JP4937499B2 - High strength spring steel excellent in corrosion resistance and fatigue characteristics and method for producing the same - Google Patents
High strength spring steel excellent in corrosion resistance and fatigue characteristics and method for producing the same Download PDFInfo
- Publication number
- JP4937499B2 JP4937499B2 JP2004173421A JP2004173421A JP4937499B2 JP 4937499 B2 JP4937499 B2 JP 4937499B2 JP 2004173421 A JP2004173421 A JP 2004173421A JP 2004173421 A JP2004173421 A JP 2004173421A JP 4937499 B2 JP4937499 B2 JP 4937499B2
- Authority
- JP
- Japan
- Prior art keywords
- steel
- corrosion resistance
- fatigue characteristics
- spring
- corrosion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000007797 corrosion Effects 0.000 title claims description 47
- 238000005260 corrosion Methods 0.000 title claims description 47
- 229910000639 Spring steel Inorganic materials 0.000 title claims description 17
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 229910000831 Steel Inorganic materials 0.000 claims description 88
- 239000010959 steel Substances 0.000 claims description 88
- 229910052787 antimony Inorganic materials 0.000 claims description 23
- 229910052785 arsenic Inorganic materials 0.000 claims description 23
- 229910052718 tin Inorganic materials 0.000 claims description 23
- 239000012535 impurity Substances 0.000 claims description 18
- 238000002844 melting Methods 0.000 claims description 18
- 230000008018 melting Effects 0.000 claims description 18
- 229910052802 copper Inorganic materials 0.000 claims description 16
- 238000010438 heat treatment Methods 0.000 claims description 16
- 238000005098 hot rolling Methods 0.000 claims description 15
- 239000002994 raw material Substances 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 10
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 238000005496 tempering Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 12
- 229910052758 niobium Inorganic materials 0.000 description 8
- 238000010791 quenching Methods 0.000 description 8
- 230000000171 quenching effect Effects 0.000 description 8
- 229910052720 vanadium Inorganic materials 0.000 description 7
- 238000009661 fatigue test Methods 0.000 description 6
- 229910052698 phosphorus Inorganic materials 0.000 description 6
- 229910052750 molybdenum Inorganic materials 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000003749 cleanliness Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 238000005480 shot peening Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- 229910017755 Cu-Sn Inorganic materials 0.000 description 1
- 229910017927 Cu—Sn Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- YXVFQADLFFNVDS-UHFFFAOYSA-N diammonium citrate Chemical compound [NH4+].[NH4+].[O-]C(=O)CC(O)(C(=O)O)CC([O-])=O YXVFQADLFFNVDS-UHFFFAOYSA-N 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Heat Treatment Of Articles (AREA)
Description
本発明は、スクラップを主体にした溶解原料から製造される、自動車用の懸架ばね、トーションバー、スタビライザー等の素材となるばね用鋼およびその製造方法に関し、特に高強度で且つ耐食性および疲労特性に優れ、自動車の足回り部品として好適なものに関する。 TECHNICAL FIELD The present invention relates to a steel for a spring, which is a raw material for automobile suspension springs, torsion bars, stabilizers, and the like, which is manufactured from a melted raw material mainly composed of scrap, and a method for manufacturing the same, and particularly to high strength and corrosion resistance and fatigue characteristics. The present invention relates to an excellent vehicle suspension part.
近年、燃費向上を目的に自動車の軽量化が求められるようになり、特に足回り部品の一つである懸架ばねの軽量化に対する要望は強く、焼入れ焼戻し後の強度が2000MPa以上となる高強度化した素材を用いた高応力設計が適用されている。 In recent years, the weight reduction of automobiles has been demanded for the purpose of improving fuel efficiency. In particular, there is a strong demand for weight reduction of suspension springs, which are one of the underbody parts, and the strength after quenching and tempering is increased to 2000 MPa or more. High stress design using the selected material is applied.
汎用的なばね用鋼は焼入れ焼戻し後の強度が1600〜1800MPaでJIS G 4801等が規定され、熱間圧延で所定の線材に製造後、熱間成形ばねの場合はばね状に加熱成形してから焼入れ焼戻し処理を行い、冷間成形ばねの場合は引抜き加工後、焼入れ焼戻し処理を行い、ばねに成形される。 General-purpose spring steel has a strength after quenching and tempering of 1600 to 1800 MPa and JIS G 4801 is specified. After hot-rolling into a predetermined wire, hot-formed spring is hot-formed into a spring shape. In the case of a cold formed spring, after quenching, a quenching and tempering process is performed to form the spring.
焼入れ焼戻し処理後の強度を2000MPa以上に高強度化した素材では、割れ感受性が高まるので、耐食性が劣る場合、自動車足回り部品の懸架ばねなど外部に露出する部品では、小石などで塗装がはがれた個所に腐食ピットが形成され、該腐食ピットを起点とする疲労亀裂の伝播により部品が破損することが懸念されている。 In the case of a material whose strength after quenching and tempering is increased to 2000 MPa or more, the susceptibility to cracking is increased, so when corrosion resistance is inferior, parts exposed to the outside such as suspension springs of automobile undercarriage parts were peeled off with pebbles etc. Corrosion pits are formed at locations, and there is concern that parts may be damaged by the propagation of fatigue cracks starting from the corrosion pits.
最近、冬の間、凍結防止用に融雪剤が散布されることが多く、自動車足回り部品の懸架ばねの腐食環境は過酷化しているため、高強度で且つ耐食性に優れるばね用鋼への要望は強く、いくつかの提案がなされている。 Recently, during winter, snow melting agent is often sprayed to prevent freezing, and the corrosion environment of suspension springs for automobile undercarriage parts has become harsher, so there is a demand for spring steel with high strength and excellent corrosion resistance. Some are strongly suggested.
特許文献1は、耐食性元素としてCuを用いて耐食性を向上させたばね鋼、特許文献2はSi、Ni、Cr、Cuを用いて耐食性を向上させたばね鋼、特許文献3にはばね鋼においてCu、Niの表面濃化を利用して耐食性を向上させることが記載されている。 Patent Document 1 is a spring steel whose corrosion resistance is improved using Cu as a corrosion resistance element, Patent Document 2 is a spring steel whose corrosion resistance is improved using Si, Ni, Cr, Cu, and Patent Document 3 is Cu in a spring steel. It is described that corrosion resistance is improved by utilizing surface enrichment of Ni.
Cu,Niは耐食性を向上させる元素として有効な元素であるが、Cuを含有した鋼は熱間圧延時、表面疵を発生しやすく、スクラップを主体にした溶解原料から不可避的に混入するSnにより熱間脆化が助長され、表面性状が低下する。 Cu and Ni are effective elements for improving the corrosion resistance, but steel containing Cu is likely to generate surface flaws during hot rolling, and is unavoidably mixed from the melting raw material mainly composed of scrap. Hot embrittlement is promoted and surface properties are reduced.
特許文献1、2にはCuによる表面疵に関しては記載がなく、特許文献3にはCuによる熱間脆化を抑制するためNi/Cuを所定の範囲に規定することは記載されているが、Snの影響についての記載はなく、スクラップを主体にした溶解原料を用いる高強度ばね用鋼において耐食性と表面性状の両者を向上させることが課題となっている。 Patent Documents 1 and 2 do not describe surface defects due to Cu, and Patent Document 3 describes that Ni / Cu is defined within a predetermined range in order to suppress hot embrittlement due to Cu. There is no description about the influence of Sn, and it is an issue to improve both corrosion resistance and surface properties in high strength spring steel using a melting raw material mainly composed of scrap.
本発明は、スクラップを主体にした溶解原料を用いた、耐食性および疲労特性に優れる高強度なばね用鋼材およびその製造方法を提供することを目的とする。 An object of the present invention is to provide a high-strength spring steel material that is excellent in corrosion resistance and fatigue characteristics using a melting raw material mainly composed of scrap, and a method for producing the same.
本発明者等はスクラップを主体にした溶解原料を用いる鋼材について詳細に検討し、以下の知見を得た。 The present inventors have studied in detail a steel material using a melting raw material mainly composed of scraps, and obtained the following knowledge.
1 耐食性を向上させるためには、Cu添加が必須であるが、溶解原料から不可避的に混入するSnはCuと同様に鉄よりも酸化されにくく、加熱中に表面に濃化してCu−Sn合金を形成しCuの融点を低下させ熱間脆化を助長するので、ばねの疲労特性に大きな影響を及ぼす表面性状を向上させるためには厳格にその混入レベルを管理する必要がある。 1 Addition of Cu is indispensable for improving corrosion resistance, but Sn inevitably mixed from the melting raw material is less likely to be oxidized than iron like Cu, and is concentrated on the surface during heating to form a Cu-Sn alloy. Is formed, and the melting point of Cu is lowered to promote hot embrittlement. Therefore, in order to improve the surface properties that greatly affect the fatigue characteristics of the spring, it is necessary to strictly control the mixing level.
2 更に溶解原料から不可避的に混入するSb,AsもSnと同様に熱間脆化を助長し表面性状を損なうばかりでなく、これらの元素は焼戻し脆化を促進させ、鋼の靭性を低下させ、ばね鋼にとって非常に有害である。 2 Further, Sb and As inevitably mixed from the melting raw material not only promote hot embrittlement and damage surface properties, but these elements promote temper embrittlement and reduce the toughness of steel. It is very harmful to spring steel.
3 溶解原料から不可避的に混入する鋼中のSn,SbおよびAsについて、それらの合計量を特定値以下とし、前記合計量とCuとの比を特定値以下に規定した場合、熱間脆化が抑制される。 3 When Sn, Sb and As in steel inevitably mixed from the melting raw material are not more than a specific value, and the ratio of the total amount and Cu is not more than a specific value, hot embrittlement Is suppressed.
4 熱間圧延前、鋼片を加熱する際の加熱温度を鋼中のSn、Sb、AsおよびCuとの関係において特定値以下に規定した場合も、熱間脆化が抑制され、ばねの疲労特性が向上する。 4 Even when the heating temperature at the time of heating the steel slab before the hot rolling is specified below a specific value in relation to Sn, Sb, As and Cu in the steel, hot embrittlement is suppressed and the fatigue of the spring Improved characteristics.
請求項1記載の発明は、スクラップを主体にした溶解原料を用いる鋼材において、質量%で、C:0.45〜0.70%、Si:0.15〜2.50%、Mn:0.30〜1.00%、P≦0.015%、S≦0.015%、Cu:0.30〜2.00%、sol.Al:0.010〜0.100%、Cr:0.10〜0.50%未満、Ti:0.005〜0.100%、(Sn+Sb+As)/Cu<0.05、Sn+Sb+As≦0.100%、更にNi:0.10〜2.00%、Mo:0.01〜1.00%、V:0.05〜0.50%、Nb:0.01〜0.50%の一種または二種以上を含有し、Ceq≧0.90%、残部鉄および不可避的不純物からなることを特徴とする耐食性および疲労特性に優れた、引張強度2000MPa以上のばね用鋼。
但し、Ceq=C+Si/7+Mn/6+Cu/7+Ni/40+Cr/5+Mo/4+V/14
According to the first aspect of the present invention , in a steel material using a melting raw material mainly composed of scrap , C: 0.45 to 0.70%, Si: 0.15 to 2.50%, Mn: 0.00. 30 to 1.00%, P ≦ 0.015%, S ≦ 0.015%, Cu: 0.30 to 2.00%, sol. Al: 0.010 to 0.100%, Cr: 0.10 to less than 0.50%, Ti: 0.005 to 0.100%, (Sn + Sb + As) / Cu <0.05, Sn + Sb + As ≦ 0.100% Further, one or two of Ni: 0.10 to 2.00%, Mo: 0.01 to 1.00%, V: 0.05 to 0.50%, Nb: 0.01 to 0.50% It contains more than, Ceq ≧ 0.90%, excellent in corrosion resistance and fatigue characteristics and the balance iron and inevitable impurities, tensile strength 2000MPa or more spring steel.
However, Ceq = C + Si / 7 + Mn / 6 + Cu / 7 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14
請求項2記載の発明は、スクラップを主体にした溶解原料を用いる鋼材において、質量%で、C:0.45〜0.70%、Si:0.15〜2.50%、Mn:0.30〜1.00%、P≦0.015%、S≦0.015%、Cu:0.30〜2.00%、sol.Al:0.010〜0.100%、Cr:0.10〜0.50%未満、Ti:0.005〜0.100%、(Sn+Sb+As)/Cu<0.05、Sn+Sb+As≦0.100%、更にNi:0.10〜2.00%、Mo:0.01〜1.00%、V:0.05〜0.50%、Nb:0.01〜0.50%の一種または二種以上を含有し、Ceq≧0.90%、残部鉄および不可避的不純物からなる鋼を、下記(1)式を満足する加熱温度T(℃)で加熱後、熱間圧延することを特徴とする耐食性および疲労特性に優れた、引張強度2000MPa以上のばね用鋼の製造方法。
950≦T<T´ (1)
但し、
T´=1083−{1509*(([%Sn]+[%Sb]+[%As])/[%Cu])2+535*(([%Sn]+[%Sb]+[%As])/[%Cu])}
(1)式において、[%Sn]、[%Sb]、[%As]、[%Cu]は鋼中含有量でmass%を示す。
According to the second aspect of the present invention , in a steel material using a melting raw material mainly composed of scrap , C: 0.45 to 0.70%, Si: 0.15 to 2.50%, Mn: 0.00. 30 to 1.00%, P ≦ 0.015%, S ≦ 0.015%, Cu: 0.30 to 2.00%, sol. Al: 0.010 to 0.100%, Cr: 0.10 to less than 0.50%, Ti: 0.005 to 0.100%, (Sn + Sb + As) / Cu <0.05, Sn + Sb + As ≦ 0.100% Further, one or two of Ni: 0.10 to 2.00%, Mo: 0.01 to 1.00%, V: 0.05 to 0.50%, Nb: 0.01 to 0.50% The steel containing the above, Ceq ≧ 0.90%, the balance iron and inevitable impurities is heated at a heating temperature T (° C.) satisfying the following formula (1), and then hot-rolled. A method for producing spring steel having a tensile strength of 2000 MPa or more and excellent in corrosion resistance and fatigue characteristics.
950 ≦ T <T ′ (1)
However,
T ′ = 1083- {1509 * (([% Sn] + [% Sb] + [% As]) / [% Cu]) 2 +535 * (([% Sn] + [% Sb] + [% As]) ) / [% Cu])}
In the formula (1), [% Sn], [% Sb], [% As], and [% Cu] indicate mass% in steel content.
本発明によれば、スクラップを主体にした溶解原料を用いて、耐食性および表面性状に優れる引張強度2000MPa以上の高強度ばね用鋼及びその製造方法が得られ、産業上極めて有用である。 According to the present invention, a high-strength spring steel having a tensile strength of 2000 MPa or more, which is excellent in corrosion resistance and surface properties, and a method for producing the same are obtained by using a melting raw material mainly composed of scrap, which is extremely useful industrially.
本発明は、特定成分とした鋼の不可避的不純物中に含まれるSn,SbおよびAs量の合計量や、これらの不可避的不純物の合計量とCu量との比を規定した鋼である。 The present invention is a steel in which the total amount of Sn, Sb and As contained in the inevitable impurities of the steel as the specific component and the ratio of the total amount of these inevitable impurities and the Cu amount are specified.
また、前記特定成分とした鋼を熱間圧延する際、熱間圧延前の加熱温度をSn,SbおよびAs量の合計量とCu量との比に応じて規定する製造方法である。 In addition, when the steel having the specific component is hot-rolled, the heating temperature before hot rolling is defined according to the ratio of the total amount of Sn, Sb and As and the amount of Cu.
更には、前記特定成分を有し鋼中不可避的不純物中に含まれるSn,SbおよびAs量の合計量や、これら不可避的不純物の合計量とCu量との比を規定した鋼を熱間圧延前の加熱温度を規定して製造する製造方法である。本発明において特定成分とは鋼中不可避的不純物以外の成分組成を指すものとする。但し、本発明ではP,Sを特定成分とする。 Furthermore, hot rolling a steel having the specific component and defining the total amount of Sn, Sb and As contained in the unavoidable impurities in the steel, and the ratio of the total amount of these unavoidable impurities and the Cu amount This is a manufacturing method in which the previous heating temperature is specified. In the present invention, the specific component refers to a component composition other than inevitable impurities in steel. However, in the present invention, P and S are specified components.
本発明に係る特定成分を有する鋼の成分限定理由を以下に詳細に説明する。 The reasons for limiting the components of the steel having a specific component according to the present invention will be described in detail below.
C
Cは強度を向上させるため含有させる。0.45%未満ではばねとしての所定の強度が得られず、0.70%を超えると延性が低下して脆化するので、0.45〜0.70%とする。
C
C is contained in order to improve the strength. Not predetermined intensity as a spring is obtained is less than 0.45%, since the ductility exceeds 0.7 0% embrittlement decreases, and 0.45 to 0.7 0%.
Si
Siは製鋼時の脱酸元素として不可欠であり、焼戻し軟化抵抗を向上させ、鋼の強度を増加させるので含有させる。0.15%未満では効果が得られず、2.50%を超えると延性が低下するので、0.15〜2.50%とする。
Si
Si is indispensable as a deoxidizing element at the time of steelmaking, and improves the temper softening resistance and increases the strength of the steel. Effect can not be obtained with less than 0.15%, the ductility is reduced if it exceeds 2.5 0% and 0.15 to 2.5 0%.
Mn
Mnは鋼の焼入れ性を向上させ強度を増加させるので含有させる。0.30%未満では効果が得られず、1.00%を超えると焼入れ性が過剰となり延性が低下するので、0.30〜1.00%とする。
Mn
Mn is added because it improves the hardenability of the steel and increases the strength. No effect is obtained is less than 0.3 0% 1. Since more than 00%, the hardenability ductility becomes excessive drops, 0.3 0-1. 00 %.
P、S
P、Sは、結晶粒界に偏析し、鋼の延性を劣化させるので、いずれも0.015%を上限として管理する。下限は経済性を考慮して管理すれば良く特に規定しない。
P, S
P and S segregate at the grain boundaries and degrade the ductility of the steel, so both are managed with 0.015% as the upper limit. The lower limit is not particularly specified as long as it is managed in consideration of economy.
Cu
Cuは鋼の耐食性を向上させ、析出硬化により強度を向上させるため含有させる。0.30%未満では効果が得られず、2.00%を超えると効果が飽和し、合金コストが上昇するので0.30〜2.00%、好ましくは0.50超え〜2.00%とする。
Cu
Cu is added to improve the corrosion resistance of the steel and improve the strength by precipitation hardening. No effect is obtained is less than 0.30% 2. The 100% effect is saturated if it exceeds, the alloy cost increases 0.3 0-2. 100%, preferably 0.5 0 exceeded to 2. 00 %.
sol.Al
Alは脱酸剤として不可欠であり、粒界に偏析するNをAlNとして固定し粒界強度を高めるため含有させる。sol.Al(酸可溶Al)が0.010%未満では効果が得られず、0.100%を超えると鋼の清浄性が劣化し延性が低下するので、0.010〜0.100%とする。
sol. Al
Al is indispensable as a deoxidizer, and N is segregated at the grain boundary, and is contained in order to fix the grain boundary strength as AlN. sol. Al (acid soluble Al) is not effective to obtain less than 0.01 0%, since the cleanliness of the steel is deteriorated ductility is reduced if it exceeds 0.1 100% 0.01 0 to 0.1 00 %.
Cr
Crは鋼の焼入れ性を向上させ強度を増加させるため含有させる。0.10%未満では効果が得られず、0.50%を超えると焼入れ性が過剰となり靭性が低下するので、0.10〜0.50%未満とする。
Cr
Cr is added to improve the hardenability of the steel and increase the strength. 0.1 no effect is obtained at below 0%, the toughness is reduced becomes excessive hardenability exceeds 0.5 0% 0.1 0 to 0.5 less than 0%.
Ti
Tiは炭窒化物を形成して結晶粒を微細化させるため含有させる。0.005%未満では効果が得られず、0.100%を超えると粗大な炭窒化物を生成し、「ばね」の疲労特性を劣化させるので、0.005〜0.100%とする。
Ti
Ti is contained in order to form carbonitrides and to refine crystal grains. Effect can not be obtained with less than 0.005%, greater than 0.1 100% when generating a coarse carbonitrides, so deteriorating the fatigue characteristics of the "spring", and 0.005 to 0.1 100% To do.
Ni、Mo、V、Nbの一種または二種以上
鋼の強度、靭性および耐食性を向上させるためNi、Mo、V、Nbの一種または二種以上を含有させる。Niは焼入れ焼戻し後の鋼の靭性を向上させ、耐食性を向上させるので含有させる。0.10%未満では効果が得られず、2.00%を超えると効果が飽和するため、そのような効果を必要とする場合は、0.10〜2.00%を含有させる。
One or more of Ni, Mo, V, Nb In order to improve the strength, toughness and corrosion resistance of the steel, one or more of Ni, Mo, V, Nb is contained. Ni is contained because it improves the toughness of the steel after quenching and tempering and improves the corrosion resistance. If it is less than 0.10 %, the effect cannot be obtained, and if it exceeds 2.00 %, the effect is saturated. When such an effect is required, 0.10 to 2.00% is contained.
Moは焼入れ性を向上させ、炭化物を形成し焼戻し軟化抵抗を有し、耐食性を向上させるため含有させる。0.01%未満では効果が得られず、1.00%を超えると熱間圧延時に過冷組織が発生しやすくなるため、そのような効果を必要とする場合は、0.01〜1.00%を含有させる。 Mo is included to improve hardenability, form carbides, have temper softening resistance, and improve corrosion resistance. If it is less than 0.01 %, an effect cannot be obtained, and if it exceeds 1.00% , a supercooled structure is likely to occur during hot rolling . Contains 00% .
V、Nbは焼入れ焼戻しにより微細粒組織とし、延性を向上させる。また、焼戻しにおいて析出強化し強度を向上させる。V、Nbは各々が0.05%未満では効果が得られず、0.50%を超えると粗大な炭化物を析出し延性を損なうようになるので、そのような効果を必要とする場合は、V:0.05〜0.50%、Nb:0.01〜0.50%を含有させる。 V and Nb are refined by quenching and tempering to improve ductility. Moreover, precipitation strengthening in tempering improves the strength. V, Nb are each not effect obtained is less than 0.05%, since the impairing ductility precipitate coarse carbides exceeds 0.5 0%, when in need of such effects , V: 0.05~0.5 0%, Nb : the inclusion of 0.01 to 0.5 0%.
Ceq
Ceqは焼入れし、400℃以上Ac1変態点以下で焼戻した後に、引張強度を2000MPa以上とするために、0.90%以上とする。但し、Ceq=C+Si/7+Mn/6+Cu/7+Ni/40+Cr/5+Mo/4+V/14とし、含有しない元素は0とする。
Ceq
Ceq is quenched, and after tempering at 400 ° C. or higher and below the Ac1 transformation point, in order to obtain a tensile strength of 2000 MPa or higher, it is set to 0.90% or higher. However, Ceq = C + Si / 7 + Mn / 6 + Cu / 7 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14, and elements not contained are 0.
以上が本発明鋼の特定成分であるが、更に、本発明では鋼中不可避的不純物であるSn,Sb、Asの合計量及び前記合計量と鋼中Cu量との比を規定する。 The above is the specific component of the steel of the present invention. Further, in the present invention, the total amount of Sn, Sb and As, which are inevitable impurities in the steel, and the ratio between the total amount and the Cu amount in the steel are specified.
(Sn+Sb+As)/Cu、Sn+Sb+As
これらのパラメータは上記特定成分で構成される鋼を耐食性および疲労特性に優れ、且つ高強度なばね用鋼たらしめるものである。
(Sn + Sb + As) / Cu, Sn + Sb + As
These parameters make the steel composed of the above-mentioned specific components excellent in corrosion resistance and fatigue characteristics and high strength spring steel.
(Sn+Sb+As)/Cuが0.05以上、且つSn+Sb+Asを0.1%を超えて含有させると熱間脆化が助長され、熱間圧延後の鋼表面に微小な欠陥が生成されやすく、その一部は腐食環境におかれた場合、腐食ピットを生成し、疲労特性を劣化させる。 When (Sn + Sb + As) / Cu is 0.05 or more and Sn + Sb + As is contained more than 0.1%, hot embrittlement is promoted, and minute defects are easily generated on the steel surface after hot rolling. When the part is placed in a corrosive environment, it generates corrosion pits and deteriorates fatigue characteristics.
本発明に係るばね用鋼はスクラップを主体にした溶解原料を電気炉を用いて溶解し、常法の製鋼ー連続鋳造ー分塊圧延ー棒線圧延を行い、所定のばね製造工程を経て製造される。 The spring steel according to the present invention is manufactured through a predetermined spring manufacturing process by melting a raw material mainly composed of scrap using an electric furnace, and performing conventional steelmaking-continuous casting-bundling rolling-bar wire rolling. Is done.
本発明は、上述した特定成分の鋼の不可避的不純物中におけるSn,Sb及びAsの合計量や前記合計量とCuとの比の規定に替わり、鋼の不可避的不純物中のSn,Sb及びAs量に応じて熱間圧延前の加熱温度を規定して製造することも含む。この場合は、熱間圧延時の加熱温度T(℃)を下記の式を満足するように規定する。 In the present invention, instead of defining the total amount of Sn, Sb and As in the unavoidable impurities of the steel of the specific component described above and the ratio of the total amount to Cu, Sn, Sb and As in the unavoidable impurities of the steel are used. It also includes manufacturing by specifying the heating temperature before hot rolling according to the amount. In this case, the heating temperature T (° C.) at the time of hot rolling is defined so as to satisfy the following formula.
950≦T≦T´ より好ましくは950≦T≦T´−15
T´=1083−{1509*(([%Sn]+[%Sb]+[%As])/[%Cu])2+535*(([%Sn]+[%Sb]+[%As])/[%Cu])}
但し、[%Sn]、[%Sb]、[%As]、[%Cu]は鋼の不可避的不純物中の含有量でmass%を示す。
950 ≦ T ≦ T ′, more preferably 950 ≦ T ≦ T′−15
T ′ = 1083- {1509 * (([% Sn] + [% Sb] + [% As]) / [% Cu]) 2 +535 * (([% Sn] + [% Sb] + [% As]) ) / [% Cu])}
However, [% Sn], [% Sb], [% As], and [% Cu] represent mass% in terms of the content in the inevitable impurities of the steel.
尚、上記の式を適用して熱間圧延する場合に、前記特定成分の鋼において、更に不可避的不純物中におけるSn,Sb及びAsの合計量や前記元素の合計量とCuとの比を規定すると、特に優れた表面性状が得られ、疲労特性が向上して好ましい。 In the case of hot rolling by applying the above formula, the steel of the specific component further defines the total amount of Sn, Sb and As in the inevitable impurities and the ratio of the total amount of the element and Cu. In this case, particularly excellent surface properties are obtained, and fatigue characteristics are improved, which is preferable.
本発明では、焼戻し温度は、低温焼戻し脆性により靭性が低下するのを防止するため400℃以上とすることが好ましい。 In the present invention, the tempering temperature is preferably 400 ° C. or higher in order to prevent the toughness from being lowered due to the low temperature temper brittleness.
以下、本発明を実施例によって説明する。表1に示す種々の化学成分の鋼を150kg真空溶解炉にて溶製後、鋼塊となし、熱間鍛造によりΦ25mmに鍛伸後、放冷し、焼入れ焼戻し処理を施して供試材とした。 Hereinafter, the present invention will be described by way of examples. After melting steel of various chemical components shown in Table 1 in a 150 kg vacuum melting furnace, it is made into a steel ingot, forged to Φ25 mm by hot forging, allowed to cool, and quenched and tempered. did.
焼入れは875℃×30分に加熱後、油冷とし、焼戻し温度は引張強度が2000〜2100MPaとなるように調整した。 Quenching was heated to 875 ° C. for 30 minutes, followed by oil cooling, and the tempering temperature was adjusted so that the tensile strength was 2000 to 2100 MPa.
鋼No.1〜17は本発明の特定成分を有し、鋼中不可避的不純物中のSn,SbおよびAsも本発明の規定を満足する鋼で請求項1記載の発明鋼、No.18〜26、29〜33は本発明の特定成分範囲外の鋼で請求項1記載の比較鋼、No.27,28は本発明の特定成分を有するが、鋼中不可避的不純物中のSn,SbおよびAsが請求項1記載の発明の規定を満足しない鋼で請求項2記載の発明鋼を示す。鋼33は従来鋼で腐食疲労特性、ばね疲労特性の基準となる特性を示す。 Steel No. Nos. 1 to 17 have the specific components of the present invention, and Sn, Sb and As in the unavoidable impurities in the steel are steels satisfying the provisions of the present invention. Nos. 18 to 26 and 29 to 33 are steels outside the specific component range of the present invention. Although 27 and 28 have the specific component of this invention, Sn, Sb, and As in an unavoidable impurity in steel do not satisfy the prescription | regulation of invention of Claim 1, and show the invention steel of Claim 2. Steel 33 is a conventional steel and exhibits characteristics that serve as a basis for corrosion fatigue characteristics and spring fatigue characteristics.
夫々の鋼について強度、延性、耐食性、腐食疲労特性、ばね疲労特性を調査した。強度、延性は引張試験(JIS Z 2201に準拠、4号試験片を使用)を行い、引張強度と絞りを求めた。耐食性は、鋼から15mm幅*40mm長さの板状試験片を切出し、乾湿複合サイクルの腐食試験を行った。 The strength, ductility, corrosion resistance, corrosion fatigue properties, and spring fatigue properties of each steel were investigated. For the strength and ductility, a tensile test (based on JIS Z 2201 and using No. 4 test piece) was performed to obtain the tensile strength and the drawing. Corrosion resistance was obtained by cutting a plate-shaped test piece having a width of 15 mm * 40 mm from steel and performing a corrosion test in a dry / wet combined cycle.
腐食条件は塩水噴霧(5%NaCl溶液、25℃)を8時間行った後、大気(湿度60%、25℃)中に16時間放置させることを1サイクルとし、7サイクル行い、その後、表面の錆を80℃のクエン酸水素アンモニウム20%水溶液中に浸漬して除去した後、重量を測定し、腐食減量[g/mm2](腐食試験前後の重量差/腐食面積(mm2))を求めた。除錆後、試験片表面の腐食ピットの深さをレーザ顕微鏡を用いて測定し、最大深さを求めた。 Corrosion conditions include salt spray (5% NaCl solution, 25 ° C.) for 8 hours, then left in the atmosphere (humidity 60%, 25 ° C.) for 16 hours, 7 cycles. Rust was removed by immersing it in a 20% aqueous solution of ammonium hydrogen citrate at 80 ° C., and then the weight was measured. Corrosion weight loss [g / mm 2 ] (weight difference before and after corrosion test / corrosion area (mm 2 )) Asked. After the rust removal, the depth of the corrosion pits on the surface of the test piece was measured using a laser microscope to obtain the maximum depth.
腐食疲労特性は、引張強度:2000〜2100MPaの一部の供試材について行い、Φ25の素材から回転曲げ疲労試験片を採取し、平行部の中心位置に5%NaCl液を滴下しながら回転曲げ疲労試験を行った。試験片表面にはショットピーニング加工を施した。 Corrosion fatigue characteristics are measured for some specimens with a tensile strength of 2000-2100 MPa. Rotating bending fatigue test specimens are collected from a Φ25 material, and 5% NaCl solution is dropped at the center of the parallel part while rotating. A fatigue test was performed. The surface of the test piece was subjected to shot peening.
ばね疲労特性は、素材の直径:Φ11.5、コイル平均径(mm):115.0,総巻数:6.0、有効巻き数:4.5、自由高さ(mm):320、ばね定数(N/mm):25.2のばねを製造し、平均応力(MPa):650、振幅応力(MPa):550の条件で疲労試験を行った。ばね疲労の評価は各鋼につきN=10で疲労試験を行った。 Spring fatigue characteristics are: material diameter: Φ11.5, coil average diameter (mm): 115.0, total number of turns: 6.0, effective number of turns: 4.5, free height (mm): 320, spring constant (N / mm): A spring of 25.2 was manufactured, and a fatigue test was performed under the conditions of average stress (MPa): 650 and amplitude stress (MPa): 550. For the evaluation of spring fatigue, a fatigue test was performed at N = 10 for each steel.
尚、ばねは試験溶解、線材(熱間圧延)、熱処理、酸洗、伸線、OT処理、コイリング、低温焼鈍、ショットピーニング、セッチングの工程で製造した。 The spring was manufactured in the steps of test melting, wire rod (hot rolling), heat treatment, pickling, wire drawing, OT treatment, coiling, low temperature annealing, shot peening, and setting.
表2に熱処理条件と強度、延性および耐食性の評価試験結果を示す。 Table 2 shows the evaluation test results of heat treatment conditions and strength, ductility and corrosion resistance.
[強度・延性]
鋼1〜17は、いずれも焼戻し温度が低温焼戻し脆性を生じない400℃以上であっても引張強さ(TS)2000MPa以上の高強度が得られ、且つ絞り(RA%)が41.4%以上と延性にも優れていた。
[Strength / Ductility]
Steels 1 to 17 all have high tensile strength (TS) of 2000 MPa or higher and squeezing (RA%) of 41.4% even when the tempering temperature is 400 ° C. or higher which does not cause low temperature temper brittleness. It was excellent in the above and ductility.
一方、鋼18はC,鋼20はSi,鋼22はMn,鋼29はCrの含有量が本発明範囲外で低く、Ceqも本発明範囲外で低いため、引張強さ2000MPa以上とするための焼戻し温度が400℃未満と低く、低温焼戻し脆性により延性が低くなり、ばね鋼として不適当である。 On the other hand, the steel 18 is C, the steel 20 is Si, the steel 22 is Mn, and the steel 29 is low in Cr outside the scope of the present invention, and the Ceq is also low outside the scope of the present invention, so that the tensile strength is 2000 MPa or more. The steel has a low tempering temperature of less than 400 ° C. and low ductility due to low temperature tempering brittleness, making it unsuitable as a spring steel.
鋼19はC,V,鋼21はSi,Mo,鋼23はMn,Nb、鋼30はCrの含有量が本発明範囲外で過剰であり、鋼24、鋼25はP,Sが本発明範囲外で過剰なため粒界偏析し、いずれも延性が低下し、絞りが30%以下であった。 Steel 19 is C, V, Steel 21 is Si, Mo, Steel 23 is Mn, Nb, Steel 30 is excessive in Cr outside the scope of the present invention, Steel 24, Steel 25 is P, S is the present invention. Since it was excessive outside the range, segregation at the grain boundary occurred, and in all cases, the ductility was lowered and the drawing was 30% or less.
鋼31はsol.Alの含有量が本発明範囲外で低いため脱酸不足で、Nの粒界偏析を抑制できず、鋼32はAlの含有量が本発明範囲外で多いため清浄性が低く、それぞれ延性の低下が顕著であった。 Steel 31 is sol. Since the Al content is low outside the scope of the present invention, deoxidation is insufficient, and grain boundary segregation of N cannot be suppressed, and the steel 32 has a high Al content outside the scope of the present invention, so the cleanliness is low, and the ductility of each is low. The decrease was significant.
[耐食性]、[腐食疲労特性]
鋼1〜17は腐食試験の結果、腐食ピットの深さが75μm以下で、腐食による減量も少なく良好な耐食性が確認された。一方、鋼26はCuの含有量が本発明範囲外で低いために腐食ピット深さが100μm以上であり、耐食性に劣る。
[Corrosion resistance], [Corrosion fatigue properties]
As a result of the corrosion test, steels 1 to 17 were confirmed to have good corrosion resistance with a corrosion pit depth of 75 μm or less and little weight loss due to corrosion. On the other hand, since the steel 26 has a low Cu content outside the range of the present invention, the corrosion pit depth is 100 μm or more and is inferior in corrosion resistance.
また、腐食疲労特性は、鋼33の疲労強度の×1.5を良好(表中○)とした。鋼33は従来鋼の疲労特性を示す鋼で基準鋼とした。鋼1、8、10、11、13、14、15はCuの含有量が多く、Cu含有量の少ない鋼26に対し、いずれも良好な結果が得られた。 In addition, the corrosion fatigue characteristics of the steel 33 with a fatigue strength of x1.5 was good (◯ in the table). Steel 33 is a steel showing the fatigue characteristics of the conventional steel and used as a reference steel. Steels 1, 8, 10, 11, 13, 14, and 15 all had good results with respect to steel 26 having a high Cu content and a low Cu content.
[ばね疲労試験]
ばね疲労試験は鋼1,10,11,15、鋼27,28,33の素材を種々の加熱温度で熱間圧延した線材から製造したばねを用いて行った。鋼33は従来鋼の疲労特性を示す鋼で基準鋼とした。疲労特性の評価は、鋼33による試験結果No.10の繰返し回数の1.8倍以上を長寿命で優秀(◎)、1.5倍以上を良好(○)、同等の寿命の材料を(×)とした。
[Spring fatigue test]
The spring fatigue test was performed using springs manufactured from wire rods obtained by hot rolling the materials of steels 1, 10, 11, 15, and steels 27, 28, and 33 at various heating temperatures. Steel 33 is a steel showing the fatigue characteristics of the conventional steel and used as a reference steel. The evaluation of fatigue characteristics is based on the test result No. More than 1.8 times the number of repetitions of 10 is long and excellent (◎), 1.5 times or more is good (◯), and a material with an equivalent life is (×).
表3に試験結果を示す。試験結果No.1〜5は請求項3記載の発明の実施例で、供試鋼の鋼1、10、11、15は本発明に係る特定成分を有し、不純物中のSn,Sb,As量の規定も満足する鋼で、熱間圧延前の加熱温度も本発明範囲内のため、鋼33による試験結果No.10と比較して優秀な疲労特性が得られた。 Table 3 shows the test results. Test result No. 1 to 5 are examples of the invention according to claim 3, and steels 1, 10, 11, and 15 of the test steel have specific components according to the present invention, and the amount of Sn, Sb, As in impurities is also specified. This is a satisfactory steel and the heating temperature before hot rolling is within the range of the present invention. Compared to 10, excellent fatigue characteristics were obtained.
一方、試験結果No.6,8は請求項2記載の発明の比較例を示し、供試鋼の鋼27は、成分組成は本発明の特定成分範囲内だが、熱間圧延前の加熱温度T℃が試験結果No.6は鋼中不純物中のSn,Sb,Asで規定される加熱温度T´以上であり、試験結果No.8は950℃以下のため、ばね疲労特性が従来鋼の鋼33による試験結果No.10と同等であった。 On the other hand, test result No. Nos. 6 and 8 show comparative examples of the invention according to claim 2, and the steel 27 of the sample steel has a component composition within the specific component range of the present invention, but the heating temperature T ° C. before hot rolling is the test result No. 6 is a heating temperature T ′ or more defined by Sn, Sb, As in the impurities in the steel. Since No. 8 is 950 ° C. or lower, the spring fatigue characteristics of the test result No. 8 with the conventional steel 33 are shown. It was equivalent to 10.
試験結果No.7,9は請求項2記載の発明の実施例で試験結果No.1〜5に及ばないものの、疲労特性は試験結果No.10と比較すると良好である。 Test result No. Nos. 7 and 9 are examples of the invention according to claim 2 and the test results No. Although it does not reach 1-5, the fatigue characteristics are the test results No. Compared to 10, good.
Claims (2)
C:0.45〜0.70%、
Si:0.15〜2.50%、
Mn:0.30〜1.00%、
P≦0.015%、
S≦0.015%、
Cu:0.30〜2.00%、
sol.Al:0.010〜0.100%、
Cr:0.10〜0.50%未満、
Ti:0.005〜0.100%、
(Sn+Sb+As)/Cu<0.05、
Sn+Sb+As≦0.100%、
更に
Ni:0.10〜2.00%、
Mo:0.01〜1.00%、
V:0.05〜0.50%、
Nb:0.01〜0.50%
の一種または二種以上を含有し、
Ceq≧0.90%、
残部鉄および不可避的不純物からなることを特徴とする耐食性および疲労特性に優れた、引張強度2000MPa以上のばね用鋼。
但し、
Ceq=C+Si/7+Mn/6+Cu/7+Ni/40+Cr/5+Mo/4+V/14 In steel materials using melting raw materials mainly composed of scrap ,
C: 0.45-0.70%,
Si: 0.15 to 2.50%,
Mn: 0.30 to 1.00%
P ≦ 0.015%,
S ≦ 0.015%,
Cu: 0.30 to 2.00%,
sol. Al: 0.010 to 0.100%,
Cr: 0.10 to less than 0.50%,
Ti: 0.005 to 0.100%,
(Sn + Sb + As) / Cu <0.05,
Sn + Sb + As ≦ 0.100%,
Furthermore, Ni: 0.10 to 2.00%,
Mo: 0.01 to 1.00%,
V: 0.05 to 0.50%,
Nb: 0.01 to 0.50%
Containing one or more of
Ceq ≧ 0.90%,
A spring steel having a tensile strength of 2000 MPa or more, excellent in corrosion resistance and fatigue characteristics, characterized by comprising the balance iron and inevitable impurities.
However,
Ceq = C + Si / 7 + Mn / 6 + Cu / 7 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14
C:0.45〜0.70%、
Si:0.15〜2.50%、
Mn:0.30〜1.00%、
P≦0.015%、
S≦0.015%、
Cu:0.30〜2.00%、
sol.Al:0.010〜0.100%、
Cr:0.10〜0.50%未満、
Ti:0.005〜0.100%、
(Sn+Sb+As)/Cu<0.05、
Sn+Sb+As≦0.100%、
更に
Ni:0.10〜2.00%、
Mo:0.01〜1.00%、
V:0.05〜0.50%、
Nb:0.01〜0.50%
の一種または二種以上を含有し、
Ceq≧0.90%、
残部鉄および不可避的不純物からなる鋼を、下記(1)式を満足する加熱温度T(℃)で加熱後、熱間圧延することを特徴とする耐食性および疲労特性に優れた、引張強度2000MPa以上のばね用鋼の製造方法。
950≦T<T´ (1)
但し、
T´=1083−{1509*(([%Sn]+[%Sb]+[%As])/[%Cu])2+535*(([%Sn]+[%Sb]+[%As])/[%Cu])}
(1)式において、[%Sn]、[%Sb]、[%As]、[%Cu]は鋼中含有量でmass%を示す。 In steel materials using melting raw materials mainly composed of scrap ,
C: 0.45-0.70%,
Si: 0.15 to 2.50%,
Mn: 0.30 to 1.00%
P ≦ 0.015%,
S ≦ 0.015%,
Cu: 0.30 to 2.00%,
sol. Al: 0.010 to 0.100%,
Cr: 0.10 to less than 0.50%,
Ti: 0.005 to 0.100%,
(Sn + Sb + As) / Cu <0.05,
Sn + Sb + As ≦ 0.100%,
Furthermore, Ni: 0.10 to 2.00%,
Mo: 0.01 to 1.00%,
V: 0.05 to 0.50%,
Nb: 0.01 to 0.50%
Containing one or more of
Ceq ≧ 0.90%,
Steel balance consisting of iron and inevitable impurities, after heating by the following (1) heating temperature T satisfying the formula (° C.), excellent in corrosion resistance and fatigue characteristics characterized by hot rolling, the tensile strength 2000MPa or more Of manufacturing spring steel.
950 ≦ T <T ′ (1)
However,
T ′ = 1083- {1509 * (([% Sn] + [% Sb] + [% As]) / [% Cu]) 2 +535 * (([% Sn] + [% Sb] + [% As]) ) / [% Cu])}
In the formula (1), [% Sn], [% Sb], [% As], and [% Cu] indicate mass% in steel content.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004173421A JP4937499B2 (en) | 2004-06-11 | 2004-06-11 | High strength spring steel excellent in corrosion resistance and fatigue characteristics and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004173421A JP4937499B2 (en) | 2004-06-11 | 2004-06-11 | High strength spring steel excellent in corrosion resistance and fatigue characteristics and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005350736A JP2005350736A (en) | 2005-12-22 |
JP4937499B2 true JP4937499B2 (en) | 2012-05-23 |
Family
ID=35585455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004173421A Expired - Lifetime JP4937499B2 (en) | 2004-06-11 | 2004-06-11 | High strength spring steel excellent in corrosion resistance and fatigue characteristics and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4937499B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015120940A (en) * | 2012-03-05 | 2015-07-02 | Jfeスチール株式会社 | Spring steel |
US10041160B2 (en) | 2013-09-11 | 2018-08-07 | Jfe Steel Corporation | Steel for spring, and method for producing spring |
JP6119717B2 (en) * | 2014-10-27 | 2017-04-26 | Jfeスチール株式会社 | Spring steel and spring |
JP6225880B2 (en) * | 2014-10-27 | 2017-11-08 | Jfeスチール株式会社 | Spring steel and spring |
CN109082592B (en) * | 2018-08-27 | 2020-08-18 | 河钢股份有限公司 | Corrosion-resistant spring steel hot-rolled wire rod with good comprehensive performance and production process thereof |
CN112941424A (en) * | 2021-02-10 | 2021-06-11 | 中国铁道科学研究院集团有限公司金属及化学研究所 | Novel corrosion-resistant steel for railway vehicle and manufacturing method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3474373B2 (en) * | 1995-10-27 | 2003-12-08 | 株式会社神戸製鋼所 | Spring steel with excellent hydrogen embrittlement resistance and fatigue properties |
JPH09324219A (en) * | 1996-06-05 | 1997-12-16 | Kobe Steel Ltd | Production of high strength spring excellent in hydrogen embrittlement resistance |
JP3817105B2 (en) * | 2000-02-23 | 2006-08-30 | 新日本製鐵株式会社 | High strength steel with excellent fatigue characteristics and method for producing the same |
-
2004
- 2004-06-11 JP JP2004173421A patent/JP4937499B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2005350736A (en) | 2005-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5306845B2 (en) | Steel for vehicle high strength stabilizer excellent in corrosion resistance and low temperature toughness, its manufacturing method and stabilizer | |
JP5764383B2 (en) | Steel for spring parts for vehicle suspension, spring part for vehicle suspension, and manufacturing method thereof | |
US20230407433A1 (en) | Wire rod and steel wire for springs having excellent corrosion fatigue resistance properties, and method for producing same | |
JP5064060B2 (en) | Steel wire for high-strength spring, high-strength spring, and manufacturing method thereof | |
JP6027302B2 (en) | High strength tempered spring steel | |
JP5973903B2 (en) | High strength spring steel wire excellent in hydrogen embrittlement resistance, method for producing the same, and high strength spring | |
JP2017048412A (en) | Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet and production methods therefor | |
KR101894426B1 (en) | Stabilizer steel having high strength and excellent corrosion resistance, vehicle stabilizer employing same, and method for manufacturing same | |
KR20190042022A (en) | METHOD FOR MANUFACTURING STRENGTH STEEL STRIP WITH IMPROVED CHARACTERISTICS FOR ADDITIONAL TREATMENT | |
JP2019178405A (en) | Production method of steel wire | |
JP5408398B1 (en) | Spring steel | |
WO2013132829A1 (en) | Spring steel | |
JP5543814B2 (en) | Steel plate for heat treatment and method for producing steel member | |
JP6190298B2 (en) | High strength bolt steel and high strength bolts with excellent delayed fracture resistance | |
JP5679455B2 (en) | Spring steel, spring steel wire and spring | |
JP4937499B2 (en) | High strength spring steel excellent in corrosion resistance and fatigue characteristics and method for producing the same | |
JP3918587B2 (en) | Spring steel for cold forming | |
JP7133705B2 (en) | Wire rod for spring, steel wire with improved toughness and corrosion fatigue characteristics, and method for producing the same | |
JP7018444B2 (en) | Wires and steel wires for springs with excellent corrosion fatigue resistance and their manufacturing methods | |
CN113557317B (en) | Electric resistance welded steel pipe for stabilizer and method for producing same | |
JPH05255738A (en) | Production of steel for machine structural use excellent in delayed fracture resistance | |
KR102729387B1 (en) | A cold rolled martensitic steel sheet and a method of producing thereof | |
JP3343505B2 (en) | High strength bolt steel with excellent cold workability and delayed fracture resistance and its manufacturing method | |
JPH06299296A (en) | Steel for high strength spring excellent in decarburizing resistance | |
KR101586920B1 (en) | Steel and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070309 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100126 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100319 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100622 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120119 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120222 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150302 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4937499 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313114 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313114 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |