JP4834966B2 - Tetrafluoroethylene copolymer - Google Patents
Tetrafluoroethylene copolymer Download PDFInfo
- Publication number
- JP4834966B2 JP4834966B2 JP2004197075A JP2004197075A JP4834966B2 JP 4834966 B2 JP4834966 B2 JP 4834966B2 JP 2004197075 A JP2004197075 A JP 2004197075A JP 2004197075 A JP2004197075 A JP 2004197075A JP 4834966 B2 JP4834966 B2 JP 4834966B2
- Authority
- JP
- Japan
- Prior art keywords
- tfe
- tetrafluoroethylene copolymer
- tfe copolymer
- perfluoro
- vinyl ether
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Description
本発明は、テトラフルオロエチレン共重合体に関する。 The present invention relates to a tetrafluoroethylene copolymer.
テトラフルオロエチレン/ペルフルオロ(プロピルビニルエーテル)共重合体(以下、PFAという。)は、耐薬品性、耐熱性、表面非粘着性に優れ、化学産業、半導体産業、OA機器産業等のさまざまな分野で使用されている。 Tetrafluoroethylene / perfluoro (propyl vinyl ether) copolymer (hereinafter referred to as PFA) is excellent in chemical resistance, heat resistance, and surface non-adhesiveness, and is used in various fields such as the chemical industry, semiconductor industry, and OA equipment industry. in use.
PFAは、耐薬品性に優れる特徴を活かして、半導体産業分野において、シリコンウェハー用薬液及び洗浄薬液に接する容器、チューブ、継ぎ手等の成形品として用いられる。しかし、従来のPFAは、薬液やガスのバリア性が低いため、薬液等がPFAに浸透して外部に染み出し、周辺機器を腐食させる等の影響があり、薬液やガスのバリア性の向上が要望される。 PFA is used as a molded product for containers, tubes, joints, etc. in contact with a chemical solution for silicon wafers and a cleaning chemical solution in the field of semiconductor industry, taking advantage of its excellent chemical resistance. However, since conventional PFA has low barrier properties against chemicals and gases, chemicals and the like penetrate into the PFA and seep outside, corrode peripheral equipment, and improve the barrier properties of chemicals and gases. Requested.
これまで、PFAの薬液やガスのバリア性を向上させるために、種々の検討が実施されてきた。例えば、以下の方法が知れれている。PFAに特定のポリテトラフルオロエチレン(PTFE)を添加する方法(特許文献1を参照。)。ペルフルオロ(アルキルビニルエーテル)として、長鎖と短鎖の2種類のペルフルオロアルキル基を有数するペルフルオロ(アルキルビニルエーテル)を混合して、テトラフルオロエチレン(以下、TFEいう。)と共重合する方法(特許文献2を参照。)。TFE/ペルフルオロ(エチルビニルエーテル)とPFAとを溶融混合する方法(特許文献3を参照。)。 So far, various studies have been carried out in order to improve the barrier properties of PFA chemicals and gases. For example, the following method is known. A method of adding specific polytetrafluoroethylene (PTFE) to PFA (see Patent Document 1). As perfluoro (alkyl vinyl ether), a method of mixing perfluoro (alkyl vinyl ether) having two kinds of long-chain and short-chain perfluoroalkyl groups and copolymerizing with tetrafluoroethylene (hereinafter referred to as TFE) (Patent Document) 2). A method of melt-mixing TFE / perfluoro (ethyl vinyl ether) and PFA (see Patent Document 3).
本発明は、薬液やガスのバリア性に優れるTFE共重合体の提供を目的とする。 An object of this invention is to provide the TFE copolymer excellent in the barrier property of a chemical | medical solution or gas.
本発明は、TFEに基づく繰り返し単位(a)と、ペルフルオロ(シクロヘキシルメチルビニルエーテル)、ペルフルオロ(シクロヘキシルエチルビニルエーテル)、およびペルフルオロ(シクロヘキシルプロピルビニルエーテル)からなる群から選ばれるフルオロモノマーに基づく繰り返し単位(b)とを含有し、(a)/(b)=90/10〜99.8/0.2(モル比)であり、380℃における容量流速が0.1〜1000mm3/秒であることを特徴とするTFE共重合体を提供する。 The present invention relates to a repeating unit (a) based on TFE and a repeating unit (b) based on a fluoromonomer selected from the group consisting of perfluoro (cyclohexyl methyl vinyl ether), perfluoro (cyclohexyl ethyl vinyl ether), and perfluoro (cyclohexylpropyl vinyl ether ). containing the door, a (a) / (b) = 90 / 10~99.8 / 0.2 ( molar ratio), characterized in that volume flow rate at 380 ° C. is 0.1~1000mm 3 / sec A TFE copolymer is provided.
本発明のTFE共重合体は、薬液やガスのバリア性に優れる。また、高い融点、高い降伏強度を示し、耐熱性、機械的特性に優れる。 The TFE copolymer of the present invention is excellent in chemical and gas barrier properties. In addition, it has a high melting point and high yield strength, and is excellent in heat resistance and mechanical properties.
本発明のTFE共重合体は、TFEに基づく繰り返し単位(a)と、ペルフルオロ(シクロヘキシルメチルビニルエーテル)、ペルフルオロ(シクロヘキシルエチルビニルエーテル)、およびペルフルオロ(シクロヘキシルプロピルビニルエーテル)からなる群から選ばれるフルオロモノマーに基づく繰り返し単位(b)とを含有し、(a)/(b)=90/10〜99.8/0.2(モル比)である。好ましくは(a)/(b)=93/7〜99.5/0.5(モル比)であり、より好ましくは95/5〜99/1(モル比)である。(b)の含有量が少なすぎるとTFE共重合体は耐屈曲疲労性が低く、多すぎると融点や弾性率が低い。(a)/(b)がこの範囲にあると、TFE共重合体は、薬液やガスのバリア性に優れ、また、融点及び弾性率が高く、耐屈曲疲労性に優れる。 The TFE copolymer of the present invention is based on a TFE-based repeating unit (a) and a fluoromonomer selected from the group consisting of perfluoro (cyclohexyl methyl vinyl ether), perfluoro (cyclohexyl ethyl vinyl ether), and perfluoro (cyclohexylpropyl vinyl ether). The repeating unit (b) is contained, and (a) / (b) = 90/10 to 99.8 / 0.2 (molar ratio). Preferably (a) / (b) = 93/7 to 99.5 / 0.5 (molar ratio), more preferably 95/5 to 99/1 (molar ratio). When the content of (b) is too small, the TFE copolymer has low bending fatigue resistance, and when too large, the melting point and elastic modulus are low. When (a) / (b) is within this range, the TFE copolymer is excellent in chemical and gas barrier properties, has a high melting point and elastic modulus, and is excellent in bending fatigue resistance.
本発明のTFE共重合体としては、(a)及び(b)からなるTFE共重合体が好ましい。また、本発明のTFE共重合体は、(a)及び(b)に加えて、その他のモノマーに基づく繰り返し単位(c)を含有することも好ましい。その他のモノマーは特に限定されないが、具体例としては、ペルフルオロ(プロピルビニルエーテル)(以下、PPVEという。)等のペルフルオロシクロヘキシル基又はシクロヘキサン骨格を含まないペルフルオロ(アルキルビニルエーテル)、エチレン等の炭化水素系オレフィン、フッ化ビニル、フッ化ビニリデン、CH2=CX(CF2)nY(ここで、X及びYは、それぞれ独立に水素又はフッ素原子、nは2〜8の整数である。)等の不飽和基に水素原子を有するフルオロオレフィン、ヘキサフルオロプロピレン(以下、HFPという。)等の不飽和基に水素原子を有しないフルオロオレフィン(ただし、TFEを除く。)等が挙げられる。その他のモノマーとしては、PPVE及びHFPが好ましい。 As a TFE copolymer of this invention, the TFE copolymer which consists of (a) and (b) is preferable. Moreover, it is preferable that the TFE copolymer of this invention contains the repeating unit (c) based on another monomer in addition to (a) and (b). Other monomers are not particularly limited, but specific examples include perfluorocyclohexyl groups such as perfluoro (propyl vinyl ether) (hereinafter referred to as PPVE) or perfluoro (alkyl vinyl ethers) not containing a cyclohexane skeleton, and hydrocarbon olefins such as ethylene. , Vinyl fluoride, vinylidene fluoride, CH 2 ═CX (CF 2 ) n Y (where X and Y are each independently hydrogen or a fluorine atom, and n is an integer of 2 to 8). Examples include fluoroolefins having a hydrogen atom in a saturated group, fluoroolefins having no hydrogen atom in an unsaturated group such as hexafluoropropylene (hereinafter referred to as HFP) (excluding TFE), and the like. As other monomers, PPVE and HFP are preferable.
その他のモノマーに基づく繰り返し単位を含有すると、TFE共重合体は、耐熱性、耐薬品性に優れる。その他のモノマーに基づく繰り返し単位(c)を含有する場合には、その含有量は、(c)/((a)+(b)+(c))=0.1/100〜10/100(モル比)が好ましく、0.2/100〜8/100(モル比)がより好ましい。 When a repeating unit based on another monomer is contained, the TFE copolymer is excellent in heat resistance and chemical resistance. When the repeating unit (c) based on another monomer is contained, the content is (c) / ((a) + (b) + (c)) = 0.1 / 100 to 10/100 ( Molar ratio) is preferable, and 0.2 / 100 to 8/100 (molar ratio) is more preferable.
本発明のTFE共重合体の380℃における容量流速は0.1〜1000mm3/秒である。容量流速は、TFE共重合体の溶融流動性を表す指標であり、分子量の目安となる。容量流速が大きいと分子量が低く、小さいと分子量が高いことを示す。容量流速が小さすぎると溶融流動性が不充分で、成形品の表面が均一でなく、平滑でない。容量流速が大きすぎるとTFE共重合体の耐屈曲疲労性が低下する。380℃における容量流速がこの範囲にあると溶融成形性に優れる。好ましくは10〜500mm3/秒、より好ましくは20〜200mm3/秒である。 The capacity flow rate at 380 ° C. of the TFE copolymer of the present invention is 0.1 to 1000 mm 3 / sec. The volume flow rate is an index representing the melt fluidity of the TFE copolymer and is a measure of the molecular weight. A large volumetric flow rate indicates a low molecular weight and a small volume flow rate indicates a high molecular weight. If the volume flow rate is too small, the melt fluidity is insufficient, and the surface of the molded product is not uniform and smooth. When the capacity flow rate is too large, the bending fatigue resistance of the TFE copolymer is lowered. When the capacity flow rate at 380 ° C. is in this range, the melt moldability is excellent. Preferably it is 10-500 mm < 3 > / sec, More preferably, it is 20-200 mm < 3 > / sec.
本発明のTFE共重合体のガスのバリア性は、ASTM D1434−75(M法)に準じて、厚さ100μmの試料を用いて測定される酸素透過係数が、4.5×10−13(cm3(STP)・cm・cm−2・s−1・Pa−1)以下が好ましく、4.0×10−13cm3(STP)・cm・cm−2・s−1・Pa−1)以下がより好ましい。また、窒素透過係数は、1.5×10−13(cm3(STP)・cm・cm−2・s−1・Pa−1)以下が好ましく、1.3×10−13(cm3(STP)・cm・cm−2・s−1・Pa−1)以下がより好ましい。酸素及び窒素透過係数が小さいと、ガスや薬液のバリア性に優れる傾向にある。 The gas barrier property of the TFE copolymer of the present invention is such that the oxygen permeability coefficient measured using a sample having a thickness of 100 μm is 4.5 × 10 −13 (according to ASTM D1434-75 (M method)). cm 3 (STP) · cm · cm −2 · s −1 · Pa −1 ) or less is preferable, and 4.0 × 10 −13 cm 3 (STP) · cm · cm −2 · s −1 · Pa −1 The following is more preferable. Further, the nitrogen permeability coefficient is preferably 1.5 × 10 −13 (cm 3 (STP) · cm · cm −2 · s −1 · Pa −1 ) or less, and preferably 1.3 × 10 −13 (cm 3 ( STP) · cm · cm −2 · s −1 · Pa −1 ) or less is more preferable. When the oxygen and nitrogen permeability coefficients are small, the barrier properties of gas and chemical solution tend to be excellent.
本発明のTFE共重合体の融点は、200〜320℃が好ましく、250〜310℃がより好ましい。この範囲にあると耐熱性が高く、溶融成形性に優れる。 200-320 degreeC is preferable and, as for melting | fusing point of the TFE copolymer of this invention, 250-310 degreeC is more preferable. Within this range, the heat resistance is high and the melt moldability is excellent.
本発明のTFE共重合体は、ASTM D2176に準じて測定されるMIT折り曲げ寿命が、10万回以上が好ましく、15万回以上がより好ましく、25万回以上が最も好ましい。MIT折り曲げ寿命が多いほど耐屈曲疲労性に優れることを示し、この範囲にあると耐屈曲疲労性に著しく優れる。 In the TFE copolymer of the present invention, the MIT bending life measured according to ASTM D2176 is preferably 100,000 times or more, more preferably 150,000 times or more, and most preferably 250,000 times or more. The longer the MIT bending life, the better the bending fatigue resistance.
本発明のTFE共重合体の製造方法は特に制限はなく、ラジカル重合開始剤を用いる重合方法が用いられる。重合方法としては、塊状重合、フッ化炭化水素、塩化炭化水素、フッ化塩化炭化水素、アルコール、炭化水素等の有機溶媒を使用する溶液重合、水性媒体及び必要に応じて適当な有機溶剤を使用する懸濁重合、水性媒体及び乳化剤を使用する乳化重合が挙げられ、特に溶液重合が好ましい。 The method for producing the TFE copolymer of the present invention is not particularly limited, and a polymerization method using a radical polymerization initiator is used. Polymerization methods include bulk polymerization, solution polymerization using organic solvents such as fluorinated hydrocarbons, chlorinated hydrocarbons, fluorinated chlorohydrocarbons, alcohols, hydrocarbons, aqueous media, and appropriate organic solvents as required. Suspension polymerization, emulsion polymerization using an aqueous medium and an emulsifier, and solution polymerization is particularly preferable.
ラジカル重合開始剤としては、半減期10時間である温度が0℃〜100℃であることが好ましく、20〜90℃であることがより好ましい。具体例としては、アゾビスイソブチロニトリル等のアゾ化合物、イソブチリルペルオキシド、オクタノイルペルオキシド、ベンゾイルペルオキシド、ラウロイルペルオキシド等のジアシルペルオキシド、ジイソプロピルペルオキシジカ−ボネート等のペルオキシジカーボネート、tert−ブチルペルオキシピバレート、tert−ブチルペルオキシイソブチレート、tert−ブチルペルオキシアセテート等のペルオキシエステル、(Z(CF2)pCOO)2(ここで、Zは水素原子、フッ素原子又は塩素原子であり、pは1〜10の整数である。)で表される化合物等の含フッ素ジアシルペルオキシド、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の無機過酸化物等が挙げられる。特に、TFE共重合体が耐熱性及び耐薬品性に優れることから、含フッ素ジアシルペルオキシドが好ましい。 As a radical polymerization initiator, the temperature which has a half-life of 10 hours is preferably 0 ° C to 100 ° C, more preferably 20 to 90 ° C. Specific examples include azo compounds such as azobisisobutyronitrile, diacyl peroxides such as isobutyryl peroxide, octanoyl peroxide, benzoyl peroxide and lauroyl peroxide, peroxydicarbonates such as diisopropylperoxydicarbonate, and tert-butylperoxy. Peroxyesters such as pivalate, tert-butylperoxyisobutyrate, tert-butylperoxyacetate, (Z (CF 2 ) p COO) 2 (where Z is a hydrogen atom, a fluorine atom or a chlorine atom, p is Inorganic peroxides such as fluorine-containing diacyl peroxide, potassium persulfate, sodium persulfate, ammonium persulfate, and the like. In particular, the fluorine-containing diacyl peroxide is preferable because the TFE copolymer is excellent in heat resistance and chemical resistance.
本発明において、TFE共重合体の容量流速を制御するために、連鎖移動剤を使用することも好ましい。連鎖移動剤としては、メタノール、エタノール等のアルコール、1,3−ジクロロ−1,1,2,2,3−ペンタフルオロプロパン、1,1−ジクロロ−1−フルオロエタン等のクロロフルオロハイドロカーボン、ペンタン、ヘキサン、シクロヘキサン等のハイドロカーボン等が挙げられる。 In the present invention, it is also preferable to use a chain transfer agent in order to control the volume flow rate of the TFE copolymer. Chain transfer agents include alcohols such as methanol and ethanol, chlorofluorohydrocarbons such as 1,3-dichloro-1,1,2,2,3-pentafluoropropane, 1,1-dichloro-1-fluoroethane, Examples thereof include hydrocarbons such as pentane, hexane, and cyclohexane.
本発明において重合条件は特に限定されず、重合温度は0〜100℃が好ましく、20〜90℃がより好ましい。重合圧力は0.1〜10MPaが好ましく、0.5〜3MPaがより好ましい。重合時間は1〜30時間が好ましい。 In the present invention, the polymerization conditions are not particularly limited, and the polymerization temperature is preferably 0 to 100 ° C, more preferably 20 to 90 ° C. The polymerization pressure is preferably from 0.1 to 10 MPa, more preferably from 0.5 to 3 MPa. The polymerization time is preferably 1 to 30 hours.
本発明のTFE共重合体は、−COOH、−COF、−CH2OH等の不安定末端基の含有量が炭素原子数百万個当り10個以下であることが好ましい。不安定末端基量がこの範囲にあるとTFE共重合体は耐薬品性及び耐久性に特に優れる。不安定末端基含有量の低減方法としては、TFE共重合体を、粉末、粒、ペレット等の形状で、フッ素ガスによりフッ素化処理することが好ましい。該フッ素化処理により、不安定末端基は−CF3基等の安定末端基に変換されると考えられる。 In the TFE copolymer of the present invention, the content of unstable terminal groups such as —COOH, —COF, and —CH 2 OH is preferably 10 or less per several million carbon atoms. When the amount of unstable terminal groups is within this range, the TFE copolymer is particularly excellent in chemical resistance and durability. As a method for reducing the content of unstable terminal groups, it is preferable that the TFE copolymer is fluorinated with fluorine gas in the form of powder, granules, pellets or the like. It is considered that the unstable terminal group is converted into a stable terminal group such as —CF 3 group by the fluorination treatment.
以下の実施例及び比較例により本発明を具体的に説明するが、本発明はこれらに限定されない。TFE共重合体の特性は以下の方法を用いて側定した。
[TFE共重合の共重合組成]旭硝子研究報告1990、40(1)、75の記載に準じて、TFE共重合体を熱溶融状態で19F−NMR測定する方法によって求めた。
[容量流速(mm3/秒)]TFE共重合体の容量流速は、島津製作所製フローテスタを用いて、温度380℃において、荷重7kg下に直径2.1mm、長さ8mmのオリフィス中にTFE共重合体を押出すときの押出し速度である。
The present invention will be specifically described by the following examples and comparative examples, but the present invention is not limited thereto. The properties of the TFE copolymer were determined using the following method.
[Copolymerization composition of TFE copolymer] According to the description of Asahi Glass Research Report 1990, 40 (1), 75, the TFE copolymer was determined by 19 F-NMR measurement in a hot melt state.
[Capacity flow rate (mm 3 / sec)] The volume flow rate of the TFE copolymer was measured using a flow tester manufactured by Shimadzu Corporation at a temperature of 380 ° C. in an orifice having a diameter of 2.1 mm and a length of 8 mm under a load of 7 kg. It is the extrusion speed when extruding the copolymer.
[ガス透過係数(cm3(STP)・cm・cm−2・s−1・Pa−1)]TFE共重合体を340℃で圧縮成形して得た、厚さ100μmの試料を用いた。ASTM D1434−75(M法)に準じて、酸素透過係数及び窒素透過係数を測定した。酸素及び窒素透過係数が小さいほど、ガスバリア性及び薬液バリア性に優れることを示す。
[融点(℃)]セイコー電子社製TG−DTAを用いて、試料10mgを窒素雰囲気下に10℃/分の速度で昇温し、溶融ピークの温度を融点とした。
[Gas Permeability Coefficient (cm 3 (STP) · cm · cm −2 · s −1 · Pa −1 )] A sample having a thickness of 100 μm obtained by compression molding a TFE copolymer at 340 ° C. was used. The oxygen permeability coefficient and the nitrogen permeability coefficient were measured according to ASTM D1434-75 (M method). It shows that it is excellent in gas barrier property and chemical | medical solution barrier property, so that oxygen and nitrogen permeability coefficient are small.
[Melting Point (° C.)] Using TG-DTA manufactured by Seiko Electronics Co., Ltd., 10 mg of the sample was heated at a rate of 10 ° C./min in a nitrogen atmosphere, and the temperature of the melting peak was taken as the melting point.
[MIT折り曲げ寿命]340℃でTFE共重合体を圧縮成形して得た、厚さ0.220〜0.236のフィルムを、幅12.5mmの短冊状に打ち抜いて試料とした。ASTM D2176に準じて、荷重1.25kg、折り曲げ角度±135度、室温で東洋精機製作所製折り曲げ試験機MIT−Dを用いて試料の折り曲げ試験を行った。破断するまでの折り曲げ回数がMIT折り曲げ寿命である。この値が高いほど耐屈曲疲労性に優れる。 [MIT Bending Life] A film having a thickness of 0.220 to 0.236 obtained by compression-molding a TFE copolymer at 340 ° C. was punched into a strip having a width of 12.5 mm to prepare a sample. In accordance with ASTM D2176, the sample was subjected to a bending test using a bending tester MIT-D manufactured by Toyo Seiki Seisakusho at a load of 1.25 kg, a bending angle of ± 135 degrees, and room temperature. The number of folds until rupture is the MIT fold life. The higher this value, the better the bending fatigue resistance.
[機械特性]TFE共重合を、340℃で圧縮成形して得た、厚さ1.5mmのシートを用いて、JIS D3307に準じて、室温で、引張強度(MPa)、伸度(%)、降伏強度(MPa)を測定した。 [Mechanical Properties] Tensile strength (MPa) and elongation (%) at room temperature according to JIS D3307 using a 1.5 mm thick sheet obtained by compression molding TFE copolymerization at 340 ° C. The yield strength (MPa) was measured.
[実施例1]
1.3Lの撹拌機付き重合槽を脱気し、ペルフルオロ(シクロヘキシルメチルビニルエーテル)(以下、PCHMVEという。)の68.1g、1,3−ジクロロ−1,1,2,2,3−ペンタフルオロプロパン(以下、HCFC225cbという。)の353g、イオン交換水590g、メタノールの18.9g、TFEの97gを仕込んだ。重合槽内を50℃に保って、(CF3CF3CF2COO)2の0.025%HCFC225cb溶液の8cm3を仕込んで重合を開始させた。重合が進行するにしたがい圧力が低下するので、圧力が一定になるようにTFEを追加仕込みした。重合を継続させるために(CF3CF3CF2COO)2の0.025%HCFC225cb溶液を断続的に追加仕込みし、合計29cm3仕込んだ。TFEの追加仕込み量が145gとなった時点で重合槽を室温まで冷却し、未反応TFEをパージした。得られたTFE共重合体1のスラリーを乾燥し、白色のTFE共重合体1の155gが得られた。TFE共重合体1の共重合組成は、TFEに基づく繰り返し単位/PCHMVEに基づく繰り返し単位=98.0/2.0(モル比)であった。TFE共重合体1の容量流速は2.4mm3/秒、融点は311℃、MIT折り曲げ寿命は690000回であった。酸素透過係数は3.58×10−13cm3(STP)・cm・cm−2・s−1・Pa−1、窒素透過係数は1.18×10−13cm3(STP)・cm・cm−2・s−1・Pa−1であった。引張強度は23.5MPa、伸度は224%、降伏強度は14.6MPaであった。
[Example 1]
A 1.3 L polymerization tank equipped with a stirrer was degassed, and 68.1 g of 1,3-dichloro-1,1,2,2,3-pentafluoro perfluoro (cyclohexylmethyl vinyl ether) (hereinafter referred to as PCHMVE) was obtained. 353 g of propane (hereinafter referred to as HCFC225cb), 590 g of ion-exchanged water, 18.9 g of methanol, and 97 g of TFE were charged. While maintaining the inside of the polymerization tank at 50 ° C., 8 cm 3 of a 0.025% HCFC225cb solution of (CF 3 CF 3 CF 2 COO) 2 was charged to initiate polymerization. As the polymerization progressed, the pressure decreased, so TFE was additionally charged so that the pressure became constant. In order to continue the polymerization, a 0.025% HCFC225cb solution of (CF 3 CF 3 CF 2 COO) 2 was intermittently added in a total of 29 cm 3 . When the added amount of TFE reached 145 g, the polymerization tank was cooled to room temperature, and unreacted TFE was purged. The obtained slurry of TFE copolymer 1 was dried, and 155 g of white TFE copolymer 1 was obtained. The copolymer composition of TFE copolymer 1 was a repeating unit based on TFE / a repeating unit based on PCHMVE = 98.0 / 2.0 (molar ratio). The capacity flow rate of TFE copolymer 1 was 2.4 mm 3 / sec, the melting point was 311 ° C., and the MIT bending life was 690000 times. The oxygen permeability coefficient is 3.58 × 10 −13 cm 3 (STP) · cm · cm −2 · s −1 · Pa −1 , and the nitrogen permeability coefficient is 1.18 × 10 −13 cm 3 (STP) · cm · It was cm −2 · s −1 · Pa −1 . The tensile strength was 23.5 MPa, the elongation was 224%, and the yield strength was 14.6 MPa.
[実施例2]
メタノールの32gを仕込んだ以外は実施例1と同様にして、TFE共重合体2の159gを得た。TFE共重合体2の共重合組成は、TFEに基づく繰り返し単位/PCHMVEに基づく繰り返し単位=98.0/2.0(モル比)であった。TFE共重合体2の容量流速は4.6mm3/秒、融点は310℃、MIT折り曲げ寿命は210000回であった。酸素透過係数は3.77×10−13cm3(STP)・cm・cm−2・s−1・Pa−1、窒素透過係数は1.27×10−13cm3(STP)・cm・cm−2・s−1・Pa−1であった。引張強度は32.6MPa、伸度は333%、降伏強度15.0MPaであった。
[Example 2]
159 g of TFE copolymer 2 was obtained in the same manner as in Example 1 except that 32 g of methanol was charged. The copolymer composition of TFE copolymer 2 was a repeating unit based on TFE / a repeating unit based on PCHMVE = 98.0 / 2.0 (molar ratio). The capacity flow rate of TFE copolymer 2 was 4.6 mm 3 / sec, the melting point was 310 ° C., and the MIT bending life was 210,000 times. The oxygen permeability coefficient is 3.77 × 10 −13 cm 3 (STP) · cm · cm −2 · s −1 · Pa −1 , and the nitrogen permeability coefficient is 1.27 × 10 −13 cm 3 (STP) · cm · It was cm −2 · s −1 · Pa −1 . The tensile strength was 32.6 MPa, the elongation was 333%, and the yield strength was 15.0 MPa.
[比較例1]
PCHMVEのかわりにPPVEの42.4gを仕込んだ以外は実施例1と同様にして、TFE共重合体3の158gを得た。TFE共重合体3の共重合組成は、TFEに基づく繰り返し単位/PPVEに基づく繰り返し単位=98.5/1.5(モル比)であった。TFE共重合体3の容量流速は2.3mm3/秒、融点は305℃、MIT折り曲げ寿命は760000回であった。酸素透過係数は4.77×10−13cm3(STP)・cm・cm−2・s−1・Pa−1、窒素透過係数は1.61×10−13cm3(STP)・cm・cm−2・s−1・Pa−1であった。引張強度は32.4MPa、伸度は340%、降伏強度が13.0MPaであった。
[Comparative Example 1]
158 g of TFE copolymer 3 was obtained in the same manner as in Example 1 except that 42.4 g of PPVE was charged instead of PCHMVE. The copolymer composition of the TFE copolymer 3 was a repeating unit based on TFE / a repeating unit based on PPVE = 98.5 / 1.5 (molar ratio). The capacity flow rate of TFE copolymer 3 was 2.3 mm 3 / sec, the melting point was 305 ° C., and the MIT bending life was 760000 times. The oxygen permeability coefficient is 4.77 × 10 −13 cm 3 (STP) · cm · cm −2 · s −1 · Pa −1 , and the nitrogen permeability coefficient is 1.61 × 10 −13 cm 3 (STP) · cm ·. It was cm −2 · s −1 · Pa −1 . The tensile strength was 32.4 MPa, the elongation was 340%, and the yield strength was 13.0 MPa.
[比較例2]
PCHMVEのかわりにPPVEの42.4gを、メタノールの32gを仕込んだ以外は実施例1と同様にして、TFE共重合体4の155gを得た。TFE共重合体4の共重合組成は、TFEに基づく繰り返し単位/PPVEに基づく繰り返し単位=98.5/1.5(モル比)であった。TFE共重合体4の容量流速は5.8mm3/秒、融点は307℃、MIT折り曲げ寿命は960000回であった。酸素の透過係数は4.94×10−13cm3(STP)・cm・cm−2・s−1・Pa−1、窒素の透過係数は1.62×10−13cm3(STP)・cm・cm−2・s−1・Pa−1であった。引張強度は32.4MPa、伸度は340%、降伏強度は13.0MPaであった。
[Comparative Example 2]
155 g of TFE copolymer 4 was obtained in the same manner as in Example 1, except that 42.4 g of PPVE and 32 g of methanol were charged instead of PCHMVE. The copolymer composition of TFE copolymer 4 was a repeating unit based on TFE / a repeating unit based on PPVE = 98.5 / 1.5 (molar ratio). The capacity flow rate of TFE copolymer 4 was 5.8 mm 3 / sec, the melting point was 307 ° C., and the MIT bending life was 960000 times. The permeability coefficient of oxygen is 4.94 × 10 −13 cm 3 (STP) · cm · cm −2 · s −1 · Pa −1 , and the permeability coefficient of nitrogen is 1.62 × 10 −13 cm 3 (STP) · It was cm · cm −2 · s −1 · Pa −1 . The tensile strength was 32.4 MPa, the elongation was 340%, and the yield strength was 13.0 MPa.
本発明のTFE共重合体は、薬液及びガスのバリア性に優れるので、半導体製造プロセス用の薬液容器、継ぎ手、チューブ等に適する。また、電線被覆材料、OA機器、コピー機、携帯電話等の精密部品等の用途に適する。
Since the TFE copolymer of the present invention is excellent in chemical and gas barrier properties, it is suitable for chemical containers, joints, tubes and the like for semiconductor manufacturing processes. In addition, it is suitable for applications such as precision parts such as wire coating materials, OA equipment, copiers and mobile phones.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004197075A JP4834966B2 (en) | 2004-07-02 | 2004-07-02 | Tetrafluoroethylene copolymer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004197075A JP4834966B2 (en) | 2004-07-02 | 2004-07-02 | Tetrafluoroethylene copolymer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006016540A JP2006016540A (en) | 2006-01-19 |
JP4834966B2 true JP4834966B2 (en) | 2011-12-14 |
Family
ID=35791091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004197075A Expired - Fee Related JP4834966B2 (en) | 2004-07-02 | 2004-07-02 | Tetrafluoroethylene copolymer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4834966B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12122929B2 (en) | 2018-11-14 | 2024-10-22 | 3M Innovative Properties Company | Copolymers of perfluorocycloaliphatic methyl vinyl ether |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4137967A1 (en) * | 1991-11-19 | 1993-05-27 | Bayer Ag | NEW THERMOPLASTIC FLUOROCOPOLYMERS AND FLUORMONOMERS FOR USE IN THEIR PRODUCTION |
JPH09173759A (en) * | 1995-12-26 | 1997-07-08 | Nippon Oil & Fats Co Ltd | Gas separating membrane |
JPH10259216A (en) * | 1996-05-30 | 1998-09-29 | Asahi Glass Co Ltd | Molding product of fluorine-containing copolymer |
JP3521643B2 (en) * | 1996-09-11 | 2004-04-19 | 旭硝子株式会社 | Tube molding |
JP4882194B2 (en) * | 1999-11-29 | 2012-02-22 | ダイキン工業株式会社 | Low chemical liquid permeability fluorine-containing resin material |
JP4599640B2 (en) * | 1999-11-29 | 2010-12-15 | ダイキン工業株式会社 | Fluorine-containing copolymer and low chemical liquid-permeable fluorine-containing resin composition |
JP2002167488A (en) * | 2000-11-30 | 2002-06-11 | Du Pont Mitsui Fluorochem Co Ltd | Tetrafluoroethylene/perfluoro(alkylvinyl ether) copolymer-reformed composition |
JP4415665B2 (en) * | 2003-06-05 | 2010-02-17 | 旭硝子株式会社 | Tetrafluoroethylene copolymer |
-
2004
- 2004-07-02 JP JP2004197075A patent/JP4834966B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006016540A (en) | 2006-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5298851B2 (en) | Method for producing melt-moldable tetrafluoroethylene copolymer | |
JP5663839B2 (en) | Ethylene / tetrafluoroethylene copolymer and process for producing the same | |
EP3609935B1 (en) | Melt-processible fluoropolymer | |
JP4792622B2 (en) | Tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer and method for producing the same | |
JP5609872B2 (en) | Ethylene / tetrafluoroethylene copolymer | |
WO2013015202A1 (en) | Fluorine-containing copolymer composition | |
JP2004502786A (en) | Crosslinkable bromosulfonated fluoroelastomer based on vinylidene fluoride showing low Tg | |
JP4956868B2 (en) | Method for producing tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer having excellent stability | |
JP5051517B2 (en) | Ethylene / tetrafluoroethylene copolymer composition | |
JP4960582B2 (en) | Tetrafluoroethylene copolymer and electric wire | |
JP4834966B2 (en) | Tetrafluoroethylene copolymer | |
JP5365939B2 (en) | Automotive seal rings, industrial gas compressor seal rings and sliding parts | |
JP4415458B2 (en) | Fluorine-containing copolymer and molded article | |
JP2016124909A (en) | Method for producing fluorine-containing resin crosslinked body, method for producing molding, and fluorine-containing resin composition | |
JP4415665B2 (en) | Tetrafluoroethylene copolymer | |
JP5278281B2 (en) | Melt molding material and electric wire | |
JP4868272B2 (en) | Heat resistant wire | |
JP5407643B2 (en) | Method for producing fluorine-containing copolymer | |
JPS61159410A (en) | Fluorine-containing copolymer | |
JP6354449B2 (en) | Fluorine-containing copolymer, powder comprising fluorine-containing copolymer, fluorine-containing copolymer composition containing powder, and coated article | |
JPH06298809A (en) | Production of ethylene-tetrafluoroethylene copolymer | |
JPH06157612A (en) | Production of fluoropolymer | |
JPH06157611A (en) | Production of fluoropolymer | |
JPH06157615A (en) | Production of fluoropolymer | |
JPH06157608A (en) | Production of fluoropolymer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070312 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20070322 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090612 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101019 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101215 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20101216 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110426 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110722 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110725 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20110803 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110830 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110912 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141007 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4834966 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141007 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |