JP4415665B2 - Tetrafluoroethylene copolymer - Google Patents
Tetrafluoroethylene copolymer Download PDFInfo
- Publication number
- JP4415665B2 JP4415665B2 JP2003421190A JP2003421190A JP4415665B2 JP 4415665 B2 JP4415665 B2 JP 4415665B2 JP 2003421190 A JP2003421190 A JP 2003421190A JP 2003421190 A JP2003421190 A JP 2003421190A JP 4415665 B2 JP4415665 B2 JP 4415665B2
- Authority
- JP
- Japan
- Prior art keywords
- tfe
- copolymer
- monomer represented
- group
- mpa
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- IHMXVSZXHFTOFN-UHFFFAOYSA-N CCC1OCCC1 Chemical compound CCC1OCCC1 IHMXVSZXHFTOFN-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Description
本発明は、テトラフルオロエチレン共重合体に関する。 The present invention relates to a tetrafluoroethylene copolymer.
テトラフルオロエチレンとパーフルオロ(アルキルビニルエーテル)との共重合体(以下、PFAという。)は、耐熱性、耐薬品性に優れ、化学産業や半導体産業で用いられる配管、チューブ、バルブ、等の部材、ウエハーバスケット、薬液容器、ライニング材料等として広く用いられている。 A copolymer of tetrafluoroethylene and perfluoro (alkyl vinyl ether) (hereinafter referred to as PFA) is excellent in heat resistance and chemical resistance, and is used for pipes, tubes, valves, etc. used in the chemical and semiconductor industries. Widely used as wafer baskets, chemical containers, lining materials, etc.
PFAとしては、テトラフルオロエチレン(以下、TFEという。)とパーフルオロ(プロピルビニルエーテル)(以下、PPVEという。)との共重合体(以下、TFE/PPVE共重合体という。)が市販されている。TFE/PPVE共重合体を成形した部材は、弾性率及び降伏強度が低く、変形しやすい。そのため、該部材を高応力や圧力下に使用する場合には、耐久性を向上するために、その肉厚を厚くする必要があり、部材設計の制約となる。また、高価なTFE/PPVE共重合体を多量に使用することは経済的に不利である。TFE/PPVE共重合体の部材は高応力下にクラックを発生しやすいことから、耐ストレスクラック性に優れたPFAの開発が要請されている。 As PFA, a copolymer of tetrafluoroethylene (hereinafter referred to as TFE) and perfluoro (propyl vinyl ether) (hereinafter referred to as PPVE) (hereinafter referred to as TFE / PPVE copolymer) is commercially available. . The member formed from the TFE / PPVE copolymer has a low elastic modulus and a low yield strength and is easily deformed. For this reason, when the member is used under high stress or pressure, it is necessary to increase its thickness in order to improve durability, which is a restriction on member design. Moreover, it is economically disadvantageous to use a large amount of expensive TFE / PPVE copolymer. Since TFE / PPVE copolymer members are prone to cracking under high stress, development of PFA excellent in stress cracking resistance is required.
特許文献1には、TFEとパーフルオロ(エチルビニルエーテル)との共重合体が記載されている。該共重合体は耐屈曲疲労性に優れるが、弾性率、降伏強度の特性についての記載はない。特許文献2には、TFEと特定のパーフルオロシクロアルキル基を有するパーフルオロ(アルキルビニルエーテル)との共重合体が記載されているが、該共重合体は溶融成形できない。 Patent Document 1 describes a copolymer of TFE and perfluoro (ethyl vinyl ether). The copolymer is excellent in bending fatigue resistance, but there is no description about the elastic modulus and yield strength characteristics. Patent Document 2 describes a copolymer of TFE and perfluoro (alkyl vinyl ether) having a specific perfluorocycloalkyl group, but the copolymer cannot be melt-molded.
本発明者らは、TFE、PPVE及び架橋可能な官能基を有するモノマーを共重合させて得たフッ素樹脂を酸素雰囲気下に高温で熱処理することにより、高弾性率のフッ素樹脂を得た(特許文献3を参照。)。しかし、この製造方法は、熱処理時間が長く、生産性が低い。また、架橋可能な官能基が残存する場合にはフッ素樹脂の耐薬品性が充分でない。 The present inventors obtained a fluororesin having a high elastic modulus by heat-treating a fluororesin obtained by copolymerizing TFE, PPVE and a monomer having a crosslinkable functional group at a high temperature in an oxygen atmosphere (patent) See reference 3.) However, this manufacturing method has a long heat treatment time and low productivity. Moreover, when the crosslinkable functional group remains, the chemical resistance of the fluororesin is not sufficient.
本発明の目的は、溶融成形性及び耐薬品性に優れ、弾性率及び降伏強度が高く、耐ストレスクラック性に優れるTFEと特定のパーフルオロビニルエーテルとの共重合体を提供することである。 An object of the present invention is to provide a copolymer of TFE and a specific perfluorovinyl ether which is excellent in melt moldability and chemical resistance, has a high elastic modulus and yield strength, and is excellent in stress crack resistance.
本発明は、テトラフルオロエチレンに基づく重合単位(A)とCF2=CFORf1Rf2(ここで、Rf1 はポリフルオロアルキレン基を、Rf2はエーテル性酸素原子を含んでもよい、4員環または5員環に基づくポリフルオロシクロアルキル基を、表す。)で表されるモノマーに基づく重合単位(B)を含有し、(A)/(B)がモル比で99.7/0.3〜90/10であり、容量流速が0.1〜1000mm3/秒であることを特徴とするテトラフルオロエチレン共重合体を提供する。 The present invention relates to a polymer unit (A) based on tetrafluoroethylene and CF 2 ═CFOR f1 R f2 (wherein R f1 may contain a polyfluoroalkylene group, and R f2 may contain an etheric oxygen atom) Or a polymer unit (B) based on a monomer represented by the following formula: (A) / (B) in a molar ratio of 99.7 / 0.3. A tetrafluoroethylene copolymer is provided which has a capacity flow rate of 0.1 to 1000 mm 3 / sec.
本発明のテトラフルオロエチレン共重合体は、弾性率及び降伏強度が高く、耐ストレスクラック性に優れる。また、溶融成形性、耐薬品性、耐熱性に優れる。 The tetrafluoroethylene copolymer of the present invention has high elastic modulus and yield strength, and is excellent in stress crack resistance. Moreover, it is excellent in melt moldability, chemical resistance, and heat resistance.
本発明において、CF2=CFORf1Rf2におけるRf1は、ポリフルオロアルキレン基である。好ましくは、炭素原子数が1〜10で、環構造を有しない、パーフルオロアルキレン基である。Rf1は、ジフルオロメチレン基、パーフルオロジメチレン基、パーフルオロトリメチレン基が好ましい。Rf1が存在すると、CF2=CFORf1Rf2は、TFEとの共重合性が良好である。
In the present invention, R f1 in CF 2 ═CFOR f1 R f2 is a polyfluoroalkylene group. Preferably, 1 to 10 carbon atoms, having no ring structure, a perfluoroalkylene group. R f1 is a difluoromethylene group, perfluoro dimethylene group, perfluoro trimethylene group are preferable. When R f1 is present, CF 2 = CFOR f1 R f2 has good copolymerizability with TFE.
Rf2はエーテル性酸素原子を含んでもよい、4員環または5員環に基づくポリフルオロシクロアルキル基である。好ましくはエーテル性酸素原子を含んでもよい、4員環または5員環に基づくパーフルオロシクロアルキル基である。 R f2 is a polyfluorocycloalkyl group based on a 4-membered ring or a 5-membered ring , which may contain an etheric oxygen atom. Preferably, it is a perfluorocycloalkyl group based on a 4-membered ring or 5-membered ring which may contain an etheric oxygen atom.
前記環としては、エーテル性酸素原子を1又は2個有する環が好ましく、オキソラン環又は1,3ジオキソラン環がより好ましい。環の炭素原子にはポリフルオロアルキル基やポリフルオロアルコキシ基等の置換基が結合していてもよい。該置換基としては、炭素原子数4以下のパーフルオロアルキル基と炭素原子数4以下のパーフルオロアルコキシ基が好ましく、トリフルオロメチル基がより好ましい。Rf2は、環に酸素原子を有するパーフルオロシクロアルキル基がより好ましい。Rf2の具体例としては、つぎの構造が挙げられる。 The ring is preferably a ring having 1 or 2 etheric oxygen atoms, more preferably an oxolane ring or a 1,3 dioxolane ring. A substituent such as a polyfluoroalkyl group or a polyfluoroalkoxy group may be bonded to the ring carbon atom. As the substituent, a perfluoroalkyl group having 4 or less carbon atoms and a perfluoroalkoxy group having 4 or less carbon atoms are preferable, and a trifluoromethyl group is more preferable. R f2 is more preferably a perfluorocycloalkyl group having an oxygen atom in the ring. Specific examples of R f2 include the following structures.
CF2=CFORf1Rf2で表されるモノマーは、式(1)で表されるモノマー、式(2)で表されるモノマー及び式(3)で表されるモノマーからなる群から選ばれる1種以上であることが好ましい。さらに、式(1)で表されるモノマー:パーフルオロテトラヒドロフルフリルビニルエーテルであることがより好ましい。以下、式(1)で表されるモノマーをPTFVEともいう。 The monomer represented by CF 2 = CFOR f1 R f2 is 1 selected from the group consisting of a monomer represented by the formula (1), a monomer represented by the formula (2), and a monomer represented by the formula (3). It is preferable that it is a seed or more. Furthermore, the monomer represented by the formula (1) is more preferably perfluorotetrahydrofurfuryl vinyl ether. Hereinafter, the monomer represented by the formula (1) is also referred to as PTFVE.
式(1)で表されるモノマーは、種々の方法で製造することができるが、例えば、テトラヒドロフルフリルアルコール又は必要に応じてパーフルオロカルボン酸ハライドでエステル化したものをフッ素化し、次いでその生成物又はパーフルオロエステルを液相熱分解した生成物にヘキサフルオロプロペンオキシド(HFPO)を付加し、さらに気相熱分解することにより合成できる。 The monomer represented by the formula (1) can be produced by various methods. For example, fluorination of tetrahydrofurfuryl alcohol or esterification with perfluorocarboxylic acid halide as necessary, followed by formation thereof The product can be synthesized by adding hexafluoropropene oxide (HFPO) to a product obtained by liquid-phase pyrolysis of a product or perfluoroester, and further subjecting it to gas-phase pyrolysis.
本発明において、TFEに基づく重合単位(A)/CF2=CFORf1Rf2で表されるモノマーに基づく重合単位(B)はモル比で99.7/0.3〜90/10である。(B)の比率が0.3よりも少ないと、溶融成形ができる程度の分子量では脆い共重合体となり、10よりも多いと共重合体の弾性率が低い。この範囲にあると弾性率及び降伏強度が高く、耐ストレスクラック性に優れる。好ましくは(A)/(B)がモル比で99.5/0.5〜95.0/5.0であり、より好ましくは99.0/1.0〜97.0/3.0である。 In the present invention, the polymer units (B) based on the monomer represented by TFE-based polymer units (A) / CF 2 = CFOR f1 R f2 are 99.7 / 0.3 to 90/10 in molar ratio. When the ratio of (B) is less than 0.3, the copolymer is brittle with a molecular weight that allows melt molding, and when it is more than 10, the elastic modulus of the copolymer is low. Within this range, the elastic modulus and yield strength are high and the stress crack resistance is excellent. Preferably (A) / (B) is 99.5 / 0.5 to 95.0 / 5.0 in molar ratio, more preferably 99.0 / 1.0 to 97.0 / 3.0. is there.
本発明のTFE共重合体の容量流速(以下、Q値という。)は0.1〜1000mm3/秒である。Q値は、含フッ素共重合体の溶融流動性を表す指標であり、分子量の目安となる。Q値が大きいと分子量が低く、小さいと分子量が高いことを示す。本発明におけるQ値は、島津製作所製フローテスタを用いて、温度380℃において、荷重7kg下に直径2.1mm、長さ8mmのオリフィス中にTFE共重合体を押出すときの押出し速度である。Q値が小さすぎると溶融流動性が不充分で、成形品の表面が均一で平滑とはならない。大きすぎるとTFE共重合体の機械的強度が低い。この範囲にあると溶融成形性に優れる。本発明のTFE共重合体のQ値は1〜500mm3/秒が好ましく、2〜200mm3/秒がより好ましい。 The volume flow rate (hereinafter referred to as Q value) of the TFE copolymer of the present invention is 0.1 to 1000 mm 3 / sec. The Q value is an index representing the melt fluidity of the fluorinated copolymer and is a measure of the molecular weight. A large Q value indicates a low molecular weight, and a small Q value indicates a high molecular weight. The Q value in the present invention is an extrusion speed when a TFE copolymer is extruded into an orifice having a diameter of 2.1 mm and a length of 8 mm under a load of 7 kg at a temperature of 380 ° C. using a flow tester manufactured by Shimadzu Corporation. . If the Q value is too small, the melt fluidity is insufficient, and the surface of the molded product is not uniform and smooth. If it is too large, the mechanical strength of the TFE copolymer is low. Within this range, the melt moldability is excellent. Q values of the TFE copolymer of the present invention is preferably from 1 to 500 mm 3 / sec, 2~200mm 3 / sec is more preferable.
本発明において、TFEとCF2=CFORf1Rf2に加えて、TFEと共重合可能な、その他のモノマーを併用してもよい。その他のモノマーの構造は特に限定されないが、具体例としては、エチレン等の炭化水素系オレフィン;フッ化ビニル、フッ化ビニリデン、トリフルオロエチレン、CH2=CX(CF2)nY(ここで、X及びYは、それぞれ独立に水素又はフッ素原子、nは2〜8の整数である。)等の不飽和基に水素原子を有するフルオロオレフィン;ヘキサフルオロプロピレン、クロロトリフルオロエチレン等の不飽和基に水素原子を有しないフルオロオレフィン(ただし、TFEを除く。);パーフルオロ(メチルビニルエーテル)、パーフルオロ(エチルビニルエーテル)、PPVE、パーフルオロ(ブチルビニルエーテル)等のパーフルオロ(アルキルビニルエーテル);
酢酸ビニル等のビニルエステル;アルキルビニルエーテル、グリシジルビニルエーテル、ヒドロキシブチルビニルエーテル、メチルビニロキシブチルカーボネート等のビニルエーテル等が挙げられる。
In the present invention, in addition to TFE and CF 2 ═CFOR f1 R f2 , other monomers copolymerizable with TFE may be used in combination. The structure of the other monomer is not particularly limited. Specific examples include hydrocarbon olefins such as ethylene; vinyl fluoride, vinylidene fluoride, trifluoroethylene, CH 2 ═CX (CF 2 ) n Y (where, X and Y are each independently hydrogen or a fluorine atom, n is an integer of 2 to 8.) A fluoroolefin having a hydrogen atom in an unsaturated group such as; an unsaturated group such as hexafluoropropylene or chlorotrifluoroethylene Fluoroolefin having no hydrogen atom (except TFE); perfluoro (alkyl vinyl ether) such as perfluoro (methyl vinyl ether), perfluoro (ethyl vinyl ether), PPVE, perfluoro (butyl vinyl ether);
Vinyl esters such as vinyl acetate; vinyl ethers such as alkyl vinyl ether, glycidyl vinyl ether, hydroxybutyl vinyl ether, methylvinyloxybutyl carbonate, and the like.
その他のモノマーは、特に、ヘキサフルオロプロピレン、クロロトリフルオロエチレン、パーフルオロ(アルキルビニルエーテル)からなる群から選ばれる1種以上が好ましい。得られるTFE共重合体は、耐熱性、耐薬品性に優れる。その他のモノマーに基づく重合単位(C)の含有量は、(C)/((A)+(B)+(C))がモル比で0.001〜0.1が好ましく、0.002〜0.08がより好ましい。 The other monomer is particularly preferably at least one selected from the group consisting of hexafluoropropylene, chlorotrifluoroethylene, and perfluoro (alkyl vinyl ether). The obtained TFE copolymer is excellent in heat resistance and chemical resistance. The content of the polymerized units (C) based on other monomers is preferably (C) / ((A) + (B) + (C)) in a molar ratio of 0.001 to 0.1, preferably 0.002 0.08 is more preferable.
本発明のTFE共重合体の製造方法は特に限定はなく、一般に用いられているラジカル重合開始剤を用いる重合方法が採用される。重合方法としては、塊状重合、フッ化炭化水素、塩化炭化水素、フッ化塩化炭化水素、アルコール、炭化水素等の有機溶媒を使用する溶液重合、水性媒体及び必要に応じて有機溶媒を使用する懸濁重合、水性媒体及び乳化剤を使用する乳化重合等が挙げられる。 The method for producing the TFE copolymer of the present invention is not particularly limited, and a polymerization method using a generally used radical polymerization initiator is employed. Polymerization methods include bulk polymerization, solution polymerization using organic solvents such as fluorinated hydrocarbons, chlorinated hydrocarbons, fluorinated chlorohydrocarbons, alcohols and hydrocarbons, aqueous media, and suspensions using organic solvents as necessary. Examples thereof include suspension polymerization, emulsion polymerization using an aqueous medium and an emulsifier.
ラジカル重合開始剤としては、半減期が10時間である温度が0〜100℃である開始剤が好ましく、20〜90℃である開始剤がより好ましい。具体例としては、アゾビスイソブチロニトリル等のアゾ化合物、イソブチリルパーオキシド、オクタノイルパーオキシド、ベンゾイルパーオキシド、ラウロイルパーオキシド等の非フッ素系ジアシルパーオキシド、ジイソプロピルパーオキシジカーボネート等のパーオキシジカーボネート、tert−ブチルパーオキシピバレート、tert−ブチルパーオキシイソブチレート、tert−ブチルパーオキシアセテート等のパーオキシエステル、(Z(CF2)pCOO)2(ここで、Zは水素原子、フッ素原子又は塩素原子であり、pは1〜10の整数である。)で表される化合物等の含フッ素ジアシルパーオキシド、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウムのような無機過酸化物等が挙げられる。 The radical polymerization initiator is preferably an initiator having a half-life of 10 hours and a temperature of 0 to 100 ° C, more preferably an initiator having a temperature of 20 to 90 ° C. Specific examples include azo compounds such as azobisisobutyronitrile, non-fluorine diacyl peroxides such as isobutyryl peroxide, octanoyl peroxide, benzoyl peroxide, lauroyl peroxide, and diisopropyl peroxydicarbonate. Peroxyesters such as oxydicarbonate, tert-butyl peroxypivalate, tert-butyl peroxyisobutyrate, tert-butyl peroxyacetate, (Z (CF 2 ) p COO) 2 (where Z is hydrogen Inorganic peroxidation such as fluorine-containing diacyl peroxide, potassium persulfate, sodium persulfate, ammonium persulfate, etc. Thing etc. are mentioned.
ラジカル重合条件も特に限定されず、重合温度は0〜100℃が好ましく、20〜90℃がより好ましい。重合圧力は0.1〜10MPaが好ましく、0.5〜3MPaがより好ましい。重合時間は1〜30時間が好ましい。 The radical polymerization conditions are not particularly limited, and the polymerization temperature is preferably 0 to 100 ° C, more preferably 20 to 90 ° C. The polymerization pressure is preferably from 0.1 to 10 MPa, more preferably from 0.5 to 3 MPa. The polymerization time is preferably 1 to 30 hours.
本発明において、TFE共重合体がフッ素化処理されてなる実質的に不安定末端基を有しないTFE共重合体であることが好ましい。ここで、実質的に不安定末端基を有しないとは、−COF、−CH2OH、−CO2H等の不安定末端基を炭素原子百万個あたり10個以上有しないことを意味する。より好ましくは5個以下である。不安定末端基の数が少ないと、TFE共重合体の耐熱性、耐薬品性がさらに向上する。フッ素化処理の方法としては、TFE共重合体を200℃以上の温度下にフッ素ガスと接触させる方法が好ましい。フッ素ガスは窒素ガス等の不活性ガスで希釈して用いることも好ましい。フッ素化処理により、不安定末端基が安定な−CF3に変換される。 In the present invention, the TFE copolymer is preferably a TFE copolymer that has been subjected to a fluorination treatment and has substantially no unstable terminal group. Here, having substantially no unstable terminal group means having no more than 10 unstable terminal groups such as —COF, —CH 2 OH, and —CO 2 H per million carbon atoms. . More preferably, it is 5 or less. When the number of unstable end groups is small, the heat resistance and chemical resistance of the TFE copolymer are further improved. As a method for the fluorination treatment, a method in which the TFE copolymer is brought into contact with fluorine gas at a temperature of 200 ° C. or higher is preferable. The fluorine gas is also preferably diluted with an inert gas such as nitrogen gas. By the fluorination treatment, the unstable end group is converted to stable —CF 3 .
本発明のTFE共重合体の用途としては、半導体製造装置や化学プラントの薬液チューブ、継ぎ手、タンク、バルブ、ウエハーバスケット、配管やタンクの内面ライニング、OA機器のコピーロール、リチウム電池や燃料電池等のパッキン等が挙げられる。 Applications of the TFE copolymer of the present invention include chemical tubes, fittings, tanks, valves, wafer baskets, piping and tank inner linings for semiconductor manufacturing equipment and chemical plants, copy rolls for OA equipment, lithium batteries, fuel cells, etc. The packing etc. are mentioned.
以下、実施例及び比較例を挙げて本発明を詳細に説明するが、本発明はこれらに限定されない。なお、TFE共重合体の組成、引張強度、引張伸度、引張弾性率、引張降伏強度、MIT折り曲げ寿命は、以下に記載の方法で測定した。 EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in detail, this invention is not limited to these. The composition, tensile strength, tensile elongation, tensile modulus, tensile yield strength, and MIT bending life of the TFE copolymer were measured by the methods described below.
[TFE共重合体の組成]旭硝子研究報告1990、40(1)、75の記載に準じて、TFE共重合体を熱溶融状態で19F−NMR測定する方法によって求めた。 [Composition of TFE Copolymer] According to the description of Asahi Glass Research Report 1990, 40 (1), 75, the TFE copolymer was determined by 19 F-NMR measurement in a hot melt state.
[引張強度、引張伸度、引張弾性率、引張降伏強度」ASTM D3159に準じて、試験片を用いて引張速度50mm/秒にて測定した。 [Tensile Strength, Tensile Elongation, Tensile Elastic Modulus, Tensile Yield Strength] Measured according to ASTM D3159 using a test piece at a tensile speed of 50 mm / sec.
[MIT折り曲げ寿命]ASTM D2176に準じて、荷重1.25kg、折り曲げ角度±135度、室温の条件下に、折り曲げ試験機(東洋精機社製、MIT−D)を用いて試料の折り曲げ試験を行った。試料が破断するまでの折り曲げ回数がMIT折り曲げ寿命である。MIT折り曲げ寿命は、TFE共重合体の耐ストレスクラック性の指標となり、MIT折り曲げ寿命が永いほど耐ストレスクラック性に優れる。試料は、TFE共重合体を340℃で圧縮成形して得た厚さ0.220〜0.236mmのフィルムを、幅12.5mmの短冊状に打ち抜いて作成した。 [MIT bending life] In accordance with ASTM D2176, a sample bending test was performed using a bending tester (MITO-D, manufactured by Toyo Seiki Co., Ltd.) under conditions of a load of 1.25 kg, a bending angle of ± 135 degrees, and room temperature. It was. The number of bendings until the sample breaks is the MIT bending life. The MIT bending life is an index of the stress crack resistance of the TFE copolymer, and the longer the MIT bending life, the better the stress crack resistance. The sample was prepared by punching a film having a thickness of 0.220 to 0.236 mm obtained by compression-molding a TFE copolymer at 340 ° C. into a strip shape having a width of 12.5 mm.
(参考例1)
(エステル化反応)
2−テトラヒドロフルフリルアルコールを20gとトリエチルアミンを21.8gとをフラスコに入れ、氷浴下撹拌し、FCOCF(CF3)OCF2CF2CF3の71.5gを内温を10℃以下に保ちながら1時間かけて滴下した。滴下終了後、室温で2時間撹拌し、水50mLを内温15℃以下で加え、得られた粗液を分液し、水で洗浄し、硫酸マグネシウムで乾燥し、ろ過し、減圧蒸留を行い、式(II)のエステル化合物66.3gを得た。
(Reference Example 1)
(Esterification reaction)
20 g of 2-tetrahydrofurfuryl alcohol and 21.8 g of triethylamine are placed in a flask and stirred in an ice bath, and 71.5 g of FCOCF (CF 3 ) OCF 2 CF 2 CF 3 is kept at an internal temperature of 10 ° C. or lower. The solution was added dropwise over 1 hour. After completion of the dropwise addition, the mixture was stirred at room temperature for 2 hours, 50 mL of water was added at an internal temperature of 15 ° C. or lower, the obtained crude liquid was separated, washed with water, dried over magnesium sulfate, filtered, and distilled under reduced pressure. To obtain 66.3 g of an ester compound of the formula (II).
(フッ素反応)
500mLのニッケル製オートクレーブに、トリクロロトリフルオロエタン(R−113)を313g加えて撹拌し、25℃に保った。窒素ガスを1時間吹き込んだ後、窒素ガスで20%に希釈したフッ素ガスを、流速8.08L/hで1時間吹き込んだ。次に、フッ素ガスを同じ流速で吹き込みながら、エステル化で得た化合物(II)5.01gをR−113の100gに溶解した溶液を4.7時間かけて注入した。さらに、フッ素ガスを同じ流速で吹き込みながら、ベンゼン濃度が0.01g/mLのR−113溶液を25℃から40℃にまで昇温しながら9mL注入し、0.4時間撹拌を続けた。次に、圧力を常圧にし、反応器内温度を40℃に保ちながら、上記のベンゼン溶液を6mL注入し、0.4時間撹拌を続け、さらに、同様の操作を3回繰り返した。ベンゼンの注入総量は0.33g、R−113の注入総量は33mLであった。
(Fluorine reaction)
To a 500 mL nickel autoclave, 313 g of trichlorotrifluoroethane (R-113) was added and stirred, and kept at 25 ° C. After blowing nitrogen gas for 1 hour, fluorine gas diluted to 20% with nitrogen gas was blown for 1 hour at a flow rate of 8.08 L / h. Next, while blowing fluorine gas at the same flow rate, a solution prepared by dissolving 5.01 g of the compound (II) obtained by esterification in 100 g of R-113 was injected over 4.7 hours. Further, 9 mL of an R-113 solution having a benzene concentration of 0.01 g / mL was injected while raising the temperature from 25 ° C. to 40 ° C. while blowing fluorine gas at the same flow rate, and stirring was continued for 0.4 hours. Next, 6 mL of the above benzene solution was injected while maintaining the pressure in the reactor at 40 ° C., stirring was continued for 0.4 hours, and the same operation was repeated three times. The total amount of benzene injected was 0.33 g, and the total amount of R-113 injected was 33 mL.
(パーフルオロエステル熱分解反応)
フッ素化で得た化合物(III)2.1gを0.02gのNaF粉末と共にフラスコに仕込み、撹拌を行いながら140℃で加熱した。フラスコ上部には−10℃に温度調節した還流器を設置した。冷却後2.0gの液状サンプルを回収し、これを精密蒸留して化合物(IV)0.8gを得た。
(Perfluoroester thermal decomposition reaction)
2.1 g of compound (III) obtained by fluorination was charged into a flask together with 0.02 g of NaF powder and heated at 140 ° C. while stirring. A reflux condenser whose temperature was adjusted to −10 ° C. was installed at the top of the flask. After cooling, 2.0 g of a liquid sample was collected, and this was precision distilled to obtain 0.8 g of compound (IV).
(パーフルオロテトラヒドロフルフリルビニルエーテル合成反応)
オートクレーブ中に脱水乾燥したCsF16.5gを仕込んだ後に、反応器内を脱気し、化合物(IV)662g(2.7mol)とテトラグライム139gを仕込んだ後に、反応器を−20℃に冷却し、ヘキサフルオロプロピレンオキシド(HFPO)を反応器内圧が微減圧を保つように連続的に450g(2.7mol)供給し、反応を行った。反応終了後に分液ロートにより1010gを回収し、テトラグライムで洗浄した後、KOH330gを溶解した水溶液に滴下し、中和後水を留去した。得られた白色個体を減圧乾燥し、減圧状態を保ったまま液体窒素温度に冷却した金属製トラップを接続し、乾燥機内の温度を270℃まで昇温した。分解反応によって発生するガスを金属トラップ内に回収しながら、ガス発生が終了するまで反応を継続し、化合物(I)(PTFVE:式(1)で表されるモノマー)700gを得た。
(Perfluorotetrahydrofurfuryl vinyl ether synthesis reaction)
After charging 16.5 g of dehydrated and dried CsF in an autoclave, the inside of the reactor was degassed, and after adding 662 g (2.7 mol) of compound (IV) and 139 g of tetraglyme, the reactor was cooled to −20 ° C. Then, 450 g (2.7 mol) of hexafluoropropylene oxide (HFPO) was continuously supplied so that the internal pressure of the reactor was kept at a slightly reduced pressure, to carry out the reaction. After completion of the reaction, 1010 g was recovered with a separatory funnel, washed with tetraglyme, then dropped into an aqueous solution in which 330 g of KOH was dissolved, and water was distilled off after neutralization. The obtained white solid was dried under reduced pressure, a metal trap cooled to liquid nitrogen temperature was connected while maintaining the reduced pressure state, and the temperature in the dryer was raised to 270 ° C. While collecting the gas generated by the decomposition reaction in the metal trap, the reaction was continued until the gas generation was completed to obtain 700 g of Compound (I) (PTFVE: monomer represented by the formula (1)).
(参考例2)
2−テトラヒドロフルフリルアルコールに替えて、2,2−ジメチル−4−メチロール−1,3−ジオキソランを用いること以外、参考例1の反応手順と同様にして、式(2)で表されるモノマーを得た。
(Reference Example 2)
A monomer represented by the formula (2) in the same manner as in the reaction procedure of Reference Example 1, except that 2,2-dimethyl-4-methylol-1,3-dioxolane is used instead of 2-tetrahydrofurfuryl alcohol. Got.
(参考例3)
2−テトラヒドロフルフリルアルコールに替えて、2,4−ジメチル−2−メチロール−1,3−ジオキソランを用いること以外、参考例1の反応手順と同様にして、式(3)で表されるモノマーを得た。
(Reference Example 3)
A monomer represented by the formula (3) in the same manner as in the reaction procedure of Reference Example 1, except that 2,4-dimethyl-2-methylol-1,3-dioxolane is used instead of 2-tetrahydrofurfuryl alcohol. Got.
[実施例1]
1.2リットルの撹拌機付き圧力容器に、イオン交換水の590g、CHFClCF2CF2Clの353g、PTFVEの54.8g、メタノールの16.4gを仕込み、50℃の内温で、TFEを圧力が1.21MPaになるまで仕込んだ。ついで(CF3CF2CF2COO)2の0.1%溶液(溶媒:CHFClCF2CF2Cl)(以下、開始剤溶液という。)の3mLを仕込み、50℃で重合を開始させた。重合中に開始剤溶液は断続的に仕込み、合計20.2mLを仕込んだ。重合の進行にともない、圧力が低下するので、圧力が一定になるようにTFEを連続的に後仕込みした。後仕込みのTFE量が145gになったところで内温を室温まで冷却し、未反応TFEを空放し、圧力容器を開放した。圧力容器の内容物をガラスフィルターで濾過してスラリー状のTFE共重合体を得た。得られたスラリーを120℃で8時間乾燥して白色のTFE共重合体の155gを得た。得られたTFE共重合体は、TFEに基づく重合単位/PTFVEに基づく重合単位のモル比が98.3/1.7であり、Q値は1.7mm3/秒であった。引張強度は32.6MPa、引張伸度は310%、降伏強度は14.0MPa、引張弾性率は154MPa、MIT折り曲げ寿命は123万回であった。
[Example 1]
Charge 590 g of ion-exchange water, 353 g of CHFCClCF 2 CF 2 Cl, 54.8 g of PTFVE, and 16.4 g of methanol into a 1.2 liter pressure vessel equipped with a stirrer, and pressurize TFE at an internal temperature of 50 ° C. Was charged to 1.21 MPa. Subsequently, 3 mL of a 0.1% solution of (CF 3 CF 2 CF 2 COO) 2 (solvent: CHFCClCF 2 CF 2 Cl) (hereinafter referred to as initiator solution) was charged, and polymerization was started at 50 ° C. During the polymerization, the initiator solution was charged intermittently, and a total of 20.2 mL was charged. As the polymerization progressed, the pressure decreased, so TFE was continuously charged to keep the pressure constant. When the amount of TFE added later became 145 g, the internal temperature was cooled to room temperature, unreacted TFE was discharged, and the pressure vessel was opened. The contents of the pressure vessel were filtered through a glass filter to obtain a slurry-like TFE copolymer. The obtained slurry was dried at 120 ° C. for 8 hours to obtain 155 g of a white TFE copolymer. The obtained TFE copolymer had a molar ratio of polymerized units based on TFE / polymerized units based on PTFVE of 98.3 / 1.7 and a Q value of 1.7 mm 3 / sec. The tensile strength was 32.6 MPa, the tensile elongation was 310%, the yield strength was 14.0 MPa, the tensile modulus was 154 MPa, and the MIT bending life was 1,230,000 times.
[実施例2]
実施例1の圧力容器に、イオン交換水の590g、CHFClCF2CF2Clの353g、PTFVEの11.0g、PPVEの33.9g、メタノールの17.6gを仕込み、50℃の内温で、TFEを圧力が1.21MPaになるまで仕込んだ。ついで、実施例1で用いたと同じ開始剤溶液の3mLを仕込み、50℃で重合を開始させた。重合中に開始剤溶液は断続的に仕込み、合計16.7mLを仕込んだ。重合の進行にともない、圧力が低下するので、圧力が一定になるようにTFEを連続的に後仕込みした。後仕込みのTFE量が145gになったところで内温を室温まで冷却し、未反応TFEを空放し、圧力容器を開放した。圧力容器の内容物をガラスフィルターで濾過してスラリー状のTFE共重合体を得た。得られたスラリーを120℃で8時間乾燥して白色のTFE共重合体の153gを得た。得られたTFE共重合体の組成は、TFEに基づく重合単位/PTFVEに基づく重合単位/PPVEに基づく重合単位はモル比で98.4/0.4/1.2であり、Q値は2.2mm3/秒であった。引張強度は36.9MPa、引張伸度は360%、降伏強度は13.6MPa、引張弾性率は146MPa、MIT折り曲げ寿命は88万回であった。
[Example 2]
The pressure vessel of Example 1 was charged with 590 g of ion-exchanged water, 353 g of CHFCClCF 2 CF 2 Cl, 11.0 g of PTFVE, 33.9 g of PPVE, and 17.6 g of methanol, and at an internal temperature of 50 ° C., TFE Was charged until the pressure reached 1.21 MPa. Next, 3 mL of the same initiator solution used in Example 1 was charged, and polymerization was started at 50 ° C. During the polymerization, the initiator solution was charged intermittently for a total of 16.7 mL. As the polymerization progressed, the pressure decreased, so TFE was continuously charged to keep the pressure constant. When the amount of TFE added later became 145 g, the internal temperature was cooled to room temperature, unreacted TFE was discharged, and the pressure vessel was opened. The contents of the pressure vessel were filtered through a glass filter to obtain a slurry-like TFE copolymer. The obtained slurry was dried at 120 ° C. for 8 hours to obtain 153 g of a white TFE copolymer. The composition of the obtained TFE copolymer was such that the polymer unit based on TFE / polymer unit based on PTFVE / polymer unit based on PPVE had a molar ratio of 98.4 / 0.4 / 1.2, and the Q value was 2 It was 2 mm 3 / sec. The tensile strength was 36.9 MPa, the tensile elongation was 360%, the yield strength was 13.6 MPa, the tensile modulus was 146 MPa, and the MIT bending life was 880,000 times.
[比較例1]
PTFVEの替わりにPPVEの42.4g、メタノールの18.9g、開始剤溶液の合計12.9ml仕込んだ以外は実施例1と同様にして、TFE共重合体の150gを得た。得られたTFE共重合体の組成は、TFEに基づく重合単位/PPVEに基づく重合単位がモル比で98.5/1.5であり、Q値は2.3であった。引張強度は33.1MPa、引張伸度は340%、降伏強度は13.3MPa、引張弾性率は141MPa、MIT折り曲げ寿命は78万回であった。
[Comparative Example 1]
150 g of TFE copolymer was obtained in the same manner as in Example 1 except that 42.4 g of PPVE, 18.9 g of methanol, and a total of 12.9 ml of the initiator solution were charged instead of PTFVE. As for the composition of the obtained TFE copolymer, the polymer unit based on TFE / polymer unit based on PPVE was 98.5 / 1.5 in a molar ratio, and the Q value was 2.3. The tensile strength was 33.1 MPa, the tensile elongation was 340%, the yield strength was 13.3 MPa, the tensile modulus was 141 MPa, and the MIT bending life was 780,000 times.
[実施例3]
PTFVEの替わりに式(2)で表されるモノマーの70.7g仕込む以外は実施例1と同様にして、TFE共重合体の157gを得る。得られるTFE共重合体の組成は、TFEに基づく重合単位/式(2)で表されるモノマーに基づく重合単位がモル比で98.3/1.7であり、Q値は2.0mm3/秒である。引張強度は33.0MPa、引張伸度は320%、降伏強度は13.9MPa、引張弾性率は155MPa、MIT折り曲げ寿命は115万回である。
[Example 3]
157 g of a TFE copolymer is obtained in the same manner as in Example 1 except that 70.7 g of the monomer represented by the formula (2) is charged instead of PTFVE. The composition of the obtained TFE copolymer is such that the polymer unit based on the TFE-based polymer unit / the monomer represented by the formula (2) has a molar ratio of 98.3 / 1.7, and the Q value is 2.0 mm 3. / Sec. The tensile strength is 33.0 MPa, the tensile elongation is 320%, the yield strength is 13.9 MPa, the tensile elastic modulus is 155 MPa, and the MIT bending life is 1.15 million times.
[実施例4]
PTFVEの替わりに式(3)で表されるモノマーの70.7g仕込む以外は実施例1と同様にして、TFE共重合体の156gを得る。得られるTFE共重合体の組成は、TFEに基づく重合単位/式(3)で表されるモノマーに基づく重合単位がモル比で98.4/1.6であり、Q値は2.3mm3/秒である。引張強度は33.5MPa、引張伸度は300%、降伏強度は14.0MPa、引張弾性率は152MPa、MIT折り曲げ寿命は108万回である。
[Example 4]
156 g of TFE copolymer is obtained in the same manner as in Example 1 except that 70.7 g of the monomer represented by the formula (3) is charged instead of PTFVE. The composition of the obtained TFE copolymer is such that the polymer unit based on TFE / the polymer unit based on the monomer represented by formula (3) is 98.4 / 1.6 in terms of molar ratio, and the Q value is 2.3 mm 3. / Sec. The tensile strength is 33.5 MPa, the tensile elongation is 300%, the yield strength is 14.0 MPa, the tensile elastic modulus is 152 MPa, and the MIT bending life is 1.08 million times.
本発明のテトラフルオロエチレン共重合体は、化学産業や半導体産業における種々の部材用の成形材料として有用である。
The tetrafluoroethylene copolymer of the present invention is useful as a molding material for various members in the chemical industry and the semiconductor industry.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003421190A JP4415665B2 (en) | 2003-06-05 | 2003-12-18 | Tetrafluoroethylene copolymer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003160887 | 2003-06-05 | ||
JP2003421190A JP4415665B2 (en) | 2003-06-05 | 2003-12-18 | Tetrafluoroethylene copolymer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005015762A JP2005015762A (en) | 2005-01-20 |
JP4415665B2 true JP4415665B2 (en) | 2010-02-17 |
Family
ID=34196781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003421190A Expired - Fee Related JP4415665B2 (en) | 2003-06-05 | 2003-12-18 | Tetrafluoroethylene copolymer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4415665B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE60322950D1 (en) * | 2002-12-19 | 2008-09-25 | Asahi Glass Co Ltd | Tetrafluoroethylene Copolymer |
JP4834966B2 (en) * | 2004-07-02 | 2011-12-14 | 旭硝子株式会社 | Tetrafluoroethylene copolymer |
JP4968263B2 (en) * | 2006-12-20 | 2012-07-04 | 旭硝子株式会社 | Fluorine-containing compound and fluorine-containing polymer |
TW200912963A (en) * | 2007-08-08 | 2009-03-16 | Daikin Ind Ltd | Covered electric wire and coaxial cable |
WO2013115374A1 (en) * | 2012-02-01 | 2013-08-08 | ダイキン工業株式会社 | Sealing material |
-
2003
- 2003-12-18 JP JP2003421190A patent/JP4415665B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005015762A (en) | 2005-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5663839B2 (en) | Ethylene / tetrafluoroethylene copolymer and process for producing the same | |
US9212279B2 (en) | Microemulsions and fluoropolymers made using microemulsions | |
JP5343355B2 (en) | Fluororesin with little residual amount of fluorine-containing emulsifier and method for producing the same | |
RU2378294C2 (en) | Perfluoro-elastomers | |
EP3609935B1 (en) | Melt-processible fluoropolymer | |
EP1976894B1 (en) | Fluoroelastomers | |
RU2383555C2 (en) | Fluoroelastomers | |
JP5609872B2 (en) | Ethylene / tetrafluoroethylene copolymer | |
JP2004502786A (en) | Crosslinkable bromosulfonated fluoroelastomer based on vinylidene fluoride showing low Tg | |
JP4415665B2 (en) | Tetrafluoroethylene copolymer | |
JP4561363B2 (en) | Tetrafluoroethylene copolymer | |
JP4415458B2 (en) | Fluorine-containing copolymer and molded article | |
JP5407643B2 (en) | Method for producing fluorine-containing copolymer | |
JP4960582B2 (en) | Tetrafluoroethylene copolymer and electric wire | |
JP4834966B2 (en) | Tetrafluoroethylene copolymer | |
WO2023189629A1 (en) | Method for producing fluorine-containing copolymer | |
JPH06157614A (en) | Production of fluoropolymer | |
JP5278281B2 (en) | Melt molding material and electric wire | |
JP5144523B2 (en) | α, α-Dihydrofluorovinyl ether, homopolymers and copolymers thereof | |
JP4760079B2 (en) | Novel fluorine-containing compounds and fluorine-containing polymers | |
JPH06157612A (en) | Production of fluoropolymer | |
JPH06157611A (en) | Production of fluoropolymer | |
JPH06157615A (en) | Production of fluoropolymer | |
JPH06157608A (en) | Production of fluoropolymer | |
JPH06157613A (en) | Production of fluoropolymer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20060815 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060815 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061108 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090303 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090414 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090707 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090811 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091104 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4415665 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121204 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121204 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121204 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131204 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |