JP5055721B2 - Vibration sensor type differential pressure / pressure transmitter - Google Patents

Vibration sensor type differential pressure / pressure transmitter Download PDF

Info

Publication number
JP5055721B2
JP5055721B2 JP2005194511A JP2005194511A JP5055721B2 JP 5055721 B2 JP5055721 B2 JP 5055721B2 JP 2005194511 A JP2005194511 A JP 2005194511A JP 2005194511 A JP2005194511 A JP 2005194511A JP 5055721 B2 JP5055721 B2 JP 5055721B2
Authority
JP
Japan
Prior art keywords
frequency
signal
circuit
pressure
comparison signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005194511A
Other languages
Japanese (ja)
Other versions
JP2007010593A (en
Inventor
直樹 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2005194511A priority Critical patent/JP5055721B2/en
Publication of JP2007010593A publication Critical patent/JP2007010593A/en
Application granted granted Critical
Publication of JP5055721B2 publication Critical patent/JP5055721B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Description

本発明は、基準クロックを高速化することなく、被測定信号の周波数を高速・高分解能で測定することができる周波数測定回路利用した振動センサ式差圧・圧力伝送器に関するものである。
The present invention has thus speeding the reference clock, to a vibration sensor type differential pressure-pressure transmitter using a frequency measuring circuit which can measure the frequency of the signal to be measured at high speed and high resolution.

図4は、従来の振動センサ式差圧・圧力伝送器で用いられている周波数測定回路の基本構成を示す機能ブロック図である。振動式圧力・差圧センサ1は、測定圧力または差圧に対応した周波数を有する被測定信号Fpを出力する。2は基準クロック発生器であり、被測定信号Fpの周波数よりも高い周波数の基準クロックCLKを発生する。   FIG. 4 is a functional block diagram showing a basic configuration of a frequency measurement circuit used in a conventional vibration sensor type differential pressure / pressure transmitter. The vibration type pressure / differential pressure sensor 1 outputs a measured signal Fp having a frequency corresponding to the measurement pressure or the differential pressure. A reference clock generator 2 generates a reference clock CLK having a frequency higher than the frequency of the signal under test Fp.

被測定信号Fpは、周波数カウンタ3の同期回路31に入力され、基準クロックCLKの立ち上がりに同期した信号Fsに変換される。この信号Fsおよび基準クロックCLKは、カウンタ32に入力される。カウンタ32は、基準クロックCLKを信号Fsの1周期またはその整数倍の期間カウントして、被測定信号Fpの周波数を測定する。この周波数データは、CPUの機能で実現される演算回路4に入力され、差圧あるいは圧力が演算される。5は、CPUの内部バスである。   The signal to be measured Fp is input to the synchronization circuit 31 of the frequency counter 3 and converted into a signal Fs synchronized with the rising edge of the reference clock CLK. The signal Fs and the reference clock CLK are input to the counter 32. The counter 32 counts the reference clock CLK for one period of the signal Fs or an integer multiple thereof, and measures the frequency of the signal under measurement Fp. This frequency data is input to the arithmetic circuit 4 realized by the function of the CPU, and the differential pressure or pressure is calculated. Reference numeral 5 denotes an internal bus of the CPU.

図5は、同期回路31のタイムチャートである。(A)に示す基準クロックCLKは、一定の周波数を有するパルス信号である。(B)に示す被測定信号Fpは、この基準クロックCLKよりかなり低い周波数の信号であり、かつ基準クロックに同期していない。同期回路31は、基準クロックCLKの立ち上がりで被測定信号Fpをサンプリングする。そのため、同期回路31の出力Fsは、(C)に示すように基準クロックCLKの立ち上がりに同期して変化する。ゲート時間はカウンタ32が信号Fs及び基準クロックCLKをカウントする単位期間を表している。   FIG. 5 is a time chart of the synchronization circuit 31. The reference clock CLK shown in (A) is a pulse signal having a constant frequency. The signal under measurement Fp shown in (B) is a signal having a frequency considerably lower than that of the reference clock CLK, and is not synchronized with the reference clock. The synchronization circuit 31 samples the signal under measurement Fp at the rising edge of the reference clock CLK. Therefore, the output Fs of the synchronization circuit 31 changes in synchronization with the rising edge of the reference clock CLK as shown in (C). The gate time represents a unit period during which the counter 32 counts the signal Fs and the reference clock CLK.

このような基本構成において、伝送器の高速化を図る目的でゲート時間を短くした場合には、同一の分解能を確保するためには基準クロックCLKの周波数を高くしなければならない。周波数を高くすると消費電力が増加するので、2線式の差圧・圧力伝送器に適用することは困難である。図3は、特許文献1に開示されている周波数測定回路の機能ブロック図である。この回路の特徴は、基準クロックCLKの周波数を高くすることなく、高速化を実現したものである。   In such a basic configuration, when the gate time is shortened for the purpose of speeding up the transmitter, the frequency of the reference clock CLK must be increased in order to ensure the same resolution. Since the power consumption increases when the frequency is increased, it is difficult to apply to a two-wire differential pressure / pressure transmitter. FIG. 3 is a functional block diagram of the frequency measurement circuit disclosed in Patent Document 1. In FIG. The feature of this circuit is that high speed is realized without increasing the frequency of the reference clock CLK.

同期回路6は、図4における同期回路31と同一機能を有する。7は時間差検出回路であり、振動式圧力・差圧センサ1の被測定信号Fp及び同期回路6の出力Fsが入力され、被測定信号Fpの立ち上がりで低レベルになり、その次の出力Fsの立ち上がりで高レベルになる信号Tinを出力する。即ち、時間差検出回路7の出力Tinは、被測定信号FpとFsの時間差のパルス幅を有する信号である。   The synchronization circuit 6 has the same function as the synchronization circuit 31 in FIG. Reference numeral 7 denotes a time difference detection circuit which receives the signal to be measured Fp of the vibration type pressure / differential pressure sensor 1 and the output Fs of the synchronizing circuit 6 and becomes low level at the rising edge of the signal to be measured Fp. A signal Tin that becomes high level at the rising edge is output. That is, the output Tin of the time difference detection circuit 7 is a signal having a pulse width corresponding to the time difference between the signals to be measured Fp and Fs.

8は時間幅拡大回路であり、時間差検出回路7の出力Tinが入力され、この出力Tinのパルス幅、すなわち低レベル期間を所定の倍率だけ拡大したパルス幅を有する信号Toutを出力する。   Reference numeral 8 denotes a time width expansion circuit which receives the output Tin of the time difference detection circuit 7 and outputs a signal Tout having a pulse width of the output Tin, that is, a pulse width obtained by expanding the low level period by a predetermined magnification.

9は第1カウンタであり、出力Fsの1周期またはその整数倍の間基準クロックCLKをカウントする。即ち、このカウンタ9は、図4で説明したカウンタ32と同じ動作をする。   Reference numeral 9 denotes a first counter, which counts the reference clock CLK for one period of the output Fs or an integral multiple thereof. That is, the counter 9 performs the same operation as the counter 32 described with reference to FIG.

10は第2カウンタであり、時間幅拡大回路8の出力Toutおよび基準クロックCLKが入力され、出力Toutのパルス幅、即ち、Toutが低レベルの期間に基準クロックCLKをカウントする。CPU機能で実現される演算回路4は、バス5を介して第1カウンタ9及び第2カウンタ10のカウント値を取得する。   Reference numeral 10 denotes a second counter that receives the output Tout of the time width expanding circuit 8 and the reference clock CLK, and counts the reference clock CLK during a period when the pulse width of the output Tout, that is, Tout is low. The arithmetic circuit 4 realized by the CPU function acquires the count values of the first counter 9 and the second counter 10 via the bus 5.

演算回路4は、第2カウンタ10のカウント値を時間幅拡大回路8が入力信号のパルス幅を拡大する倍率により除算し、この除算結果を第1カウンタ9のカウント値に加算することによって、振動式圧力・差圧センサ1の被測定信号Fpの周波数を演算する。また、この周波数から圧力値を演算する。   The arithmetic circuit 4 divides the count value of the second counter 10 by the magnification by which the time width expansion circuit 8 expands the pulse width of the input signal, and adds this division result to the count value of the first counter 9 to thereby generate vibration. The frequency of the signal to be measured Fp of the pressure / differential pressure sensor 1 is calculated. Moreover, a pressure value is calculated from this frequency.

周波数測定回路及びそれを用いた振動センサ式差圧・圧力伝送器に関連する先行技術文献としては、次のようなものがある。   Prior art documents related to a frequency measurement circuit and a vibration sensor type differential pressure / pressure transmitter using the frequency measurement circuit include the following.

特開2004−198393号公報JP 2004-198393 A

従来技術による構成では、次のような問題点がある。
(1)図4に示す基本構成では、高速化するために基準クロックの周波数を高くした場合には、消費電力が増加し2線式の差圧・圧力伝送器に適用することは困難である。
The configuration according to the prior art has the following problems.
(1) In the basic configuration shown in FIG. 4, when the frequency of the reference clock is increased in order to increase the speed, the power consumption increases and it is difficult to apply to a two-wire differential pressure / pressure transmitter. .

(2)図3に示す構成では、基準クロックの周波数を高くすることなく測定を高速化することが可能である。しかしながら、高速化に伴ないゲート時間が短くなることで、被測定信号に重畳するノイズ及びジッタが測定精度を悪化させる影響が大きくなるが、この影響を抑制することができない。 (2) With the configuration shown in FIG. 3, it is possible to speed up the measurement without increasing the frequency of the reference clock. However, since the gate time is shortened as the speed is increased, noise and jitter superimposed on the signal under measurement increase the influence of deteriorating measurement accuracy, but this influence cannot be suppressed.

従って本発明が解決しようとする課題は、基準クロックの周波数を高くすることなく、被測定信号の周波数測定分解能を向上させると共に、高速化に伴ない発生するノイズやジッタの影響を抑制することが可能な周波数測定回路用いた振動センサ式差圧・圧力伝送器を実現することにある。
Therefore, the problem to be solved by the present invention is to improve the frequency measurement resolution of the signal under measurement without increasing the frequency of the reference clock, and to suppress the influence of noise and jitter that accompany the increase in speed. It is to realize a vibration sensor type differential pressure-pressure transmitter using a frequency measuring circuit capable.

)振動式差圧・圧力センサからの被測定信号の周波数に対して近接した周波数の比較信号を発生する比較信号発生回路と、
前記被測定信号と前記比較信号を入力し、両者の差分周波数信号を生成するヘテロダイン回路と、
前記差分周波数信号でゲートされる基準クロックをカウントする周波数カウンタと、
この周波数カウンタのカウント値と前記比較信号の周波数に基づいて前記被測定信号の周波数を演算する演算回路とを備え、
この演算回路は、個々の前記振動式差圧・圧力センサからの被測定信号の周波数スパンに基づいて、前記周波数スパンの下限周波数より低く、かつ前記下限周波数に近接した周波数の前記比較信号を発生させるための予め設定された分周比の指令を前記比較信号発生回路に与え、
前記比較信号発生回路は、前記基準クロックを前記指令された分周比で分周した前記比較信号を発生する、
ことを特徴とする振動センサ式差圧・圧力伝送器。
( 1 ) a comparison signal generation circuit for generating a comparison signal having a frequency close to the frequency of the signal under measurement from the vibration type differential pressure / pressure sensor;
A heterodyne circuit that inputs the signal under measurement and the comparison signal and generates a differential frequency signal of both;
A frequency counter that counts a reference clock gated with the differential frequency signal;
An arithmetic circuit that calculates the frequency of the signal under measurement based on the count value of the frequency counter and the frequency of the comparison signal;
The arithmetic circuit generates the comparison signal having a frequency lower than the lower limit frequency of the frequency span and close to the lower limit frequency based on the frequency span of the signal under measurement from each of the vibration type differential pressure / pressure sensors. Giving a command of a preset division ratio to the comparison signal generating circuit,
The comparison signal generation circuit generates the comparison signal obtained by dividing the reference clock by the commanded division ratio.
This is a vibration sensor type differential pressure / pressure transmitter.

)前記ヘテロダイン回路は、ローパスフィルタを備えることを特徴とする(1)に記載の振動センサ式差圧・圧力伝送器。
( 2 ) The vibration sensor type differential pressure / pressure transmitter according to (1) , wherein the heterodyne circuit includes a low-pass filter.

以上説明したことから明らかなように、本発明によれば次のような効果がある。
(1)ヘテロダイン回路を用いて、被測定信号の周波数と、個々の前記振動式差圧・圧力センサからの被測定信号の周波数スパンに基づいて、前記周波数スパンの下限周波数より低くかつ前記下限周波数に近接した周波数の前記比較信号の周波数の差分周波数信号を生成し、この差分周波数信号でゲートされる基準クロックをカウントした値と比較信号の周波数に基づいて被測定信号の周波数を演算することで、基準クロックの周波数を高くすることなく、高速・高分解能を実現できる。
As is apparent from the above description, the present invention has the following effects.
(1) using a heterodyne circuit, the frequency of the signal under measurement, based on the frequency span of the measured signal from each said vibratory differential-pressure sensor, lower than the minimum frequency of the frequency span and the lower limit frequency generates a difference frequency signal between the frequency of said comparison signal having a frequency close to calculate the frequency of the signal to be measured based on the frequency of the comparison signal with the value obtained by counting the reference clock gated by the difference frequency signal that the Thus, high speed and high resolution can be realized without increasing the frequency of the reference clock.

(2)ノイズやジッタに関しては、ヘテロダイン回路内にあるローパスフィルタによってジッタの高周波成分を除くことができるため、被測定信号に重畳するノイズ及びジッタが測定精度を悪化させる影響を抑制することができる。 (2) With respect to noise and jitter, the high-frequency component of jitter can be removed by a low-pass filter in the heterodyne circuit, so that the influence of noise and jitter superimposed on the signal under measurement deteriorating measurement accuracy can be suppressed. .

(3)比較信号の周波数は、基準クロックを所定比率で分周することにより正確な周波数信号を生成することが可能であり、演算精度を確保することができる。 (3) As for the frequency of the comparison signal, it is possible to generate an accurate frequency signal by dividing the reference clock by a predetermined ratio, and it is possible to ensure calculation accuracy.

以下、本発明を図面により詳細に説明する。図1は本発明を適用した周波数測定回路及びそれを用いた振動センサ式差圧・圧力伝送器の一実施形態を示す機能ブロック図である。図4で説明した従来回路と同一要素には同一符号を付して説明を省略する。以下、本発明の特徴部につき説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a functional block diagram showing an embodiment of a frequency measuring circuit to which the present invention is applied and a vibration sensor type differential pressure / pressure transmitter using the same. The same elements as those in the conventional circuit described with reference to FIG. Hereinafter, the characteristic part of the present invention will be described.

図1において、100は、本発明の特徴部を形成するヘテロダイン回路である。このヘテロダイン回路は、乗算器101と、ローパスフィルタ102と、2値化器103を備えている。   In FIG. 1, reference numeral 100 denotes a heterodyne circuit that forms a feature of the present invention. This heterodyne circuit includes a multiplier 101, a low-pass filter 102, and a binarizer 103.

200は比較信号発生回路であり、この実施形態では分周回路201を備え、基準クロックCLKを所定の分周比nで分周した周波数CLK/nの比較信号Fcを生成してヘテロダイン回路100に出力している。   Reference numeral 200 denotes a comparison signal generation circuit. In this embodiment, the comparison signal generation circuit 200 includes a frequency division circuit 201, which generates a comparison signal Fc having a frequency CLK / n obtained by dividing the reference clock CLK by a predetermined frequency division ratio n to the heterodyne circuit 100. Output.

ヘテロダイン回路100の乗算器101は、被測定信号Fpと比較信号Fcを入力し、両者の周波数の和成分(Fp+Fc)及び差成分(Fp−Fc)を生成する。この乗算器101への入力はディジタル信号であるので、乗算器101は排他的論理和演算の素子からなる。   The multiplier 101 of the heterodyne circuit 100 inputs the signal to be measured Fp and the comparison signal Fc, and generates a sum component (Fp + Fc) and a difference component (Fp−Fc) of both frequencies. Since the input to the multiplier 101 is a digital signal, the multiplier 101 is composed of an element for exclusive OR operation.

乗算器101の出力は、ローパスフィルタ102に入力される。ローパスフィルタ102は、乗算器101によって生成される周波数の和成分と差成分のうち、差成分のみを抽出するためのアナログフィルタである。   The output of the multiplier 101 is input to the low pass filter 102. The low-pass filter 102 is an analog filter for extracting only the difference component from the sum and difference components of the frequencies generated by the multiplier 101.

このローパスフィルタ102で抽出されアナログ信号の差成分は、2値化器103で再びディジタル信号へ戻される。2値化器103は、コンパレータであり、その出力信号の周波数を差分周波数Fd、信号Fs及びFcの周波数をFs及びFcとすれば、差分周波数Fdは、Fd=(Fp−Fc)である。この差分周波数Fdが、周波数カウンタ3に入力される。   The difference component of the analog signal extracted by the low-pass filter 102 is returned to the digital signal by the binarizer 103 again. The binarizer 103 is a comparator. If the frequency of the output signal is the difference frequency Fd and the frequencies of the signals Fs and Fc are Fs and Fc, the difference frequency Fd is Fd = (Fp−Fc). This difference frequency Fd is input to the frequency counter 3.

周波数カウンタ3は、図4で説明した従来回路と同じ機能であり、差分周波数Fdを同期回路31により基準クロックCLKで同期化し、その同期化信号で基準クロックCLKの通過を規制してカウンタ32で基準クロックCLKをカウントする。そのカウント結果は、バス5を通じて演算回路(CPU)4に取り込まれる。   The frequency counter 3 has the same function as the conventional circuit described with reference to FIG. 4, and the differential frequency Fd is synchronized with the reference clock CLK by the synchronization circuit 31, and the passage of the reference clock CLK is regulated by the synchronization signal by the counter 32. The reference clock CLK is counted. The count result is taken into the arithmetic circuit (CPU) 4 through the bus 5.

比較信号発生回路200の分周回路201は、実施形態のように、基準クロックCLKを分周してヘテロダイン回路100に入力される比較信号Fcを生成する構成を採用する場合には、分周比nはCPU4からバス5を通じて指令される。分周比nは、個々のセンサからの被測定信号Fpの周波数スパンに基づいて所定の差分周波数Fdとなるように予め設定される。   When the frequency dividing circuit 201 of the comparison signal generating circuit 200 employs a configuration that divides the reference clock CLK and generates the comparison signal Fc input to the heterodyne circuit 100 as in the embodiment, the frequency division ratio n is commanded from the CPU 4 through the bus 5. The frequency division ratio n is set in advance so as to be a predetermined differential frequency Fd based on the frequency span of the signal under measurement Fp from each sensor.

演算回路(CPU)4は、分周回路201に分周比nの指令を与えると共に、周波数カウンタ3からのデータを取り込んで計算されるヘテロダイン回路100差分周波数Fdと、比較信号発生回路200の比較信号の周波数Fcとから、被測定信号の周波数Fpを、Fp=(Fd+Fc)で計算する。   The arithmetic circuit (CPU) 4 gives a command of the frequency division ratio n to the frequency dividing circuit 201 and compares the difference frequency Fd of the heterodyne circuit 100 calculated by taking in the data from the frequency counter 3 and the comparison signal generating circuit 200. From the signal frequency Fc, the frequency Fp of the signal under measurement is calculated by Fp = (Fd + Fc).

一般に、周波数カウンタ3によって測定できる周波数は、周波数カウンタ3の時間分解能と測定時間で決まる。基準クロックCLKの周波数が周波数カウンタ3の入力周波数よりも充分高ければ、入力周波数によらず測定結果の有効桁数は一定とみなすことができる。   In general, the frequency that can be measured by the frequency counter 3 is determined by the time resolution of the frequency counter 3 and the measurement time. If the frequency of the reference clock CLK is sufficiently higher than the input frequency of the frequency counter 3, the number of effective digits of the measurement result can be regarded as constant regardless of the input frequency.

このことは、周波数が低い信号ほどより小さい桁まで測定可能であることを意味する。従って、ヘテロダイン回路100を通って元の信号周波数Fpよりも周波数が低い差分周波数Fdを測定した周波数カウンタの測定結果と、既知の周波数Fcとを足し合わせて求められる元の被測定信号の周波数Fpは、ヘテロダイン回路を用いない時よりも測定結果の有効桁数が増え、結果として周波数分解能が向上することになる。   This means that a signal having a lower frequency can be measured to a smaller order. Therefore, the frequency Fp of the original signal under measurement obtained by adding the measurement result of the frequency counter that has measured the differential frequency Fd that is lower than the original signal frequency Fp through the heterodyne circuit 100 and the known frequency Fc. The number of significant digits of the measurement result increases compared to when the heterodyne circuit is not used, and as a result, the frequency resolution is improved.

被測定信号Fpの周波数スパンが120〜130kHzのとき、比較信号Fcの周波数を110kHzに選定した場合には、差分周波数Fdは、10〜20kHzとなる。このときに期待される分解能の向上効果は、略10倍乃至5倍となる。   When the frequency span of the signal under measurement Fp is 120 to 130 kHz, when the frequency of the comparison signal Fc is selected to be 110 kHz, the differential frequency Fd is 10 to 20 kHz. The resolution improvement effect expected at this time is approximately 10 to 5 times.

図2は、本発明の他の実施形態の構成を示す機能ブロック図である。この構成の特徴は、図1で説明した本発明のヘテロダイン回路100の差分周波数Fdを、図3で説明した特許文献1に開示された周波数測定回路の入力とした、組み合わせ構成にある。このような組み合わせ構成により、分解能を更に向上させることが可能である。   FIG. 2 is a functional block diagram showing the configuration of another embodiment of the present invention. The feature of this configuration is a combination configuration in which the differential frequency Fd of the heterodyne circuit 100 of the present invention described in FIG. 1 is used as the input of the frequency measurement circuit disclosed in Patent Document 1 described in FIG. With such a combination configuration, the resolution can be further improved.

本発明で導入される、ヘテロダイン回路100におけるローパスフィルタ102の機能は、乗算器101によって生成される周波数の和成分と差成分のうち、差成分のみを抽出するためのアナログフィルタとしての機能に加えて、高速化に伴ない発生するノイズ及びジッタの影響を抑制する機能を有し、図3で説明した特許文献1に開示された従来技術の問題点を解消することができる。   The function of the low-pass filter 102 in the heterodyne circuit 100 introduced in the present invention is in addition to the function as an analog filter for extracting only the difference component from the sum and difference components of the frequencies generated by the multiplier 101. Thus, it has a function of suppressing the influence of noise and jitter generated with the increase in speed, and can solve the problems of the prior art disclosed in Patent Document 1 described in FIG.

図1の実施形態では、比較信号Fcを生成する手段として基準クロックCLKを分周する分周回路201を例示したが、この構成に限定されるものではなく既知の周波数信号を出力する安定した発振回路を採用することも可能である。   In the embodiment of FIG. 1, the frequency dividing circuit 201 that divides the reference clock CLK is exemplified as means for generating the comparison signal Fc. However, the frequency dividing circuit 201 is not limited to this configuration, and stable oscillation that outputs a known frequency signal is possible. It is also possible to employ a circuit.

本発明を適用した周波数測定回路及びそれを用いた振動センサ式差圧・圧力伝送器の一実施形態を示す機能ブロック図である。It is a functional block diagram showing one embodiment of a frequency measuring circuit to which the present invention is applied and a vibration sensor type differential pressure / pressure transmitter using the same. 本発明の他の実施形態の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of other embodiment of this invention. 特許文献1に開示されている周波数測定回路の機能ブロック図である。2 is a functional block diagram of a frequency measurement circuit disclosed in Patent Document 1. FIG. 従来の振動センサ式差圧・圧力伝送器で用いられている周波数測定回路の基本構成を示す機能ブロック図である。It is a functional block diagram which shows the basic composition of the frequency measurement circuit used with the conventional vibration sensor type differential pressure / pressure transmitter. 同期回路のタイムチャートである。It is a time chart of a synchronous circuit.

符号の説明Explanation of symbols

1 振動式圧力・差圧センサ
2 基準クロック発生器
3 周波数カウンタ
31 同期回路
32 カウンタ
4 演算回路(CPU)
5 内部バス
100 ヘテロダイン回路
101 乗算器
102 ローパスフィルタ
103 2値化器
200 比較信号発生回路
201 分周回路
1 Vibrating Pressure / Differential Pressure Sensor 2 Reference Clock Generator 3 Frequency Counter 31 Synchronous Circuit 32 Counter 4 Arithmetic Circuit (CPU)
5 Internal Bus 100 Heterodyne Circuit 101 Multiplier 102 Low Pass Filter 103 Binarizer 200 Comparison Signal Generation Circuit 201 Frequency Dividing Circuit

Claims (2)

振動式差圧・圧力センサからの被測定信号の周波数に対して近接した周波数の比較信号を発生する比較信号発生回路と、
前記被測定信号と前記比較信号を入力し、両者の差分周波数信号を生成するヘテロダイン回路と、
前記差分周波数信号でゲートされる基準クロックをカウントする周波数カウンタと、
この周波数カウンタのカウント値と前記比較信号の周波数に基づいて前記被測定信号の周波数を演算する演算回路とを備え、
この演算回路は、個々の前記振動式差圧・圧力センサからの被測定信号の周波数スパンに基づいて、前記周波数スパンの下限周波数より低く、かつ前記下限周波数に近接した周波数の前記比較信号を発生させるための予め設定された分周比の指令を前記比較信号発生回路に与え、
前記比較信号発生回路は、前記基準クロックを前記指令された分周比で分周した前記比較信号を発生する、
ことを特徴とする振動センサ式差圧・圧力伝送器。
A comparison signal generation circuit for generating a comparison signal having a frequency close to the frequency of the signal under measurement from the vibration type differential pressure / pressure sensor;
A heterodyne circuit that inputs the signal under measurement and the comparison signal and generates a differential frequency signal of both;
A frequency counter that counts a reference clock gated with the differential frequency signal;
An arithmetic circuit that calculates the frequency of the signal under measurement based on the count value of the frequency counter and the frequency of the comparison signal;
The arithmetic circuit generates the comparison signal having a frequency lower than the lower limit frequency of the frequency span and close to the lower limit frequency based on the frequency span of the signal under measurement from each of the vibration type differential pressure / pressure sensors. Giving a command of a preset division ratio to the comparison signal generating circuit,
The comparison signal generation circuit generates the comparison signal obtained by dividing the reference clock by the commanded division ratio.
This is a vibration sensor type differential pressure / pressure transmitter.
前記ヘテロダイン回路は、ローパスフィルタを備えることを特徴とする請求項に記載の振動センサ式差圧・圧力伝送器。 The vibration sensor type differential pressure / pressure transmitter according to claim 1 , wherein the heterodyne circuit includes a low-pass filter.
JP2005194511A 2005-07-04 2005-07-04 Vibration sensor type differential pressure / pressure transmitter Expired - Fee Related JP5055721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005194511A JP5055721B2 (en) 2005-07-04 2005-07-04 Vibration sensor type differential pressure / pressure transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005194511A JP5055721B2 (en) 2005-07-04 2005-07-04 Vibration sensor type differential pressure / pressure transmitter

Publications (2)

Publication Number Publication Date
JP2007010593A JP2007010593A (en) 2007-01-18
JP5055721B2 true JP5055721B2 (en) 2012-10-24

Family

ID=37749292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005194511A Expired - Fee Related JP5055721B2 (en) 2005-07-04 2005-07-04 Vibration sensor type differential pressure / pressure transmitter

Country Status (1)

Country Link
JP (1) JP5055721B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105652083A (en) * 2015-12-31 2016-06-08 上海创远仪器技术股份有限公司 Circuit structure and method for improving frequency measurement accuracy of superheterodyne spectrum analyzer
JP7349402B2 (en) 2020-04-16 2023-09-22 三協立山株式会社 Strut device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556262A (en) * 1978-06-30 1980-01-17 Toshiba Corp Frequency detector
JPH0795772B2 (en) * 1985-10-08 1995-10-11 株式会社リコー Signal sound detector
JPS62179227A (en) * 1986-02-01 1987-08-06 Nec Corp Frequency synthesizer
JP2674016B2 (en) * 1986-11-28 1997-11-05 ソニー株式会社 Frequency measuring device
US4799020A (en) * 1987-02-06 1989-01-17 Tektronix, Inc. Time variant frequency correction technique
JPH04285864A (en) * 1991-03-14 1992-10-09 Nec Corp Frequency measuring apparatus
JPH05172861A (en) * 1991-12-26 1993-07-13 Yokogawa Electric Corp Frequency measuring circuit
JPH063385A (en) * 1992-06-17 1994-01-11 Toyo Electric Mfg Co Ltd Detection of pulse frequency
JPH0772188A (en) * 1993-09-06 1995-03-17 Advantest Corp Device for magnifying frequency deviation ratio
JP3030598B2 (en) * 1994-06-24 2000-04-10 アンリツ株式会社 Jitter detector
JP2001147172A (en) * 1999-11-18 2001-05-29 Nt Engineering Kk Pressure detecting method and device
JP4269710B2 (en) * 2002-10-22 2009-05-27 横河電機株式会社 Frequency measurement circuit and vibration sensor type differential pressure / pressure transmitter using the same
JP4019419B2 (en) * 2003-05-30 2007-12-12 横河電機株式会社 Pressure guiding tube clogging detector and differential pressure / pressure transmitter incorporating it
JP4466822B2 (en) * 2003-10-02 2010-05-26 横河電機株式会社 Frequency measurement circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105652083A (en) * 2015-12-31 2016-06-08 上海创远仪器技术股份有限公司 Circuit structure and method for improving frequency measurement accuracy of superheterodyne spectrum analyzer
CN105652083B (en) * 2015-12-31 2019-03-01 上海创远仪器技术股份有限公司 Improve the circuit structure and method of superhet spectrum analyzer frequency measurement accuracy
JP7349402B2 (en) 2020-04-16 2023-09-22 三協立山株式会社 Strut device

Also Published As

Publication number Publication date
JP2007010593A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
JP2010271091A (en) Frequency measuring device
CN102033162B (en) Signal generation circuit, frequency measurement device including the signal generation circuit, and signal generation method
JP2006329987A (en) Apparatus for measuring jitter and method of measuring jitter
JP2012103004A (en) Frequency difference output unit, frequency measurement unit, electronic device, and frequency measurement method
JP5055721B2 (en) Vibration sensor type differential pressure / pressure transmitter
US9130578B2 (en) PLL circuit
JPWO2009044444A1 (en) Clock generating device, electronic device, and clock generating method
JP2014052282A (en) Frequency measurement circuit
JPH06241972A (en) Chemical sensing apparatus
JP4955196B2 (en) AC signal measuring device
US8498373B2 (en) Generating a regularly synchronised count value
JP3609177B2 (en) Correlation function measurement method and apparatus
TW522654B (en) Apparatus and method for measuring jitter of phase lock loop signal
KR100980168B1 (en) Phase difference detector and rotational position detector
Li et al. High-precision frequency measurement for microresonant sensors based on improved modified multi-phase clock method
KR101066543B1 (en) High precision clock generation apparatus and method with synchronizing standard time
JP6049328B2 (en) Frequency measuring device
KR100706217B1 (en) Wave detection device, method, and recording medium
JP4466822B2 (en) Frequency measurement circuit
JP6312772B1 (en) Phase difference estimation device and communication device including the phase difference estimation device
JP2024134714A (en) Sensor Module
JP5055016B2 (en) Phase difference measurement circuit
CN107317581B (en) Time-to-digital converter with high resolution
JP2005244648A (en) Digital pll circuit
KR100393421B1 (en) Counter System for Synchronous AF Converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees