JP5044877B2 - Plasma display device - Google Patents

Plasma display device Download PDF

Info

Publication number
JP5044877B2
JP5044877B2 JP2001229178A JP2001229178A JP5044877B2 JP 5044877 B2 JP5044877 B2 JP 5044877B2 JP 2001229178 A JP2001229178 A JP 2001229178A JP 2001229178 A JP2001229178 A JP 2001229178A JP 5044877 B2 JP5044877 B2 JP 5044877B2
Authority
JP
Japan
Prior art keywords
sustain
electrode
discharge
plasma display
panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001229178A
Other languages
Japanese (ja)
Other versions
JP2003043987A (en
Inventor
弘之 橘
亨 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001229178A priority Critical patent/JP5044877B2/en
Publication of JP2003043987A publication Critical patent/JP2003043987A/en
Application granted granted Critical
Publication of JP5044877B2 publication Critical patent/JP5044877B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Gas-Filled Discharge Tubes (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of Gas Discharge Display Tubes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プラズマディスプレイ装置に関するものである。
【0002】
【従来の技術】
AC型プラズマディスプレイパネル(以下、「パネル」という)は、図6の断面図に示すように、間に放電空間1を形成するように、2つのガラス製の表面基板2とガラス製の背面基板3とが対向配置されている。放電空間1には放電によって紫外線を放射するネオン(Ne)およびキセノン(Xe)が封入されており、通常は全ガス圧に対してXeの分圧が5%である。表面基板2上には走査電極4と維持電極5とからなる放電電極が複数配列されており、走査電極4および維持電極5を覆って誘電体層6が形成され、誘電体層6の上に酸化マグネシウム(MgO)等からなる保護膜7が形成されている。走査電極4は透明電極4aと金属電極4bとから構成され、維持電極5は透明電極5aと金属電極5bとから構成されている。
【0003】
背面基板3上には、走査電極4および維持電極5と直交する方向に複数のデータ電極8が互いに平行配列されており、また各データ電極8を隔離しかつ放電空間1を形成するための隔壁9がデータ電極8の間に設けられている。データ電極8と隔壁9の側面を覆って蛍光体層10が形成されている。そして、走査電極4および維持電極5とデータ電極8との交差部に放電セルが形成される。
【0004】
従来のプラズマディスプレイ装置は、このような従来のパネルとそれを駆動するための駆動手段とを有している。
【0005】
次に、従来のパネルに画像データを表示させる方法について説明する。画像の階調表示は、1フィールド期間を2進法に基づいた発光期間の重みを持った複数のサブフィールドに分割し、発光させるサブフィールドの組み合わせによって行う。各サブフィールドは初期化期間、アドレス期間および維持期間を有する。
【0006】
画像データを表示するためには、初期化期間、アドレス期間および維持期間でそれぞれ異なる信号波形を各電極に印加する。初期化期間では、たとえば、維持電極5およびデータ電極8に対して正極性となるパルス電圧をすべての走査電極4に印加し、保護膜7および蛍光体層10上に壁電荷を蓄積する。
【0007】
アドレス期間では、すべての走査電極4に順次、負極性のパルスを印加することにより走査していく。画像データがある場合、走査電極4を走査している間にデータ電極8に正極性のデータパルスを印加すると、走査電極4とデータ電極8との間で放電が起こり、走査電極4上の保護膜7の表面に壁電荷が形成される。
【0008】
続く維持期間では一定の期間、走査電極4と維持電極5との間に放電を維持するのに十分な電圧を有する維持パルスを交互に印加する。図7(a)、(b)はそれぞれ走査電極4および維持電極5に印加する維持パルスの波形を示しており、維持パルスは、波高値がVSOでありかつ電位が増加する方向(0からVSOへ向かう方向)に変化する正極性のパルスである。維持パルスにより、画像データがある放電セルでは走査電極4と維持電極5との間に放電プラズマが生成され、維持パルスを印加するごとに蛍光体層10が励起発光する。アドレス期間においてデータパルスが印加されなかった放電セルでは放電は発生せず、蛍光体層10の励起発光は起こらない。図7(c)は発光波形を示しており、維持パルスが立ち上がる(電位が0からVSOに変化する)たびに発光している。
【0009】
以上のようにパネルを駆動した場合、維持期間における維持パルスの波高値(維持電圧)に対するパネルの発光効率の変化を図8に示す。パネルにはネオン(Ne)とキセノン(Xe)を封入しており、Xeの分圧が5、7、10および20%としている。この図からわかるように、パネルの発光効率は最大で1.1lm/W程度であり、維持電圧の上昇に伴って減少している。また、パネルの輝度は維持電圧の上昇に伴って増加するので、高発光効率かつ高輝度のパネルを得ることは困難であった。
【0010】
また、パネルの高輝度化を図るために、特開平8−314405号公報には、維持期間において図9(a)、(b)に示す正極性の維持パルスをそれぞれ走査電極と維持電極に印加するとき、維持パルスの波高値VS1を、放電開始電圧Vfより低くかつ誤動作が起こらない範囲内の最も放電開始電圧Vfに近い値に設定し、通電期間Tsの長さをその終了時点で壁電圧が放電開始電圧Vfを越えるように設定することが開示されている。これによって、図9(c)に示すように、維持パルスが立ち上がるときだけでなく維持パルスが立ち下がる(電位がVS1から0に変化する)ときにも発光する。維持パルスが立ち下がることによる発光は、誘電体層上の蓄積電荷による壁電圧によって生じる放電(自己放電)を利用したものであり、通常の放電による発光と自己放電による発光とが交互に発生している。図9(c)に示すような発光をさせることにより、発光回数を維持パルスの印加回数の2倍にすることができ、輝度を向上させるというものである。
【0011】
【発明が解決しようとする課題】
しかしながら、特開平8−314405号公報に記載されたパネルの駆動方法によって発生する自己放電は、誘電体層上の蓄積電荷による壁電圧と維持パルスの波高値との和からなる電圧で発生する通常の放電とは異なり、誘電体層上の蓄積電荷による壁電圧だけによって生じるものであり、壁電圧のばらつきがそのまま自己放電による発光強度のばらつきに影響する。特に、画面が大きくなったり放電セルの数が多くなると、壁電圧のばらつきが大きくなるのに伴って自己放電による発光強度がかなりばらつくので、画面全体を輝度むらがなくきれいに表示させることは困難であった。
【0012】
本発明はこのような課題を解決するためになされたものであり、自己放電を発生させることなく高輝度、高発光効率を実現するプラズマディスプレイ装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
この目的を達成するために本発明のプラズマディスプレイ装置は、間に放電空間を形成するよう対向配置された2つの基板のうち一方の基板上に走査電極と維持電極を複数配列し他方の基板上にデータ電極を複数配列しかつ前記放電空間に5%を超える分圧のキセノンを封入して構成したプラズマディスプレイパネルと、維持期間において、前記プラズマディスプレイパネルの走査電極と維持電極に正の電位から0へ向かう方向に電位が変化し0を維持した後0から前記正の電位へ向かう方向に電位が変化する負極性のパルスを交互に印加して、前記パルスが立ち下がることによって前記走査電極と前記維持電極との間および前記パルスを印加した前記走査電極または前記維持電極と前記データ電極との間で放電を発生させ、前記パルスの立ち上がりによる放電を発生させない駆動手段とを有するものである。この構成により、自己放電を発生させることなく高輝度かつ高発光効率のプラズマディスプレイ装置を得ることができる。
【0014】
【発明の実施の形態】
以下、本発明の一実施の形態について図面を用いて説明する。
【0015】
本発明の一実施形態におけるプラズマディスプレイ装置は、パネルとその駆動手段とを有しており、図2にパネルの構造を示している。パネル構造で図6に示す部分と同一部分については同じ番号を付けており、図2のパネル構造が図6のものと異なる点は、走査電極11および維持電極12が透明電極を使用せず金属電極から構成されていることである。
【0016】
図1(a)、(b)は、パネルの駆動手段によってそれぞれ走査電極11と維持電極12に印加される維持期間での電圧波形を示している。本実施形態では、図7、図9に示した波形とは異なり、波高値がVSでありかつ電位が減少する方向(VSから0へ向かう方向)に変化する維持パルス(負極性の維持パルス)が走査電極11と維持電極12に交互に印加されている。図1(c)は発光波形を示しており、維持パルスが印加されるのに伴い維持放電が発生し発光している。すなわち、維持パルスが立ち下がる(電位がVSから0へ向かう)ごとに発光しているが、維持パルスが立ち上がる(電位が0からVSへ向かう)ときには維持放電は発生していない。すなわち、前述した自己放電は発生していない。したがって、従来のパネルで課題となっていた輝度むらの発生を防止することができ、従来よりも優れた表示品質を得ることができる。
【0017】
また、本実施形態の負極性の維持パルスを印加すると、走査電極11と維持電極12との間だけでなく、その維持パルスを印加した走査電極11または維持電極12とデータ電極8との間でも放電が発生していることが確認された。これは、例えば走査電極11に負極性の維持パルスを印加した時、誘電体層6上に蓄積された負の壁電圧によってデータ電極8側に対して走査電極11側が負になるため、イオンが保護膜7に衝突して2次電子が発生するので、走査電極11とデータ電極8との間で放電が発生するものと考えられる。
【0018】
次に、本実施形態のプラズマディスプレイ装置の場合、すなわち図2のパネルを図1の駆動波形で駆動した場合での、維持パルスの波高値(維持電圧)に対するパネルの発光効率および輝度の変化を図3(a)および(b)に示す。測定に使用したパネルでは、走査電極11および維持電極12の電極幅をそれぞれ100μmとし、走査電極11と維持電極12との距離dpを80μmとし、隔壁9の高さを120μmとした。パネルにはネオン(Ne)とキセノン(Xe)の混合ガスを66.5kPa封入し、Xe分圧を5%、12%および20%とした。また、維持期間における駆動波形の周波数を15.3kHzとした。発光輝度は輝度計にて測定し、発光効率はパネルの発光輝度と消費電力から求めた。
【0019】
図3(a)、(b)ではXe分圧が5%、12%および20%のときの結果をそれぞれ実線a、実線bおよび実線cで示している。従来のプラズマディスプレイ装置では、図8に示したように維持電圧の上昇に伴って発光効率は減少しているが、本実施形態のプラズマディスプレイ装置では維持電圧の上昇に伴って発光効率が上昇している領域があり、維持電圧が大きいとき、すなわち輝度が高いときに発光効率が高くなっていることがわかる。したがって、高輝度かつ高発光効率のプラズマディスプレイ装置が得られる。また、Xe分圧が5%のときの最大発光効率(発光効率の最大値)は、従来のプラズマディスプレイ装置の最大発光効率と同程度であるが、Xeの分圧が12%および20%のときには、最大発光効率は1.8lm/W程度となっており、従来よりも発光効率がかなり大きなプラズマディスプレイ装置が得られる。
【0020】
図4(a)、(b)はそれぞれ、Xe分圧に対する発光効率、輝度の変化を示している。本実施形態および従来のプラズマディスプレイ装置の場合をそれぞれ実線aおよび実線bで示しており、それぞれの場合においてXe分圧が5%のときの輝度および発光効率を1としている。発光効率は維持電圧によって変化するが、図4(a)は最大発光効率を相対的に示しており、そのときの輝度を図4(b)に示している。図4からわかるように、本実施形態のプラズマディスプレイ装置ではXe分圧が5%を超えると、5%の場合に比べて発光効率は大きくなり、従来のプラズマディスプレイ装置に比べて高発光効率となっている。また輝度についても同様に、本実施形態のプラズマディスプレイ装置ではXe分圧が5%を超えると、5%の場合に比べてかなり大きくなっている。よって本実施形態によれば、パネル内に封入しているXe分圧が5%を超えると高輝度かつ高発光効率のプラズマディスプレイ装置が得られる。
【0021】
次に、パネルを駆動するときの容易性を表す駆動マージンについて説明する。維持電圧を下げていったとき、画像データがあるのに維持放電が発生せず発光しない放電セルが発生し始める維持電圧を最小維持電圧Vnとし、逆に維持電圧を上げていったとき、画像データがないのに維持放電が発生し発光する放電セルが発生し始める維持電圧を最大維持電圧Vxとするとき、駆動マージンはVx−Vnで与えられ、駆動マージンが大きいほど正常に駆動できる電圧範囲が大きく駆動しやすい。
【0022】
図2に示したパネルを使用し、従来の駆動方法によってXe分圧が5%のパネルを駆動した場合、最小維持電圧Vnは185Vであり最大維持電圧Vxは250Vであった。これに対し、本実施形態の駆動方法によってパネルを駆動した場合、最小維持電圧Vnは185Vであり最大維持電圧Vxは270Vであった。したがって、本実施形態の駆動方法を用いることでパネルの駆動マージンが85Vとなり、従来の駆動方法を用いた場合の駆動マージン(65V)よりも20V大きくすることができるので、従来よりも駆動しやすくなっている。Xe分圧が12%および20%の場合も同様に、本実施形態の駆動方法を用いることでパネルの駆動マージンが従来よりも大きくなり駆動しやすくなる。
【0023】
以上では、本発明の一実施形態のパネルが、金属電極のみから構成された走査電極および維持電極を有する場合について説明したが、図6に示すような透明電極を用いて構成した走査電極および維持電極を有するパネルについても同様な結果が得られる。すなわち、維持電圧の上昇に伴って発光効率が上昇している領域があり、Xe分圧が5%を超え12%、20%の場合には、従来に比べて高輝度かつ高発光効率となる。また、駆動マージンは従来に比べて大きくなって駆動しやすくなり、前述した自己放電は発生しないので輝度むらの発生が抑制された優れた表示品質のパネルを得ることができる。
【0024】
なお、透明電極のような電極幅の大きい構造のパネルを用いることで多くの電力を投入することができるため、図2のパネルよりも図6のパネルの方が高輝度となる。さらに図5に示すように、透明電極を用いるかわりに、走査電極13および維持電極14をそれぞれ複数に分割された金属電極で構成し、走査電極13および維持電極14の全体の電極幅を等価的に広くしたパネルでもよい。
【0025】
また、Xe分圧の上限値についてはパネルの動作条件等を考慮して適宜設定すればよい。
【0026】
【発明の効果】
以上のように本発明のプラズマディスプレイ装置によれば、放電空間に5%を超える分圧のキセノンを封入して構成したプラズマディスプレイパネルの走査電極と維持電極に、維持期間において負極性のパルスを印加することにより、高輝度、高発光効率で優れた表示品質を得ることができる。
【図面の簡単な説明】
【図1】(a)〜(c)は本発明の一実施の形態によるプラズマディスプレイ装置における維持電圧波形および発光波形を示す波形図
【図2】本発明の一実施の形態によるプラズマディスプレイパネルの断面図
【図3】(a)、(b)は図2のプラズマディスプレイパネルを駆動したときの発光効率および輝度の維持電圧依存性をXe分圧を変えて示す特性図
【図4】(a)、(b)は図2のプラズマディスプレイパネルを駆動したときの発光効率および輝度のXe分圧依存性を従来のものと比較して示す特性図
【図5】本発明の他の実施の形態によるプラズマディスプレイパネルの断面図
【図6】(a)、(b)は従来のプラズマディスプレイパネルの断面図
【図7】(a)〜(c)は従来のプラズマディスプレイパネルにおける維持電圧波形および発光波形を示す波形図
【図8】従来のプラズマディスプレイパネルを駆動したときの発光効率の維持電圧依存性を示す特性図
【図9】(a)〜(c)は他の従来のプラズマディスプレイパネルにおける維持電圧波形および発光波形を示す波形図
【符号の説明】
1 放電空間
2 表面基板
3 背面基板
4、11、13 走査電極
5、12、14 維持電極
6 誘電体層
7 保護膜
8 データ電極
9 隔壁
10 蛍光体層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a plasma display device.
[0002]
[Prior art]
As shown in the cross-sectional view of FIG. 6, the AC type plasma display panel (hereinafter referred to as “panel”) has two glass front substrates 2 and a glass rear substrate so as to form a discharge space 1 therebetween. 3 are arranged opposite to each other. The discharge space 1 is filled with neon (Ne) and xenon (Xe) that emit ultraviolet rays by discharge, and normally the partial pressure of Xe is 5% of the total gas pressure. A plurality of discharge electrodes composed of scan electrodes 4 and sustain electrodes 5 are arranged on surface substrate 2, and dielectric layer 6 is formed to cover scan electrodes 4 and sustain electrodes 5. A protective film 7 made of magnesium oxide (MgO) or the like is formed. The scan electrode 4 is composed of a transparent electrode 4a and a metal electrode 4b, and the sustain electrode 5 is composed of a transparent electrode 5a and a metal electrode 5b.
[0003]
On the back substrate 3, a plurality of data electrodes 8 are arranged in parallel to each other in a direction orthogonal to the scan electrodes 4 and the sustain electrodes 5, and a partition wall for isolating each data electrode 8 and forming the discharge space 1. 9 is provided between the data electrodes 8. A phosphor layer 10 is formed to cover the side surfaces of the data electrodes 8 and the barrier ribs 9. A discharge cell is formed at the intersection of scan electrode 4 and sustain electrode 5 with data electrode 8.
[0004]
The conventional plasma display apparatus has such a conventional panel and driving means for driving it.
[0005]
Next, a method for displaying image data on a conventional panel will be described. The gradation display of an image is performed by dividing one field period into a plurality of subfields having a light emission period weight based on a binary system and combining the subfields to emit light. Each subfield has an initialization period, an address period, and a sustain period.
[0006]
In order to display image data, different signal waveforms are applied to each electrode in the initialization period, the address period, and the sustain period. In the initialization period, for example, a pulse voltage having a positive polarity with respect to the sustain electrode 5 and the data electrode 8 is applied to all the scan electrodes 4 to accumulate wall charges on the protective film 7 and the phosphor layer 10.
[0007]
In the address period, scanning is performed by sequentially applying negative pulses to all the scanning electrodes 4. When there is image data, if a positive data pulse is applied to the data electrode 8 while scanning the scan electrode 4, a discharge occurs between the scan electrode 4 and the data electrode 8, thereby protecting the scan electrode 4. Wall charges are formed on the surface of the film 7.
[0008]
In the subsequent sustain period, sustain pulses having a voltage sufficient to maintain a discharge are alternately applied between scan electrode 4 and sustain electrode 5 for a certain period. FIGS. 7A and 7B show the waveforms of sustain pulses applied to scan electrode 4 and sustain electrode 5, respectively. Sustain pulses have a peak value of V SO and a direction in which the potential increases (from 0). This is a positive polarity pulse that changes in the direction toward VSO . Due to the sustain pulse, discharge plasma is generated between the scan electrode 4 and the sustain electrode 5 in the discharge cell having the image data, and the phosphor layer 10 is excited to emit light every time the sustain pulse is applied. In the discharge cell to which no data pulse is applied in the address period, no discharge occurs and excitation light emission of the phosphor layer 10 does not occur. FIG. 7C shows a light emission waveform, and light is emitted every time the sustain pulse rises (the potential changes from 0 to VSO ).
[0009]
When the panel is driven as described above, the change in the light emission efficiency of the panel with respect to the peak value (sustain voltage) of the sustain pulse in the sustain period is shown in FIG. Neon (Ne) and xenon (Xe) are enclosed in the panel, and the partial pressure of Xe is 5, 7, 10 and 20%. As can be seen from this figure, the light emission efficiency of the panel is about 1.1 lm / W at the maximum, and decreases as the sustain voltage increases. In addition, since the brightness of the panel increases as the sustain voltage increases, it is difficult to obtain a panel with high luminous efficiency and high brightness.
[0010]
In order to increase the brightness of the panel, Japanese Patent Application Laid-Open No. 8-314405 discloses that the positive sustain pulses shown in FIGS. 9A and 9B are applied to the scan electrode and the sustain electrode, respectively, during the sustain period. In this case, the peak value V S1 of the sustain pulse is set to a value that is lower than the discharge start voltage Vf and closest to the discharge start voltage Vf within a range in which no malfunction occurs, and the length of the energization period Ts becomes a wall at the end of the period. It is disclosed that the voltage is set to exceed the discharge start voltage Vf. As a result, as shown in FIG. 9C, light is emitted not only when the sustain pulse rises but also when the sustain pulse falls (potential changes from V S1 to 0). Light emission due to the falling of the sustain pulse uses discharge (self-discharge) caused by wall voltage due to accumulated charges on the dielectric layer, and light emission due to normal discharge and light emission due to self-discharge occur alternately. ing. By emitting light as shown in FIG. 9C, the number of times of light emission can be doubled the number of times of applying the sustain pulse, and the luminance is improved.
[0011]
[Problems to be solved by the invention]
However, the self-discharge generated by the panel driving method described in Japanese Patent Laid-Open No. 8-314405 is usually generated by a voltage that is the sum of the wall voltage due to the accumulated charge on the dielectric layer and the peak value of the sustain pulse. Unlike the discharge of, this is caused only by the wall voltage due to the accumulated charges on the dielectric layer, and the variation in the wall voltage directly affects the variation in the emission intensity due to the self-discharge. In particular, when the screen becomes larger or the number of discharge cells increases, the emission intensity due to self-discharge varies considerably with the variation in wall voltage, making it difficult to display the entire screen without uneven brightness. there were.
[0012]
The present invention has been made to solve such problems, and an object of the present invention is to provide a plasma display device that achieves high luminance and high luminous efficiency without causing self-discharge.
[0013]
[Means for Solving the Problems]
In order to achieve this object, the plasma display apparatus of the present invention has a plurality of scan electrodes and sustain electrodes arranged on one of two substrates facing each other so as to form a discharge space therebetween, on the other substrate. A plasma display panel in which a plurality of data electrodes are arranged and xenon having a partial pressure exceeding 5% is sealed in the discharge space, and a positive potential is applied to the scan electrode and the sustain electrode of the plasma display panel during the sustain period. a negative pulse potential changes in the direction toward the positive potential in the direction toward 0 from 0 after the potential was maintained for 0 to changes in applied alternately with the scan electrode by the pulse falls the sustain electrodes to generate a discharge between and between the scan electrode or the sustain electrode is applied to the pulse and the data electrode and, the pulse standing And it has a driving means that produces no discharge by up. With this configuration, it is possible to obtain a plasma display device with high brightness and high luminous efficiency without generating self-discharge.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0015]
The plasma display device in one embodiment of the present invention has a panel and its driving means, and FIG. 2 shows the structure of the panel. In the panel structure, the same parts as those shown in FIG. 6 are given the same numbers, and the panel structure of FIG. 2 is different from that of FIG. 6 in that the scan electrode 11 and the sustain electrode 12 are made of metal without using transparent electrodes. It is composed of electrodes.
[0016]
FIGS. 1A and 1B show voltage waveforms in the sustain period applied to the scan electrode 11 and the sustain electrode 12, respectively, by the driving means of the panel. In the present embodiment, unlike the waveforms shown in FIGS. 7 and 9, the sustain pulse (maintenance of the negative polarity) is such that the peak value is V S and the potential decreases in the direction of decreasing potential (the direction from V S toward 0). Pulse) is alternately applied to the scan electrode 11 and the sustain electrode 12. FIG. 1C shows a light emission waveform, and a sustain discharge is generated and light is emitted as a sustain pulse is applied. That is, although the sustain pulse falls (potential toward 0 from V S) is emitting light for each sustain pulse rises (the potential is directed from 0 to V S) is not sometimes sustain discharge occurs. That is, the above-described self-discharge has not occurred. Therefore, it is possible to prevent the occurrence of luminance unevenness, which has been a problem with conventional panels, and to obtain a display quality superior to that of the conventional panel.
[0017]
Further, when the negative sustain pulse of the present embodiment is applied, not only between the scan electrode 11 and the sustain electrode 12 but also between the scan electrode 11 or the sustain electrode 12 to which the sustain pulse is applied and the data electrode 8. It was confirmed that discharge occurred. This is because, for example, when a negative sustain pulse is applied to the scan electrode 11, the negative wall voltage accumulated on the dielectric layer 6 makes the scan electrode 11 side negative with respect to the data electrode 8 side. Since secondary electrons are generated by colliding with the protective film 7, it is considered that discharge occurs between the scan electrode 11 and the data electrode 8.
[0018]
Next, in the case of the plasma display device of the present embodiment, that is, when the panel of FIG. 2 is driven with the driving waveform of FIG. 1, changes in the light emission efficiency and luminance of the panel with respect to the peak value (sustain voltage) of the sustain pulse are shown. It shows to Fig.3 (a) and (b). In the panel used for the measurement, the electrode width of the scan electrode 11 and the sustain electrode 12 was 100 μm, the distance dp between the scan electrode 11 and the sustain electrode 12 was 80 μm, and the height of the partition wall 9 was 120 μm. The panel was sealed with 66.5 kPa of a mixed gas of neon (Ne) and xenon (Xe), and the Xe partial pressure was 5%, 12%, and 20%. Further, the frequency of the drive waveform in the sustain period was 15.3 kHz. The luminance was measured with a luminance meter, and the luminous efficiency was determined from the luminance of the panel and the power consumption.
[0019]
In FIGS. 3A and 3B, the results when the Xe partial pressure is 5%, 12%, and 20% are indicated by a solid line a, a solid line b, and a solid line c, respectively. In the conventional plasma display apparatus, as shown in FIG. 8, the light emission efficiency decreases as the sustain voltage increases, but in the plasma display apparatus of the present embodiment, the light emission efficiency increases as the sustain voltage increases. It can be seen that the luminous efficiency is high when the sustain voltage is large, that is, when the luminance is high. Therefore, a plasma display device with high brightness and high luminous efficiency can be obtained. Further, the maximum light emission efficiency (the maximum value of the light emission efficiency) when the Xe partial pressure is 5% is similar to the maximum light emission efficiency of the conventional plasma display device, but the Xe partial pressure is 12% and 20%. In some cases, the maximum light emission efficiency is about 1.8 lm / W, and a plasma display device having a considerably higher light emission efficiency than the conventional one can be obtained.
[0020]
4A and 4B show changes in light emission efficiency and luminance with respect to Xe partial pressure, respectively. The case of the present embodiment and the conventional plasma display device are shown by a solid line a and a solid line b, respectively. In each case, the luminance and luminous efficiency are 1 when the Xe partial pressure is 5%. Although the light emission efficiency varies depending on the sustain voltage, FIG. 4A shows the maximum light emission efficiency relatively, and the luminance at that time is shown in FIG. 4B. As can be seen from FIG. 4, in the plasma display device of this embodiment, when the Xe partial pressure exceeds 5%, the light emission efficiency is higher than that in the case of 5%, and the light emission efficiency is higher than that of the conventional plasma display device. It has become. Similarly, in the case of the plasma display device of the present embodiment, when the Xe partial pressure exceeds 5%, the luminance is considerably larger than that in the case of 5%. Therefore, according to the present embodiment, when the Xe partial pressure sealed in the panel exceeds 5%, a plasma display device with high brightness and high luminous efficiency can be obtained.
[0021]
Next, a drive margin representing the ease of driving the panel will be described. When the sustain voltage is lowered, the sustain voltage at which discharge cells that do not emit sustain discharge and do not emit light even though there is image data is set to the minimum sustain voltage V n . Conversely, when the sustain voltage is increased, when a sustain voltage discharge cells in which the sustain discharge is generated emission for no image data begins to occur with the maximum sustaining voltage V x, the driving margin is given by V x -V n, normally as the driving margin is large The driveable voltage range is large and easy to drive.
[0022]
When the panel shown in FIG. 2 was used and a panel having a Xe partial pressure of 5% was driven by the conventional driving method, the minimum sustain voltage V n was 185 V and the maximum sustain voltage V x was 250 V. On the other hand, when the panel was driven by the driving method of the present embodiment, the minimum sustain voltage V n was 185 V and the maximum sustain voltage V x was 270 V. Therefore, the driving margin of the panel becomes 85V by using the driving method of the present embodiment, which can be 20V larger than the driving margin (65V) in the case of using the conventional driving method. It has become. Similarly, when the Xe partial pressure is 12% and 20%, by using the driving method of this embodiment, the driving margin of the panel becomes larger than in the conventional case, and the driving becomes easy.
[0023]
The case where the panel according to the embodiment of the present invention has the scan electrode and the sustain electrode composed only of the metal electrode has been described above. However, the scan electrode and the sustain electrode configured using the transparent electrode as shown in FIG. Similar results are obtained for panels with electrodes. That is, there is a region where the light emission efficiency increases as the sustain voltage increases. When the Xe partial pressure exceeds 5% and is 12% and 20%, the luminance and the light emission efficiency are higher than those of the conventional case. . In addition, the driving margin is larger than that of the prior art, so that it is easy to drive, and the above-described self-discharge does not occur, so that a panel with excellent display quality in which the occurrence of luminance unevenness is suppressed can be obtained.
[0024]
Since a large amount of electric power can be input by using a panel having a large electrode width such as a transparent electrode, the panel of FIG. 6 has higher luminance than the panel of FIG. Further, as shown in FIG. 5, instead of using a transparent electrode, the scan electrode 13 and the sustain electrode 14 are each composed of a plurality of divided metal electrodes, and the entire electrode width of the scan electrode 13 and the sustain electrode 14 is equivalent. A wide panel may be used.
[0025]
Further, the upper limit value of the Xe partial pressure may be set as appropriate in consideration of the operation conditions of the panel.
[0026]
【Effect of the invention】
As described above, according to the plasma display device of the present invention, a negative pulse is applied to the scan electrode and the sustain electrode of the plasma display panel formed by sealing xenon having a partial pressure exceeding 5% in the discharge space during the sustain period. By applying it, it is possible to obtain excellent display quality with high luminance and high luminous efficiency.
[Brief description of the drawings]
FIGS. 1A to 1C are waveform diagrams showing a sustain voltage waveform and a light emission waveform in a plasma display apparatus according to an embodiment of the present invention. FIG. 2 shows a plasma display panel according to an embodiment of the present invention. Sectional views [FIG. 3] (a) and (b) are characteristic diagrams showing the dependency of the luminous efficiency and luminance on the sustain voltage when the plasma display panel of FIG. 2 is driven by changing the Xe partial pressure. [FIG. FIGS. 5A and 5B are characteristic diagrams showing the Xe partial pressure dependence of luminous efficiency and luminance when driving the plasma display panel of FIG. 2 in comparison with the conventional one. FIG. 5 is another embodiment of the present invention. FIGS. 6A and 6B are cross-sectional views of a conventional plasma display panel. FIGS. 7A to 7C are sustain voltages in the conventional plasma display panel. FIG. 8 is a characteristic diagram showing the sustain voltage dependence of luminous efficiency when a conventional plasma display panel is driven. FIGS. 9A to 9C show other conventional plasmas. Waveform diagram showing sustain voltage waveform and light emission waveform in display panel
DESCRIPTION OF SYMBOLS 1 Discharge space 2 Front substrate 3 Back substrate 4, 11, 13 Scan electrode 5, 12, 14 Sustain electrode 6 Dielectric layer 7 Protective film 8 Data electrode 9 Partition 10 Phosphor layer

Claims (1)

間に放電空間を形成するよう対向配置された2つの基板のうち一方の基板上に走査電極と維持電極を複数配列し他方の基板上にデータ電極を複数配列しかつ前記放電空間に5%を超える分圧のキセノンを封入して構成したプラズマディスプレイパネルと、維持期間において、前記プラズマディスプレイパネルの走査電極と維持電極に正の電位から0へ向かう方向に電位が変化し0を維持した後0から前記正の電位へ向かう方向に電位が変化する負極性のパルスを交互に印加して、前記パルスが立ち下がることによって前記走査電極と前記維持電極との間および前記パルスを印加した前記走査電極または前記維持電極と前記データ電極との間で放電を発生させ、前記パルスの立ち上がりによる放電を発生させない駆動手段とを有することを特徴とするプラズマディスプレイ装置。A plurality of scan electrodes and sustain electrodes are arranged on one of two substrates facing each other so as to form a discharge space between them, and a plurality of data electrodes are arranged on the other substrate, and 5% is provided in the discharge space. A plasma display panel configured by enclosing xenon having a partial pressure exceeding, and in a sustain period, the scan electrode and the sustain electrode of the plasma display panel change in potential from a positive potential toward zero and then maintain zero. The negative polarity pulse whose potential changes in the direction from the positive potential to the positive potential is alternately applied, and the pulse falls between the scan electrode and the sustain electrode and the scan electrode to which the pulse is applied. or wherein the sustain electrodes and the discharge is generated between the data electrodes, and a driving means that produces no discharge by the rising of the pulse Plasma display device that.
JP2001229178A 2001-07-30 2001-07-30 Plasma display device Expired - Fee Related JP5044877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001229178A JP5044877B2 (en) 2001-07-30 2001-07-30 Plasma display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001229178A JP5044877B2 (en) 2001-07-30 2001-07-30 Plasma display device

Publications (2)

Publication Number Publication Date
JP2003043987A JP2003043987A (en) 2003-02-14
JP5044877B2 true JP5044877B2 (en) 2012-10-10

Family

ID=19061565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001229178A Expired - Fee Related JP5044877B2 (en) 2001-07-30 2001-07-30 Plasma display device

Country Status (1)

Country Link
JP (1) JP5044877B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100649188B1 (en) 2004-03-11 2006-11-24 삼성에스디아이 주식회사 Plasma display device and driving method of plasma display panel
KR100733883B1 (en) 2004-10-29 2007-07-02 엘지전자 주식회사 Gas Discharge Panel and Plasma Display Panel
KR100615271B1 (en) 2004-11-06 2006-08-25 삼성에스디아이 주식회사 Driving method of plasma display panel
KR100615270B1 (en) 2004-11-06 2006-08-25 삼성에스디아이 주식회사 Driving method of plasma display panel
KR100647776B1 (en) * 2004-12-18 2006-11-23 엘지전자 주식회사 Driving method of plasma display panel
CN110319767B (en) * 2019-07-09 2021-05-28 南京航达超控科技有限公司 Implementation method of high-precision actuation sensor of ultrasonic motor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3331907B2 (en) * 1997-05-30 2002-10-07 松下電器産業株式会社 Plasma display panel and method of manufacturing the same
JP3175711B2 (en) * 1998-10-16 2001-06-11 日本電気株式会社 Driving method of plasma display panel operated with AC discharge memory
JP4048637B2 (en) * 1999-03-10 2008-02-20 松下電器産業株式会社 AC type plasma display device
JP4052756B2 (en) * 1999-04-06 2008-02-27 松下電器産業株式会社 AC type plasma display device
JP2001005425A (en) * 1999-06-25 2001-01-12 Matsushita Electric Ind Co Ltd Gas discharge display device
JP2001093427A (en) * 1999-09-28 2001-04-06 Matsushita Electric Ind Co Ltd Ac type plasma display panel and drive method of the same

Also Published As

Publication number Publication date
JP2003043987A (en) 2003-02-14

Similar Documents

Publication Publication Date Title
JP4299987B2 (en) Plasma display device and driving method thereof
JP5044877B2 (en) Plasma display device
US6906689B2 (en) Plasma display panel and driving method thereof
JP3028087B2 (en) Driving method of plasma display panel
JP2001236895A (en) Plasma display panel and its drive method
KR20020004408A (en) Plasma Display Panel and Method of Driving the same
WO2004086447A1 (en) Plasma display panel
JP2001282185A (en) Ac-type plasma display panel and driving method therefor
JP2004296313A (en) Plasma display panel
JP2001282182A (en) Method for driving ac type plasma display panel
JP4052756B2 (en) AC type plasma display device
KR100739549B1 (en) Mehtod of Driving Plasma Display Panel with Trigger-sustain Electrodes Structure
JP5028721B2 (en) Driving method of plasma display panel
KR100323973B1 (en) Plasma Display Panel and Method of Driving the same
KR100757420B1 (en) Plasma Display Panel and Method of Driving the same
JP4048637B2 (en) AC type plasma display device
JP4461718B2 (en) Plasma display panel
KR100324261B1 (en) Plasma Display Panel and Method of Driving the same
JP2000305516A (en) Ac plasma display panel and its driving method
KR100293517B1 (en) Plasma display panel and its driving method
KR100366941B1 (en) Plasma Display Panel And Method Of Driving The Same
KR100581934B1 (en) Plasma display panel
KR100274796B1 (en) Plasma Display Panel Using High Frequency
KR100453161B1 (en) Plasma Display Panel and Driving Method Thereof and Fabricating Method of lower Plate Thereof
KR100677203B1 (en) Mehtod of Driving Plasma Display Panel with Trigger-sustain Electrodes Structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080523

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080612

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120702

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees