conversion rate and lattice oxygen conversion rate are reduced, hydrogen generation is reduced, and CO 2 generation is increased.

Fe(48)−Mg(3)−Cr23触媒(Cr231gあたり48mmolのFeと3mmolのMgOが含有されるよう、Fe、Mg、Crの硝酸塩を総て溶解させた水溶液から調製した触媒)についても、800℃での部分酸化反応と800℃での再生反応を3回繰り返す実験を行った。この実験の結果も表4に示す。実施例2、3と比べて炭素析出は微少に抑えられるが、メタン転化率と格子酸素転化率が低下し、水素発生も低下し、CO2発生が増加している。 Fe (48) -Mg (3) -Cr 2 O 3 catalyst (from an aqueous solution in which all nitrates of Fe, Mg, and Cr are dissolved so that 48 mmol of Fe and 3 mmol of MgO are contained per 1 g of Cr 2 O 3 For the prepared catalyst), an experiment was conducted in which a partial oxidation reaction at 800 ° C. and a regeneration reaction at 800 ° C. were repeated three times. The results of this experiment are also shown in Table 4. Compared with Examples 2 and 3, carbon deposition is suppressed to a slight level, but the methane conversion rate and lattice oxygen conversion rate are reduced, hydrogen generation is reduced, and CO 2 generation is increased.

実施例7から9の触媒は実施例3の触媒に対して、Mg含有量を変化させて新しい触媒を調製した。   The catalysts of Examples 7 to 9 were prepared by changing the Mg content with respect to the catalyst of Example 3.

実施例7はMg含有量を実施例3の3mmolから4mmolに増加させたものである。焼成温度800℃で調製したFe(12)−Mg(4)−Cr23触媒(Cr231gあたり12mmolのFeと4mmolのMgOが含有されるよう、Fe、Mg、Crの硝酸塩を総て溶解させた水溶液から調製した触媒)についても、800℃での部分酸化反応と800℃での再生反応を3回繰り返す実験を行った。結果を表5に示す。同じ鉄含有量である実施例3に比べて、メタン転化率と格子酸素転化率は同程度のであり、炭素析出量は少なく、水素及びCO選択率は高くなっている。 In Example 7, the Mg content was increased from 3 mmol of Example 3 to 4 mmol. Fe (12) -Mg (4) -Cr 2 O 3 catalyst prepared at a firing temperature of 800 ° C. (Fe, Mg and Cr nitrates were added so that 12 mmol of Fe and 4 mmol of MgO were contained per 1 g of Cr 2 O 3. For all the catalysts prepared from the dissolved aqueous solution, an experiment was conducted in which a partial oxidation reaction at 800 ° C. and a regeneration reaction at 800 ° C. were repeated three times. The results are shown in Table 5. Compared to Example 3 having the same iron content, the methane conversion rate and the lattice oxygen conversion rate are comparable, the amount of carbon deposition is small, and the hydrogen and CO selectivity are high.

Figure 0005324265
Figure 0005324265

実施例8はMg含有量を実施例3の3mmolから5mmolに増加させたものである。焼成温度800℃で調製したFe(12)−Mg(5)−Cr23触媒(Cr231gあたり12mmolのFeと5mmolのMgOが含有されるよう、Fe、Mg、Crの硝酸塩を総て溶解させた水溶液から調製した触媒)についても、800℃での部分酸化反応と800℃での再生反応を3回繰り返す実験を行った。結果を表5に示す。実施例7と同様の傾向で、良好な結果を示している。 In Example 8, the Mg content was increased from 3 mmol of Example 3 to 5 mmol. Fe (12) -Mg (5) -Cr 2 O 3 catalyst prepared at a firing temperature of 800 ° C. (Fe, Mg and Cr nitrates were added so that 12 mmol of Fe and 5 mmol of MgO were contained per 1 g of Cr 2 O 3. For all the catalysts prepared from the dissolved aqueous solution, an experiment was conducted in which a partial oxidation reaction at 800 ° C. and a regeneration reaction at 800 ° C. were repeated three times. The results are shown in Table 5. The same tendency as in Example 7 shows good results.

実施例9はMg含有量を実施例3の3mmolから6mmolに増加させたものである。焼成温度800℃で調製したFe(12)−Mg(6)−Cr23触媒(Cr231gあたり12mmolのFeと6mmolのMgOが含有されるよう、Fe、Mg、Crの硝酸塩を総て溶解させた水溶液から調製した触媒)についても、800℃での部分酸化反応と800℃での再生反応を3回繰り返す実験を行った。結果を表5に示す。炭素析出の抑制、水素選択率及びCO選択率に関しては良好だが、メタン転化率は実施例3、7、8に比べてやや劣る。 In Example 9, the Mg content was increased from 3 mmol of Example 3 to 6 mmol. Fe (12) -Mg (6) -Cr 2 O 3 catalyst prepared at a calcination temperature of 800 ° C. (Fe, Mg and Cr nitrates were added so that 12 mmol of Fe and 6 mmol of MgO were contained per 1 g of Cr 2 O 3. For all the catalysts prepared from the dissolved aqueous solution, an experiment was conducted in which a partial oxidation reaction at 800 ° C. and a regeneration reaction at 800 ° C. were repeated three times. The results are shown in Table 5. Although suppression of carbon deposition, hydrogen selectivity, and CO selectivity are good, the methane conversion is slightly inferior to Examples 3, 7, and 8.

実施例3、7、8、9については750℃での部分酸化反応−再生反応の3回繰り返し実験も行なった。結果を表6に示す。   For Examples 3, 7, 8, and 9, the experiment was repeated three times: partial oxidation reaction-regeneration reaction at 750 ° C. The results are shown in Table 6.

Figure 0005324265
Figure 0005324265

実施例3、7、8、9のいずれの触媒を用いた場合でも炭素析出量が減少しており、本発明の触媒は800℃よりも750℃での反応に適していることが明らかになった。反応温度の低下は、システム運転の燃料費の削減をもたらすので好ましい。750℃での反応に比べて800℃での反応で炭素析出量が多くなったのは、副反応としてメタンの分解反応が起こったためであると考えられる。   Even when any of the catalysts of Examples 3, 7, 8, and 9 was used, the amount of carbon deposition decreased, and it became clear that the catalyst of the present invention was more suitable for the reaction at 750 ° C. than 800 ° C. It was. Lowering the reaction temperature is preferable because it results in a reduction in fuel costs for system operation. The reason why the amount of carbon deposition increased in the reaction at 800 ° C. compared to the reaction at 750 ° C. is considered to be due to the decomposition reaction of methane as a side reaction.

実施例7のFe(12)−Mg(4)−Cr23触媒を用いて750℃で部分酸化反応と再生反応を20回繰り返し行った結果を表7に示す。20回の繰り返し実験でも部分酸化反応活性は安定に出現しており、本発明の触媒が長寿命であることが確認された。 Table 7 shows the results of repeating the partial oxidation reaction and regeneration reaction 20 times at 750 ° C. using the Fe (12) -Mg (4) -Cr 2 O 3 catalyst of Example 7. Even in 20 repeated experiments, the partial oxidation reaction activity appeared stably, and it was confirmed that the catalyst of the present invention has a long life.

Figure 0005324265
Figure 0005324265

比較例1Comparative Example 1

Mgの代わりにCaを3mmol含有させたほかは実施例2と同様の触媒、すなわちFe(16)−Ca(3)−Cr23触媒(Cr231gあたり16mmolのFeと3mmolのCaOが含有されるよう、Fe、Ca、Crの硝酸塩を総て溶解させた水溶液から調製した触媒)について、800℃でのメタンの部分酸化反応一触媒再生実験を実施した。反応及び再生時間は10分ずつとした。結果を表3に示す。実施例2と比べ、メタン転化率と格子酸素転化率が低く、またCO2発生が多く、実用には適さない。 The same catalyst as in Example 2 except that 3 mmol of Ca was used instead of Mg, that is, Fe (16) -Ca (3) -Cr 2 O 3 catalyst (16 mmol of Fe and 3 mmol of CaO per 1 g of Cr 2 O 3 (Catalyst prepared from an aqueous solution in which all nitrates of Fe, Ca, and Cr were dissolved so as to contain N), a partial oxidation reaction of methane at 800 ° C. and a catalyst regeneration experiment were conducted. The reaction and regeneration time was 10 minutes each. The results are shown in Table 3. Compared to Example 2, the methane conversion rate and the lattice oxygen conversion rate are low, and more CO 2 is generated, which is not suitable for practical use.

比較例2Comparative Example 2

Mgの代わりにSrを3mmol含有させたほかは実施例2と同様の触媒、すなわちFe(16)−Sr(3)−Cr23触媒(Cr231gあたり16mmolのFeと3mmolのSrOが含有されるよう、Fe、Sr、Crの硝酸塩を総て溶解させた水溶液から調製した触媒)について、800℃でのメタンの部分酸化反応一触媒再生実験を実施した。反応及び再生時間は10分ずつとした。結果を表3に示す。実施例2と比べ、メタン転化率と格子酸素転化率が低く、またCO2発生がやや多く、実用には適さない。 The same catalyst as in Example 2 except that 3 mmol of Sr was used instead of Mg, that is, Fe (16) -Sr (3) -Cr 2 O 3 catalyst (16 mmol of Fe and 3 mmol of SrO per 1 g of Cr 2 O 3 (Catalyst prepared from an aqueous solution in which all nitrates of Fe, Sr, and Cr were dissolved so as to contain), a partial oxidation reaction of methane at 800 ° C. and a catalyst regeneration experiment were conducted. The reaction and regeneration time was 10 minutes each. The results are shown in Table 3. Compared to Example 2, the methane conversion rate and the lattice oxygen conversion rate are low, and the amount of CO 2 generated is somewhat high, which is not suitable for practical use.

(X線回折による触媒再生の確認)
本発明の触媒成分のうち、部分酸化反応に関与する格子酸素の由来をX線回折測定により確かめた。そのX線回折測定の結果を図2に示す。触媒としては実施例3の触媒を用いた。
c)は部分酸化反応前の触媒のX線回折パターンであり、図中●の記号で示されているMgとCrの複合酸化物MgCr24のピークと星印で示されるCrとFeの複合酸化物Crl.3Fe0.74のピークが認められた。d)はメタンとの反応後の触媒のX線回折パターンであり、CrとFeの複合酸化物が酸化されたFeCr24と金属Feのピークが出現し、CrとFeの複合酸化物中の鉄原子付近の酸素が反応に寄与していることが示唆された。
1回の再酸化後と反応−再酸化を3回繰り返した後で同等のスペクトルが得られており、本発明の触媒が安定に再生することが確認された。
(Confirmation of catalyst regeneration by X-ray diffraction)
Among the catalyst components of the present invention, the origin of lattice oxygen involved in the partial oxidation reaction was confirmed by X-ray diffraction measurement. The result of the X-ray diffraction measurement is shown in FIG. The catalyst of Example 3 was used as the catalyst.
c) is an X-ray diffraction pattern of the catalyst before the partial oxidation reaction. In the figure, the peak of Mg and Cr composite oxide MgCr 2 O 4 indicated by the symbol ● and of Cr and Fe indicated by an asterisk. A peak of the composite oxide Cr l.3 Fe 0.7 O 4 was observed. d) is an X-ray diffraction pattern of the catalyst after the reaction with methane, and a peak of FeCr 2 O 4 and metal Fe in which the composite oxide of Cr and Fe is oxidized appears in the composite oxide of Cr and Fe. It was suggested that oxygen near the iron atom contributed to the reaction.
An equivalent spectrum was obtained after one reoxidation and after three reaction-reoxidation cycles, confirming that the catalyst of the present invention was stably regenerated.

(水素含有ガス製造装置の実施例1)
図3に部分酸化触媒が移動できないように固定された固定床反応管を用いた水素含有ガス製造装置の実施例を概略的に示す。
(Example 1 of a hydrogen-containing gas production apparatus)
FIG. 3 schematically shows an embodiment of a hydrogen-containing gas production apparatus using a fixed bed reaction tube fixed so that the partial oxidation catalyst cannot move.

第1の反応管2aに加熱炉6aが配置され、第2の反応管2bに加熱炉6bが配置されている。反応管2a,2bや加熱炉6a,6bは基本的には図1の評価用の装置のものと同じである。反応管2a,2b内には本発明の部分酸化触媒層が充填されている。   A heating furnace 6a is arranged in the first reaction tube 2a, and a heating furnace 6b is arranged in the second reaction tube 2b. The reaction tubes 2a and 2b and the heating furnaces 6a and 6b are basically the same as those of the evaluation apparatus shown in FIG. The partial oxidation catalyst layer of the present invention is filled in the reaction tubes 2a and 2b.

一方の反応管2aの一端には原料ガスとしてメタンその他の炭化水素を供給する原料ガス供給流路8と、触媒再生時に酸素含有ガスとして空気を供給する再生ガス供給流路10が、三方切替弁12aにより切り替えてガスを供給することができるように接続されている。他方の反応管2bの一端にはその原料ガス供給流路8と再生ガス供給流路10が三方切替弁12bにより切り替えてガスを供給することができるように接続されている。原料ガス供給流路8と再生ガス供給流路10にはそれぞれ図1に示されているように開閉弁と質量流量制御器が設けられている。   A three-way switching valve is provided at one end of one reaction tube 2a with a source gas supply channel 8 for supplying methane and other hydrocarbons as source gas, and a regeneration gas supply channel 10 for supplying air as an oxygen-containing gas during catalyst regeneration. It connects so that gas can be supplied by switching by 12a. One end of the other reaction tube 2b is connected to the source gas supply flow path 8 and the regeneration gas supply flow path 10 so that gas can be supplied by being switched by a three-way switching valve 12b. As shown in FIG. 1, the source gas supply flow path 8 and the regeneration gas supply flow path 10 are each provided with an on-off valve and a mass flow controller.

三方切替弁12aと12bはコントローラ30により同時に切り換えられ、反応管2aに原料ガスが供給されるときは反応管2bには再生ガスが供給され、逆に反応管2bに原料ガスが供給されるときは反応管2aには再生ガスが供給されるように制御される。   The three-way switching valves 12a and 12b are simultaneously switched by the controller 30, and when the raw material gas is supplied to the reaction tube 2a, the regeneration gas is supplied to the reaction tube 2b, and conversely, the raw material gas is supplied to the reaction tube 2b. Is controlled so that the regeneration gas is supplied to the reaction tube 2a.

加熱炉6a,6bの温度もコントローラ30により制御され、それぞれの反応管2a,2bでの部分酸化反応又は触媒再生用の設定温度になるように調節される。部分酸化反応と触媒再生で反応管2a,2bの設定温度を変えないときは、コントローラ30により反応管2a,2bの温度が一定になるように制御される。   The temperatures of the heating furnaces 6a and 6b are also controlled by the controller 30 and adjusted so as to be set to partial oxidation reactions or catalyst regeneration temperatures in the respective reaction tubes 2a and 2b. When the set temperature of the reaction tubes 2a and 2b is not changed between the partial oxidation reaction and the catalyst regeneration, the controller 30 controls the temperature of the reaction tubes 2a and 2b to be constant.

このようにして、加熱炉6a,6bと切替え弁12a,12bの制御により、一方の反応管での部分酸化反応中に他方の反応管での触媒を再生するようにするとともに、その操作を交互に切り替えることができる。   In this way, by controlling the heating furnaces 6a and 6b and the switching valves 12a and 12b, the catalyst in the other reaction tube is regenerated during the partial oxidation reaction in one reaction tube, and the operation is alternately performed. You can switch to

(水素含有ガス製造装置の実施例2)
図4に部分酸化触媒が移動可能な状態で保持された移動床反応管を用いた水素含有ガス製造装置の実施例を概略的に示す。
(Example 2 of a hydrogen-containing gas production apparatus)
FIG. 4 schematically shows an embodiment of a hydrogen-containing gas production apparatus using a moving bed reaction tube in which a partial oxidation catalyst is held in a movable state.

反応管は部分酸化反応を行わせる反応部20と、反応部20とは異なる場所で触媒再生を行わせる再生部22とを備えている。反応部20と再生部22はそれぞれ加熱炉を備えてそれぞれの設定温度になるように調節されている。反応部20と再生部22の設定温度は同じであってもよく、異なっていてもよい。   The reaction tube includes a reaction unit 20 that performs a partial oxidation reaction, and a regeneration unit 22 that performs catalyst regeneration at a location different from the reaction unit 20. The reaction unit 20 and the regeneration unit 22 are each provided with a heating furnace and adjusted so as to have respective set temperatures. The set temperatures of the reaction unit 20 and the regeneration unit 22 may be the same or different.

反応部20の上部に再生部22が配置されている。再生部22の下部には触媒再生のための酸素含有ガスとして空気を供給する再生ガス供給流路24が接続され、上部にはガス排出口26が設けられている。再生部22は再生された触媒を貯留することができるとともに、底部に開口をもち、再生された触媒をその開口から反応部20へ単位時間あたり一定量ずつ落下させる。   A regeneration unit 22 is disposed above the reaction unit 20. A regeneration gas supply passage 24 for supplying air as an oxygen-containing gas for catalyst regeneration is connected to the lower part of the regeneration unit 22, and a gas discharge port 26 is provided at the upper part. The regeneration unit 22 can store the regenerated catalyst, and has an opening at the bottom, and drops the regenerated catalyst from the opening to the reaction unit 20 by a certain amount per unit time.

反応部20の上部には原料ガスとしてメタンその他の炭化水素を供給する原料ガス供給流路28が接続され、反応部20内で流動状態にある触媒と接触して部分酸化反応が行われる。反応部20の底部には開口が設けられ、反応部20の下部には触媒受け部32が設けられ、反応部20の底部の開口から落下した使用済みの触媒が触媒受け部32で受け止められる。   A raw material gas supply passage 28 for supplying methane and other hydrocarbons as a raw material gas is connected to the upper part of the reaction unit 20, and a partial oxidation reaction is performed in contact with a fluidized catalyst in the reaction unit 20. An opening is provided at the bottom of the reaction unit 20, and a catalyst receiving unit 32 is provided at the bottom of the reaction unit 20, and a used catalyst that has dropped from the opening at the bottom of the reaction unit 20 is received by the catalyst receiving unit 32.

触媒受け部32で受け止められた触媒を再生部22に搬送するために、搬送路34が設けられている。搬送路34は触媒を流路内のベルト又はスクリューにより押し上げて搬送するリフターになっている。   A transport path 34 is provided for transporting the catalyst received by the catalyst receiver 32 to the regeneration unit 22. The transport path 34 is a lifter that transports the catalyst by pushing it up with a belt or a screw in the flow path.

反応部20で部分酸化反応をした反応ガスは、搬送路34の流路を通って再生部22に送られ、再生部22のガス排出口26から使用済みの再生ガスとともに取り出される。   The reaction gas that has undergone the partial oxidation reaction in the reaction section 20 is sent to the regeneration section 22 through the flow path of the transport path 34 and is taken out together with the used regeneration gas from the gas outlet 26 of the regeneration section 22.

この水素含有ガス製造装置では、部分酸化反応と触媒再生が異なる場所で並行して実行され、触媒は反応部20と再生部22の間を循環するので、連続的に稼動させることができる。   In this hydrogen-containing gas production apparatus, the partial oxidation reaction and the catalyst regeneration are executed in parallel at different locations, and the catalyst circulates between the reaction unit 20 and the regeneration unit 22, and therefore can be operated continuously.

2,2a,2b 反応管
4 部分酸化触媒層
6,6a,6b 電気炉
8 原料ガス供給流路
10 再生ガス供給流路
12,12a,12b 三方切替弁
20 反応部
22 再生部
30 コントローラ
32 触媒受け部
34 搬送路
2, 2a, 2b Reaction tube 4 Partial oxidation catalyst layer 6, 6a, 6b Electric furnace 8 Material gas supply flow path 10 Regeneration gas supply flow path 12, 12a, 12b Three-way switching valve 20 Reaction section 22 Regeneration section 30 Controller 32 Catalyst receiver Part 34 Conveyance path

Claims (6)

炭化水素を部分酸化して水素と一酸化炭素を含有する混合ガスを生成させる部分酸化触媒において、
鉄の酸化物とクロムの酸化物を含み、さらにマグネシウムの酸化物を含むことを特徴とする部分酸化触媒。
In a partial oxidation catalyst that partially oxidizes hydrocarbons to produce a mixed gas containing hydrogen and carbon monoxide,
A partial oxidation catalyst comprising an iron oxide and a chromium oxide, and further comprising a magnesium oxide.
炭化水素を含む原料ガスを加熱下で請求項に記載の部分酸化触媒に接触させ、酸化剤としての酸素含有ガスを供給することなく、前記部分酸化触媒中の金属酸化物を構成する格子酸素により前記炭化水素を部分酸化して水素と一酸化炭素を含有する混合ガスを生成させる部分酸化工程と、
前記部分酸化工程を経た前記部分酸化触媒を加熱下で酸素含有ガスと接触させて前記部分酸化触媒を再生する再生工程と、
を含む水素含有ガス製造方法。
A raw material gas containing a hydrocarbon is brought into contact with the partial oxidation catalyst according to claim 1 under heating, without supplying oxygen-containing gas as oxidizing agent, lattice oxygen constituting the metal oxide of the partial oxidation catalyst A partial oxidation step in which the hydrocarbon is partially oxidized to produce a mixed gas containing hydrogen and carbon monoxide;
A regeneration step of regenerating the partial oxidation catalyst by contacting the partial oxidation catalyst that has undergone the partial oxidation step with an oxygen-containing gas under heating;
A method for producing a hydrogen-containing gas comprising:
前記酸素含有ガスとして空気を使用する請求項に記載の水素含有ガス製造方法。 The method for producing a hydrogen-containing gas according to claim 2 , wherein air is used as the oxygen-containing gas. 内部に請求項に記載の部分酸化触媒が保持された反応管と、
前記触媒を加熱する加熱炉と、
炭化水素を含む原料ガスを前記反応管に送り前記触媒と接触させる原料ガス供給流路と、
触媒再生に用いる酸素含有ガスを前記反応管に送り前記部分酸化触媒と接触させる再生ガス供給流路と、を備え、
前記反応管中で、酸化剤としての酸素含有ガスの存在しない状態下で前記部分酸化触媒中の金属酸化物を構成する格子酸素により前記原料ガス中の炭化水素を部分酸化して水素と一酸化炭素を含有する混合ガスを生成させ、前記原料ガスが存在しない状態下で前記再生ガス供給流路からの酸素含有ガスにより前記部分酸化触媒を再生する水素含有ガス製造装置。
A reaction tube in which the partial oxidation catalyst according to claim 1 is held;
A heating furnace for heating the catalyst;
A raw material gas supply channel for sending a raw material gas containing hydrocarbons to the reaction tube and contacting the catalyst;
A regeneration gas supply flow path for sending an oxygen-containing gas used for catalyst regeneration to the reaction tube and bringing it into contact with the partial oxidation catalyst,
In the reaction tube, in the absence of an oxygen-containing gas as an oxidant, the hydrocarbon in the raw material gas is partially oxidized by lattice oxygen constituting the metal oxide in the partial oxidation catalyst, and is oxidized with hydrogen. An apparatus for producing a hydrogen-containing gas, which generates a mixed gas containing carbon and regenerates the partial oxidation catalyst with an oxygen-containing gas from the regeneration gas supply flow path in a state where the source gas does not exist.
前記反応管は前記部分酸化触媒が移動できないように固定された固定床反応管であり、
前記反応管と加熱炉の組が2組備えられ、
前記原料ガス供給流路と再生ガス供給流路は切替え弁を介して両反応管に接続されており、
前記加熱炉と切替え弁の制御により、一方の反応管での部分酸化反応中に他方の反応管での触媒を再生するようにするとともに、その操作を交互に切り替えることができるようになっている請求項に記載の水素含有ガス製造装置。
The reaction tube is a fixed bed reaction tube fixed so that the partial oxidation catalyst cannot move,
Two sets of the reaction tube and the heating furnace are provided,
The source gas supply channel and the regeneration gas supply channel are connected to both reaction tubes via a switching valve,
By controlling the heating furnace and the switching valve, the catalyst in the other reaction tube is regenerated during the partial oxidation reaction in one reaction tube, and the operation can be switched alternately. The hydrogen-containing gas production apparatus according to claim 4 .
前記反応管は前記触媒が移動可能な状態で保持された移動床反応管であり、かつ前記反応管は部分酸化反応を行わせる反応部と、反応部とは異なる場所で触媒再生を行わせる再生部とを備えており、
前記反応部と再生部の間で前記触媒を搬送する搬送路が設けられており、
原料ガス供給流路は前記反応部に接続され、再生ガス供給流路は前記再生部に接続されている請求項に記載の水素含有ガス製造装置。
The reaction tube is a moving bed reaction tube held in a state where the catalyst is movable, and the reaction tube performs a partial oxidation reaction and a regeneration for performing catalyst regeneration in a place different from the reaction unit. Department and
A transport path for transporting the catalyst between the reaction unit and the regeneration unit is provided;
The hydrogen-containing gas production apparatus according to claim 4 , wherein the source gas supply channel is connected to the reaction unit, and the regeneration gas supply channel is connected to the regeneration unit.
JP2009058540A 2009-03-11 2009-03-11 Hydrocarbon partial oxidation catalyst and method and apparatus for producing hydrogen-containing gas using the same Expired - Fee Related JP5324265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009058540A JP5324265B2 (en) 2009-03-11 2009-03-11 Hydrocarbon partial oxidation catalyst and method and apparatus for producing hydrogen-containing gas using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009058540A JP5324265B2 (en) 2009-03-11 2009-03-11 Hydrocarbon partial oxidation catalyst and method and apparatus for producing hydrogen-containing gas using the same

Publications (2)

Publication Number Publication Date
JP2010207757A JP2010207757A (en) 2010-09-24
JP5324265B2 true JP5324265B2 (en) 2013-10-23

Family

ID=42968537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009058540A Expired - Fee Related JP5324265B2 (en) 2009-03-11 2009-03-11 Hydrocarbon partial oxidation catalyst and method and apparatus for producing hydrogen-containing gas using the same

Country Status (1)

Country Link
JP (1) JP5324265B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116328786A (en) * 2023-04-28 2023-06-27 广州大学 Method for activating transition metal oxide lattice oxygen and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2311790A (en) * 1996-04-04 1997-10-08 British Gas Plc Production of synthesis gas from hydrocarbonaceous feedstock
US6464955B2 (en) * 1999-05-13 2002-10-15 The Boc Group, Inc. Production of hydrogen and carbon monoxide
EP1257497A2 (en) * 2000-02-18 2002-11-20 Conoco Inc. Chromium-based catalysts and processes for converting hydrocarbons to synthesis gas
JP4859701B2 (en) * 2007-02-22 2012-01-25 関西電力株式会社 Hydrogen-containing gas production equipment
JP5009109B2 (en) * 2007-09-13 2012-08-22 関西電力株式会社 Hydrocarbon partial oxidation catalyst and method and apparatus for producing hydrogen-containing gas using the same

Also Published As

Publication number Publication date
JP2010207757A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
Choudhary et al. Energy‐efficient syngas production through catalytic oxy‐methane reforming reactions
Enger et al. A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts
Silvester et al. NiO supported on Al2O3 and ZrO2 oxygen carriers for chemical looping steam methane reforming
Azzam et al. Bifunctional catalysts for single-stage water–gas shift reaction in fuel cell applications.: part 1. Effect of the support on the reaction sequence
Zhu et al. Catalytic partial oxidation of methane to synthesis gas over Ni–CeO2
US10252909B2 (en) Method for dry reforming of at least one alkane
Luengnaruemitchai et al. Activity of different zeolite-supported Ni catalysts for methane reforming with carbon dioxide
Fonseca et al. Cooperative effect between copper and gold on ceria for CO-PROX reaction
Zhou et al. A novel catalyst with plate-type anodic alumina supports, Ni/NiAl2O4/γ-Al2O3/alloy, for steam reforming of methane
US11059721B2 (en) Production of synthesis gas from natural gas with copper—iron—manganese oxide oxygen carriers/catalysts via partial oxidation and dry reforming processes
KR20060132893A (en) Catalytic reaction between methanol and a peroxide
Zeng et al. Oxidative coupling of methane on fluorite-structured samarium–yttrium–bismuth oxide
JP5009109B2 (en) Hydrocarbon partial oxidation catalyst and method and apparatus for producing hydrogen-containing gas using the same
EP4072705A1 (en) <sup2/>? <sub2/>?2?a method to capture and utilize coand an installation for capturing and utilizing co <ns1:sub>2</ns1:sub>
Jin et al. The role of modified manganese perovskite oxide for selective oxidative dehydrogenation of ethane: Not only selective H2 combustion but also ethane activation
Chen et al. Migration of lattice oxygen during chemical looping dry reforming of methane with Ca2Fe2O5/Zr0. 5Ce0. 5O2 oxygen carrier
Caro Catalytic Membrane Reactors–Lab Curiosity or Key Enabling Technology?
JP5324265B2 (en) Hydrocarbon partial oxidation catalyst and method and apparatus for producing hydrogen-containing gas using the same
JP4859701B2 (en) Hydrogen-containing gas production equipment
Silberova et al. Low-temperature oxidation reactions of ethane over a Pt/Al2O3 catalyst
KR101245484B1 (en) Water gas shift catalysts and method for producing syngas by Water gas shift reaction using the same
Nakayama et al. Partial oxidation of CH4 with air to produce pure hydrogen and syngas
Inui Rapid catalytic reforming of methane with CO2 and its application to other reactions
Stepanov et al. State-of-the-Art and Achievements in the Catalytic Conversion of Natural Gas into Valuable Chemicals
Liu et al. Partial oxidation of methane over Ni/Ce-ZrO 2/θ-Al 2 O 3

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130718

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees