JP5543814B2 - Steel plate for heat treatment and method for producing steel member - Google Patents
Steel plate for heat treatment and method for producing steel member Download PDFInfo
- Publication number
- JP5543814B2 JP5543814B2 JP2010067712A JP2010067712A JP5543814B2 JP 5543814 B2 JP5543814 B2 JP 5543814B2 JP 2010067712 A JP2010067712 A JP 2010067712A JP 2010067712 A JP2010067712 A JP 2010067712A JP 5543814 B2 JP5543814 B2 JP 5543814B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- less
- heat
- heat treatment
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、熱処理用鋼板及び鋼部材の製造方法に関する。詳細には、本発明は、自動車部品や機械構造部品などの鋼部材を製造するために使用される熱処理用鋼板の製造方法、及びこの熱処理用鋼板を用いて作製される鋼部材の製造方法に関する。 The present invention relates to a steel plate for heat treatment and a method for producing a steel member. In detail, this invention relates to the manufacturing method of the steel plate for heat processing used in order to manufacture steel members, such as a motor vehicle part and a machine structural component, and the manufacturing method of the steel member produced using this steel plate for heat processing. .
自動車部品や機械構造部品などの鋼部材には、靭性や疲労特性に優れていることが要求されるものがある。このような鋼部材は、熱処理用鋼板を所望の部品形状に成形加工した後、熱処理(焼入焼戻処理)を行うことによって製造されるが、品質安定性の観点から、安定した加工性及び焼入性などが熱処理用鋼板に要求される。また、鋼部材は、疲労特性の向上や軽量化の観点から高強度であることが望まれる一方、高強度化することによって靭性や遅れ破壊特性の低下が懸念される。つまり、鋼部材の強度は、一般に炭素含有量によって主に決まるところ、炭素濃度を増加させると、疲労特性は向上するものの、靭性や遅れ破壊特性が低下する。 Some steel members such as automobile parts and machine structural parts are required to have excellent toughness and fatigue characteristics. Such a steel member is manufactured by performing a heat treatment (quenching and tempering treatment) after forming a heat-treated steel sheet into a desired part shape. From the viewpoint of quality stability, Hardenability and the like are required for the steel sheet for heat treatment. In addition, the steel member is desired to have high strength from the viewpoint of improving fatigue characteristics and weight reduction, but there is a concern that toughness and delayed fracture characteristics may be lowered by increasing the strength. That is, the strength of a steel member is generally determined mainly by the carbon content. Increasing the carbon concentration improves fatigue properties but decreases toughness and delayed fracture properties.
これらの様々な特性を改善するために様々な研究が行われている。例えば、特許文献1では、比較的大きな粒径の球状炭化物を等軸状フェライトに分散させた組織を有する熱処理用鋼板を用いて鋼部材を作製することにより、鋼部材の破壊起点を低減して靭性を向上させている。また、特許文献2では、溶体化処理時の炭素含有量の最適化及び未溶解炭化物の大きさを制御することにより、鋼部材の靭性を向上させている。
しかしながら、上記の特許文献に記載の技術はいずれも、未溶解炭化物の大きさ及び量を最適化することによって鋼部材の靭性を向上させており、オーステナイト化を十分に行って作製される(すなわち、未溶解炭化物のない)鋼部材には、上記の技術を適用することができない。また、これらの特許文献に記載の鋼部材は、疲労特性や遅れ破壊特性が不十分である。
Various studies have been conducted to improve these various properties. For example, in Patent Document 1, by preparing a steel member using a heat-treating steel plate having a structure in which spherical carbide having a relatively large particle size is dispersed in equiaxed ferrite, the fracture starting point of the steel member is reduced. Improves toughness. Moreover, in patent document 2, the toughness of the steel member is improved by optimizing the carbon content at the time of solution treatment and controlling the size of undissolved carbide.
However, all of the techniques described in the above-mentioned patent documents improve the toughness of the steel member by optimizing the size and amount of undissolved carbide, and are produced by sufficiently performing austenitization (that is, The above technique cannot be applied to steel members that have no undissolved carbide. Moreover, the steel members described in these patent documents have insufficient fatigue characteristics and delayed fracture characteristics.
一方、鋼部材の遅れ破壊特性の低下は、水素脆化に起因しており、この水素脆化を防止する技術が数多く知られている。代表的なものとしては、ボルトに使用される鋼部材に関するものが挙げられる。この鋼部材は、様々な特殊元素を添加することによって、強度や遅れ破壊特性を高めている。しかしながら、特殊元素の添加による素材コストの増加のため、この技術を、自動車部品や機械構造部品などの鋼部材に適用することが難しい。 On the other hand, the deterioration of delayed fracture characteristics of steel members is caused by hydrogen embrittlement, and many techniques for preventing this hydrogen embrittlement are known. As a typical thing, the thing regarding the steel member used for a volt | bolt is mentioned. This steel member has improved strength and delayed fracture characteristics by adding various special elements. However, due to the increase in material costs due to the addition of special elements, it is difficult to apply this technology to steel members such as automobile parts and machine structural parts.
水素脆化を防止する他の技術として、特許文献3は、水素脆化危険度指数(%)=100×(1−E1/E0)を30%以下に規定することを提案している。ここで、E0は実質的に拡散性水素を含まない鋼部材の破断時の伸び、E1は拡散水素を含む鋼部材の破断時の伸びである。しかしながら、特許文献3は、水素脆化危険度指数を規定することを開示しているに過ぎず、鋼部材の製造条件についても不明である。また、鋼部材の靭性や疲労特性についての記載もなく、その効果も不明である。 As another technique for preventing hydrogen embrittlement, Patent Document 3 proposes that the hydrogen embrittlement risk index (%) = 100 × (1−E1 / E0) be regulated to 30% or less. Here, E0 is the elongation at break of a steel member that does not substantially contain diffusible hydrogen, and E1 is the elongation at break of the steel member that contains diffusion hydrogen. However, Patent Document 3 only discloses that the hydrogen embrittlement risk index is specified, and the manufacturing conditions of the steel member are also unknown. Moreover, there is no description about the toughness and fatigue characteristics of the steel member, and the effect is unknown.
他にも、特許文献4は、3.0体積%以上の残留オーステナイトを含む組織を有し、且つ引張強さ×伸び≧18000MPa・%で、予歪み:8%付与後の限界拡散性水素量を0.5ppm以上とした鋼部材を提案している。しかしながら、特許文献4は、鋼部材の靭性や疲労特性についての記載もなく、その効果も不明である。 In addition, Patent Document 4 has a structure containing 3.0% by volume or more of retained austenite, and tensile strength × elongation ≧ 18000 MPa ·%, prestrain: amount of limit diffusible hydrogen after application of 8% Has proposed a steel member with 0.5 ppm or more. However, Patent Document 4 does not describe the toughness and fatigue characteristics of the steel member, and the effect is unknown.
上記したように、疲労特性(強度)と靭性及び遅れ破壊特性とは、相反する特性であるが、コストの増加を招くことなく、これらの特性を同時に向上させることが望まれている。
すなわち、本発明は、上記のような問題を解決するためになされたものであり、加工性及び焼入性が良好であると共に、疲労特性、靭性及び遅れ破壊特性の全てに優れた鋼部材を与える熱処理用鋼板の製造方法を提供することを目的とする。また、本発明は、疲労特性、靭性及び遅れ破壊特性の全てに優れた鋼部材の製造方法を提供することを目的とする。
As described above, fatigue characteristics (strength), toughness, and delayed fracture characteristics are contradictory characteristics, but it is desired to simultaneously improve these characteristics without causing an increase in cost.
That is, the present invention was made in order to solve the above-described problems, and a steel member having excellent workability and hardenability, and excellent fatigue characteristics, toughness, and delayed fracture characteristics. It aims at providing the manufacturing method of the steel plate for heat processing to give. Moreover, an object of this invention is to provide the manufacturing method of the steel member excellent in all the fatigue characteristics, toughness, and delayed fracture characteristics.
発明者らは、所定の組成のスラブを用い、所定の工程によって熱処理用鋼板を製造することにより、上記問題を解決し得ることを見出し、本発明を完成するに至った。
すなわち、本発明は、C:0.1質量%超過0.4質量%以下、Si:0.5〜1.5質量%、Mn:0.3〜2質量%、P:0.02質量%以下、S:0.02質量%以下、Cr:0.1〜2質量%、Ti:0.01〜0.1質量%、Nb:0.01〜0.1質量%、Al:0.1質量%以下、B:0.0022〜0.01質量%、N:0.01質量%以下を含み、残部がFe及び不可避的不純物からなるスラブを1250℃以上の温度に加熱した後、仕上げ圧延での全圧延率:90%以上、仕上げ温度:Ar3変態点〜Ar3変態点+100℃で熱間圧延し、平均冷却速度:40℃/秒以下で冷却し、巻取り温度:450〜600℃でコイル状に巻取って熱延コイルとし、前記熱延コイルを酸洗、球状化焼鈍又は冷延焼鈍することを特徴とする熱処理用鋼板の製造方法である。
また、本発明は、上記の製造方法によって得られた熱処理用鋼板を成形加工した後、焼入焼戻処理を行うことを特徴とする鋼部材の製造方法である。
The inventors have found that the above problem can be solved by producing a steel sheet for heat treatment by a predetermined process using a slab having a predetermined composition, and have completed the present invention.
That is, the present invention is C: more than 0.1% by mass 0.4% by mass or less, Si: 0.5-1.5% by mass, Mn: 0.3-2% by mass, P: 0.02% by mass Hereinafter, S: 0.02 mass% or less, Cr: 0.1-2 mass%, Ti: 0.01-0.1 mass%, Nb: 0.01-0.1 mass%, Al: 0.1 mass% or less, B: 0.0022 to 0.01 mass%, N: see contains 0.01 mass% or less, after the balance was heated slab consisting of Fe and unavoidable impurities to a temperature above 1250 ° C., finishing Total rolling rate in rolling: 90% or more, Finishing temperature: Ar 3 transformation point to Ar 3 transformation point + 100 ° C., hot rolling at an average cooling rate: 40 ° C./sec or less, winding temperature: 450 to A coil is wound at 600 ° C. to form a hot rolled coil, and the hot rolled coil is pickled, spheroidized or cold rolled. It is the manufacturing method of the steel plate for heat processing used as the characteristic.
Moreover, this invention is a manufacturing method of the steel member characterized by performing the quenching and tempering process, after shaping | molding the steel plate for heat processing obtained by said manufacturing method.
本発明によれば、加工性及び焼入性が良好であると共に、疲労特性、靭性及び遅れ破壊特性の全てに優れた鋼部材を与える熱処理用鋼板の製造方法を提供することができる。また、本発明によれば、疲労特性、靭性及び遅れ破壊特性の全てに優れた鋼部材の製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, while the workability and hardenability are favorable, the manufacturing method of the steel plate for heat processing which gives the steel member excellent in all the fatigue characteristics, toughness, and delayed fracture characteristics can be provided. Moreover, according to this invention, the manufacturing method of the steel member excellent in all the fatigue characteristics, toughness, and delayed fracture characteristics can be provided.
本発明の熱処理用鋼板の製造方法は、所定の組成のスラブを用いると共に、所定の工程から構成されることを特徴とする。ここで、本明細書において、「熱処理用鋼板」とは、所望の形状に成形加工され、熱処理される前の鋼板のことを意味する。また、「鋼部材」とは、所望の形状に成形加工され、熱処理された後の鋼板のことを意味する。
本発明に用いられるスラブの組成は以下の通りである。
The method for manufacturing a steel sheet for heat treatment according to the present invention is characterized by using a slab having a predetermined composition and comprising a predetermined step. Here, in this specification, the “steel plate for heat treatment” means a steel plate before being subjected to heat treatment after being formed into a desired shape. Further, the “steel member” means a steel plate after being formed into a desired shape and heat-treated.
The composition of the slab used in the present invention is as follows.
<C:0.1質量%超過0.4質量%以下>
Cは、自動車部品や機械構造部品などの鋼部材に要求される強度や疲労特性を確保するために必要となる元素である。熱処理によって鋼部材を高強度化する熱処理用鋼板においては、C含有量を0.1質量%よりも多くすることが望ましい。また、C含有量が0.4質量%を超えると、旧オーステナイト結晶粒界に炭化物が析出し、脆性破壊が生じ易くなると共に、粒界強度の低下による疲労特性(特に、疲労寿命)や遅れ破壊特性の低下が懸念される。また、加工性や溶接性が著しく劣化する。このため、C含有量は0.1質量%超過0.4質量%以下とする必要がある。
<C: more than 0.1% by mass and less than 0.4% by mass>
C is an element necessary for ensuring strength and fatigue characteristics required for steel members such as automobile parts and machine structural parts. In the steel sheet for heat treatment that increases the strength of the steel member by heat treatment, it is desirable that the C content be greater than 0.1% by mass. On the other hand, if the C content exceeds 0.4% by mass, carbide precipitates on the prior austenite grain boundaries, and brittle fracture is likely to occur, and fatigue characteristics (particularly fatigue life) and delays due to a decrease in grain boundary strength. There is concern about the deterioration of fracture characteristics. In addition, workability and weldability are significantly deteriorated. For this reason, C content needs to be 0.1 mass% excess and 0.4 mass% or less.
<Si:0.5〜1.5質量%>
Siは、靭性(特に、衝撃靭性)、疲労特性(特に、疲労寿命)、及び遅れ破壊特性の向上に最も重要な元素である。ここで、Siは、焼戻しの際にフィルム状の炭化物の生成を抑制し、平均粒径0.5μm以下の微細な炭化物を析出させることで粒界強度の低下を抑え、疲労寿命を向上させる。また、Siは、焼入性及び焼戻し軟化抵抗を高め、熱処理後の強度を確保する上で有効な元素でもある。上記のような特性を得るためには、Si含有量は、0.5質量以上とする必要がある。ただし、Si含有量が1.5質量%を超えると、粒界に粗大な炭化物が形成され易くなり、疲労寿命が逆に低下する。また、冷間圧延性を低下させる観点からも、Si含有量は0.5〜1.5質量%とする必要がある。
<Si: 0.5 to 1.5% by mass>
Si is the most important element for improving toughness (particularly impact toughness), fatigue characteristics (particularly fatigue life), and delayed fracture characteristics. Here, Si suppresses the formation of film-like carbides during tempering, and precipitates fine carbides having an average particle size of 0.5 μm or less, thereby suppressing a decrease in grain boundary strength and improving fatigue life. Si is also an element effective in enhancing hardenability and temper softening resistance and ensuring strength after heat treatment. In order to obtain the above characteristics, the Si content needs to be 0.5 mass or more. However, if the Si content exceeds 1.5% by mass, coarse carbides are easily formed at the grain boundaries, and the fatigue life is reduced. Further, from the viewpoint of reducing the cold rollability, the Si content needs to be 0.5 to 1.5% by mass.
<Mn:0.3〜2質量%質量%>
Mnは、焼入れ性および強度を確保する上で有効な元素である。この効果を十分に得るためには、Mn含有量を0.3質量%以上とする必要がある。ただし、Mn含有量が2.0質量%を超えると、炭素当量も高くなり、加工性及び溶接部の安定性に悪影響を及ぼす。そのため、Mn含有量は0.3〜2質量%とする必要がある。また、熱処理(焼入焼戻処理)後の旧オーステナイト粒径を小さくする観点から、Mn含有量は0.8質量%以上が好ましい。
<Mn: 0.3-2 mass% mass%>
Mn is an element effective for ensuring hardenability and strength. In order to sufficiently obtain this effect, the Mn content needs to be 0.3% by mass or more. However, if the Mn content exceeds 2.0% by mass, the carbon equivalent also increases, which adversely affects workability and welded portion stability. Therefore, the Mn content needs to be 0.3-2% by mass. Further, from the viewpoint of reducing the prior austenite particle size after the heat treatment (quenching and tempering treatment), the Mn content is preferably 0.8% by mass or more.
<P、S:0.02質量%以下>
Pは、焼入れ時にオーステナイト粒界に偏析して粒界強度が低下することにより、靭性及び疲労寿命を低下させる元素である。そのため、P含有量は、0.02質量%以下とする必要がある。
Sは、鋼中でMnSを形成し、これが亀裂の起点となって強度や靭性を低下させる要因となる元素である。また、MnSは、粒界に偏析し、疲労寿命を低下させる。そのため、可能な限り含有量を少なくすることが望ましく、S含有量は、0.02質量%以下とする必要がある。
P及びSの含有量の上限を0.02質量%とすることで、P及びSに起因する弊害を抑えることができる。
<P, S: 0.02 mass% or less>
P is an element that lowers toughness and fatigue life by segregating to austenite grain boundaries during quenching and lowering the grain boundary strength. Therefore, the P content needs to be 0.02% by mass or less.
S is an element that forms MnS in steel, which becomes a starting point of cracks and causes a decrease in strength and toughness. Further, MnS segregates at the grain boundaries and reduces the fatigue life. Therefore, it is desirable to reduce the content as much as possible, and the S content needs to be 0.02% by mass or less.
By setting the upper limit of the content of P and S to 0.02% by mass, it is possible to suppress harmful effects caused by P and S.
<Cr:0.1〜2質量%>
Crは、Mnと同様に焼入れ性の向上に有効であると共に、焼戻し軟化抵抗を高める元素である。この効果を十分に得るためには、Cr含有量を0.1質量%以上とする必要がある。ただし、Cr含有量が2質量%を超えると、熱処理(焼入焼戻処理)後の組織が未溶解炭化物を多量に含むものとなり、この炭化物が亀裂を助長させる起点となって靭性や疲労寿命の低下を招く。そのため、Cr含有量は0.1〜2質量%とする必要がある。
<Cr: 0.1 to 2% by mass>
Cr is an element that is effective for improving the hardenability as well as Mn and increases the temper softening resistance. In order to sufficiently obtain this effect, the Cr content needs to be 0.1% by mass or more. However, if the Cr content exceeds 2% by mass, the structure after heat treatment (quenching and tempering treatment) contains a large amount of undissolved carbides, and this carbide serves as a starting point for promoting cracks, toughness and fatigue life. Cause a decline. Therefore, the Cr content needs to be 0.1 to 2% by mass.
<Ti:0.01〜0.1質量%>
Tiは、鋼中のNをTiNとして固定することにより、焼入れ性向上に有効な固溶Bの確保に寄与する元素である。また、Tiは、焼入れ時に旧オーステナイト粒径の粗大化を抑制し、疲労寿命を向上させる元素でもある。これらの効果を十分に得るためには、Ti含有量を0.01質量%以上とする必要がある。ただし、0.1質量%を超えてTiを添加しても、旧オーステナイト粒径の粗大化抑制効果が飽和し、却って疲労破壊の起点となるTi系介在物が増加する。そのため、Ti含有量は0.01〜0.1質量%とする必要がある。
<Ti: 0.01 to 0.1% by mass>
Ti is an element that contributes to securing solid solution B effective in improving hardenability by fixing N in steel as TiN. Ti is also an element that suppresses coarsening of the prior austenite grain size during quenching and improves the fatigue life. In order to obtain these effects sufficiently, the Ti content needs to be 0.01% by mass or more. However, even if adding Ti exceeding 0.1% by mass, the effect of suppressing the coarsening of the prior austenite grain size is saturated, and Ti-based inclusions that become the starting point of fatigue fracture increase. Therefore, the Ti content needs to be 0.01 to 0.1% by mass.
<Nb:0.01〜0.1質量%>
Nbは、炭窒化物を形成し、旧オーステナイト結晶粒の粗大化を抑制して靭性を向上させると共に疲労寿命を向上させる元素である。これらの効果を十分に得るためには、Nb含有量を0.01質量%以上とする必要がある。ただし、0.1質量%を超えてNbを添加しても、上記効果は飽和し、不経済である。そのため、Nb含有量は0.01〜0.1質量%とする必要がある。
<Nb: 0.01 to 0.1% by mass>
Nb is an element that forms carbonitrides, suppresses coarsening of prior austenite crystal grains, improves toughness, and improves fatigue life. In order to sufficiently obtain these effects, the Nb content needs to be 0.01% by mass or more. However, even if Nb is added exceeding 0.1% by mass, the above effect is saturated and uneconomical. Therefore, the Nb content needs to be 0.01 to 0.1% by mass.
<Al:0.1質量%以下>
Alは、脱酸や、焼入れ時のオーステナイト結晶粒の粗大化抑制に有効な元素である。ただし、過剰のAlを添加すると、靭性や疲労寿命に悪影響を及ぼす。そのため、Al含有量は0.1質量%以下、好ましくは0.05質量%以下とする必要がある。また、上記の効果を効果的に得るためには、Al含有量の下限を0.01質量%とすることが好ましい。
<Al: 0.1% by mass or less>
Al is an element effective for deoxidation and suppressing coarsening of austenite crystal grains during quenching. However, adding excess Al adversely affects toughness and fatigue life. Therefore, the Al content needs to be 0.1% by mass or less, preferably 0.05% by mass or less. Moreover, in order to acquire said effect effectively, it is preferable that the minimum of Al content shall be 0.01 mass%.
<B:0.0005〜0.01質量%>
Bは、微量の添加で焼入れ性を高める元素である。また、Bは、熱処理(焼入焼戻処理)後の旧オーステナイト粒界を強化して脆性破壊を抑制し、靭性を向上させる元素でもある。これらの効果を十分に得るためには、B含有量を0.0005質量%以上とする必要がある。ただし、0.01質量%を超えてBを添加しても、上記効果は飽和し、不経済である。そのため、B含有量は0.0005〜0.01質量%、好ましくは0.002〜0.01質量%とする必要がある。
<B: 0.0005 to 0.01% by mass>
B is an element that enhances hardenability by adding a small amount. B is also an element that strengthens the prior austenite grain boundaries after heat treatment (quenching and tempering treatment), suppresses brittle fracture, and improves toughness. In order to sufficiently obtain these effects, the B content needs to be 0.0005% by mass or more. However, even if B is added over 0.01% by mass, the above effect is saturated and uneconomical. Therefore, the B content needs to be 0.0005 to 0.01% by mass, preferably 0.002 to 0.01% by mass.
<N:0.01質量%以下>
Nは、BNの形成によってBが消費されるため、Bの効果を阻害する要因となる元素である。そのため、N含有量は、できるだけ低い方が望ましい。種々の組成を検討した結果、N含有量は0.01質量まで許容されるが、0.006質量%以下とすることが好ましい。
<N: 0.01% by mass or less>
N is an element that inhibits the effect of B because B is consumed by the formation of BN. Therefore, the N content is desirably as low as possible. As a result of examining various compositions, the N content is allowed to be 0.01 mass, but is preferably 0.006 mass% or less.
<Ni:0.5質量%以下>
Niは、本発明に用いられるスラブの任意成分である。Niは焼入れ性、靭性及び疲労寿命の向上に有効な元素である。ただし、0.5質量%を超えてNiを添加しても、上記効果は飽和し、不経済である。そのため、Ni含有量は0.5質量%以下とする必要がある。また、上記の効果を効果的に得るためには、Ni含有量の下限を0.1質量%とすることが好ましい。
<Ni: 0.5% by mass or less>
Ni is an optional component of the slab used in the present invention. Ni is an element effective for improving hardenability, toughness, and fatigue life. However, even if Ni is added in excess of 0.5% by mass, the above effect is saturated and uneconomical. Therefore, the Ni content needs to be 0.5% by mass or less. Moreover, in order to acquire said effect effectively, it is preferable that the minimum of Ni content shall be 0.1 mass%.
<Ca:0.02質量%以下>
Caは、本発明に用いられるスラブの任意成分である。Caは、MnS系介在物の形態を球状化して鋼材の異方性を軽減する元素である。ただし、0.02質量%を超えてCaを添加すると、Ca系介在物が増加して疲労特性を低下させる。そのため、Ca含有量は0.02質量%以下とする必要がある。また、上記の効果を効果的に得るためには、Ca含有量の下限を0.001質量%とすることが好ましい。
<Ca: 0.02 mass% or less>
Ca is an optional component of the slab used in the present invention. Ca is an element that reduces the anisotropy of the steel by spheroidizing the MnS inclusions. However, if Ca is added in excess of 0.02 mass%, Ca-based inclusions increase and fatigue characteristics are reduced. Therefore, the Ca content needs to be 0.02% by mass or less. Moreover, in order to acquire said effect effectively, it is preferable to make the minimum of Ca content into 0.001 mass%.
<Mo:0.5質量%以下>
Moは、本発明に用いられるスラブの任意成分である。Moは、焼入れ性及び焼戻し軟化抵抗の向上の他に、炭化物を形成して水素をトラップする効果を与える元素である。また、Moは、MnやCrの過剰な添加による靭性劣化を抑制する元素でもある。ただし、Moは高価な元素であるため、0.5質量%を超えてMoを添加すると不経済である。そのため、Mo含有量は0.5質量%以下とする必要がある。また、上記の効果を効果的に得るためには、Mo含有量の下限を、0.1質量%、好ましくは0.15質量%とすることが好ましい。
<Mo: 0.5% by mass or less>
Mo is an optional component of the slab used in the present invention. Mo is an element that has the effect of trapping hydrogen by forming carbides in addition to improving hardenability and temper softening resistance. Mo is also an element that suppresses toughness deterioration due to excessive addition of Mn and Cr. However, since Mo is an expensive element, it is uneconomical to add Mo in excess of 0.5 mass%. Therefore, the Mo content needs to be 0.5% by mass or less. Moreover, in order to acquire said effect effectively, it is preferable to make the minimum of Mo content into 0.1 mass%, Preferably it is 0.15 mass%.
<V:0.5質量%以下>
Vは、本発明に用いられるスラブの任意成分である。Vは、焼入れ時に結晶粒を微細化して靭性向上に有効であると共に、炭化物を形成して水素をトラップする効果を与える元素である。ただし、Vは高価な元素であるため、0.5質量%を超えてVを添加すると不経済である。そのため、V含有量は0.5質量%以下とする必要がある。また、上記の効果を効果的に得るためには、V含有量の下限を、0.1質量%とすることが好ましい。
<V: 0.5 mass% or less>
V is an optional component of the slab used in the present invention. V is an element that is effective for improving toughness by refining crystal grains during quenching and also has the effect of trapping hydrogen by forming carbides. However, since V is an expensive element, it is uneconomical to add V exceeding 0.5 mass%. Therefore, the V content needs to be 0.5% by mass or less. Moreover, in order to acquire said effect effectively, it is preferable to make the minimum of V content into 0.1 mass%.
<残部>
スラブの残部はFe及び不可避的不純物からなる。ここで、本明細書において「不可避的不純物」とは、意図していないにも関らず不可避的に混入する不純物のことを意味する。
<Remainder>
The balance of the slab consists of Fe and inevitable impurities. Here, in the present specification, “inevitable impurities” means impurities that are inevitably mixed although not intended.
次に、熱処理用鋼板の製造工程について説明する。
まず、上記のような組成を有するスラブを1250℃以上に加熱する。この範囲に加熱温度を設定することにより、TiやNbなどのマトリックスへの固溶が確保される。加熱温度が1250℃未満であると、熱間圧延において析出するNb炭化物量が不足する。その結果、焼入れの際に旧オーステナイト粒が成長してしまい、疲労特性や靭性(特に、衝撃靭性)が低下する。
Next, the manufacturing process of the steel plate for heat processing is demonstrated.
First, a slab having the above composition is heated to 1250 ° C. or higher. By setting the heating temperature within this range, solid solution in a matrix such as Ti or Nb is secured. When the heating temperature is less than 1250 ° C., the amount of Nb carbide precipitated in hot rolling is insufficient. As a result, prior austenite grains grow during quenching, and fatigue characteristics and toughness (especially impact toughness) are reduced.
次に、加熱されたスラブを熱間圧延する。この熱間圧延では、全圧延率:90%以上、仕上げ温度:Ar3変態点〜Ar3変態点+100℃の条件下で仕上げ圧延する。全圧延率が90%未満であると、強度を高めるのに有効な微細組織が十分に得られない。また、仕上げ温度がAr3変態点未満であると、2相域で圧延されることになり、圧延条件が不安定になり易い。一方、仕上げ温度がAr3変態点+100℃を超えると、熱間圧延後にオーステナイト粒が粗大化してしまい、微細組織を有する熱延コイルが得られない。 Next, the heated slab is hot-rolled. In this hot rolling, finish rolling is performed under conditions of a total rolling ratio of 90% or more and a finishing temperature: Ar 3 transformation point to Ar 3 transformation point + 100 ° C. If the total rolling ratio is less than 90%, a fine structure effective for increasing the strength cannot be obtained sufficiently. If the finishing temperature is lower than the Ar 3 transformation point, rolling is performed in a two-phase region, and the rolling conditions are likely to be unstable. On the other hand, if the finishing temperature exceeds Ar 3 transformation point + 100 ° C., austenite grains become coarse after hot rolling, and a hot-rolled coil having a fine structure cannot be obtained.
次に、熱間圧延後の熱延鋼帯を40℃/秒以下、好ましくは20〜30℃/秒の平均冷却速度で冷却する。この平均冷却速度は、金属組織を制御するために重要である。平均冷却速度が40℃/秒を超えると、熱延鋼帯にマルテンサイト組織が生じる場合がある。このマルテンサイト組織は、熱延鋼帯の特性を大きく変動させるばかりでなく、巻取り工程において板割れが生じる要因となる。 Next, the hot-rolled steel strip after hot rolling is cooled at an average cooling rate of 40 ° C./second or less, preferably 20-30 ° C./second. This average cooling rate is important for controlling the metallographic structure. When the average cooling rate exceeds 40 ° C./second, a martensitic structure may be generated in the hot-rolled steel strip. This martensite structure not only greatly changes the characteristics of the hot-rolled steel strip, but also causes plate cracking in the winding process.
次に、冷却した熱延鋼帯を450〜600℃の巻取り温度でコイル状に巻取って熱延コイルとする。この巻取り温度で熱延鋼帯を巻取ることにより、微細フェライト+微細パーライト又はベイナイト組織を有する熱延コイルが得られる。巻取り温度が450℃未満であると、コイルの変形が生じ易く、巻取り自体が事実上困難となるばかりか、コイルエッジからの板割れが発生する場合がある。巻取り温度が600℃を超えると、粗大なフェライト+パーライト組織やバンド状組織を有する熱延コイルとなったり、表面の脱炭及び粒界酸化が進行してしまい、疲労破壊の起点となる。 Next, the cooled hot-rolled steel strip is wound into a coil at a winding temperature of 450 to 600 ° C. to obtain a hot-rolled coil. By winding the hot-rolled steel strip at this winding temperature, a hot-rolled coil having fine ferrite + fine pearlite or bainite structure is obtained. When the winding temperature is less than 450 ° C., the coil is likely to be deformed, and the winding itself becomes practically difficult, and a plate crack from the coil edge may occur. When the coiling temperature exceeds 600 ° C., it becomes a hot rolled coil having a coarse ferrite + pearlite structure or a band-like structure, or surface decarburization and grain boundary oxidation progress, which becomes a starting point of fatigue failure.
次に、熱延コイルを酸洗、球状化焼鈍又は冷延焼鈍する。これらの処理は、熱処理(焼入焼戻処理)によって生成するセメンタイトの析出状態にほとんど影響しないため、鋼部材の形状に成形加工し得る強度及び延性を与えるものであればいずれを選択してもよい。
酸洗方法としては、特に限定されず、公知の方法に準じて行うことができる。例えば、塩酸などを含む酸洗槽に熱延コイルを通過させればよい。
球状化焼鈍及び冷延焼鈍を行う際の条件は、特に限定されず、公知の方法に準じて行うことができる。
Next, the hot-rolled coil is pickled, spheroidized, or cold-rolled. Since these treatments hardly affect the precipitation state of cementite generated by heat treatment (quenching and tempering treatment), any one can be selected as long as it gives strength and ductility that can be formed into the shape of the steel member. Good.
It does not specifically limit as a pickling method, It can carry out according to a well-known method. For example, a hot-rolled coil may be passed through a pickling tank containing hydrochloric acid or the like.
Conditions for performing spheroidizing annealing and cold rolling annealing are not particularly limited, and can be performed according to a known method.
非酸化性雰囲気下で球状化焼鈍を行う場合、Bの焼入性を確保する観点から、窒素雰囲気ではなく水素ガス雰囲気下で行うことが好ましい。また、熱処理用鋼板は、所望の製品形状への成形加工が一般的に冷間で行われることが多いため、焼鈍は再結晶組織を与える程度に行えばよく、完全な球状化焼鈍を行う必要はない。
また、冷延焼鈍を行う場合、焼鈍温度及び焼鈍時間は、冷延焼鈍を行う前の冷間圧延率に応じて最適な条件を決定することが好ましい。例えば、冷間圧延の圧延率が高いものほど、一般的には、低温、短時間で微細な再結晶組織を得ることができる。鋼の成分組成によっても最適条件に多少の違いが生じるが、一般的に、全冷間圧延率が25%の場合は、焼鈍時間を670〜750℃、焼鈍時間10〜40時間とすればよい。
When spheroidizing annealing is performed in a non-oxidizing atmosphere, it is preferable to perform it in a hydrogen gas atmosphere instead of a nitrogen atmosphere from the viewpoint of securing the hardenability of B. In addition, since the steel sheet for heat treatment is often cold formed into a desired product shape, annealing may be performed to a degree that gives a recrystallized structure, and complete spheroidizing annealing is required. There is no.
Moreover, when performing cold rolling annealing, it is preferable that an annealing temperature and annealing time determine optimal conditions according to the cold rolling rate before performing cold rolling annealing. For example, the higher the rolling rate of cold rolling, the more generally a fine recrystallized structure can be obtained at a low temperature and in a short time. Although there are some differences in the optimum conditions depending on the component composition of the steel, generally, when the total cold rolling reduction is 25%, the annealing time may be 670 to 750 ° C., and the annealing time may be 10 to 40 hours. .
上記のようにして製造される熱処理用鋼板は、成形加工した後、焼入焼戻処理を行うことによって鋼部材を製造することができる。
成形加工の方法としては、特に限定されず、鋼部材の形状などに応じてプレス成形などの公知の方法を用いることができる。
焼入焼戻処理は、熱処理用鋼板を高強度化させつつ、靭性及び疲労特性を高め、遅れ破壊特性の劣化を抑制するために必要な処理である。焼入れは、Ac3変態点+50℃以上の温度で60秒以上保持した後、急冷することが好ましい。急冷は、マルテンサイト変態を生じさせ得る冷却速度であれば特に限定されない。また、焼戻しは、180〜500℃の温度で10〜60分間保持すればよい。
The steel sheet for heat treatment manufactured as described above can be processed into a steel member by performing a quenching and tempering process after forming.
The forming method is not particularly limited, and a known method such as press forming can be used depending on the shape of the steel member.
The quenching and tempering treatment is a treatment necessary for enhancing the toughness and fatigue characteristics and suppressing the deterioration of delayed fracture characteristics while increasing the strength of the heat-treating steel plate. Quenching is preferably rapidly cooled after being held at a temperature of Ac 3 transformation point + 50 ° C. or more for 60 seconds or more. The rapid cooling is not particularly limited as long as it is a cooling rate capable of causing martensitic transformation. Moreover, tempering should just hold | maintain for 10 to 60 minutes at the temperature of 180-500 degreeC.
焼戻し後に得られる鋼部材の硬度は、好ましくは500HV以下、より好ましくは470HV以下である。ここで、「硬度」とは、ビッカース硬度計によって測定されたビッカース硬度を意味する。硬度が500HVを超えると、遅れ破壊限度が急激に低下する傾向がある。 The hardness of the steel member obtained after tempering is preferably 500 HV or less, more preferably 470 HV or less. Here, “hardness” means Vickers hardness measured by a Vickers hardness tester. When the hardness exceeds 500 HV, the delayed fracture limit tends to rapidly decrease.
上記のようにして製造される鋼部材では、熱処理(焼入焼戻処理)の際に、Siによる固溶強化及びセメンタイト生成抑制効果に起因する高強度化、Mn及びBによる焼入性向上、Bによる粒界強化に起因する靭性確保、Nb炭化物による結晶粒の微細化及び水素トラップ効果などが相乗的に作用して所望の効果が得られると考えられる。詳細な機構は不明であるが、特に、Siによるセメンタイトの生成抑制効果とNb炭化物の水素トラップ効果との相互作用により、疲労亀裂の伝播を抑制すると共に限界拡散性水素を低下させ、疲労特性、靭性及び遅れ破壊特性の全てを向上させると考えられる。また、Siによるセメンタイトの生成抑制効果により、焼戻温度を高温化しても硬さが維持できると共にセメンタイトが粒界および粒内に極めて微細に生成するため、遅れ破壊限度がほとんど低下しない。 In the steel member produced as described above, during heat treatment (quenching and tempering treatment), strengthening due to solid solution strengthening by Si and cementite formation suppressing effect, improving hardenability by Mn and B, It is considered that the desired effect can be obtained by synergistically acting toughness due to grain boundary strengthening by B, refinement of crystal grains by Nb carbide, hydrogen trapping effect, and the like. Although the detailed mechanism is unknown, in particular, due to the interaction between the effect of suppressing the formation of cementite by Si and the hydrogen trapping effect of Nb carbide, it suppresses the propagation of fatigue cracks and lowers the limit diffusible hydrogen, It is thought to improve all of toughness and delayed fracture characteristics. In addition, due to the effect of suppressing the formation of cementite by Si, the hardness can be maintained even when the tempering temperature is raised, and cementite is generated very finely at the grain boundaries and within the grains, so that the delayed fracture limit hardly decreases.
以下、実施例により本発明を詳細に説明するが、これらによって本発明が限定されるものではない。
実施例で用いたスラブの組成を表1に示す。なお、スラブの残部はFe及び不可避不純物である。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by these.
The composition of the slab used in the examples is shown in Table 1. The balance of the slab is Fe and inevitable impurities.
(実施例1)
実施例1では、スラブの組成、熱延条件、焼入焼戻条件などが、熱処理用鋼板の加工性や、熱処理鋼板の疲労特性及び靭性に与える影響について調査した。
表1に示す成分を含む200mm厚のスラブを1280℃で60分加熱した後、表2〜3に示す条件で熱間圧延して冷却し、4.0mm厚の熱延板を作製した。そして、この熱延板を表2〜3に示す条件でコイル状に巻取って熱延コイルとし、この熱延コイルを酸洗することによって熱処理用鋼板を得た。なお、一部のサンプルについては、酸洗の代わりに、表2〜3に示す条件で球状化焼鈍又は冷延焼鈍を行った。また、球状化焼鈍は、水素雰囲気中で行った。
得られた熱処理用鋼板について、加工性を評価するために、JIS Z2241に準拠して引張試験を行い、引張強さ(TS)及び引張伸び(T.EL)を測定した。その結果を表2に示す。
Example 1
In Example 1, the effects of the slab composition, hot rolling conditions, quenching and tempering conditions, etc. on the workability of the heat-treated steel sheet and the fatigue properties and toughness of the heat-treated steel sheet were investigated.
A 200 mm-thick slab containing the components shown in Table 1 was heated at 1280 ° C. for 60 minutes, and then hot-rolled and cooled under the conditions shown in Tables 2-3 to produce a 4.0 mm-thick hot rolled sheet. And this hot-rolled sheet was wound up in the shape of a coil on the conditions shown in Tables 2-3, and it was set as the hot-rolled coil, and the steel plate for heat processing was obtained by pickling this hot-rolled coil. For some samples, spheroidizing annealing or cold rolling annealing was performed under the conditions shown in Tables 2 to 3 instead of pickling. The spheroidizing annealing was performed in a hydrogen atmosphere.
In order to evaluate workability about the obtained steel plate for heat treatment, a tensile test was performed in accordance with JIS Z2241, and tensile strength (TS) and tensile elongation (T.EL) were measured. The results are shown in Table 2.
次に、上記で得られた熱処理用鋼板の両面を0.5mm研削して3.0mm厚とし、冷間圧延して2.0mm厚に仕上げた。その後、熱処理(焼入焼戻処理)を行い、熱処理鋼板を得た。焼入れは、900℃で15分間保持した後、水を用いて急冷することによって行った。また、焼戻しは、350℃で30分間保持することによって行なった。
得られた熱処理鋼板について、ビッカース硬度を測定すると共に、衝撃試験及び疲労試験を行った。
衝撃試験は、−45℃における2mmUノッチ衝撃値をJIS Z2242に準拠したシャルピー試験によって測定した。
また、疲労試験は、JIS Z2275に準拠した試験片を採取し、平面曲げ疲労試験機を用い、両振りにて22Hzで試験した。この試験において、5×106サイクル後の疲労強度の値を疲労限度とした。
Next, both surfaces of the steel plate for heat treatment obtained above were ground to 0.5 mm to a thickness of 3.0 mm, and cold-rolled to a thickness of 2.0 mm. Thereafter, heat treatment (quenching and tempering treatment) was performed to obtain a heat-treated steel sheet. Quenching was performed by holding at 900 ° C. for 15 minutes and then rapidly cooling with water. Tempering was performed by holding at 350 ° C. for 30 minutes.
About the obtained heat-treated steel plate, while measuring Vickers hardness, the impact test and the fatigue test were done.
In the impact test, a 2 mmU notch impact value at −45 ° C. was measured by a Charpy test in accordance with JIS Z2242.
In addition, for the fatigue test, a test piece based on JIS Z2275 was collected and tested at 22 Hz with a double swing using a plane bending fatigue tester. In this test, the fatigue strength value after 5 × 10 6 cycles was defined as the fatigue limit.
上記の各評価の結果を表2〜3に示す。表中、疲労限度比とは、疲労強度を引張強さで割った値(疲労限度比=疲労強度/引張強さ)である。
上記の各評価の基準としては、TS×T.ELの値が16000以上であれば熱処理用鋼板の加工性が良好であると考えられる。ビッカース硬度が350〜500HV、Uノッチ衝撃値が80J/cm2以上、疲労限度比が0.4以上であれば、熱処理鋼板の疲労特性及び靭性が良好であると考えられる。
The results of the above evaluations are shown in Tables 2-3. In the table, the fatigue limit ratio is a value obtained by dividing the fatigue strength by the tensile strength (fatigue limit ratio = fatigue strength / tensile strength).
As a standard for each evaluation, TS × T. If the value of EL is 16000 or more, it is considered that the workability of the steel sheet for heat treatment is good. If the Vickers hardness is 350 to 500 HV, the U-notch impact value is 80 J / cm 2 or more, and the fatigue limit ratio is 0.4 or more, it is considered that the fatigue characteristics and toughness of the heat-treated steel sheet are good.
表2〜3に示されるように、所定の組成を有するスラブを用い、且つ所定の条件下で作製した試料No.2〜3、5〜17、19〜20及び22〜23の熱処理用鋼板は、TS×T.ELの値が16000以上であり、加工性が良好であった。また、これらの熱処理用鋼板から作製された熱処理鋼板は、Uノッチ衝撃値が80J/cm2以上、疲労限度比が0.4以上であり、疲労特性及び靭性が良好であった。 As shown in Tables 2 to 3, sample Nos. Prepared using slabs having a predetermined composition and under predetermined conditions. Steel plates for heat treatment of 2-3, 5-17, 19-20 and 22-23 are TS × T. The value of EL was 16000 or more, and the workability was good. Moreover, the heat-treated steel sheet produced from these heat-treated steel sheets had a U-notch impact value of 80 J / cm 2 or more, a fatigue limit ratio of 0.4 or more, and good fatigue characteristics and toughness.
これに対して、試料No.1の熱処理用鋼板は、所定の組成を有するスラブを用いたものの、平均冷却速度が速すぎたためにマルテンサイトが生じ、TS×T.ELの値が低くなった。つまり、この熱処理用鋼板は加工性が十分でなかった。
試料No.4の熱処理用鋼板は、所定の組成を有するスラブを用いたものの、巻取り温度が高すぎたために粗大なフェライト及びパーライトの混合組織が生成した。その結果、焼入れの際にパーライトが十分に固溶せず、旧オーステナイト粒が混在してしまった。つまり、この熱処理用鋼板から得られる熱処理鋼板は疲労強度が十分でなかった。
試料No.18及び21の熱処理用鋼板は、所定の組成を有するスラブを用いたものの、巻取り温度が低すぎたためにマルテンサイトが生じ、TS×T.ELの値が低くなった。つまり、これらの熱処理用鋼板は加工性が十分でなかった。
In contrast, sample no. Although the steel sheet for heat treatment No. 1 used a slab having a predetermined composition, martensite was generated because the average cooling rate was too high, and TS × T. The value of EL became low. That is, this heat-treatable steel sheet was not sufficiently workable.
Sample No. Although the steel plate for heat treatment No. 4 used a slab having a predetermined composition, the coiling temperature was too high, so that a coarse mixed structure of ferrite and pearlite was generated. As a result, pearlite was not sufficiently dissolved during quenching, and old austenite grains were mixed. That is, the heat-treated steel sheet obtained from this heat-treated steel sheet did not have sufficient fatigue strength.
Sample No. Although the steel plates for heat treatment of 18 and 21 used slabs having a predetermined composition, martensite was generated because the coiling temperature was too low, and TS × T. The value of EL became low. That is, these steel sheets for heat treatment were not sufficiently workable.
試料No.24の熱処理用鋼板は、C及びSiの含有量が少なく、Cr、Ti、Nb及びBを含有していないスラブを用いたために、TS×T.ELの値が低くなった。つまり、この熱処理用鋼板は加工性が十分でなかった。
試料No.25の熱処理用鋼板は、Si及びMnの含有量が少ないスラブを用いたために、TS×T.ELの値が低くなった。つまり、この熱処理用鋼板は加工性が十分でなかった。
試料No.26の熱処理用鋼板は、Siの含有量が多いスラブを用いたために、高強度となってTS×T.ELの値が低くなった。また、この熱処理用鋼板は、過剰なSiに加えて巻取り温度が低すぎたために、変態が遅滞してコイルの変形が生じた。つまり、この熱処理用鋼板は加工性が十分でなかった。さらに、この熱処理用鋼板の表面に多くのスケールが形成されてしまい、熱処理鋼板の疲労限度を低下させた。つまり、この熱処理鋼板は疲労特性が十分でなかった。
Sample No. The steel plate for heat treatment No. 24 had a low content of C and Si and used a slab containing no Cr, Ti, Nb and B. The value of EL became low. That is, this heat-treatable steel sheet was not sufficiently workable.
Sample No. Since the steel plate for heat treatment No. 25 used a slab with a low content of Si and Mn, TS × T. The value of EL became low. That is, this heat-treatable steel sheet was not sufficiently workable.
Sample No. The steel plate for heat treatment No. 26 uses a slab with a high Si content, so that it has high strength and TS × T. The value of EL became low. Moreover, in this steel sheet for heat treatment, since the coiling temperature was too low in addition to excessive Si, the transformation was delayed and the coil was deformed. That is, this heat-treatable steel sheet was not sufficiently workable. Furthermore, many scales were formed on the surface of the steel sheet for heat treatment, and the fatigue limit of the heat treated steel sheet was lowered. That is, this heat-treated steel sheet did not have sufficient fatigue properties.
試料No.27の熱処理用鋼板は、Tiの含有量が多いスラブを用いたために、焼入焼戻処理の際にTiNが粗大化して介在物となり、熱処理鋼板のUノッチ衝撃性を低下させた。つまり、この熱処理鋼板は靭性が十分でなかった。
試料No.28の熱処理用鋼板は、Siの含有量が少ないスラブを用いたために、焼入焼戻処理の際にセメンタイトが粗大化し、熱処理鋼板のUノッチ衝撃性を低下させた。つまり、この熱処理鋼板は靭性が十分でなかった。
試料No.29の熱処理用鋼板は、Cの含有量が多いスラブを用いたために、高強度となってTS×T.ELの値が低くなった。つまり、この熱処理用鋼板は、加工性が十分でなかった。さらに、この熱処理用鋼板は、焼入焼戻処理の際にSiの含有量が少ないことに起因してセメンタイトの粗大化が生じると共に、Bの未添加による粒界の強化不足のために、熱処理鋼板のUノッチ衝撃性が低下した。つまり、この熱処理鋼板は靭性が十分でなかった。
試料No.30の熱処理用鋼板は、Nbの含有量が多いスラブを用いたために、焼入焼戻処理の際にNbN、NbCが粗大化して介在物となり、熱処理鋼板のUノッチ衝撃性を低下させた。つまり、この熱処理鋼板は靭性が十分でなかった。
Sample No. Since the steel plate for heat treatment No. 27 used a slab having a large Ti content, TiN was coarsened during the quenching and tempering treatment to become inclusions, and the U-notch impact property of the heat treatment steel plate was lowered. That is, this heat-treated steel sheet did not have sufficient toughness.
Sample No. Since the steel plate for heat treatment No. 28 used a slab having a low Si content, cementite was coarsened during the quenching and tempering treatment, and the U-notch impact property of the heat treated steel plate was lowered. That is, this heat-treated steel sheet did not have sufficient toughness.
Sample No. The steel plate for heat treatment No. 29 used was a slab with a high C content, so that it became high strength and TS × T. The value of EL became low. That is, this heat-treatable steel sheet was not sufficiently workable. Further, this steel sheet for heat treatment causes coarsening of cementite due to the low content of Si during the quenching and tempering treatment, and also due to insufficient strengthening of grain boundaries due to the absence of B, heat treatment. The U-notch impact property of the steel sheet was lowered. That is, this heat-treated steel sheet did not have sufficient toughness.
Sample No. Since the steel plate for heat treatment No. 30 used a slab having a high Nb content, NbN and NbC were coarsened into inclusions during the quenching and tempering treatment, and the U notch impact property of the heat treated steel plate was reduced. That is, this heat-treated steel sheet did not have sufficient toughness.
(実施例2)
実施例2では、鋼種や焼戻し温度が、熱処理鋼板の疲労特性や靭性に与える影響について調査した。
200mm厚のスラブを1280℃で60分加熱した後、890℃の仕上げ温度で熱間圧延して30℃/秒の平均冷却速度で冷却し、4.0mm厚の熱延板を作製した。そして、この熱延板を550℃の巻取り温度でコイル状に巻取って熱延コイルとし、この熱延コイルを酸洗することによって熱処理用鋼板を得た。
次に、上記で得られた熱処理用鋼板の両面を0.5mm研削して3.0mm厚とし、冷間圧延して2.0mm厚に仕上げた。その後、熱処理(焼入焼戻処理)を行って熱処理鋼板を得た。焼入れは、900℃で15分間保持した後、水を用いて急冷することによって行った。また、焼戻しは、100〜500℃の範囲で30分間保持することによって行なった。
(Example 2)
In Example 2, the effect of the steel type and tempering temperature on the fatigue properties and toughness of the heat-treated steel sheet was investigated.
A 200 mm thick slab was heated at 1280 ° C. for 60 minutes, then hot-rolled at a finishing temperature of 890 ° C. and cooled at an average cooling rate of 30 ° C./second to produce a 4.0 mm thick hot rolled sheet. And this hot-rolled sheet was coiled at a coiling temperature of 550 ° C. to form a hot-rolled coil, and this hot-rolled coil was pickled to obtain a steel sheet for heat treatment.
Next, both surfaces of the steel plate for heat treatment obtained above were ground to 0.5 mm to a thickness of 3.0 mm, and cold-rolled to a thickness of 2.0 mm. Thereafter, heat treatment (quenching and tempering treatment) was performed to obtain a heat treated steel sheet. Quenching was performed by holding at 900 ° C. for 15 minutes and then rapidly cooling with water. Moreover, tempering was performed by hold | maintaining for 30 minutes in the range of 100-500 degreeC.
得られた熱処理鋼板について、降伏強さ(YS)、引張り強さ(TS)、引張伸び(T.EL)及びビッカース硬度を測定すると共に、衝撃試験及び疲労試験を行った。ここで、降伏強さ(YS)は、JIS Z2241に準拠した引張試験を行うことによって求めた。その他の測定及び試験については、上記の実施例と同様にして行った。その結果を表4に示す。 The obtained heat-treated steel sheet was measured for yield strength (YS), tensile strength (TS), tensile elongation (T.EL), and Vickers hardness, and an impact test and a fatigue test were performed. Here, the yield strength (YS) was determined by performing a tensile test in accordance with JIS Z2241. Other measurements and tests were performed in the same manner as in the above examples. The results are shown in Table 4.
表4に示されているように、本発明の熱処理用鋼板を用いると共に、焼戻し温度を180〜500℃の範囲にして作製した試料No.32〜35の熱処理鋼板は、Uノッチ衝撃値が80J/cm2以上、疲労限度比が0.4以上であり、疲労特性及び靭性が良好であった。
これに対して、焼戻し温度が180℃未満であると、本発明の熱処理用鋼板を用いても、熱処理鋼板が硬くなり過ぎてしまい、疲労特性や靭性が低下してしまった(試料No.31)。また、所定の組成を有するスラブを用いていない熱処理用鋼板は、焼戻し温度が180℃未満の場合だけでなく180〜500℃の範囲の場合であっても、疲労特性や靭性が不十分な熱処理鋼板を与えた(試料No.36〜44)。
As shown in Table 4, while using the steel plate for heat treatment of the present invention, the sample No. 1 was prepared with a tempering temperature in the range of 180 to 500 ° C. The heat treated steel sheets of 32 to 35 had a U-notch impact value of 80 J / cm 2 or more, a fatigue limit ratio of 0.4 or more, and good fatigue characteristics and toughness.
On the other hand, when the tempering temperature is less than 180 ° C., the heat-treated steel sheet becomes too hard even if the heat-treated steel sheet of the present invention is used, and fatigue characteristics and toughness are deteriorated (Sample No. 31). ). In addition, a heat-treating steel sheet that does not use a slab having a predetermined composition is a heat treatment that has insufficient fatigue characteristics and toughness not only when the tempering temperature is less than 180 ° C but also within the range of 180 to 500 ° C. Steel plates were provided (Sample Nos. 36-44).
(実施例3)
実施例3では、鋼種や焼戻し温度が、熱処理鋼板の遅れ破壊特性に与える影響について調査した。
200mm厚のスラブを1280℃で60分加熱した後、890℃の仕上げ温度で熱間圧延して30℃/秒の平均冷却速度で冷却し、4.0mm厚の熱延板を作製した。そして、この熱延板を550℃の巻取り温度でコイル状に巻取って熱延コイルとし、この熱延コイルを酸洗することによって熱処理用鋼板を得た。
次に、上記で得られた熱処理用鋼板の両面を0.5mm研削して3.0mm厚とし、冷間圧延して2.0mm厚に仕上げた。その後、熱処理(焼入焼戻処理)を行って熱処理鋼板を得た。焼入れは、900℃で15分間保持した後、水を用いて急冷することによって行った。また、焼戻しは、100〜500℃の範囲で30分間保持することによって行なった。
(Example 3)
In Example 3, the effect of the steel type and the tempering temperature on the delayed fracture characteristics of the heat-treated steel sheet was investigated.
A 200 mm thick slab was heated at 1280 ° C. for 60 minutes, then hot-rolled at a finishing temperature of 890 ° C. and cooled at an average cooling rate of 30 ° C./second to produce a 4.0 mm thick hot rolled sheet. And this hot-rolled sheet was coiled at a coiling temperature of 550 ° C. to form a hot-rolled coil, and this hot-rolled coil was pickled to obtain a steel sheet for heat treatment.
Next, both surfaces of the steel plate for heat treatment obtained above were ground to 0.5 mm to a thickness of 3.0 mm, and cold-rolled to a thickness of 2.0 mm. Thereafter, heat treatment (quenching and tempering treatment) was performed to obtain a heat treated steel sheet. Quenching was performed by holding at 900 ° C. for 15 minutes and then rapidly cooling with water. Moreover, tempering was performed by hold | maintaining for 30 minutes in the range of 100-500 degreeC.
得られた熱処理鋼板について、ビッカース硬度、遅れ破壊限度、静的曲げ破壊強度、全水素量及び拡散性水素量を測定すると共に、遅れ破壊比を求めた。ここで、遅れ破壊限度、静的曲げ破壊強度、全水素及び拡散性水素は、以下のようにして測定した。なお、ビッカース硬度の測定については、上記の実施例と同様にして行った。 The obtained heat-treated steel sheet was measured for Vickers hardness, delayed fracture limit, static bending fracture strength, total hydrogen content and diffusible hydrogen content, and the delayed fracture ratio was determined. Here, the delayed fracture limit, static bending fracture strength, total hydrogen and diffusible hydrogen were measured as follows. In addition, about the measurement of Vickers hardness, it carried out similarly to said Example.
遅れ破壊試験は、片持梁式曲げ遅れ破壊試験装置(東伸工業株式会社製CLT−20C)を用いて行った。試験片としては、冷延によって板厚2.0mm×幅10mm×長さ100mmで、且つ長手中央部に頂角:45°、深さ2.0mm、ノッチ底0.3RのVノッチを入れたものを用いた。この試験片の一端を固定してVノッチ部を10%塩酸溶液中に浸漬し、他端に重錘をつけてVノッチ底部に種々の曲げ応力を負荷し、破壊応力と破壊時間との関係を求めることによってS−N線図を作成した。そして、100時間経過しても破壊しない曲げ応力を求め、これを遅れ破壊限度とした。 The delayed fracture test was carried out using a cantilever type bending delayed fracture test apparatus (CLT-20C manufactured by Toshin Kogyo Co., Ltd.). As a test piece, a V-notch having a plate thickness of 2.0 mm, a width of 10 mm, and a length of 100 mm was formed by cold rolling, and a vertical angle of 45 °, a depth of 2.0 mm, and a notch bottom of 0.3 R was provided in the longitudinal center. A thing was used. One end of this test piece is fixed, the V notch is immersed in a 10% hydrochloric acid solution, a weight is attached to the other end, various bending stresses are applied to the bottom of the V notch, and the relationship between fracture stress and fracture time The S—N diagram was created by obtaining And the bending stress which does not break even if 100 hours pass was calculated | required, and this was made into the delayed fracture limit.
静的曲げ破壊試験は、次のように行った。試験機及び試験片の形状は遅れ破壊試験と同じである。また、この試験片の一端を固定してVノッチ部を10%塩酸溶液中に浸漬し、他端に重錘をつけてVノッチ底部に種々の曲げ応力を負荷する点も同様である。ただし、破壊応力と破壊時間との関係を求めるのではなく、重錐の荷重を徐々に増加させ、Vノッチ部からの亀裂が発生する応力を求め、これを静的曲げ破壊強度とした。 The static bending fracture test was performed as follows. The shape of the test machine and the test piece is the same as the delayed fracture test. The same is true in that one end of the test piece is fixed, the V notch is immersed in a 10% hydrochloric acid solution, a weight is attached to the other end, and various bending stresses are applied to the bottom of the V notch. However, instead of obtaining the relationship between the breaking stress and the breaking time, the load of the heavy cone was gradually increased to obtain the stress at which a crack from the V-notch portion was generated, and this was defined as the static bending fracture strength.
全水素量の測定は、2mm×5mm×10mmの試験片を10%塩酸溶液中に100時間浸漬させた後、表面の腐食生成物を研削してから測定した。この測定用の試験片は、全水素量を測定するまでの間、窒素雰囲気下で保管した。そして、この試験片を室温から600℃まで昇温した際に放出された水素量の合計をガスクロマトグラフィー法にて測定し、これを全水素量とした。 The total hydrogen amount was measured after a test piece of 2 mm × 5 mm × 10 mm was immersed in a 10% hydrochloric acid solution for 100 hours, and then the corrosion product on the surface was ground. This test specimen for measurement was stored in a nitrogen atmosphere until the total amount of hydrogen was measured. Then, the total amount of hydrogen released when the test piece was heated from room temperature to 600 ° C. was measured by a gas chromatography method, and this was defined as the total amount of hydrogen.
拡散性水素量の測定は、2mm×5mm×10mmの試験片を10%塩酸溶液中に100時間浸漬させた後、表面の腐食生成物を研削してから測定した。この測定用の試験片は、全水素量を測定するまでの間、窒素雰囲気下で保管した。そして、この試験片を室温〜245℃まで昇温速度12℃/分で加熱し、放出された水素量を四重極質量分析計を用いて測定した。そして、この温度範囲で得られた水素量の積分値(第1ピークの面積)を拡散性水素量とした。
上記の結果を表5に示す。表5中、遅れ破壊比とは、遅れ破壊限度を静的曲げ破壊強度で割った値(遅れ破壊比=遅れ破壊限度/静的曲げ破壊強度)である。この遅れ破壊比の評価基準としては、遅れ破壊比が0.5以上であれば、熱処理鋼板の遅れ破壊特性が良好であると考えられる。
The amount of diffusible hydrogen was measured after immersing a test piece of 2 mm × 5 mm × 10 mm in a 10% hydrochloric acid solution for 100 hours and then grinding the corrosion product on the surface. This test specimen for measurement was stored in a nitrogen atmosphere until the total amount of hydrogen was measured. And this test piece was heated from room temperature to 245 degreeC with the temperature increase rate of 12 degree-C / min, and the amount of hydrogen discharge | released was measured using the quadrupole mass spectrometer. And the integral value (area of the 1st peak) of the amount of hydrogen obtained in this temperature range was made into the amount of diffusible hydrogen.
The results are shown in Table 5. In Table 5, the delayed fracture ratio is a value obtained by dividing the delayed fracture limit by the static bending fracture strength (delayed fracture ratio = delayed fracture limit / static bending fracture strength). As an evaluation standard of this delayed fracture ratio, if the delayed fracture ratio is 0.5 or more, it is considered that the delayed fracture characteristics of the heat-treated steel sheet are good.
表5に示されているように、本発明の熱処理用鋼板を用いると共に、焼戻し温度を180〜500℃の範囲にして作製した熱処理鋼板は、遅れ破壊特性が良好であった(試料No.45〜49)。
これに対して所定の組成を有するスラブを用いていない熱処理用鋼板は、焼戻し温度が180〜500℃の範囲の場合であっても、遅れ破壊特性が不十分な熱処理鋼板を与えた(試料No.50〜53)。この結果は、スラブが所定の組成を有していないために、拡散性水素量が多くなったことに起因すると考えられる。
As shown in Table 5, the heat-treated steel sheet produced using the heat-treated steel sheet of the present invention and having a tempering temperature in the range of 180 to 500 ° C. had good delayed fracture characteristics (Sample No. 45). ~ 49).
On the other hand, the steel sheet for heat treatment not using a slab having a predetermined composition gave a heat treated steel sheet with insufficient delayed fracture characteristics even when the tempering temperature was in the range of 180 to 500 ° C. (Sample No. 50-53). This result is considered to be caused by an increase in the amount of diffusible hydrogen because the slab does not have a predetermined composition.
上記の結果を考察するために、熱処理鋼板のビッカース硬度と遅れ破壊比との関係を示すグラフを図1に示す。図1からわかるように、同程度の硬さを有する熱処理鋼板であっても、本発明の熱処理鋼板の方が、比較例の熱処理鋼板よりも遅れ破壊特性が良好である。
次に、上記各試料の代表例として試料No.46(本発明例)及び試料No.51(比較例)の熱処理鋼板の顕微鏡写真を図2に示す。図2からわかるように、試料No.46の熱処理鋼板では、試料No.51の熱処理鋼板よりも微細なセメンタイトが均一に析出していた。この微細なセメンタイトの均一な析出によって上記の効果がもたらされたと考えられる。
In order to consider the above results, a graph showing the relationship between the Vickers hardness of the heat-treated steel sheet and the delayed fracture ratio is shown in FIG. As can be seen from FIG. 1, even when the heat-treated steel sheet has the same degree of hardness, the heat-treated steel sheet of the present invention has better delayed fracture characteristics than the heat-treated steel sheet of the comparative example.
Next, as a representative example of each of the above samples, Sample No. 46 (Example of the present invention) and Sample No. A micrograph of the heat-treated steel sheet 51 (comparative example) is shown in FIG. As can be seen from FIG. In the heat-treated steel plate No. 46, sample No. Cementite that was finer than that of the heat-treated steel plate 51 was uniformly precipitated. It is considered that the above effect was brought about by the uniform precipitation of fine cementite.
以上の結果からわかるように、本発明によれば、加工性及び焼入性が良好であると共に、疲労特性、靭性及び遅れ破壊特性の全てに優れた鋼部材を与える熱処理用鋼板の製造方法を提供することができる。また、本発明によれば、疲労特性、靭性及び遅れ破壊特性の全てに優れた鋼部材の製造方法を提供することができる。 As can be seen from the above results, according to the present invention, there is provided a method for producing a steel sheet for heat treatment, which provides a steel member having excellent workability and hardenability and excellent fatigue properties, toughness and delayed fracture properties. Can be provided. Moreover, according to this invention, the manufacturing method of the steel member excellent in all the fatigue characteristics, toughness, and delayed fracture characteristics can be provided.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010067712A JP5543814B2 (en) | 2010-03-24 | 2010-03-24 | Steel plate for heat treatment and method for producing steel member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010067712A JP5543814B2 (en) | 2010-03-24 | 2010-03-24 | Steel plate for heat treatment and method for producing steel member |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011202192A JP2011202192A (en) | 2011-10-13 |
JP5543814B2 true JP5543814B2 (en) | 2014-07-09 |
Family
ID=44879140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010067712A Active JP5543814B2 (en) | 2010-03-24 | 2010-03-24 | Steel plate for heat treatment and method for producing steel member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5543814B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6034605B2 (en) * | 2012-07-09 | 2016-11-30 | 株式会社神戸製鋼所 | Boron-added steel for high strength bolts and high strength bolts with excellent delayed fracture resistance |
MX366537B (en) * | 2013-04-15 | 2019-07-12 | Jfe Steel Corp | High strength hot rolled steel sheet and method for producing same. |
KR101854060B1 (en) * | 2014-01-14 | 2018-05-02 | 가부시키가이샤 고베 세이코쇼 | High-strength steel sheet and process for producing same |
JP2015157972A (en) * | 2014-02-21 | 2015-09-03 | 日新製鋼株式会社 | Steel sheet for electric heating molding |
JP6569845B1 (en) * | 2018-01-30 | 2019-09-04 | Jfeスチール株式会社 | High carbon hot rolled steel sheet and manufacturing method thereof |
JP7180147B2 (en) * | 2018-07-04 | 2022-11-30 | 日本製鉄株式会社 | Corrosion-resistant wear-resistant steel plate |
CN110079743B (en) * | 2019-05-21 | 2020-12-11 | 武汉钢铁有限公司 | 1500 MPa-grade low-hydrogen delayed cracking sensitive hot forming steel and production method thereof |
CN110952034A (en) * | 2019-11-28 | 2020-04-03 | 舞阳钢铁有限责任公司 | Large-thickness hydroelectric S550Q steel plate and production method thereof |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3839090B2 (en) * | 1996-03-19 | 2006-11-01 | 日新製鋼株式会社 | Manufacturing method of steel plate for heat treatment with excellent scale peeling resistance |
JP3578435B2 (en) * | 1997-03-12 | 2004-10-20 | 日新製鋼株式会社 | Hot-rolled steel sheet for structural use excellent in press formability and surface properties and method for producing the same |
JP2000178681A (en) * | 1998-12-11 | 2000-06-27 | Nippon Steel Corp | Hot rolled high strength steel sheet small in variation of material and excellent in formability and weldability and its production |
JP2000355735A (en) * | 1999-06-15 | 2000-12-26 | Nippon Steel Corp | Hot rolled high strength steel sheet small in variation of material and excellent in workability and its production |
JP3821036B2 (en) * | 2002-04-01 | 2006-09-13 | 住友金属工業株式会社 | Hot rolled steel sheet, hot rolled steel sheet and cold rolled steel sheet |
JP4126007B2 (en) * | 2003-10-20 | 2008-07-30 | 新日本製鐵株式会社 | Cold-rolled steel sheet excellent in shape freezing property and bake hardenability and method for producing the same |
JP2005220415A (en) * | 2004-02-06 | 2005-08-18 | Nisshin Steel Co Ltd | Method for producing b-added low alloy steel showing excellent toughness as quenched state |
JP4692018B2 (en) * | 2004-03-22 | 2011-06-01 | Jfeスチール株式会社 | High-tensile hot-rolled steel sheet with excellent strength-ductility balance and method for producing the same |
JP4837426B2 (en) * | 2006-04-10 | 2011-12-14 | 新日本製鐵株式会社 | High Young's modulus thin steel sheet with excellent burring workability and manufacturing method thereof |
-
2010
- 2010-03-24 JP JP2010067712A patent/JP5543814B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011202192A (en) | 2011-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6338025B2 (en) | High strength steel plate and manufacturing method thereof | |
JP3857939B2 (en) | High strength and high ductility steel and steel plate excellent in local ductility and method for producing the steel plate | |
US20230407433A1 (en) | Wire rod and steel wire for springs having excellent corrosion fatigue resistance properties, and method for producing same | |
KR101768785B1 (en) | High-strength spring steel wire with excellent hydrogen embrittlement resistance, manufacturing process therefor, and high-strength spring | |
JP4268079B2 (en) | Ultra-high strength steel sheet having excellent elongation and hydrogen embrittlement resistance, method for producing the same, and method for producing ultra-high strength press-formed parts using the ultra-high strength steel sheet | |
JP5064060B2 (en) | Steel wire for high-strength spring, high-strength spring, and manufacturing method thereof | |
JP5543814B2 (en) | Steel plate for heat treatment and method for producing steel member | |
JP4324225B1 (en) | High strength cold-rolled steel sheet with excellent stretch flangeability | |
JP4291860B2 (en) | High-strength steel sheet and manufacturing method thereof | |
JP6027302B2 (en) | High strength tempered spring steel | |
JP2017048412A (en) | Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet and production methods therefor | |
KR102507715B1 (en) | High-strength steel sheet and manufacturing method thereof | |
JP4362318B2 (en) | High strength steel plate with excellent delayed fracture resistance and method for producing the same | |
RU2691436C1 (en) | Molded light-weight steel with improved mechanical properties and method of producing semi-products from said steel | |
JP6683297B1 (en) | High-strength steel sheet and method for manufacturing the same | |
JP5302840B2 (en) | High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability | |
JP4362319B2 (en) | High strength steel plate with excellent delayed fracture resistance and method for producing the same | |
JP6434348B2 (en) | High strength steel plate with excellent workability | |
JP6472692B2 (en) | High-strength steel sheet with excellent formability | |
JP6473022B2 (en) | High-strength steel sheet with excellent formability | |
JP5146063B2 (en) | High strength steel with excellent internal fatigue damage resistance and method for producing the same | |
JP4687122B2 (en) | Manufacturing method of steel with excellent strength uniformity in the thickness direction and fatigue crack propagation characteristics | |
WO2017077967A1 (en) | Steel member and steel plate, and production processes therefor | |
CN112585290B (en) | High-strength steel sheet and method for producing same | |
JP2005350736A (en) | High-strength steel having superior corrosion resistance and fatigue characteristics for spring, and manufacturing method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130319 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140128 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140328 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140415 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140509 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5543814 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |