JP5117602B1 - Copper alloy sheet with low deflection coefficient and excellent bending workability - Google Patents
Copper alloy sheet with low deflection coefficient and excellent bending workability Download PDFInfo
- Publication number
- JP5117602B1 JP5117602B1 JP2011178800A JP2011178800A JP5117602B1 JP 5117602 B1 JP5117602 B1 JP 5117602B1 JP 2011178800 A JP2011178800 A JP 2011178800A JP 2011178800 A JP2011178800 A JP 2011178800A JP 5117602 B1 JP5117602 B1 JP 5117602B1
- Authority
- JP
- Japan
- Prior art keywords
- copper alloy
- mass
- orientation
- cold rolling
- heat treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Conductive Materials (AREA)
- Non-Insulated Conductors (AREA)
Abstract
【課題】圧延方向に対して垂直方向のたわみ係数が低く、曲げ加工性に優れ、優れた強度を有し、電気・電子機器用のリードフレーム、コネクタ、端子材等、自動車車載用などのコネクタや端子材、リレー、スイッチなどに適した銅合金板材を提供する。
【解決手段】NiとCoのいずれか1種または2種を合計で0.5〜5.0mass%、Siを0.1〜1.5mass%含有し、残部Cuおよび不可避的不純物からなる銅合金であって、EBSD法による測定における結晶方位解析において、
Cube方位{100}<001>の面積率が5%以上、かつNDRDW方位{012}<221>の面積率が10%以下
であることを特徴とする銅合金板材。
【選択図】なしAn object of the present invention is to provide a lead frame, a connector, a terminal material, etc. for an electric / electronic device, such as an automotive vehicle connector, having a low deflection coefficient in a direction perpendicular to the rolling direction, excellent bending workability and excellent strength. Providing copper alloy sheet materials that are suitable for terminal materials, relays, and switches.
A copper alloy containing one or two of Ni and Co in a total amount of 0.5 to 5.0 mass% and Si of 0.1 to 1.5 mass%, the balance being Cu and unavoidable impurities. In the crystal orientation analysis in the measurement by the EBSD method,
A copper alloy sheet having an area ratio of Cube orientation {100} <001> of 5% or more and an area ratio of NDRDW orientation {012} <221> of 10% or less.
[Selection figure] None
Description
本発明は銅合金板材およびその製造方法に関し、詳しくは車載部品用や電気・電子機器用のリードフレーム、コネクタ、端子材、リレー、スイッチ、ソケットなどに適用される銅合金板材およびその製造方法に関する。 The present invention relates to a copper alloy sheet and a method for manufacturing the same, and more particularly to a copper alloy sheet that is applied to lead frames, connectors, terminal materials, relays, switches, sockets, and the like for in-vehicle components and electrical / electronic devices, and a method for manufacturing the same. .
車載部品用や電気・電子機器用のリードフレーム、コネクタ、端子材、リレー、スイッチ、ソケットなどの用途に使用される銅合金板材に要求される特性項目としては、例えば、導電率、耐力(降伏応力)、引張強度、曲げ加工性、耐応力緩和特性などがある。近年、電気・電子機器の小型化、軽量化、高機能化、高密度実装化や、使用環境の高温化に伴って、これらの要求特性のレベルが高まっている。
近年の銅合金板材が使用される状況には、以下の様な変化が挙げられる。
一つ目に、自動車や電機・電子機器の高機能化とともに、コネクタの多極化が進行しているため、端子や接点部品の一つ一つの小型化が進行している。例えば、タブ幅が約1.0mmの端子を0.64mmへダウンサイズする動きが進んでいる。
二つ目に、鉱物資源の低減や、部品の軽量化を背景に、基体材料の薄肉化が進行しており、なおかつバネ接圧を保つために、従来よりも高強度な基体材料が使用されている。
Characteristic items required for copper alloy sheet materials used in applications such as lead frames, connectors, terminal materials, relays, switches and sockets for automotive parts and electrical / electronic equipment include, for example, conductivity, yield strength (yield) Stress), tensile strength, bending workability, and stress relaxation resistance. In recent years, the level of these required characteristics has increased as electric and electronic devices have become smaller, lighter, more functional, denser, and used in higher temperatures.
The following changes are mentioned in the situation where the copper alloy sheet material in recent years is used.
First, as the functionality of automobiles, electrical equipment, and electronic devices has increased, the number of connectors has been increasing, and so miniaturization of terminals and contact parts has been progressing. For example, a movement to downsize a terminal having a tab width of about 1.0 mm to 0.64 mm is progressing.
Secondly, the base material is becoming thinner due to the reduction of mineral resources and weight reduction of parts, and in order to maintain the spring contact pressure, a base material with higher strength than before is used. ing.
そして、上記の変化に伴い、銅合金板材には下記の様な問題が生じている。
第一に、端子の小型化に伴い、接点部分やバネ部分に施される曲げ加工の曲げ半径は小さくなり、材料には従来よりも厳しい曲げ加工が施される。そのため、材料にクラックが発生する問題が生じている。
第二に、材料の高強度化に伴い、材料にクラックが発生する問題が生じている。これは、材料の曲げ加工性が、一般的に強度とトレードオフの関係にあるためである。
第三に、接点部分やバネ部分に施される曲げ加工部にクラックが発生すると、接点部分の接圧が低下することにより、接点部分の接触抵抗が上昇し、電気的接続が絶縁され、コネクタとしての機能が失われるため、重大な問題となる。
With the above changes, the following problems have arisen in the copper alloy sheet.
First, with the miniaturization of the terminals, the bending radius of the bending process applied to the contact part and the spring part becomes smaller, and the material is subjected to a stricter bending process than before. Therefore, there is a problem that the material is cracked.
Second, with the increase in strength of materials, there is a problem that cracks occur in the materials. This is because the bending workability of the material is generally in a trade-off relationship with the strength.
Third, when a crack occurs in the bent part applied to the contact part or spring part, the contact pressure of the contact part decreases, the contact resistance of the contact part increases, the electrical connection is insulated, and the connector As the function is lost, it becomes a serious problem.
この曲げ加工性向上の要求に対して、結晶方位の制御によって解決する提案がいくつかなされている。特許文献1では、Cu−Ni−Si系銅合金において、結晶粒径と、{311}、{220}、{200}面からのX線回折強度がある条件を満たす様な結晶方位の場合に、曲げ加工性が優れることが見出されている。また、特許文献2では、Cu−Ni−Si系銅合金において、{200}面および{220}面からのX線回折強度がある条件を満足する結晶方位の場合に、曲げ加工性が優れることが見出されている。また、特許文献3では、Cu−Ni−Si系銅合金において、Cube方位{100}<001>の割合の制御によって曲げ加工性が優れることが見出されている。その他、特許文献4〜8においても、種々の原子面についてのX線回折強度で規定された曲げ加工性に優れる材料が提案されている。特許文献4では、Cu−Ni−Co−Si系銅合金において、{200}面からのX線回折強度が、{111}面、{200}面、{220}面及び{311}面からのX線回折強度に対してある条件を満足する結晶方位の場合に、曲げ加工性が優れることが見出されている。特許文献5では、Cu−Ni−Si系銅合金において、{420}面および{220}面からのX線回折強度がある条件を満足する結晶方位の場合に、曲げ加工性が優れることが見出されている。特許文献6では、Cu−Ni−Si系銅合金において、{123}<412>方位に関してある条件を満足する結晶方位の場合に、曲げ加工性が優れることが見出されている。特許文献7では、Cu−Ni−Si系銅合金において、{111}面、{311}面及び{220}面からのX線回折強度がある条件を満足する結晶方位の場合に、Bad Way(後述)の曲げ加工性が優れることが見出されている。また、特許文献8では、Cu−Ni−Si系銅合金において、{200}面、{311}面及び{220}面からのX線回折強度がある条件を満足する結晶方位の場合に、曲げ加工性が優れることが見出されている。
特許文献1、2、4、5、7、8におけるX線回折強度による規定は、板面方向(圧延法線方向、ND)への特定の結晶面の集積について規定したものである。
また、コネクタの小型化によって、プレス加工や組み立てなどのコネクタの製造工程における、わずかな寸法バラツキが、接圧のバラツキに大きく影響するため、製造の歩留まりが大きく低下する問題が発生している。よって、接点材である銅合金板材のたわみ係数を小さくすることが求められている。たわみ係数は接点材の変位量とそれによって発生する応力の関係を表し、低いほど、寸法ばらつきによって発生する接圧バラツキの量を吸収することができる。接点材は主に、圧延方向に対して垂直方向に材料取りされるため、圧延方向に対して垂直方向のたわみ係数を下げることが、銅合金板材に求められている。
また、コネクタの小型化に伴い、導体の断面積が減少しているため、コネクタに使用される銅合金には、高い導電率が求められている。
Several proposals have been made to solve this demand for improvement in bending workability by controlling the crystal orientation. In Patent Document 1, in a Cu—Ni—Si based copper alloy, the crystal grain size and the X-ray diffraction intensity from the {311}, {220}, {200} planes satisfy a certain condition. It has been found that bending workability is excellent. Further, in Patent Document 2, in a Cu—Ni—Si based copper alloy, bending workability is excellent when the crystal orientation satisfies the condition that the X-ray diffraction intensity from the {200} plane and the {220} plane is satisfied. Has been found. Further, in Patent Document 3, it has been found that in a Cu—Ni—Si based copper alloy, bending workability is excellent by controlling the ratio of the Cube orientation {100} <001>. In addition, Patent Documents 4 to 8 propose materials having excellent bending workability defined by X-ray diffraction intensities for various atomic planes. In Patent Document 4, in the Cu—Ni—Co—Si based copper alloy, the X-ray diffraction intensity from the {200} plane is from the {111} plane, {200} plane, {220} plane, and {311} plane. It has been found that bending workability is excellent when the crystal orientation satisfies a certain condition with respect to the X-ray diffraction intensity. Patent Document 5 shows that in a Cu—Ni—Si-based copper alloy, bending workability is excellent when the crystal orientation satisfies the condition that the X-ray diffraction intensity from the {420} plane and the {220} plane is satisfied. Has been issued. In Patent Document 6, it has been found that, in a Cu—Ni—Si based copper alloy, bending workability is excellent when the crystal orientation satisfies a certain condition with respect to the {123} <412> orientation. In Patent Document 7, in a Cu—Ni—Si based copper alloy, in the case of crystal orientation satisfying the condition that the X-ray diffraction intensity from the {111} plane, {311} plane, and {220} plane is satisfied, It has been found that the bending workability (described later) is excellent. Further, in Patent Document 8, in a Cu—Ni—Si based copper alloy, bending is performed when the crystal orientation satisfies the condition that the X-ray diffraction intensity from the {200} plane, {311} plane, and {220} plane is satisfied. It has been found that processability is excellent.
The specifications based on the X-ray diffraction intensity in Patent Documents 1, 2, 4, 5, 7, and 8 specify the accumulation of specific crystal planes in the plate surface direction (rolling normal direction, ND).
Further, due to the miniaturization of the connector, a slight dimensional variation in the connector manufacturing process such as press working and assembly greatly affects the variation in contact pressure, which causes a problem of greatly reducing the manufacturing yield. Therefore, it is required to reduce the deflection coefficient of the copper alloy plate material which is a contact material. The deflection coefficient represents the relationship between the amount of displacement of the contact material and the stress generated thereby, and the lower it is, the more the amount of contact pressure variation caused by dimensional variation can be absorbed. Since the contact material is mainly taken in the direction perpendicular to the rolling direction, the copper alloy sheet material is required to reduce the deflection coefficient in the direction perpendicular to the rolling direction.
Moreover, since the cross-sectional area of a conductor is decreasing with the miniaturization of a connector, high electrical conductivity is calculated | required by the copper alloy used for a connector.
ところで、特許文献1または特許文献2に記載された発明は、特定の結晶面からのX線回折による結晶方位の測定に基づくものであって、ある広がりを持った結晶方位の分布の中のごく一部の特定の面にのみ関するものである。しかも、板面方向(ND)の結晶面のみを測定しているに過ぎず、圧延方向(RD)や板幅方向(TD)にどの結晶面が向いているかについては制御できない。よって、曲げ加工性を完全に制御するには、なお不十分な方法であった。また、特許文献3に記載された発明においては、Cube方位の有効性が指摘されているが、その他の結晶方位成分については制御されておらず、曲げ加工性の改善が不十分な場合があった。また、特許文献4〜8では、それぞれ上記特定の結晶面または方位について測定、制御する検討しかなされておらず、特許文献1〜3と同様に、曲げ加工性の改善が不十分な場合があった。
また、圧延方向に対して垂直方向のたわみ係数を下げることは、いずれの先行技術文献においても検討されていない。
By the way, the invention described in Patent Document 1 or Patent Document 2 is based on the measurement of crystal orientation by X-ray diffraction from a specific crystal plane, and is very small in the distribution of crystal orientation having a certain spread. It only concerns some specific aspects. Moreover, only the crystal plane in the plate direction (ND) is measured, and it cannot be controlled which crystal plane is oriented in the rolling direction (RD) or the plate width direction (TD). Therefore, the method is still insufficient to completely control the bending workability. In the invention described in Patent Document 3, the effectiveness of the Cube orientation is pointed out, but other crystal orientation components are not controlled, and there are cases where the improvement of bending workability is insufficient. It was. Further, in Patent Documents 4 to 8, only the measurement and control of the specific crystal plane or orientation have been studied, and the bending workability may not be improved as in Patent Documents 1 to 3. It was.
Further, none of the prior art documents discusses reducing the deflection coefficient in the direction perpendicular to the rolling direction.
上記のような課題に鑑み、本発明の目的は、圧延方向に対して垂直方向のたわみ係数が低く、曲げ加工性に優れ、優れた強度と導電性を有し、電気・電子機器用のリードフレーム、コネクタ、端子材等、自動車車載用などのコネクタや端子材、リレー、スイッチなどに適した銅合金板材およびその製造方法を提供することにある。 In view of the above problems, the object of the present invention is to provide a lead for electrical and electronic equipment that has a low deflection coefficient in the direction perpendicular to the rolling direction, excellent bending workability, excellent strength and conductivity. An object of the present invention is to provide a copper alloy plate material suitable for connectors, terminal materials, relays, switches, and the like for automobiles and the like such as frames, connectors, and terminal materials, and a method for manufacturing the same.
本発明者らは、種々検討を重ね、電気・電子部品用途に適した銅合金について研究を行い、EBSD(Electron Back Scatter Diffraction:電子後方散乱回折)法によって特徴付けられる、Cube方位を増加させ、なおかつ、NDRDW方位を低減することにより、曲げ加工時のクラックが抑制されるとともに、圧延垂直方向のたわみ係数を低減できることを見出し、さらに、それらの各方位の集合組織方位成分の面積率を所定の比率とすることで曲げ加工性を著しく向上させることができることを見出した。また、それに加えて、本合金系において特定の添加元素を用いることにより、導電率や曲げ加工性を損なうことなく、強度向上させ、たわみ係数を低減しうることを見出した。本発明は、これらの知見に基づきなされるに至ったものである。
すなわち、本発明は、以下の解決手段を提供する。
The present inventors have made various studies, studied copper alloys suitable for electrical and electronic component applications, increased the Cube orientation, which is characterized by the EBSD (Electron Back Scatter Diffraction) method, In addition, by reducing the NDRDW orientation, it was found that cracks during bending can be suppressed, and that the deflection coefficient in the vertical direction of rolling can be reduced, and further, the area ratio of the texture orientation component of each orientation is set to a predetermined value. It has been found that the bending workability can be remarkably improved by setting the ratio. In addition, it has been found that by using a specific additive element in this alloy system, the strength can be improved and the deflection coefficient can be reduced without impairing the electrical conductivity and bending workability. The present invention has been made based on these findings.
That is, the present invention provides the following solutions.
(1)NiとCoのいずれか1種または2種を合計で0.5〜5.0mass%、Siを0.2〜1.5mass%含有し、残部が銅及び不可避不純物からなる合金組成を有し、EBSD(Electron Back Scatter Diffraction:電子後方散乱回折)測定における結晶方位解析において、
Cube方位{100}<001>の面積率が5%以上、かつNDRDW方位{012}<221>の面積率が10%以下であることを特徴とする銅合金板材。
(2)NiとCoのいずれか1種または2種を合計で0.5〜5.0mass%、Siを0.2〜1.5mass%含有し、Sn、Zn、Ag、Mn、B、P、Mg、Cr、Fe、Ti、ZrおよびHfからなる群から選ばれる少なくとも1種を合計で0.005〜2.0mass%含有し、残部が銅及び不可避不純物からなる合金組成を有し、EBSD(Electron Back Scatter Diffraction:電子後方散乱回折)測定における結晶方位解析において、
Cube方位{100}<001>の面積率が5%以上、かつNDRDW方位{012}<221>の面積率が10%以下であることを特徴とする銅合金板材。
(3)NiとCoのいずれか1種または2種を合計で0.5〜5.0mass%、Siを0.2〜1.5mass%を含有し、残部がCuと不可避不純物からなる銅合金鋳塊に対し、下記の工程2〜工程12をこの順で施すことを特徴とする銅合金板材の製造方法。
[工程2:加工率10〜70%の冷間圧延1]
[工程3:900〜1050℃の温度で2分〜10時間の均質化熱処理]
[工程4:熱間加工]
[工程5:水冷]
[工程6:面削]
[工程7:加工率50〜99%の冷間圧延2]
[工程8:300〜800℃で5秒〜2時間の中間焼鈍]
[工程9:加工率3〜80%の冷間圧延3]
[工程10:700〜1020℃の温度範囲での溶体化熱処理]
[工程11:350〜600℃で5分〜20時間の時効析出熱処理]
[工程12:加工率5〜50%の仕上げ圧延]
(4)NiとCoのいずれか1種または2種を合計で0.5〜5.0mass%、Siを0.2〜1.5mass%含有し、Sn、Zn、Ag、Mn、B、P、Mg、Cr、Fe、Ti、ZrおよびHfからなる群から選ばれる少なくとも1種を合計で0.005〜2.0mass%を含有し、残部がCuと不可避不純物からなる銅合金鋳塊に対し、下記の工程2〜工程12をこの順で施すことを特徴とする銅合金板材の製造方法。
[工程2:加工率10〜70%の冷間圧延1]
[工程3:900〜1050℃の温度で2分〜10時間の均質化熱処理]
[工程4:熱間加工]
[工程5:水冷]
[工程6:面削]
[工程7:加工率50〜99%の冷間圧延2]
[工程8:300〜800℃で5秒〜2時間の中間焼鈍]
[工程9:加工率3〜80%の冷間圧延3]
[工程10:700〜1020℃の温度範囲での溶体化熱処理]
[工程11:350〜600℃で5分〜20時間の時効析出熱処理]
[工程12:加工率5〜50%の仕上げ圧延]
(5)前記(1)または(2)に記載の銅合金板材を用いたことを特徴とするコネクタ。
(1) An alloy composition in which any one or two of Ni and Co are contained in a total amount of 0.5 to 5.0 mass%, Si is contained in an amount of 0.2 to 1.5 mass%, and the balance is made of copper and inevitable impurities. In crystal orientation analysis in EBSD (Electron Back Scatter Diffraction) measurement,
A copper alloy sheet having an area ratio of Cube orientation {100} <001> of 5% or more and an area ratio of NDRDW orientation {012} <221> of 10% or less.
(2) One or two kinds of Ni and Co are contained in a total amount of 0.5 to 5.0 mass%, Si is contained in an amount of 0.2 to 1.5 mass%, and Sn, Zn, Ag, Mn, B, P , Mg, Cr, Fe, Ti, Zr and Hf at least one selected from the group consisting of 0.005 to 2.0 mass% in total, the balance having an alloy composition consisting of copper and inevitable impurities, EBSD In crystal orientation analysis in (Electron Back Scatter Diffraction) measurement,
A copper alloy sheet having an area ratio of Cube orientation {100} <001> of 5% or more and an area ratio of NDRDW orientation {012} <221> of 10% or less.
(3) A copper alloy containing 0.5 to 5.0 mass% of any one or two of Ni and Co, 0.2 to 1.5 mass% of Si, and the balance being Cu and inevitable impurities The manufacturing method of the copper alloy board | plate material characterized by performing the following process 2-process 12 with respect to an ingot in this order .
[Step 2: the pressurizing Engineering ratio 10% to 70% cold rolling 1]
[Step 3: Homogenization heat treatment at a temperature of 900 to 1050 ° C. for 2 minutes to 10 hours]
[Step 4: Hot working]
[Step 5: Water cooling]
[Step 6: Face milling]
[Step 7: Cold rolling 2 with a processing rate of 50 to 99%]
[Step 8: Intermediate annealing at 300 to 800 ° C. for 5 seconds to 2 hours]
[Step 9: Cold rolling 3 with a processing rate of 3 to 80%]
[Step 10: Solution heat treatment in a temperature range of 700 to 1020 ° C.]
[Step 11: Aging precipitation heat treatment at 350 to 600 ° C. for 5 minutes to 20 hours]
[Step 12: Finish rolling at a processing rate of 5 to 50%]
(4) Containing any one or two of Ni and Co in a total amount of 0.5 to 5.0 mass%, Si in a range of 0.2 to 1.5 mass%, Sn, Zn, Ag, Mn, B, P A total of at least one selected from the group consisting of Mg, Cr, Fe, Ti, Zr and Hf with respect to a copper alloy ingot containing 0.005 to 2.0 mass% in total, the balance being Cu and inevitable impurities The manufacturing method of the copper alloy board | plate material characterized by performing the following process 2-process 12 in this order .
[Step 2: the pressurizing Engineering ratio 10% to 70% cold rolling 1]
[Step 3: Homogenization heat treatment at a temperature of 900 to 1050 ° C. for 2 minutes to 10 hours]
[Step 4: Hot working]
[Step 5: Water cooling]
[Step 6: Face milling]
[Step 7: Cold rolling 2 with a processing rate of 50 to 99%]
[Step 8: Intermediate annealing at 300 to 800 ° C. for 5 seconds to 2 hours]
[Step 9: Cold rolling 3 with a processing rate of 3 to 80%]
[Step 10: Solution heat treatment in a temperature range of 700 to 1020 ° C.]
[Step 11: Aging precipitation heat treatment at 350 to 600 ° C. for 5 minutes to 20 hours]
[Step 12: Finish rolling at a processing rate of 5 to 50%]
(5) connectors, characterized in that a copper alloy sheet according to (1) or (2).
本発明の銅合金板材は、圧延方向に対して垂直方向のたわみ係数が低く、曲げ加工性に優れ、優れた強度を有し、電気・電子機器用のリードフレーム、コネクタ、端子材等、自動車車載用などのコネクタや端子材、リレー、スイッチなどに好適である。たわみ係数が低いことにより、製造工程における接圧のバラツキが抑えられ、歩留りが向上するという優れた効果を奏する。
また、本発明の銅合金板材の製造方法は、上記のたわみ係数が低く、曲げ加工性に優れ、優れた強度を有し、電気・電子機器用のリードフレーム、コネクタ、端子材等、自動車車載用などのコネクタや端子材、リレー、スイッチなどに好適な銅合金板材を製造する方法として好適なものである。
The copper alloy sheet of the present invention has a low deflection coefficient in the direction perpendicular to the rolling direction, excellent bending workability and excellent strength, such as lead frames, connectors and terminal materials for electric and electronic equipment, automobiles, etc. Suitable for in-vehicle connectors, terminal materials, relays, switches, etc. Since the deflection coefficient is low, the contact pressure variation in the manufacturing process can be suppressed, and the yield can be improved.
In addition, the method for producing a copper alloy sheet according to the present invention has a low bending coefficient, excellent bending workability, and excellent strength, such as lead frames, connectors, and terminal materials for electric and electronic devices, which are mounted on automobiles. It is suitable as a method for producing a copper alloy sheet material suitable for connectors, terminal materials, relays, switches, etc.
本発明の銅合金板材の好ましい実施の態様について、詳細に説明する。ここで、「銅合金材料」とは、銅合金素材が所定の形状(例えば、板、条、箔、棒、線など)に加工されたものを意味する。そのなかで板材とは、特定の厚みを有し形状的に安定しており面方向に広がりをもつものを指し、広義には条材や、板を管状とした管状材を含む意味である。ここで、板材において、「材料表層」とは、「板表層」を意味し、「材料の深さ位置」とは、「板厚方向の位置」を意味する。板材の厚さは特に限定されないが、本発明の効果が一層よく顕れ実際的なアプリケーションに適合することを考慮すると、8〜800μmが好ましく、50〜70μmがより好ましい。 A preferred embodiment of the copper alloy sheet material of the present invention will be described in detail. Here, the “copper alloy material” means a material obtained by processing a copper alloy material into a predetermined shape (for example, a plate, a strip, a foil, a bar, a wire, or the like). Among them, the plate material refers to a material having a specific thickness, stable in shape, and having a spread in the surface direction, and in a broad sense, includes a strip material and a tubular material in which the plate is tubular. Here, in the plate material, “material surface layer” means “plate surface layer”, and “material depth position” means “position in the plate thickness direction”. The thickness of the plate material is not particularly limited, but it is preferably 8 to 800 μm, and more preferably 50 to 70 μm, considering that the effects of the present invention are better manifested and suitable for practical applications.
銅合金板材の曲げ加工時のクラックが発生する原因を明らかにするために、本発明者らは、曲げ変形した後の材料の金属組織を詳細に調査した。その結果、基体材料は均一に変形しているのではなく、特定の結晶方位の領域のみに変形が集中し、不均一な変形が進行することが観察された。そして、その不均一変形により、曲げ加工した後の基体材料表面には、数μmの深さのシワや、微細なクラックが発生することが解った。そして、Cube方位が多い場合に、不均一な変形が抑制され、基体材料の表面に発生するシワが低減され、クラックが抑制されることが解った。
また、Cube方位を高めると同時に、NDRDW方位を低減させることにより圧延垂直方向のたわみ係数を下げる効果があることを見出した。NDRDW方位は圧延垂直方向に(524)面を配向し、比較的高密な結晶面であることが、たわみ係数に顕著に寄与する原因と考えられる。
Cube方位とNDRDW方位の関係を図1に示す。丸で示したのが金属原子であり、四角が結晶格子である。図1の横方向が板材の幅方向であり、縦方向が圧延方向を示す。
たわみ係数は下記式(1)で表わされる。
E=4W/b・(L/t)3・1/f ・・・(1)
(E:たわみ係数、b:試料幅、t:試料板厚、W:荷重、L:標点長さ、f:たわみ量)
標点長さLの試料1にWの荷重をかけたときのたわみ量fとの関係を図2に模式的に示した。
In order to clarify the cause of the occurrence of cracks during bending of a copper alloy sheet, the present inventors investigated in detail the metal structure of the material after bending deformation. As a result, it was observed that the base material was not uniformly deformed, but the deformation was concentrated only in the region of a specific crystal orientation, and the non-uniform deformation progressed. Then, it was found that due to the non-uniform deformation, wrinkles with a depth of several μm and fine cracks were generated on the surface of the base material after bending. And when there were many Cube directions, it turned out that a nonuniform deformation | transformation is suppressed, the wrinkles which generate | occur | produce on the surface of a base material are reduced, and a crack is suppressed.
In addition, the present inventors have found that there is an effect of reducing the deflection coefficient in the vertical direction of rolling by increasing the Cube orientation and simultaneously reducing the NDRDW orientation. It is considered that the NDRDW orientation has a (524) plane oriented in the vertical direction of rolling and is a relatively dense crystal plane that contributes significantly to the deflection coefficient.
The relationship between the Cube orientation and the NDRDW orientation is shown in FIG. Circles indicate metal atoms, and squares indicate crystal lattices. The horizontal direction in FIG. 1 is the width direction of the plate material, and the vertical direction indicates the rolling direction.
The deflection coefficient is expressed by the following formula (1).
E = 4 W / b · (L / t) 3 · 1 / f (1)
(E: Deflection coefficient, b: Sample width, t: Sample plate thickness, W: Load, L: Gage length, f: Deflection amount)
FIG. 2 schematically shows the relationship with the deflection amount f when a load of W is applied to the sample 1 having the gauge length L.
(EBSD測定による規定)
EBSD法で規定される、Cube方位{1 0 0}<0 0 1>の面積率が5%以上でかつ、NDRDW方位{0 1 2}<2 2 1>の面積率が10%以下のときに、上記の効果が得られる。Cube方位は更に好ましくは10%以上、最も好ましくは15%以上である。上限は特に設けないが、50%以上の場合には強度が低下する場合や、プレス打ち抜き性が低下する場合があり、必要な強度や用途に応じて、好ましくは47%未満にすることが必要である。
NDRDW方位は更に好ましくは8%以下、最も好ましくは6%以下である。従来、これらの方位を有する原子面の面積率を同時に制御したものは知られていない。
(Regulation by EBSD measurement)
When the area ratio of Cube orientation {1 0 0} <0 0 1> specified by the EBSD method is 5% or more and the area ratio of NDRDW orientation {0 1 2} <2 2 1> is 10% or less In addition, the above effects can be obtained. The Cube orientation is more preferably 10% or more, and most preferably 15% or more. There is no particular upper limit, but if it is 50% or more, the strength may decrease or the press punchability may decrease, and it is necessary to make it less than 47% depending on the required strength and application. It is.
The NDRDW orientation is more preferably 8% or less, and most preferably 6% or less. Conventionally, there is no known device that simultaneously controls the area ratio of atomic planes having these orientations.
本明細書における結晶方位の表示方法は、材料の圧延方向(RD)をX軸、板幅方向(TD)をY軸、圧延法線方向(ND)をZ軸の直角座標系を取り、材料中の各領域がZ軸に垂直な(圧延面に平行な)結晶面の指数(h k l)と、X軸に平行な結晶方向の指数[u v w]とを用いて、(h k l)[u v w]の形で示す。また、(1 3 2)[6 −4 3]と(2 3 1)[3 −4 6]などのように、銅合金の立方晶の対称性のもとで等価な方位については、ファミリーを表すカッコ記号を使用し、{h k l}<u v w>と示す。本発明における6種類の方位は、上記の様な指数でそれぞれ示される。 The crystal orientation display method in the present specification takes a rectangular coordinate system in which the rolling direction (RD) of the material is the X axis, the sheet width direction (TD) is the Y axis, and the rolling normal direction (ND) is the Z axis. Using the index (h k l) of the crystal plane each region in which is perpendicular to the Z axis (parallel to the rolling surface) and the index [u v w] of the crystal direction parallel to the X axis, (h k l) Shown in the form [u v w]. For the equivalent orientations under the cubic symmetry of the copper alloy, such as (1 3 2) [6 -4 3] and (2 3 1) [3 -4 6], It uses {h k l} <u v w> using the parenthesis symbol. The six types of orientations in the present invention are indicated by the indices as described above.
本発明における上記結晶方位の解析には、EBSD法を用いた。EBSDとは、Electron Back Scatter Diffraction(電子後方散乱回折)の略で、走査電子顕微鏡(Scanning Electron Microscope:SEM)内で試料に電子線を照射したときに生じる反射電子菊池線回折(菊池パターン)を利用した結晶方位解析技術のことである。本発明においては、結晶粒を200個以上含む、500μm四方の試料面積に対し、0.5μmのステップでスキャンし、方位を解析した。
本発明においては、前記Cube方位、NDRDW方位の各集合組織方位成分をもつ結晶粒とその原子面の面積を、以下に述べる所定のずれ角度の範囲内にあるかどうかで規定する。
上記指数で示される理想方位からのずれ角度については、(i)各測定点の結晶方位と、(ii)対象となる理想方位としてのCube、NDRDWのいずれかの方位とについて、(i)と(ii)に共通の回転軸を中心に回転角を計算し、そのずれ角度とした。例えば、S方位(2 3 1)[6 −4 3]に対して、(1 2 1)[1 −1 1]は(20 10 17)方向を回転軸にして、19.4°回転した関係になっており、この角度をずれ角度とした。前記共通の回転軸は40以下の3つの整数であるが、その内で最も小さいずれ角度で表現できるものを採用した。全ての測定点に対してこのずれ角度を計算して小数第一位までを有効数字とし、Cube方位、NDRDW方位のそれぞれ前記ずれ角から10°以下の方位を持つ結晶粒の面積を全測定面積で除し、それぞれの方位の原子面の面積率とした。
EBSDによる方位解析において得られる情報は、電子線が試料に侵入する数10nmの深さまでの方位情報を含んでいるが、測定している広さに対して充分に小さいため、本明細書中では面積率として記載した。
結晶方位の解析にEBSD測定を用いることにより、従来のX線回折法による板面方向(ND)に対する特定原子面の集積の測定とは大きく異なり、三次元方向のより完全に近い結晶方位情報がより高い分解能で得られるため、曲げ加工性を支配する結晶方位について全く新しい知見を獲得することができる。
The EBSD method was used for the analysis of the crystal orientation in the present invention. EBSD is an abbreviation for Electron Back Scatter Diffraction (Electron Back Scattering Diffraction). Reflected Electron Kikuchi Line Diffraction (Kikuchi Pattern) generated when a sample is irradiated with an electron beam in a Scanning Electron Microscope (SEM). This is the crystal orientation analysis technology used. In the present invention, a 500 μm square sample area containing 200 or more crystal grains was scanned in 0.5 μm steps, and the orientation was analyzed.
In the present invention, the crystal grains having the texture orientation components of the Cube orientation and the NDRDW orientation and the area of the atomic plane thereof are defined by whether or not they are within a predetermined shift angle range described below.
Regarding the deviation angle from the ideal orientation indicated by the index, (i) the crystal orientation of each measurement point, and (ii) the orientation of either Cube or NDRDW as the target ideal orientation, The rotation angle was calculated around the rotation axis common to (ii), and the deviation angle was calculated. For example, with respect to the S orientation (2 3 1) [6 -4 3], (1 2 1) [1 -1 1] is rotated by 19.4 ° with the (20 10 17) direction as the rotation axis. This angle was taken as the deviation angle. The common rotation axis is three integers of 40 or less, and the one that can be expressed by the smallest angle among them is adopted. The deviation angle is calculated for all measurement points, and the first decimal place is an effective number. The area of crystal grains having an orientation of 10 ° or less from the deviation angle of the Cube orientation and NDRDW orientation is the total measurement area. To obtain the area ratio of the atomic plane in each direction.
The information obtained in the azimuth analysis by EBSD includes azimuth information up to a depth of several tens of nanometers at which the electron beam penetrates into the sample. It was described as an area ratio.
By using EBSD measurement for analysis of crystal orientation, it differs greatly from the measurement of the accumulation of specific atomic planes in the plate direction (ND) by the conventional X-ray diffraction method. Since it can be obtained with higher resolution, it is possible to acquire completely new knowledge about the crystal orientation that governs the bending workability.
なお、EBSD測定にあたっては、鮮明な菊地線回折像を得るために、機械研磨の後に、コロイダルシリカの砥粒を使用して、基体表面を鏡面研磨した後に、測定を行うことが好ましい。また、測定は板表面から行った。 In the EBSD measurement, in order to obtain a clear Kikuchi diffraction image, it is preferable to perform the measurement after mirror polishing the surface of the substrate using colloidal silica abrasive grains after mechanical polishing. The measurement was performed from the plate surface.
(合金組成等)
・Ni,Co、Si
本発明のコネクタ用材料としては、銅合金が用いられる。コネクタに要求される導電性、機械的強度および耐熱性を有し、本発明の特定の結晶方位集積関係を満たす面積率を得るうえで、コルソン系合金を含む析出型合金を用いる。
これは、りん青銅や黄銅などの固溶型合金では、熱処理中の結晶粒成長においてCube方位粒成長の核となる、冷間圧延材中のCube方位をもつ微少領域が減少するためである。これは、りん青銅や黄銅などの積層欠陥エネルギーが低い系では、冷間圧延中に剪断帯が発達し易いためである。
(Alloy composition, etc.)
・ Ni, Co, Si
A copper alloy is used as the connector material of the present invention. In order to obtain the area ratio satisfying the specific crystal orientation accumulation relationship of the present invention having the electrical conductivity, mechanical strength and heat resistance required for the connector, a precipitation type alloy including a Corson alloy is used.
This is because, in a solid solution type alloy such as phosphor bronze or brass, a minute region having a Cube orientation in the cold-rolled material, which becomes a nucleus of Cube orientation grain growth in crystal grain growth during heat treatment, is reduced. This is because in a system with low stacking fault energy such as phosphor bronze and brass, a shear band is likely to develop during cold rolling.
本発明において、銅(Cu)に添加する第1の添加元素群であるニッケル(Ni)、コバルト(Co)及びケイ素(Si)について、それぞれの添加量を制御することにより、Ni−Si、Co−Si、Ni−Co−Siの化合物を析出させて銅合金の強度を向上させることができる。NiとCoの添加量の総和は、0.5〜5.0mass%、好ましくは0.6〜4.5mass%、より好ましくは0.8〜4.0mass%である。用途に応じて導電性を高めたい場合、Coを必須とすることが好ましい。また、Siの含有量は0.2〜1.5mass%、好ましくは0.3〜1.2mass%である。これらの元素の合計の添加量が多すぎると導電率を低下させ、また、少なすぎると強度が不足する。 In the present invention, nickel (Ni), cobalt (Co), and silicon (Si), which are the first additive element group to be added to copper (Cu), are controlled by controlling the addition amount of Ni—Si, Co. It is possible to improve the strength of the copper alloy by precipitating a compound of -Si and Ni-Co-Si. The total amount of Ni and Co added is 0.5 to 5.0 mass%, preferably 0.6 to 4.5 mass%, more preferably 0.8 to 4.0 mass%. When it is desired to increase the conductivity according to the application, it is preferable to make Co essential. Further, the Si content is 0.2 to 1.5 mass%, preferably 0.3 to 1.2 mass%. If the total addition amount of these elements is too large, the electrical conductivity is lowered, and if it is too small, the strength is insufficient.
・その他の元素
Crは結晶粒を微細にして、曲げ性を向上させる効果がある。Crの含有量は0.03〜1.0mass%が好ましく、より好ましくは0.16〜0.24mass%である。少なすぎるとその効果が不十分であり、多すぎると粗大な晶出物が多数発生してしまうため、むしろ曲げ性を悪化させてしまう。
Sn、Zn、Ag、Mn、B、P、Mg、Fe、Ti、Zr及びHfは、強度を向上させたり結晶粒の粗大化を抑制したりして、曲げ加工性を改善する。
その他の元素を含有する場合は、Sn、Zn、Ag、Mn、B、P、Mg、Cr、Fe、Ti、ZrおよびHfからなる群から選ばれる少なくとも1種を合計で0.005〜2.0mass%、好ましくは0.08〜0.95mass%含有する。
これらの添加元素が多すぎると導電率を低下させる弊害を生じる。なお、これらの添加元素が総量で少なすぎると、これらの元素を添加した効果がほとんど発揮されない。
合金組成中の不可避不純物は、通常のものがあり、例えばO、H、S、Pb、As、Cd、Sbなどがあげられる。
-Other elements Cr has the effect of making crystal grains fine and improving bendability. The Cr content is preferably 0.03 to 1.0 mass%, more preferably 0.16 to 0.24 mass%. If the amount is too small, the effect is insufficient. If the amount is too large, a large number of coarse crystallized substances are generated, and the bendability is rather deteriorated.
Sn, Zn, Ag, Mn, B, P, Mg, Fe, Ti, Zr, and Hf improve the bending workability by improving the strength or suppressing the coarsening of crystal grains.
When other elements are contained, a total of at least one selected from the group consisting of Sn, Zn, Ag, Mn, B, P, Mg, Cr, Fe, Ti, Zr and Hf is 0.005 to 2. It is contained in an amount of 0 mass%, preferably 0.08 to 0.95 mass%.
When there are too many of these additive elements, the harmful effect which reduces electrical conductivity will be produced. If these additive elements are too small in total, the effect of adding these elements is hardly exhibited.
Inevitable impurities in the alloy composition include ordinary ones such as O, H, S, Pb, As, Cd, and Sb.
(製造方法等)
次に、Cube方位及びNDRDW方位の面積率を制御する方法について説明する。ここでは、析出型銅合金の板材(条材)を例に挙げて説明するが、固溶型合金材料、希薄系合金材料、純銅系材料に展開することが可能である。
一般に、析出型銅合金の製造方法は、銅合金素材を鋳造[工程1]して鋳塊を得て、これを均質化熱処理[工程3]し、熱間圧延等の熱間加工[工程4]、水冷[工程5]、面削[工程6]、冷間圧延2[工程7]をこの順に行い薄板化し、700〜1020℃の温度範囲で溶体化熱処理[工程10]を行って溶質原子を再固溶させた後に、時効析出熱処理[工程11]と仕上げ冷間圧延[工程12]によって必要な強度を満足させるものである。この一連の工程の中で、材料の集合組織は、中間溶体化熱処理中[工程10]に起きる再結晶によっておおよそが決定し、仕上げ圧延[工程12]中に起きる方位の回転により、最終的に決定される。
この一般的な工程で形成されるCube方位面積率は通常3%以下であり、曲げ加工性及びたわみ係数が劣る。
(Manufacturing method etc.)
Next, a method for controlling the area ratio of the Cube orientation and the NDRDW orientation will be described. Here, a plate material (strip material) of a precipitation-type copper alloy will be described as an example, but the present invention can be applied to a solid solution alloy material, a dilute alloy material, and a pure copper material.
In general, a method for producing a precipitation-type copper alloy involves casting a copper alloy material [Step 1] to obtain an ingot, homogenizing heat treatment [Step 3], and hot working such as hot rolling [Step 4]. ], Water cooling [step 5], chamfering [step 6], cold rolling 2 [step 7] are performed in this order to form a thin plate, and a solution heat treatment [step 10] is performed in a temperature range of 700 to 1020 ° C. to form solute atoms. After the solid solution is re-dissolved, the required strength is satisfied by aging precipitation heat treatment [Step 11] and finish cold rolling [Step 12]. In this series of steps, the texture of the material is roughly determined by recrystallization that occurs during the intermediate solution heat treatment [Step 10], and finally by the orientation rotation that occurs during finish rolling [Step 12]. It is determined.
The Cube orientation area ratio formed in this general process is usually 3% or less, and the bending workability and the deflection coefficient are inferior.
本発明の銅合金材は、冷間圧延2[工程7]と溶体化熱処理[工程10]の間に、300〜800℃で5秒〜2時間の中間焼鈍[工程8]と、続いて、圧延率が3〜80%の冷間圧延3[工程9]を加えることを特徴とする。中間焼鈍では、溶体化熱処理に対して低い温度により、完全に再結晶しておらず、部分的に再結晶している亜焼鈍組織を得ることが目的である。冷間圧延3では、比較的低い加工率の圧延によって、微視的に不均一な歪みを導入することができる。この2つの工程の効果によって、溶体化熱処理での再結晶集合組織において、Cube方位を高めることができる。中間焼鈍[工程8]のより好ましい範囲は400〜700℃で10秒〜1分間、更に好ましい範囲は500〜650℃で15秒〜45秒間である。冷間圧延3[工程9]の加工率のより好ましい範囲は5〜65%、更に好ましい範囲は7〜50%である。
従来、上記中間焼鈍[工程8]のような熱処理は、次工程の圧延での荷重を低減するために材料を再結晶させて強度を落とすために行われている。また、圧延は板厚を薄くすることが目的であり、通常の圧延機の能力であれば80%を超える加工率を採用するのが一般的である。本発明におけるこれら2つの工程の目的は、これら一般的な内容とは異なり、再結晶後の結晶方位に優先性を持たせるためである。
The copper alloy material of the present invention comprises an intermediate annealing [Step 8] at 300 to 800 ° C. for 5 seconds to 2 hours between the cold rolling 2 [Step 7] and the solution heat treatment [Step 10]. Cold rolling 3 [Step 9] with a rolling rate of 3 to 80% is added. The purpose of the intermediate annealing is to obtain a sub-annealed structure that is not completely recrystallized but partially recrystallized at a lower temperature than the solution heat treatment. In the cold rolling 3, microscopically non-uniform strain can be introduced by rolling at a relatively low processing rate. By the effect of these two steps, the Cube orientation can be increased in the recrystallization texture in the solution heat treatment. A more preferable range of the intermediate annealing [Step 8] is 400 to 700 ° C. for 10 seconds to 1 minute, and a more preferable range is 500 to 650 ° C. for 15 seconds to 45 seconds. A more preferable range of the processing rate of the cold rolling 3 [Step 9] is 5 to 65%, and a more preferable range is 7 to 50%.
Conventionally, the heat treatment such as the intermediate annealing [step 8] is performed in order to reduce the strength by recrystallizing the material in order to reduce the load in the rolling of the next step. The purpose of rolling is to reduce the plate thickness. If the capacity of a normal rolling mill is used, it is common to employ a processing rate exceeding 80%. The purpose of these two steps in the present invention is to give priority to the crystal orientation after recrystallization, unlike these general contents.
この工程において、副方位としてNDRDW方位が発生する場合があり、これを低減させるためには、鋳塊を冷間圧延1[工程2]することが有効である。NDRDW方位は、熱間圧延[工程4]にて結晶粒径が粗大な場合に発達し易く、熱間圧延での結晶粒を小さくすることが重要である。本発明では、鋳塊への冷間圧延1[工程2]を導入することによって、均質化熱処理[工程3]において鋳造組織が再結晶し、積極的に結晶粒を小さくすることができることを見出した。その結果、副方位のNDRDW方位を減少させることができる。
冷間圧延1[工程2]の好ましい範囲は10〜70%である。この範囲より低い場合は効果が不十分であり、高い場合は圧延割れを起こし易い。更に好ましい範囲は20〜50%である。
In this step, an NDRDW orientation may occur as a sub-azimuth, and in order to reduce this, it is effective to cold-roll 1 [Step 2] the ingot. The NDRDW orientation is likely to develop when the crystal grain size is coarse in the hot rolling [Step 4], and it is important to reduce the crystal grain in the hot rolling. In the present invention, it has been found that by introducing the cold rolling 1 [step 2] to the ingot, the cast structure is recrystallized in the homogenization heat treatment [step 3], and the crystal grains can be actively reduced. It was. As a result, the NDRDW direction of the sub direction can be reduced.
A preferred range of cold rolling 1 [Step 2] is 10 to 70%. If it is lower than this range, the effect is insufficient, and if it is higher, rolling cracks are likely to occur. A more preferable range is 20 to 50%.
上記内容を満たすことで、たとえばコネクタ用銅合金板材に要求される特性を満足することができる。本発明の銅合金板材の一つの好ましい実施態様では、圧延垂直方向のたわみ係数が120GPa以下、かつ0.2%耐力が600MPa以上、かつ導電率が30%IACS以上、かつ曲げ加工性については試験片幅が1mmの180°密着曲げ試験においてクラックなく曲げ加工が可能である。それぞれの特性のより好ましい実施態様は、圧延垂直方向のたわみ係数については110GPa以下、0.2%耐力については650MPa以上、導電率については50%IACS以上の少なくともいずれかを満たし、更に好ましくは、0.2%耐力については700MPa以上の良好な特性を有する銅合金板材であり、このような特性を実現可能なことが、本発明の一つの利点である。
なお、本発明において、0.2%耐力はJIS Z2241に基づく値である。また、上記の%IACSとは、万国標準軟銅(International Annealed Cupper Standard)の抵抗率1.7241×10−8Ωmを100%IACSとした場合の導電率を表したものである。
By satisfy | filling the said content, the characteristic requested | required of the copper alloy board | plate material for connectors, for example can be satisfied. In one preferred embodiment of the copper alloy sheet according to the present invention, the bending coefficient in the vertical direction of rolling is 120 GPa or less, the 0.2% proof stress is 600 MPa or more, the conductivity is 30% IACS or more, and the bending workability is tested. Bending can be performed without cracks in a 180 ° contact bending test with a half width of 1 mm. More preferred embodiments of the respective characteristics satisfy at least one of 110 GPa or less for the deflection coefficient in the vertical direction of rolling, 650 MPa or more for 0.2% proof stress, and 50% IACS or more for conductivity, and more preferably One of the advantages of the present invention is that the 0.2% proof stress is a copper alloy sheet having good characteristics of 700 MPa or more, and that such characteristics can be realized.
In the present invention, the 0.2% proof stress is a value based on JIS Z2241. Moreover, said% IACS represents the electrical conductivity when the resistivity 1.7241 × 10 −8 Ωm of universal standard annealed copper (International Annealed Copper Standard) is 100% IACS.
以下に、実施例に基づき本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.
実施例1
表1の合金成分の欄の元素を含有し、残部がCuと不可避不純物から成る合金を高周波溶解炉により溶解し、これを鋳造して鋳塊を得た。この状態を提供材とし、下記A〜Jのいずれかの製法にて、本発明例1〜16および比較例1〜12の銅合金板材の供試材を製造した。なお、表1にA〜Jのいずれの製法を用いたのかを示した。最終的な合金板材の厚さは特に断らない限り150μmとした。
Example 1
An alloy containing the elements in the column of alloy components in Table 1 and the balance consisting of Cu and inevitable impurities was melted in a high-frequency melting furnace and cast to obtain an ingot. Using this state as a providing material, test materials for copper alloy sheet materials of Invention Examples 1 to 16 and Comparative Examples 1 to 12 were manufactured by any one of the following methods A to J. Table 1 shows which of A to J was used. The final thickness of the alloy plate was 150 μm unless otherwise specified.
(製法A)
20〜50%の冷間圧延1を行い、900〜1050℃の温度で3分〜10時間の均質化熱処理を行い、熱間加工を行った後に水冷し、酸化スケール除去のために面削を行った。その後に50〜99%の加工率の冷間圧延2を行い、400〜700℃の温度で10秒〜1分間の中間焼鈍を行い、5〜65%の加工率の冷間圧延3を行った。その後に、800〜950℃の温度に5秒〜50秒間保持する溶体化熱処理を行い、350〜600℃の温度で5分間〜20時間の時効析出熱処理を行い、5〜50%の仕上げ圧延を行い、300〜700℃の温度で10秒〜2時間保持する調質焼鈍を行った。
(Manufacturing method A)
Perform cold rolling 1 of 20 to 50%, perform homogenization heat treatment at a temperature of 900 to 1050 ° C. for 3 minutes to 10 hours, perform hot working, then cool with water, and chamfer to remove oxide scale went. Thereafter, cold rolling 2 with a processing rate of 50 to 99% was performed, intermediate annealing was performed at a temperature of 400 to 700 ° C. for 10 seconds to 1 minute, and cold rolling 3 with a processing rate of 5 to 65% was performed. . Thereafter, a solution heat treatment is performed at a temperature of 800 to 950 ° C. for 5 seconds to 50 seconds, an aging precipitation heat treatment is performed at a temperature of 350 to 600 ° C. for 5 minutes to 20 hours, and a finish rolling of 5 to 50% is performed. And temper annealing was performed at a temperature of 300 to 700 ° C. for 10 seconds to 2 hours.
(製法B)
10〜70%の冷間圧延1を行い、900〜1050℃の温度で3分〜10時間の均質化熱処理を行い、熱間加工を行った後に水冷し、酸化スケール除去のために面削を行った。その後に50〜99%の加工率の冷間圧延2を行い、300〜800℃の温度で5秒〜2時間の中間焼鈍を行い、3〜80%の加工率の冷間圧延3を行った。その後に、800〜950℃の温度に5秒〜50秒間保持する溶体化熱処理を行い、350〜600℃の温度で5分間〜20時間の時効析出熱処理を行い、5〜50%の仕上げ圧延を行い、300〜700℃の温度で10秒〜2時間保持する調質焼鈍を行った。
(Manufacturing method B)
Perform cold rolling 1 to 10 to 70%, perform homogenization heat treatment at a temperature of 900 to 1050 ° C. for 3 minutes to 10 hours, perform hot working, then cool with water, and chamfer to remove oxide scale. went. Thereafter, cold rolling 2 with a processing rate of 50 to 99% was performed, intermediate annealing was performed at a temperature of 300 to 800 ° C. for 5 seconds to 2 hours, and cold rolling 3 with a processing rate of 3 to 80% was performed. . Thereafter, a solution heat treatment is performed at a temperature of 800 to 950 ° C. for 5 seconds to 50 seconds, an aging precipitation heat treatment is performed at a temperature of 350 to 600 ° C. for 5 minutes to 20 hours, and a finish rolling of 5 to 50% is performed. And temper annealing was performed at a temperature of 300 to 700 ° C. for 10 seconds to 2 hours.
(製法C)
10〜70%の冷間圧延1を行い、900〜1050℃の温度で3分〜10時間の均質化熱処理を行い、熱間加工を行った後に水冷し、酸化スケール除去のために面削を行った。その後に50〜99%の加工率の冷間圧延2を行い、300〜800℃の温度で5秒〜2時間の中間焼鈍を行い、3〜80%の加工率の冷間圧延3を行った。その後に、800〜950℃の温度に5秒〜50秒間保持する溶体化熱処理を行い、350〜600℃の温度で5分間〜20時間の時効析出熱処理を行った。
(Manufacturing method C)
Perform cold rolling 1 to 10 to 70%, perform homogenization heat treatment at a temperature of 900 to 1050 ° C. for 3 minutes to 10 hours, perform hot working, then cool with water, and chamfer to remove oxide scale. went. Thereafter, cold rolling 2 with a processing rate of 50 to 99% was performed, intermediate annealing was performed at a temperature of 300 to 800 ° C. for 5 seconds to 2 hours, and cold rolling 3 with a processing rate of 3 to 80% was performed. . Thereafter, a solution heat treatment was performed at a temperature of 800 to 950 ° C. for 5 seconds to 50 seconds, and an aging precipitation heat treatment was performed at a temperature of 350 to 600 ° C. for 5 minutes to 20 hours.
(製法D)
冷間圧延1、中間焼鈍、冷間圧延3は行わず、その他は工程Bと同様に作製した。
(Manufacturing method D)
Cold rolling 1, intermediate annealing, and cold rolling 3 were not performed, and the others were produced in the same manner as in step B.
(製法E)
冷間圧延3は行わず、その他は工程Bと同様に作製した。
(Manufacturing method E)
Cold rolling 3 was not performed, and the others were produced in the same manner as in step B.
(製法F)
中間焼鈍は行わず、その他は工程Bと同様に作製した。
(Production method F)
Intermediate annealing was not performed, and the others were manufactured in the same manner as in Step B.
(製法G)
冷間圧延1は行わず、その他は工程Bと同様に作製した。
(Manufacturing method G)
Cold rolling 1 was not performed, and the others were produced in the same manner as in Step B.
(製法H)
中間焼鈍及び、冷間圧延3は行わず、その他は工程Bと同様に作製した。
(Manufacturing method H)
The intermediate annealing and the cold rolling 3 were not performed, and the others were produced in the same manner as in the process B.
(製法I)
特許文献3の特開2006−283059号公報の製造方法に従って下記のように製造した。
電気炉により大気中にて木炭被覆下で溶解し、鋳造可否を判断した。溶製した鋳塊を熱間圧延し、厚さ15mmに仕上げ、ここで熱間圧延時に割れが発生していないか目視にて判定した。続いて、熱間圧延材に対し、冷間圧延及び熱処理(冷間圧延1→溶体化連続焼鈍→冷間圧延2→時効処理→冷間圧延3→短時間焼鈍)を施し、厚さ0.25mmの銅合金薄板を製造した。ここで冷間圧延1の加工率は95%以上、冷間圧延2の加工率は20%以下、冷間圧延3の加工率は1〜20%とした。溶体化連続焼鈍は実体温度800〜950℃で30秒以下保持し、保持後は冷却速度10℃/秒以上での冷却を行った。時効処理は、バッチ炉を用いて、実体温度400〜600℃で1〜8時間保持し、保持後は冷却速度10℃/秒未満で炉冷した。短時間焼鈍は、連続焼鈍炉により、実体温度400〜550℃で30秒以下保持し、保持後は冷却速度10℃/秒以上で冷却した。
(Manufacturing method I)
According to the manufacturing method of Unexamined-Japanese-Patent No. 2006-283059 of patent document 3, it manufactured as follows.
It was melted under charcoal coating in the atmosphere by an electric furnace, and castability was judged. The molten ingot was hot-rolled and finished to a thickness of 15 mm, and it was visually determined whether cracks occurred during hot-rolling. Subsequently, the hot-rolled material is subjected to cold rolling and heat treatment (cold rolling 1 → solution annealing, cold rolling 2 → aging treatment → cold rolling 3 → short annealing), and a thickness of 0. A 25 mm copper alloy sheet was produced. Here, the processing rate of the cold rolling 1 was 95% or more, the processing rate of the cold rolling 2 was 20% or less, and the processing rate of the cold rolling 3 was 1 to 20%. The solution annealing was held at an actual temperature of 800 to 950 ° C. for 30 seconds or less, and after the holding, cooling was performed at a cooling rate of 10 ° C./second or more. The aging treatment was carried out using a batch furnace at a body temperature of 400 to 600 ° C. for 1 to 8 hours, and after the holding, the furnace was cooled at a cooling rate of less than 10 ° C./second. In the short-time annealing, the solid temperature was maintained at 400 to 550 ° C. for 30 seconds or less by a continuous annealing furnace, and after the holding, the cooling was performed at a cooling rate of 10 ° C./second or more.
(製法J)
特許文献5の特開2008−223136号公報の製造方法に従って、「溶解・鋳造→熱間圧延→冷間圧延→溶体化処理→中間冷間圧延→時効処理→仕上げ冷間圧延→低温焼鈍」の工程で製造し、各条件は下記のように行った。
溶解・鋳造した鋳塊を用いて、熱間圧延は、950℃〜700℃の温度域で最初の圧延パスを実施し、かつ700℃未満〜400℃の温度域で圧延率40%以上の圧延を行った。冷間圧延は冷間圧延率が90%以上で行った。溶体化処理は、100℃から700℃までの昇温時間を20秒以下とし、再結晶粒の平均粒径が10〜60μmとなるように、700〜850℃の温度に10秒〜10分保持した。中間冷間圧延は、冷間圧延率が50%以下の範囲で行った。時効処理は、400〜500℃となる温度で処理時間は1〜10時間で行った。仕上げ冷間圧延は、冷間圧延率が50%を超えない範囲で行った。低温焼鈍は材温が150〜550℃になるようにし、5秒以上で1時間以内の保持時間で行った。
(Manufacturing method J)
According to the manufacturing method of Japanese Patent Application Laid-Open No. 2008-223136 of Patent Document 5, “melting / casting → hot rolling → cold rolling → solution treatment → intermediate cold rolling → aging treatment → finishing cold rolling → low temperature annealing” It manufactured by the process and each condition was performed as follows.
Using the ingot that has been melted and cast, hot rolling is performed at a temperature range of 950 ° C. to 700 ° C., and a rolling rate of 40% or more in a temperature range of less than 700 ° C. to 400 ° C. Went. Cold rolling was performed at a cold rolling rate of 90% or more. The solution treatment is performed at a temperature of 700 to 850 ° C. for 10 seconds to 10 minutes so that the temperature rise time from 100 ° C. to 700 ° C. is 20 seconds or less and the average grain size of the recrystallized grains is 10 to 60 μm. did. Intermediate cold rolling was performed in a range where the cold rolling rate was 50% or less. The aging treatment was performed at a temperature of 400 to 500 ° C. and for a treatment time of 1 to 10 hours. The finish cold rolling was performed in a range where the cold rolling rate did not exceed 50%. The low-temperature annealing was performed so that the material temperature was 150 to 550 ° C., and the holding time was 5 seconds or longer and within 1 hour.
工程A、B、Cにおいて冷間圧延1の加工率が70%を超える場合は、圧延割れしたため、製造を中止した。 In the processes A, B, and C, when the processing rate of the cold rolling 1 exceeded 70%, the production was stopped because the rolling crack occurred.
なお、各熱処理や圧延の後に、材料表面の酸化や粗度の状態に応じて酸洗浄や表面研磨を、形状に応じてテンションレベラーによる矯正を行った。 After each heat treatment and rolling, acid cleaning and surface polishing were performed according to the state of oxidation and roughness of the material surface, and correction with a tension leveler was performed according to the shape.
この供試材について下記のようにして各特性を測定、評価した。ここで、供試材の厚さは0.15mmとした。結果を表1に示す。
a.Cube方位、NDRDW方位の面積率:
EBSD法により、約500μm四方の測定領域で、スキャンステップが0.5μmの条件で測定を行った。測定面積は結晶粒を200個以上含むことを基準として調整した。上述したように、理想方位からのずれ角度については、共通の回転軸を中心に回転角を計算し、ずれ角度とした。あらゆる回転軸に関して各方位との回転角度を計算した。回転軸は最も小さいずれ角度で表現できるものを採用した。全ての測定点に対してこのずれ角度を計算して小数第一位までを有効数字とし、各方位から10°以内の方位を持つ結晶粒の面積を全測定面積で除し、面積率を算出した。
Each characteristic was measured and evaluated for this specimen as follows. Here, the thickness of the test material was 0.15 mm. The results are shown in Table 1.
a. Area ratio of Cube orientation and NDRDW orientation:
By the EBSD method, measurement was performed in a measurement region of about 500 μm square under the condition that the scan step was 0.5 μm. The measurement area was adjusted based on the inclusion of 200 or more crystal grains. As described above, with respect to the deviation angle from the ideal orientation, the rotation angle is calculated around the common rotation axis, and is set as the deviation angle. The rotation angle with each direction was calculated for every rotation axis. The rotation axis that can be expressed at the smallest angle is adopted. The deviation angle is calculated for all measurement points, the first decimal place is a significant figure, the area of crystal grains with an orientation within 10 ° from each orientation is divided by the total measurement area, and the area ratio is calculated. did.
b.たわみ係数:
日本伸銅協会の技術標準(JCBA T312(2002))に基づき、圧延方向に対して垂直方向のたわみ係数を測定した。120GPa以下であればたわみ係数が十分低いと判定した。
b. Deflection factor:
The deflection coefficient in the direction perpendicular to the rolling direction was measured based on the technical standard (JCBA T312 (2002)) of the Japan Copper and Brass Association. If it was 120 GPa or less, it was determined that the deflection coefficient was sufficiently low.
c.180°密着曲げ加工性 [曲げ加工性]:
圧延方向に垂直に幅1mm、長さ25mmにプレスで打ち抜き、これに曲げの軸が圧延方向に直角になるようにW曲げしたものをGW(Good Way)、圧延方向に平行になるようにW曲げしたものをBW(Bad Way)とした。JIS Z 2248に準じて曲げ加工を行った。0.4mmRの90°曲げ金型を使用して予備曲げを行った後に、圧縮試験機によって密着曲げを行った。曲げ部外側における割れの有無を50倍の光学顕微鏡で目視観察によりその曲げ加工部位を観察し、割れの有無を調査した。曲げ加工部にクラックがないものを○、クラックのあるものを×と判定した。
c. 180 ° adhesion bending workability [bending workability]:
GW (Good Way) obtained by punching with a press perpendicularly to the rolling direction to a width of 1 mm and a length of 25 mm, and W bent so that the axis of bending is perpendicular to the rolling direction is W to be parallel to the rolling direction. The bent one was designated as BW (Bad Way). Bending was performed according to JIS Z 2248. Preliminary bending was performed using a 0.4 mm R 90 ° bending mold, and then contact bending was performed using a compression tester. The presence or absence of cracks on the outside of the bent part was observed by visual observation with a 50 × optical microscope, and the presence or absence of cracks was investigated. The case where there was no crack in the bent portion was judged as ◯, and the case where there was a crack was judged as ×.
e.0.2%耐力 [YS]:
圧延平行方向から切り出したJIS Z2201−13B号の試験片をJIS Z2241に準じて3本測定しその平均値を示した。ここでは、YSの値が600MPa以上であるものを、強度に優れているものとした。
f.導電率 [EC]:
20℃(±0.5℃)に保たれた恒温漕中で四端子法により比抵抗を計測して導電率を算出した。なお、端子間距離は100mmとした。ここでは、ECの値が30%IACS以上であるものを、導電性に優れているものとした。
g.平均結晶粒径
JISH0501(切断法)に基づき、測定した。
e. 0.2% yield strength [YS]:
Three test pieces of JIS Z2201-13B cut out from the rolling parallel direction were measured according to JIS Z2241, and the average value was shown. Here, the YS value of 600 MPa or more was assumed to be excellent in strength.
f. Conductivity [EC]:
The specific resistance was measured by a four-terminal method in a constant temperature bath maintained at 20 ° C. (± 0.5 ° C.) to calculate the conductivity. In addition, the distance between terminals was 100 mm. Here, the one having an EC value of 30% IACS or more is considered to have excellent conductivity.
g. Average crystal grain size was measured based on JISH0501 (cutting method).
表1に示すように、本発明例1〜15は、いずれの特性も良好であった。ただし、本発明例15はcube方位面積率が高いために、同じ成分の本発明と比べて強度がやや低かった。
As shown in Table 1, Examples 1 to 15 of the present invention were all good in properties. However, since Example 15 of the present invention had a high cube azimuth area ratio, the strength was slightly lower than that of the present invention of the same component.
これに対し、表1に示すように、比較例の試料では、いずれかの特性が劣る結果となった。
すなわち、比較例1は、NiとSiの総量が少ないために、析出硬化に寄与する析出物の密度が低下し強度が劣った。比較例2及び3は、NiとSiの総量が多いために、導電率が劣った。比較例4は、その他の元素の添加量が多いために導電率が劣った。
比較例5、6、7、10はCube方位面積率が低く、曲げ加工性及びたわみ係数が劣った。比較例8、9はCube方位面積率は本発明の範囲内であるものの、NDRDW方位の面積率が高いために、たわみ係数が劣った。比較例11、12はCube方位面積率が低く、またNDRDW方位面積率が高く、曲げ加工性とたわみ係数が劣った。
この様に、冷間圧延1、中間焼鈍及び、冷間圧延3の3つの工程の組合せが、曲げ加工性とたわみ係数の両立に対して相乗的な効果を有した。
On the other hand, as shown in Table 1, in the sample of the comparative example, one of the characteristics was inferior.
That is, in Comparative Example 1, since the total amount of Ni and Si was small, the density of precipitates contributing to precipitation hardening was lowered and the strength was inferior. In Comparative Examples 2 and 3, the conductivity was inferior because the total amount of Ni and Si was large. In Comparative Example 4, the conductivity was inferior due to the large amount of other elements added.
In Comparative Examples 5, 6, 7, and 10, the Cube orientation area ratio was low, and the bending workability and the deflection coefficient were inferior. In Comparative Examples 8 and 9, although the Cube orientation area ratio was within the range of the present invention, the deflection ratio was inferior because the area ratio of the NDRDW orientation was high. In Comparative Examples 11 and 12, the Cube orientation area ratio was low, the NDRDW orientation area ratio was high, and the bending workability and the deflection coefficient were inferior.
Thus, the combination of the three processes of cold rolling 1, intermediate annealing, and cold rolling 3 had a synergistic effect on the compatibility of bending workability and deflection coefficient.
1 試料 1 sample
Claims (5)
Cube方位{100}<001>の面積率が5%以上、かつNDRDW方位{012}<221>の面積率が10%以下であることを特徴とする銅合金板材。 It has an alloy composition containing either 0.5 or 5.0 mass% in total of any one or two of Ni and Co, 0.2 to 1.5 mass% of Si, and the balance consisting of copper and inevitable impurities, In crystal orientation analysis in EBSD (Electron Back Scatter Diffraction) measurement,
A copper alloy sheet having an area ratio of Cube orientation {100} <001> of 5% or more and an area ratio of NDRDW orientation {012} <221> of 10% or less.
Cube方位{100}<001>の面積率が5%以上、かつNDRDW方位{012}<221>の面積率が10%以下であることを特徴とする銅合金板材。 One or two of Ni and Co are included in a total amount of 0.5 to 5.0 mass%, Si is contained in an amount of 0.2 to 1.5 mass%, Sn, Zn, Ag, Mn, B, P, Mg, A total of at least one selected from the group consisting of Cr, Fe, Ti, Zr and Hf is contained in an amount of 0.005 to 2.0 mass%, with the balance being an alloy composition consisting of copper and inevitable impurities. EBSD (Electron Back) In crystal orientation analysis in Scatter Diffraction (electron backscatter diffraction) measurement,
A copper alloy sheet having an area ratio of Cube orientation {100} <001> of 5% or more and an area ratio of NDRDW orientation {012} <221> of 10% or less.
[工程2:加工率10〜70%の冷間圧延1]
[工程3:900〜1050℃の温度で2分〜10時間の均質化熱処理]
[工程4:熱間加工]
[工程5:水冷]
[工程6:面削]
[工程7:加工率50〜99%の冷間圧延2]
[工程8:300〜800℃で5秒〜2時間の中間焼鈍]
[工程9:加工率3〜80%の冷間圧延3]
[工程10:700〜1020℃での溶体化熱処理]
[工程11:350〜600℃で5分〜20時間の時効析出熱処理]
[工程12:加工率5〜50%の仕上げ圧延] A copper alloy ingot containing one or two of Ni and Co in a total amount of 0.5 to 5.0 mass%, Si of 0.2 to 1.5 mass%, and the balance of Cu and inevitable impurities On the other hand, the manufacturing method of the copper alloy board | plate material characterized by performing the following process 2-process 12 in this order .
[Step 2: the pressurizing Engineering ratio 10% to 70% cold rolling 1]
[Step 3: Homogenization heat treatment at a temperature of 900 to 1050 ° C. for 2 minutes to 10 hours]
[Step 4: Hot working]
[Step 5: Water cooling]
[Step 6: Face milling]
[Step 7: Cold rolling 2 with a processing rate of 50 to 99%]
[Step 8: Intermediate annealing at 300 to 800 ° C. for 5 seconds to 2 hours]
[Step 9: Cold rolling 3 with a processing rate of 3 to 80%]
[Step 10: Solution heat treatment at 700 to 1020 ° C.]
[Step 11: Aging precipitation heat treatment at 350 to 600 ° C. for 5 minutes to 20 hours]
[Step 12: Finish rolling at a processing rate of 5 to 50%]
[工程2:加工率10〜70%の冷間圧延1]
[工程3:900〜1050℃の温度で2分〜10時間の均質化熱処理]
[工程4:熱間加工]
[工程5:水冷]
[工程6:面削]
[工程7:加工率50〜99%の冷間圧延2]
[工程8:300〜800℃で5秒〜2時間の中間焼鈍]
[工程9:加工率3〜80%の冷間圧延3]
[工程10:700〜1020℃での溶体化熱処理]
[工程11:350〜600℃で5分〜20時間の時効析出熱処理]
[工程12:加工率5〜50%の仕上げ圧延] One or two of Ni and Co are included in a total amount of 0.5 to 5.0 mass%, Si is contained in an amount of 0.2 to 1.5 mass%, Sn, Zn, Ag, Mn, B, P, Mg, A total of at least one selected from the group consisting of Cr, Fe, Ti, Zr, and Hf contains 0.005 to 2.0 mass%, and the remainder of the copper alloy ingot consisting of Cu and inevitable impurities is as follows . The manufacturing method of the copper alloy board | plate material characterized by performing the process 2-the process 12 in this order .
[Step 2: the pressurizing Engineering ratio 10% to 70% cold rolling 1]
[Step 3: Homogenization heat treatment at a temperature of 900 to 1050 ° C. for 2 minutes to 10 hours]
[Step 4: Hot working]
[Step 5: Water cooling]
[Step 6: Face milling]
[Step 7: Cold rolling 2 with a processing rate of 50 to 99%]
[Step 8: Intermediate annealing at 300 to 800 ° C. for 5 seconds to 2 hours]
[Step 9: Cold rolling 3 with a processing rate of 3 to 80%]
[Step 10: Solution heat treatment at 700 to 1020 ° C.]
[Step 11: Aging precipitation heat treatment at 350 to 600 ° C. for 5 minutes to 20 hours]
[Step 12: Finish rolling at a processing rate of 5 to 50%]
A connector comprising the copper alloy sheet according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011178800A JP5117602B1 (en) | 2011-08-18 | 2011-08-18 | Copper alloy sheet with low deflection coefficient and excellent bending workability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011178800A JP5117602B1 (en) | 2011-08-18 | 2011-08-18 | Copper alloy sheet with low deflection coefficient and excellent bending workability |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5117602B1 true JP5117602B1 (en) | 2013-01-16 |
JP2013040389A JP2013040389A (en) | 2013-02-28 |
Family
ID=47692790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011178800A Active JP5117602B1 (en) | 2011-08-18 | 2011-08-18 | Copper alloy sheet with low deflection coefficient and excellent bending workability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5117602B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106460099A (en) * | 2014-05-30 | 2017-02-22 | 古河电气工业株式会社 | Copper alloy sheet, connector comprising copper alloy sheet, and method for producing copper alloy sheet |
CN108779569A (en) * | 2016-03-09 | 2018-11-09 | Jx金属株式会社 | Plate the copper or Cu alloy material, bonder terminal, connector and electronic unit using the material of Ni |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6339361B2 (en) * | 2013-12-20 | 2018-06-06 | 古河電気工業株式会社 | Copper alloy sheet and manufacturing method thereof |
SG11202001124YA (en) * | 2017-08-09 | 2020-03-30 | Nippon Steel Chemical & Material Co Ltd | Cu ALLOY BONDING WIRE FOR SEMICONDUCTOR DEVICE |
JP7394024B2 (en) * | 2020-06-04 | 2023-12-07 | 古河電気工業株式会社 | Parts for electrical/electronic equipment |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4875768B2 (en) * | 2008-06-03 | 2012-02-15 | 古河電気工業株式会社 | Copper alloy sheet and manufacturing method thereof |
WO2011068134A1 (en) * | 2009-12-02 | 2011-06-09 | 古河電気工業株式会社 | Copper alloy sheet material having low young's modulus and method for producing same |
-
2011
- 2011-08-18 JP JP2011178800A patent/JP5117602B1/en active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106460099A (en) * | 2014-05-30 | 2017-02-22 | 古河电气工业株式会社 | Copper alloy sheet, connector comprising copper alloy sheet, and method for producing copper alloy sheet |
CN106460099B (en) * | 2014-05-30 | 2020-03-17 | 古河电气工业株式会社 | Copper alloy sheet material, connector made of copper alloy sheet material, and method for manufacturing copper alloy sheet material |
CN108779569A (en) * | 2016-03-09 | 2018-11-09 | Jx金属株式会社 | Plate the copper or Cu alloy material, bonder terminal, connector and electronic unit using the material of Ni |
Also Published As
Publication number | Publication date |
---|---|
JP2013040389A (en) | 2013-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4885332B2 (en) | Copper alloy sheet and manufacturing method thereof | |
JP5158909B2 (en) | Copper alloy sheet and manufacturing method thereof | |
JP4948678B2 (en) | Copper alloy sheet, connector using the same, and copper alloy sheet manufacturing method for manufacturing the same | |
JP4875768B2 (en) | Copper alloy sheet and manufacturing method thereof | |
CN103502489B (en) | The manufacture method of electronic electric equipment copper alloy, electronic electric equipment copper alloy thin plate, electronic electric equipment copper alloy, electronic electric equipment conducting element and terminal | |
JP5448763B2 (en) | Copper alloy material | |
JP6076724B2 (en) | Copper alloy material and method for producing the same | |
JP5503791B2 (en) | Copper alloy sheet and manufacturing method thereof | |
JP2011017072A (en) | Copper alloy material | |
JP5972484B2 (en) | Copper alloy sheet, connector made of copper alloy sheet, and method for producing copper alloy sheet | |
WO2013031841A1 (en) | Copper alloy material and manufacturing method thereof | |
WO2011068134A1 (en) | Copper alloy sheet material having low young's modulus and method for producing same | |
JP5144814B2 (en) | Copper alloy material for electrical and electronic parts | |
JP5261619B2 (en) | Copper alloy sheet and manufacturing method thereof | |
JP5916418B2 (en) | Copper alloy sheet and manufacturing method thereof | |
JP5117602B1 (en) | Copper alloy sheet with low deflection coefficient and excellent bending workability | |
JP5876995B2 (en) | Copper alloy sheet with excellent strength, bending workability, stress relaxation characteristics, and fatigue characteristics | |
JP5776831B1 (en) | Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, electronic and electrical equipment parts and terminals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5117602 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151026 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |