JP4659074B2 - Method for producing 3-alkenylcephem compound - Google Patents
Method for producing 3-alkenylcephem compound Download PDFInfo
- Publication number
- JP4659074B2 JP4659074B2 JP2008184328A JP2008184328A JP4659074B2 JP 4659074 B2 JP4659074 B2 JP 4659074B2 JP 2008184328 A JP2008184328 A JP 2008184328A JP 2008184328 A JP2008184328 A JP 2008184328A JP 4659074 B2 JP4659074 B2 JP 4659074B2
- Authority
- JP
- Japan
- Prior art keywords
- activated carbon
- acid
- formula
- salt
- cephem
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- JUSLNYHPZHVSDE-FWUUMVAPSA-N CC(C)/N=C\SC/C=C\C(\CS)=C(/C(O)=O)\N(C1(CC1)CCCCC1)C1=O Chemical compound CC(C)/N=C\SC/C=C\C(\CS)=C(/C(O)=O)\N(C1(CC1)CCCCC1)C1=O JUSLNYHPZHVSDE-FWUUMVAPSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D501/00—Heterocyclic compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring
- C07D501/14—Compounds having a nitrogen atom directly attached in position 7
- C07D501/16—Compounds having a nitrogen atom directly attached in position 7 with a double bond between positions 2 and 3
- C07D501/20—7-Acylaminocephalosporanic or substituted 7-acylaminocephalosporanic acids in which the acyl radicals are derived from carboxylic acids
- C07D501/24—7-Acylaminocephalosporanic or substituted 7-acylaminocephalosporanic acids in which the acyl radicals are derived from carboxylic acids with hydrocarbon radicals, substituted by hetero atoms or hetero rings, attached in position 3
- C07D501/48—Methylene radicals, substituted by hetero rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/54—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B53/00—Asymmetric syntheses
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B2200/00—Indexing scheme relating to specific properties of organic compounds
- C07B2200/09—Geometrical isomers
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Cephalosporin Compounds (AREA)
- Peptides Or Proteins (AREA)
Description
本発明は、7−アミノ−3−[(E/Z)−2−(4−メチルチアゾール−5−イル)ビニル]−3−セフェム−4−カルボン酸又はそのアルカリ金属塩の製造において、E体に比してZ体の含有率を向上させる方法に関する。 The present invention relates to the preparation of 7-amino-3-[(E / Z) -2- (4-methylthiazol-5-yl) vinyl] -3-cephem-4-carboxylic acid or an alkali metal salt thereof. It is related with the method of improving the content rate of Z body compared with a body.
7−アミノ−3−[2−(4−メチルチアゾール−5−イル)ビニル]−3−セフェム−4−カルボン酸又はそのアルカリ金属塩は、セファロスポリン系抗生物質の製造中間体として有用な物質である。この化合物には、3位のアルケニル基の立体構造がZ配置であるものとE配置であるものの2種類の異性体が存在する。これら2種類の異性体のうち、それを原料とするセファロスポリン系抗生物質が医薬抗菌剤として優れた抗菌作用を発現するものは、Z体であることが知られている。したがって、7−アミノ−3−[2−(4−メチルチアゾール−5−イル)ビニル]−3−セフェム−4−カルボン酸又はそのアルカリ金属塩からセファロスポリン系抗生物質を合成する場合には、反応系にZ体のみを存在させ、E体を極力存在させないことが重要である。 7-Amino-3- [2- (4-methylthiazol-5-yl) vinyl] -3-cephem-4-carboxylic acid or an alkali metal salt thereof is useful as an intermediate for the production of cephalosporin antibiotics. It is a substance. In this compound, there are two types of isomers, that is, the steric structure of the alkenyl group at the 3-position is a Z configuration and an E configuration. Among these two types of isomers, it is known that a cephalosporin antibiotic using the same as a raw material expresses an excellent antibacterial action as a pharmaceutical antibacterial agent. Therefore, when synthesizing cephalosporin antibiotics from 7-amino-3- [2- (4-methylthiazol-5-yl) vinyl] -3-cephem-4-carboxylic acid or an alkali metal salt thereof, It is important that only the Z isomer is present in the reaction system and that the E isomer is not present as much as possible.
この観点から、特許文献1においては、Z体とE体とが混在した7−アミノ−3−[2−(4−メチルチアゾール−5−イル)ビニル]−3−セフェム−4−カルボン酸又はそのアルカリ金属塩の水溶液に、ハイポーラスポリマーや活性炭を作用させて、Z体の含有率を高めることが提案されている。この方法で用いられるハイポーラスポリマーとしては、アクリル系樹脂、フェノール系樹脂、スチレン系樹脂が例示されている。一方、活性炭としては、塩化亜鉛炭や水蒸気炭といった一般的な活性炭が用いられている。 From this viewpoint, in Patent Document 1, 7-amino-3- [2- (4-methylthiazol-5-yl) vinyl] -3-cephem-4-carboxylic acid in which a Z form and an E form are mixed or It has been proposed that a high porous polymer or activated carbon is allowed to act on the aqueous solution of the alkali metal salt to increase the content of the Z-form. Examples of the high porous polymer used in this method include acrylic resins, phenolic resins, and styrene resins. On the other hand, as the activated carbon, general activated carbon such as zinc chloride charcoal or steam charcoal is used.
前記の文献に記載の方法に従えば、Z体の含有率が高まった7−アミノ−3−[2−(4−メチルチアゾール−5−イル)ビニル]−3−セフェム−4−カルボン酸又はそのアルカリ金属塩が得られる。しかしこの化合物を、セファロスポリン系抗生物質の製造中間体として用いるには、Z体の含有率を更に向上させることが望まれている。 According to the method described in the above document, 7-amino-3- [2- (4-methylthiazol-5-yl) vinyl] -3-cephem-4-carboxylic acid having an increased Z-form content or The alkali metal salt is obtained. However, in order to use this compound as an intermediate for producing a cephalosporin antibiotic, it is desired to further improve the content of the Z isomer.
したがって本発明の目的は、前述した従来技術が有する種々の欠点を解消し得る7−アミノ−3−[2−(4−メチルチアゾール−5−イル)ビニル]−3−セフェム−4−カルボン酸又はそのアルカリ金属塩の製造方法を提供することにある。 Accordingly, the object of the present invention is to provide 7-amino-3- [2- (4-methylthiazol-5-yl) vinyl] -3-cephem-4-carboxylic acid that can eliminate the various disadvantages of the prior art described above. Another object is to provide a method for producing an alkali metal salt thereof.
本発明は、下記式(1)で表される7−アミノ−3−[(E/Z)−2−(4−メチルチアゾール−5−イル)ビニル]−3−セフェム−4−カルボン酸又はそのアルカリ金属塩を、鉱酸で処理して鉱酸塩となし、該鉱酸塩を含む低pH領域の水溶液を、JIS K−1474に従い測定されたヨウ素吸着性能が1200mg/g以上であり、メチレンブルー吸着性能が250ml/g以上である活性炭と接触させて処理することを特徴とする、下記式(2)で表される7−アミノ−3−[(Z)−2−(4−メチルチアゾール−5−イル)ビニル]−3−セフェム−4−カルボン酸又はそのアルカリ金属塩の含有率が向上した式(1)で表される7−アミノ−3−[(E/Z)−2−(4−メチルチアゾール−5−イル)ビニル]−3−セフェム−4−カルボン酸又はそのアルカリ金属塩の製造方法を提供することにより前記目的を達成したものである。
The present invention relates to 7-amino-3-[(E / Z) -2- (4-methylthiazol-5-yl) vinyl] -3-cephem-4-carboxylic acid represented by the following formula (1): The alkali metal salt is treated with a mineral acid to form a mineral acid salt, and an iodine adsorption performance measured according to JIS K-1474 is an aqueous solution in a low pH region containing the mineral acid salt is 1200 mg / g or more, 7-amino-3-[(Z) -2- (4-methylthiazole) represented by the following formula (2), which is treated by contacting with activated carbon having a methylene blue adsorption performance of 250 ml / g or more. -5-yl) vinyl] -7-amino-3-[(E / Z) -2- represented by the formula (1) in which the content of the 3-cephem-4-carboxylic acid or its alkali metal salt is improved (4-Methylthiazol-5-yl) vinyl] -3-cef The object is achieved by providing a method for producing em-4-carboxylic acid or an alkali metal salt thereof.
本発明によれば、7−アミノ−3−[(E/Z)−2−(4−メチルチアゾール−5−イル)ビニル]−3−セフェム−4−カルボン酸又はそのアルカリ金属塩の製造において、E体に比してZ体の含有率を、従来よりも向上させることができる。 According to the present invention, in the production of 7-amino-3-[(E / Z) -2- (4-methylthiazol-5-yl) vinyl] -3-cephem-4-carboxylic acid or an alkali metal salt thereof. , The content of the Z body can be improved as compared with the conventional case.
本発明は、Z体とE体とが含まれる前記の式(1)で表される化合物又はそのアルカリ塩に、特定の活性炭を作用させて、該活性炭にE体を選択的に吸着させることで除去し、Z体の含有率を高める点に特徴を有する。ここで言うアルカリ塩とは、薬理学上許容されるアルカリ塩を意味する。なお、以下の説明においては、式(1)で表される化合物と、そのアルカリ金属塩を総称して、「アルケニルセフェム化合物」という。 In the present invention, a specific activated carbon is allowed to act on the compound represented by the formula (1) including the Z-form and the E-form or an alkali salt thereof, and the E-form is selectively adsorbed on the activated carbon. And is characterized by increasing the content of the Z-form. The alkali salt here means a pharmacologically acceptable alkali salt. In the following description, the compound represented by the formula (1) and its alkali metal salt are collectively referred to as “alkenyl cephem compound”.
本発明において使用されるアルケニルセフェム化合物は、Z体とE体との混合物からなる。Z体及びE体はいずれも公知化合物である。アルケニルセフェム化合物におけるZ体とE体との存在割合に特に制限はなく、この存在割合はアルケニルセフェム化合物の製造条件等に依存する。本発明の目的にかんがみれば、Z体の存在割合がE体の存在割合よりも十分に高いことが望ましいが、本発明の方法を用いることで、簡便にかつ高収率でZ体を得ることが可能である。アルケニルセフェム化合物におけるE体の存在割合は、活性炭による処理前の状態において一般に0.3〜20重量%、特に2〜12重量%である。 The alkenyl cephem compound used in the present invention consists of a mixture of Z-form and E-form. Both Z-form and E-form are known compounds. There is no particular limitation on the abundance ratio of the Z form and the E form in the alkenyl cephem compound, and this abundance ratio depends on the production conditions of the alkenyl cephem compound. In view of the object of the present invention, it is desirable that the abundance ratio of the Z isomer is sufficiently higher than the abundance ratio of the E isomer. However, by using the method of the present invention, the Z isomer can be obtained easily and with a high yield. Is possible. The proportion of the E form in the alkenyl cephem compound is generally 0.3 to 20% by weight, particularly 2 to 12% by weight in the state before the treatment with activated carbon.
本発明においては、アルケニルセフェム化合物を、水溶液の状態で活性炭と接触させる。アルケニルセフェム化合物を水溶液とするには、例えばアルケニルセフェム化合物をアルカリで処理し、対応する塩(例えばアルカリ金属塩)の形とすればよい。アルカリとしては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等のアルカリ金属水酸化物;炭酸水素ナトリウム等のアルカリ金属炭酸水素塩;炭酸ナトリウム、炭酸カリウム、炭酸リチウム等のアルカリ金属炭酸塩等を用いることができる。これらのアルカリを含む水溶液と、アルケニルセフェム化合物とを混合することで、アルケニルセフェム化合物を水溶液とすることができる。 In the present invention, the alkenyl cephem compound is brought into contact with activated carbon in the form of an aqueous solution. In order to make the alkenyl cephem compound into an aqueous solution, for example, the alkenyl cephem compound may be treated with an alkali to form a corresponding salt (for example, an alkali metal salt). Examples of the alkali include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide; alkali metal hydrogen carbonates such as sodium hydrogen carbonate; alkali metal carbonates such as sodium carbonate, potassium carbonate and lithium carbonate; Can be used. By mixing the aqueous solution containing these alkalis with the alkenyl cephem compound, the alkenyl cephem compound can be made into an aqueous solution.
前記の水溶液に含まれるアルケニルセフェム化合物の塩の濃度は、本発明において臨界的なものではなく、該塩の結晶が析出しない程度の低濃度であればよい。
The concentration of the salt before Symbol alkenylcephem compound contained in the aqueous solution of, not critical in the present invention may be a low concentration to the extent that crystals of the salt does not precipitate.
アルケニルセフェム化合物を水溶液とするための方法として、該アルケニルセフェム化合物を、鉱酸で処理し、対応する鉱酸塩の形とする方法を用いる。鉱酸としては、例えば塩酸、硫酸、硝酸等が挙げられる。これらの鉱酸と、アルケニルセフェム化合物とを混合することで、該化合物が鉱酸塩の状態となった水溶液を得ることができる。 As a method for the aqueous solution alkenylcephem compound, the alkenyl cephem compounds, and treated with a mineral acid, a method in the form of the corresponding mineral acid salts. Examples of the mineral acid include hydrochloric acid, sulfuric acid, nitric acid and the like. By mixing these mineral acids and the alkenyl cephem compound, an aqueous solution in which the compound is in the form of a mineral salt can be obtained.
前記の鉱酸塩を含む水溶液のpHは、該鉱酸塩が沈殿しない程度に低pH領域であればよく、一般的には0.5〜1.7、特に0.8〜1.4とすることが好ましい。また、前記の水溶液に含まれる鉱酸塩の濃度は、本発明において臨界的なものではなく、該鉱酸塩の結晶が沈殿しない程度であればよい。 The pH of the aqueous solution containing the mineral acid salt may be in a low pH region so that the mineral acid salt does not precipitate, and is generally 0.5 to 1.7, particularly 0.8 to 1.4. It is preferable to do. Further, the concentration of the mineral acid salt contained in the aqueous solution is not critical in the present invention, and may be any level as long as the mineral acid salt does not precipitate.
前記のアルカリ金属塩と鉱酸塩とを比較すると、鉱酸塩を用いることが好ましい。この理由は、アルケニルセフェム化合物を合成する際に生じる副生成物であるフェニル酢酸又はその誘導体(これについては後ほど詳述する)の吸着除去を、E体の吸着除去と同時に行い得る点からである。鉱酸塩のうち、特に塩酸塩を用いると、Z体の純度を一層高めることができるので好ましい。 When the alkali metal salt and the mineral acid salt are compared, it is preferable to use the mineral acid salt. This is because the adsorption removal of phenylacetic acid or a derivative thereof (which will be described in detail later), which is a by-product generated when the alkenylcephem compound is synthesized, can be performed simultaneously with the adsorption removal of the E form. . Of the mineral acid salts, the use of hydrochloride is particularly preferable because the purity of the Z form can be further increased.
アルケニルセフェム化合物からE体を選択的に吸着除去するための活性炭について本発明者らが鋭意検討したところ、大きな細孔径のピークと小さな細孔径のピークを有する活性炭を用いることが有効であることが判明した。更に本発明者らが検討を推し進めたところ、このような細孔径分布を有する活性炭は、JIS K−1474に従い測定されたヨウ素吸着性能と、同じくJIS K−1474に従い測定されたメチレンブルー吸着性能が特定の範囲内にあることが判明した。本発明においては、かかる特定のヨウ素吸着性能及びメチレンブルー吸着性能を有する活性炭を用いることで、アルケニルセフェム化合物からE体を選択的に吸着除去することが可能となった。 The present inventors diligently investigated activated carbon for selectively adsorbing and removing E-forms from alkenyl cephem compounds, and it is effective to use activated carbon having a large pore diameter peak and a small pore diameter peak. found. Furthermore, as the inventors proceeded with investigations, activated carbon having such a pore size distribution was identified with iodine adsorption performance measured according to JIS K-1474 and methylene blue adsorption performance measured according to JIS K-1474. It was found to be within the range. In the present invention, by using activated carbon having such specific iodine adsorption performance and methylene blue adsorption performance, it is possible to selectively adsorb and remove E form from the alkenyl cephem compound.
上述した特定のヨウ素吸着性能については、その値が1200mg/g以上であるものを用いる。なお、ヨウ素吸着性能が1600mg/g超であり、かつ以下に述べるメチレンブルー吸着性能を兼ね備えた活性炭を工業的に入手することは極めて困難なので、本発明において用いる活性炭のヨウ素吸着性能の上限は1600mg/gとする。したがって、ヨウ素吸着性能の範囲は好ましくは1200〜1600mg/gであり、更に好ましくは1400〜1600mg/gである。尤も、ヨウ素吸着性能の値は高ければ高いほど好ましいので、1600mg/g超のヨウ素吸着性能を有する活性炭を用いることに何ら差し支えはない。 About the specific iodine adsorption | suction performance mentioned above, the value is 1200 mg / g or more. In addition, since it is extremely difficult to industrially obtain activated carbon having an iodine adsorption performance exceeding 1600 mg / g and having the methylene blue adsorption performance described below, the upper limit of the iodine adsorption performance of the activated carbon used in the present invention is 1600 mg / g. Therefore, the range of iodine adsorption performance is preferably 1200 to 1600 mg / g, and more preferably 1400 to 1600 mg / g. However, the higher the value of iodine adsorption performance, the better. Therefore, there is no problem in using activated carbon having an iodine adsorption performance of more than 1600 mg / g.
メチレンブルー吸着性能については、その値が250ml/g以上であるものを用いる。なお、メチレンブルー吸着性能が500mg/g超であり、かつ上述したヨウ素吸着性能を兼ね備えた活性炭を工業的に入手することは極めて困難なので、本発明において用いる活性炭のメチレンブルー吸着性能の上限は500ml/gとする。したがって、メチレンブルー吸着性能の範囲は好ましくは250〜500ml/gであり、更に好ましくは280〜500ml/gである。尤も、メチレンブルー吸着性能の値は高ければ高いほど好ましいので、500ml/g超のメチレンブルー吸着性能を有する活性炭を用いることに何ら差し支えはない。 For the methylene blue adsorption performance, those having a value of 250 ml / g or more are used. In addition, since the methylene blue adsorption performance is over 500 mg / g and it is extremely difficult to industrially obtain activated carbon having the above iodine adsorption performance, the upper limit of the methylene blue adsorption performance of the activated carbon used in the present invention is 500 ml / g. And Therefore, the range of methylene blue adsorption performance is preferably 250 to 500 ml / g, more preferably 280 to 500 ml / g. However, the higher the value of the methylene blue adsorption performance, the better. Therefore, there is no problem in using activated carbon having a methylene blue adsorption performance of more than 500 ml / g.
通常、水処理等で用いられる活性炭の諸物性は、ヨウ素吸着性能が1200mg/g以下であり、メチレンブルー吸着性能が200ml/g以下である(「活性炭の応用技術」、監修 立本英樹、安部邦夫、発行所 株式会社テクノシステム、発行日 2000年7月25日、第409頁、第555頁参照)ことから、本発明で使用する活性炭のこれらの物性値は、通常の活性炭の値よりも極めて高いものである。このことは、大きな細孔と小さな細孔とが分布していることに起因している。一般に、ヨウ素吸着性能は小さな細孔の分布の指標(つまり、分子量の小さい化合物の吸着性の指標)であり、メチレンブルー吸着性能は大きな細孔の分布の指標(つまり、分子量の大きな化合物の吸着性の指標)である。 Normally, the physical properties of activated carbon used in water treatment have iodine adsorption performance of 1200 mg / g or less and methylene blue adsorption performance of 200 ml / g or less (“Applied technology of activated carbon”, supervised by Hideki Tachimoto, Kunio Abe. , Issued by Techno System Co., Ltd., July 25, 2000, pages 409 and 555), these physical properties of the activated carbon used in the present invention are much higher than those of ordinary activated carbon. It is expensive. This is because large pores and small pores are distributed. In general, iodine adsorption performance is an indicator of small pore distribution (that is, an index of adsorptivity of a compound having a low molecular weight), and methylene blue adsorption performance is an indicator of distribution of a large pore (that is, an adsorptivity of a compound having a large molecular weight). Index).
上述のヨウ素吸着性能及びメチレンブルー吸着性能を満足する活性炭としては、例えばヤシ殻、石炭、木質材等を原料にした水蒸気賦活活性炭が挙げられる。この場合、賦活の条件を適切に制御することや、造粒の条件を適切に制御することで、上述の物性値が満たされるようになる。なお、活性炭の形状は、粉末、粒状又は繊維状でもよく、あるいは成形体であってもよい。上述の物性値を満足する活性炭として市販品を用いることも可能である。そのような市販品としては、例えばユニチカ株式会社から入手可能な活性炭であるユニチカ活性炭繊維 アドールA−20(商品名)や味の素ファインテクノから入手可能な活性炭である液相用活性炭CL−KP(商品名)等が挙げられる。 Examples of the activated carbon that satisfies the iodine adsorption performance and methylene blue adsorption performance described above include water vapor activated activated carbon using coconut shell, coal, wood material, or the like as a raw material. In this case, the above-described physical property values are satisfied by appropriately controlling the activation conditions and appropriately controlling the granulation conditions. The activated carbon may be in the form of powder, granules or fibers, or may be a molded body. It is also possible to use a commercial product as activated carbon that satisfies the above physical property values. Examples of such commercially available products include unitica activated carbon fiber Adol A-20 (trade name), which is activated carbon available from Unitika Ltd., and liquid phase activated carbon CL-KP (product), which is activated carbon available from Ajinomoto Fine Techno. Name).
上述の活性炭と、アルケニルセフェム化合物とを接触させる方法に特に制限はない。例えばアルケニルセフェム化合物の水溶液中に、上述の活性炭を添加する方法や、逆に上述の活性炭にアルケニルセフェム化合物の水溶液を添加する方法を採用することができる。あるいは、上述の活性炭をカラムに充填し、アルケニルセフェム化合物の水溶液をポンプ等でカラム送液し、カラム内を通過させ、更にカラム内を複数回循環させる方法や、フィルター等の成形体に活性炭を含有させたものに、アルケニルセフェム化合物の水溶液を接触させる方法を採用することもできる。活性炭の量とアルケニルセフェム化合物の量との比率に特に制限はないが、例えば、水溶液中に含まれるアルケニルセフェム化合物100重量部に対して、活性炭を0.1〜3重量部、特に0.5〜2重量部接触させることが、Z体のロス率を少なくでき、かつE体とフェニル酢酸を効率良く除去できる点から好ましい。 There is no restriction | limiting in particular in the method of making the above-mentioned activated carbon and an alkenyl cephem compound contact. For example, a method of adding the above-mentioned activated carbon to an aqueous solution of an alkenyl cephem compound, or a method of adding an aqueous solution of an alkenyl cephem compound to the above-mentioned activated carbon can be employed. Alternatively, the above-mentioned activated carbon is packed in a column, and an aqueous solution of the alkenyl cephem compound is fed to the column with a pump or the like, passed through the column, and further circulated through the column a plurality of times, or activated carbon is applied to a molded body such as a filter. A method in which an aqueous solution of the alkenyl cephem compound is brought into contact with the contained one can also be adopted. The ratio between the amount of activated carbon and the amount of alkenyl cephem compound is not particularly limited. For example, 0.1 to 3 parts by weight of activated carbon, particularly 0.5 to 0.5 parts by weight with respect to 100 parts by weight of alkenyl cephem compound contained in the aqueous solution. It is preferable to make contact with 2 parts by weight because the loss rate of the Z form can be reduced and the E form and phenylacetic acid can be efficiently removed.
上述の活性炭と、アルケニルセフェム化合物とを接触させる条件にも特に制限はない。例えば接触時の温度は、0〜20℃とすることができる。接触時の温度をこの範囲内にすることで、Z体のロス率を少なくでき、かつE体とフェニル酢酸を効率よく除去できるので好ましい。接触時間は、接触時の温度が上述の範囲であることを条件として、0.5〜3時間、特に1〜2時間であることが好ましい。両者を接触させている間、反応系を攪拌状態にしておいてもよく、あるいは静置状態にしておいてもよい。 There are no particular restrictions on the conditions under which the activated carbon is brought into contact with the alkenyl cephem compound. For example, the temperature at the time of contact can be 0-20 degreeC. By making the temperature at the time of contact within this range, the loss rate of the Z form can be reduced, and the E form and phenylacetic acid can be efficiently removed, which is preferable. The contact time is preferably 0.5 to 3 hours, particularly 1 to 2 hours, provided that the temperature at the time of contact is in the above range. While the two are in contact with each other, the reaction system may be in a stirred state or may be left in a stationary state.
以上の方法は、1回のみ行ってよく、あるいはZ体の純度を高める目的で2回以上の複数回繰り返して行ってもよい。 The above method may be performed only once, or may be repeated two or more times for the purpose of increasing the purity of the Z form.
以上の操作によって、Z体及びE体を含むアルケニルセフェム化合物から、E体が選択的に活性炭に吸着除去され、Z体の含有率が高まる。その後は活性炭と処理液とを分離し、処理液に塩酸、硝酸、硫酸等の酸(アルカリで水溶性にした場合)、又は水酸化ナトリウム等のアルカリ(鉱酸で水溶性にした場合)を加えて液のpHを3.8〜4.8の弱酸性領域に調整して、式(2)で表される化合物の結晶を沈殿させる。得られた結晶を、濾別や遠心分離によって分離し、水及びメタノール等の有機溶媒によって洗浄する。処理液のpHを上述の範囲に調整し、その範囲のpHにおいて式(2)で表される化合物を析出させることによって、高純度でかつ高収率で目的物を回収することができる。 By the above operation, the E form is selectively adsorbed and removed from the alkenyl cephem compound including the Z form and the E form by activated carbon, and the content of the Z form is increased. After that, the activated carbon and the treatment liquid are separated, and acid such as hydrochloric acid, nitric acid, sulfuric acid (when made water-soluble with alkali) or alkali such as sodium hydroxide (when made water-soluble with mineral acid) is added to the treatment liquid. In addition, the pH of the liquid is adjusted to a weakly acidic region of 3.8 to 4.8 to precipitate crystals of the compound represented by formula (2). The obtained crystals are separated by filtration or centrifugation, and washed with water and an organic solvent such as methanol. By adjusting the pH of the treatment liquid to the above range and precipitating the compound represented by the formula (2) in the pH within the range, the target product can be recovered with high purity and high yield.
上述の析出操作によって式(2)で表される化合物を回収するに先立ち、活性炭で処理された処理液中に含まれているフェニル酢酸を除去し、式(2)で表される化合物の純度を更に高める操作を行ってもよい。具体的には、活性炭と処理液とを分離し、処理液に酸(アルカリで水溶性にした場合)又はアルカリ(鉱酸で水溶性にした場合)を加えて液のpHを好ましくは2以下、更に好ましくは1以下にし、有機溶媒を用いてこの水溶液からフェニル酢酸を溶媒抽出する。溶媒抽出を複数回繰り返すことで、処理液中のフェニル酢酸の濃度が次第に低下する。 Prior to recovering the compound represented by formula (2) by the above-described precipitation operation, phenylacetic acid contained in the treatment liquid treated with activated carbon is removed, and the purity of the compound represented by formula (2) is obtained. You may perform operation which raises further. Specifically, the activated carbon and the treatment liquid are separated, and an acid (when made water-soluble with alkali) or alkali (when made water-soluble with mineral acid) is added to the treatment liquid, and the pH of the liquid is preferably 2 or less More preferably, the solvent is extracted from this aqueous solution using an organic solvent. By repeating the solvent extraction a plurality of times, the concentration of phenylacetic acid in the treatment liquid gradually decreases.
溶媒抽出に用いられる有機溶媒としては、(イ)低級カルボン酸の低級アルキルエステル類、(ロ)ケトン類、(ハ)エーテル類、(ニ)置換又は非置換の芳香族炭化水素類、(ホ)ハロゲン化炭化水素類、(ヘ)脂肪族炭化水素類、(ト)シクロアルカン類がある。これらの有機溶媒は、単独で又は2種以上を組み合わせて用いることができる。(イ)の低級カルボン酸の低級アルキルエステル類としては、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル等が挙げられる。(ロ)のケトン類としては、メチルプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、ジエチルケトン等が挙げられる。(ハ)のエーテル類としては、ジエチルエーテル、エチルプロピルエーテル、エチルブチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、メチルセロソルブ、ジメトキシエタン等が挙げられる。(ニ)の置換又は非置換の芳香族炭化水素類としては、ベンゼン、トルエン、キシレン、クロロベンゼン、アニソール等が挙げられる。(ホ)のハロゲン化炭化水素類としては、ジクロロメタン、クロロホルム、ジクロロエタン、トリクロロエタン、ジブロモエタン、プロピレンジクロライド、四塩化炭素等が挙げられる。(ヘ)の脂肪族炭化水素類ペンタン、ヘキサン、ヘプタン、オクタン等が挙げられる。(ト)のシクロアルカン類としては、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン等が挙げられる。 Organic solvents used for solvent extraction include (a) lower alkyl esters of lower carboxylic acids, (b) ketones, (c) ethers, (d) substituted or unsubstituted aromatic hydrocarbons, (e) ) Halogenated hydrocarbons, (f) aliphatic hydrocarbons, and (g) cycloalkanes. These organic solvents can be used alone or in combination of two or more. Examples of the lower alkyl esters of the lower carboxylic acid (i) include methyl formate, ethyl formate, propyl formate, butyl formate, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl propionate, and ethyl propionate. . Examples of (b) ketones include methyl propyl ketone, methyl butyl ketone, methyl isobutyl ketone, and diethyl ketone. Examples of (iii) ethers include diethyl ether, ethyl propyl ether, ethyl butyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, methyl cellosolve, dimethoxyethane and the like. Examples of the substituted or unsubstituted aromatic hydrocarbons of (d) include benzene, toluene, xylene, chlorobenzene, anisole and the like. Examples of the halogenated hydrocarbons of (e) include dichloromethane, chloroform, dichloroethane, trichloroethane, dibromoethane, propylene dichloride, carbon tetrachloride and the like. (F) Aliphatic hydrocarbons pentane, hexane, heptane, octane and the like. Examples of (g) cycloalkanes include cyclopentane, cyclohexane, cycloheptane, cyclooctane and the like.
以上の溶媒抽出を複数回行うことで、処理液中のフェニル酢酸の濃度を好適には0.1重量%以下にまで低減させることが可能となる。溶媒抽出の後は、処理液に炭酸水素ナトリウム等のアルカリを加えて等電点沈殿を行い、結晶を析出させ、これを回収する。 By performing the above solvent extraction a plurality of times, the concentration of phenylacetic acid in the treatment liquid can be suitably reduced to 0.1% by weight or less. After the solvent extraction, an alkali such as sodium hydrogen carbonate is added to the treatment liquid and isoelectric point precipitation is performed to precipitate crystals, which are collected.
本発明において、出発物質として用いられるアルケニルセフェム化合物は、例えば下記式(3)で表される7−置換アシルアミノ−3−[(E/Z)−2−(4−メチルチアゾール−5−イル)ビニル]−3−セフェム−4−カルボン酸の塩を酵素反応に付して7位アミド結合の脱保護反応を行うことで得られる。この塩は水溶性であればその種類に特に制限はない。水溶性の塩としては例えばアルカリ金属塩やアンモニウム塩が挙げられる。 In the present invention, an alkenylcephem compound used as a starting material is, for example, a 7-substituted acylamino-3-[(E / Z) -2- (4-methylthiazol-5-yl) represented by the following formula (3). It is obtained by subjecting a salt of vinyl] -3-cephem-4-carboxylic acid to an enzyme reaction to deprotect the 7-position amide bond. If this salt is water-soluble, there will be no restriction | limiting in particular in the kind. Examples of water-soluble salts include alkali metal salts and ammonium salts.
前記の酵素反応の溶媒としては、酵素活性を最大限に引き出す観点から水を用いることが好ましい。酵素反応のpHは、酵素の活性に影響を及ぼす要因となる。酵素の種類にもよるが、この観点からpHを7.5〜8.5に維持することが好ましい。pHの維持には各種のアルカリ水溶液、例えば水酸化ナトリウムや水酸化カリウム等のアルカリ金属水酸化物;炭酸水素ナトリウム等のアルカリ金属炭酸水素塩;炭酸ナトリウムや炭酸カリウム等のアルカリ金属炭酸塩等の水溶液を用いることができる。酵素反応の温度も、酵素の活性に影響を及ぼす要因となる。酵素の種類にもよるが、この観点から反応系の温度を25〜35℃に維持することが好ましい。反応時間は本発明において臨界的でない。一般に式(3)で表される化合物が反応系から消失するまで反応を行えばよい。前記のpH及び温度の範囲であることを条件として、反応時間は一般に1〜3時間とすることができる。 As the solvent for the enzyme reaction, water is preferably used from the viewpoint of maximizing enzyme activity. The pH of the enzyme reaction is a factor that affects the activity of the enzyme. Although depending on the type of enzyme, it is preferable to maintain the pH at 7.5 to 8.5 from this viewpoint. Various alkali aqueous solutions, for example, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkali metal hydrogen carbonates such as sodium hydrogen carbonate; alkali metal carbonates such as sodium carbonate and potassium carbonate; An aqueous solution can be used. The temperature of the enzyme reaction is also a factor that affects the activity of the enzyme. Although depending on the type of enzyme, the temperature of the reaction system is preferably maintained at 25 to 35 ° C. from this viewpoint. The reaction time is not critical in the present invention. In general, the reaction may be carried out until the compound represented by the formula (3) disappears from the reaction system. In general, the reaction time can be 1 to 3 hours, provided that the pH and temperature are within the above ranges.
使用する酵素としては従来公知のペニシリンGアシラーゼを特に制限なく用いることができる。例えばベーリンガーマンハイム社製のペニシリンGアミダーゼPGA−150、PGA−300、PGA−450;ダラス・バイオテック・リミテッド社製のペニシリンGアシラーゼ;ロシュ・モレキュラー・バイオケミカルズ社製のペニシリンGアミダーゼ;湖南福来格生物技術有限公司のIPA−750;アトラス・バイオロジクス社製のSynthaCLEC−PA等を用いることができる。 As the enzyme to be used, a conventionally known penicillin G acylase can be used without particular limitation. For example, Penicillin G amidase PGA-150, PGA-300, PGA-450 manufactured by Boehringer Mannheim; Penicillin G acylase manufactured by Dallas Biotech Limited; Penicillin G amidase manufactured by Roche Molecular Biochemicals; Biological Technology Co., Ltd. IPA-750; Atlas Biologics Co., Ltd. SynthaCLEC-PA, etc. can be used.
酵素の使用量は、その種類にもよるが、式(3)で表される化合物100重量部に対して0.3〜1.5重量部、特に0.5〜1重量部であることが好ましい。 The amount of the enzyme used depends on the type, but is 0.3 to 1.5 parts by weight, particularly 0.5 to 1 part by weight, based on 100 parts by weight of the compound represented by formula (3). preferable.
以上の酵素反応によって、アルケニルセフェム化合物の塩が得られる。この酵素反応においては、式(3)で表される化合物における7位のアミド保護基の脱保護によってフェニル酢酸又はその誘導体(以下、これらを総称して「フェニル酢酸類」という)が副生成物として生成する。このフェニル酢酸等は、本製造方法の目的物であるZ体の含有率が高い7−アミノ−3−[2−(4−メチルチアゾール−5−イル)ビニル]−3−セフェム−4−カルボン酸に対する不純物であることから、その存在を極力排除する必要がある。この目的のために本発明者らが鋭意検討したところ、意外にも、上述の活性炭を、強酸性領域においてアルケニルセフェム化合物と接触させることで、該活性炭によってE体が吸着除去されるのと同時に、フェニル酢酸類も吸着されることが判明した。この点からも、本発明の方法は従来技術の方法に比較して優位なものである。 The salt of an alkenyl cephem compound is obtained by the above enzyme reaction. In this enzymatic reaction, phenylacetic acid or a derivative thereof (hereinafter collectively referred to as “phenylacetic acids”) is a by-product by deprotection of the amide protecting group at the 7-position in the compound represented by formula (3) Generate as This phenylacetic acid or the like is a 7-amino-3- [2- (4-methylthiazol-5-yl) vinyl] -3-cephem-4-carboxylic acid having a high content of Z form, which is an object of this production method. Since it is an impurity for acid, it is necessary to eliminate its existence as much as possible. For the purpose, the present inventors diligently studied. Surprisingly, when the activated carbon is brought into contact with the alkenyl cephem compound in the strongly acidic region, the E-form is adsorbed and removed by the activated carbon. It was also found that phenylacetic acids were also adsorbed. Also from this point, the method of the present invention is superior to the method of the prior art.
このように、本発明においては、式(3)で表される化合物の塩を酵素反応に付して7位アミド結合の脱保護反応を行うことで生成した、該脱保護反応の副生成物であるフェニル酢酸又はその誘導体を含んだアルケニルセフェム化合物を原料として用いることが好適である。 Thus, in the present invention, a by-product of the deprotection reaction produced by subjecting the salt of the compound represented by the formula (3) to an enzyme reaction to deprotect the amide bond at the 7-position. It is preferable to use an alkenylcephem compound containing phenylacetic acid or a derivative thereof as a raw material.
上述の活性炭によってフェニル酢酸類を効率的に除去するためには、水溶液のpHを強酸性領域である0.5〜1.7、特に0.8〜1.4に設定することが好ましい。この観点から、アルケニルセフェム化合物は、その鉱酸塩の形で水溶液に存在させ、水溶液を強酸性領域とすることが好適である。 In order to efficiently remove phenylacetic acids with the above-mentioned activated carbon, it is preferable to set the pH of the aqueous solution to 0.5 to 1.7, particularly 0.8 to 1.4, which is a strongly acidic region. From this viewpoint, it is preferable that the alkenyl cephem compound is present in the aqueous solution in the form of a mineral salt thereof, and the aqueous solution is in a strongly acidic region.
式(3)で表される化合物は、公知の方法で合成することができる。例えば、下記式(4)で表される7−置換アシルアミノ−3−[(E/Z)−2−(4−メチルチアゾール−5−イル)ビニル]−3−セフェム−4−カルボン酸化合物に、4位カルボン酸保護基の脱保護反応を行うことで、式(3)で表される化合物を得ることができる。脱保護反応としては、β−ラクタム化合物におけるカルボン酸保護基の脱保護反応として公知である種々の方法を採用することができる。例えば、特開平61−263984号公報に記載されている、フェノール類中での脱保護反応を採用することができる。 The compound represented by formula (3) can be synthesized by a known method. For example, a 7-substituted acylamino-3-[(E / Z) -2- (4-methylthiazol-5-yl) vinyl] -3-cephem-4-carboxylic acid compound represented by the following formula (4) A compound represented by the formula (3) can be obtained by deprotecting the 4-position carboxylic acid protecting group. As a deprotection reaction, various methods known as a deprotection reaction of a carboxylic acid protecting group in a β-lactam compound can be employed. For example, the deprotection reaction in phenols described in JP-A No. 61-263984 can be employed.
式(4)中、R2で表されるカルボン酸保護基としては、例えば電子供与性基で置換されていてもよいベンジル基や、電子供与性基で置換されていてもよいジフェニルメチル基等が挙げられる。電子供与性基としては、例えば炭素数1〜6のアルキル基;ヒドロキシ基、炭素数1〜6のアルコキシ基等が挙げられる。 In the formula (4), examples of the carboxylic acid protecting group represented by R 2 include a benzyl group optionally substituted with an electron donating group, a diphenylmethyl group optionally substituted with an electron donating group, and the like. Is mentioned. Examples of the electron donating group include an alkyl group having 1 to 6 carbon atoms; a hydroxy group, and an alkoxy group having 1 to 6 carbon atoms.
以上、本発明をその好ましい実施形態に基づき説明したが、本発明は前記実施形態に制限されず、当業者の通常の創作能力の範囲内での適宜の改変は、本発明の範囲に属するものである。 The present invention has been described above based on the preferred embodiments. However, the present invention is not limited to the above-described embodiments, and appropriate modifications within the scope of ordinary creation ability of those skilled in the art belong to the scope of the present invention. It is.
以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り、「%」は「重量%」を意味する。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such examples. Unless otherwise specified, “%” means “% by weight”.
実施例及び比較例を説明するに先立ち、使用した分析方法について説明する。分析には高速液体クロマトグラフィ(HPLC)を用いた。その詳細は以下のとおりである。
・カラム:Unison UK−C18、3μm、250mm×4.6mm
・カラム温度:30℃
・移動相(体積比):アセトニトリル13%、10mMへプタンスルホン酸ナトリウム水溶液87%
・流量:0.8ml/min
・検出波長:254nm
・注入量:10μL
・Z体保持時間:29.0〜30.0分
・E体保持時間:31.0〜32.0分
・E体含有量:E体面積値/(Z体面積値+E体面積値)×100(%)
Prior to describing the examples and comparative examples, the analysis method used will be described. High performance liquid chromatography (HPLC) was used for the analysis. The details are as follows.
Column: Unison UK-C18, 3 μm, 250 mm × 4.6 mm
-Column temperature: 30 ° C
Mobile phase (volume ratio): acetonitrile 13%, 10 mM sodium heptanesulfonate aqueous solution 87%
・ Flow rate: 0.8ml / min
・ Detection wavelength: 254 nm
・ Injection volume: 10 μL
-Z body retention time: 29.0-30.0 minutes-E body retention time: 31.0-32.0 minutes-E body content: E body area value / (Z body area value + E body area value) x 100 (%)
フェニル酢酸の含有量の分析方法は以下のとおりである。
・カラム:SUPELCO ODS HYPERSIL 5μm 250×4.6mm
・カラム温度:25℃
・移動相(体積比):アセトニトリル20%、50mMリン酸二水素カリウム80%
・流量:1.0ml/min
・検出波長:225nm
・注入量:10μL
・Z体+E体保持時間:2.5〜3.5分
・フェニル酢酸保持時間:8.5〜9.5分
・フェニル酢酸含有量計算式
〔フェニル酢酸面積値/((Z+E)体面積値+フェニル酢酸面積値)〕×100(%)
The method for analyzing the content of phenylacetic acid is as follows.
Column: SUPELCO ODS HYPERSIL 5 μm 250 × 4.6 mm
-Column temperature: 25 ° C
Mobile phase (volume ratio): acetonitrile 20%, 50 mM potassium dihydrogen phosphate 80%
・ Flow rate: 1.0ml / min
・ Detection wavelength: 225 nm
・ Injection volume: 10 μL
-Z-form + E-form retention time: 2.5-3.5 minutes-Phenylacetic acid retention time: 8.5-9.5 minutes-Phenylacetic acid content calculation formula [Phenylacetic acid area value / ((Z + E) form Area value + phenylacetic acid area value)] x 100 (%)
〔実施例1〕
(1)第1工程
下記式(5)で表される化合物(E体の含有率3.5%)を10.0g四口フラスコにはかり取り、6%炭酸水素ナトリウム水溶液240gを加えてナトリウム塩の水溶液となした。この水溶液に、ペニシリン−Gアシラーゼ酵素(PGA−450、Dalas Biotech Limited製)を7.0g添加した。液温25〜30℃の5%炭酸ナトリウム水溶液を添加して、pHを7.7〜8.5に制御しながら式(5)で表される化合物のナトリウム塩の7位脱保護反応を2時間行った。反応終了後、溶液中にE体を3.5%含有する下記式(6)で表される化合物のナトリウム塩が7.0g含まれていた。また、フェニル酢酸が16.6%含まれていた。
[Example 1]
(1) First step A compound represented by the following formula (5) (content of E form: 3.5%) is weighed into a 10.0 g four-necked flask, and 240 g of 6% aqueous sodium hydrogen carbonate solution is added to the sodium salt. It became an aqueous solution. To this aqueous solution was added 7.0 g of penicillin-G acylase enzyme (PGA-450, manufactured by Dalas Biotech Limited). A 7-position deprotection reaction of the sodium salt of the compound represented by the formula (5) is performed while adding a 5% aqueous sodium carbonate solution at a liquid temperature of 25 to 30 ° C. and controlling the pH to 7.7 to 8.5. Went for hours. After completion of the reaction, 7.0 g of a sodium salt of a compound represented by the following formula (6) containing 3.5% of E form in the solution was contained. Moreover, 16.6% of phenylacetic acid was contained.
(2)第2工程
第1工程に引き続き、酵素を濾別し、液温を20℃以下に保ちながら濃塩酸でpH0.9に調整した。これによって式(6)で表される化合物の塩酸塩の水溶液を得た。次いで、この水溶液に活性炭(ユニチカ株式会社製のユニチカ活性炭繊維 アドールA−20(商品名))を6.2g添加し、1時間静置した。この活性炭は、JIS K−1474に従い測定されたヨウ素吸着性能が1580mg/gであり、メチレンブルー吸着性能が310ml/gであった。その後、活性炭を濾別し、水溶液に1Nの水酸化ナトリウム水溶液を加えてpH4.3に調整し、1時間熟成した。この熟成によって式(1)で表される化合物の結晶が析出した。析出した結晶を濾集し、水及びメタノールで結晶を洗浄、乾燥した。得られた結晶の分析結果は以下のとおりであった。
・Z体収率:92.0%
・E体含有量:0.28%
・フェニル酢酸含有量(活性炭濾別後):3.9%
1H−NMR(D2O/DCl) ppm from TSP
2.52(s、3H、CH3)、3.56〜3.60(d、1H、S−CH(H)、18.3Hz)、3.75〜3.78(d、1H、S−CH(H)、18.6Hz)、5.25〜5.26(d、1H、S−CH、5.2Hz)、5.44〜5.45(d、1H、N−CH、5.2Hz)、6.78(s、2H、CH=CH)、9.78(s、1H、S−CH=N)
(2) Second Step Following the first step, the enzyme was filtered off and adjusted to pH 0.9 with concentrated hydrochloric acid while keeping the liquid temperature at 20 ° C. or lower. This obtained the aqueous solution of hydrochloride of the compound represented by Formula (6). Next, 6.2 g of activated carbon (Unitika activated carbon fiber Adol A-20 (trade name) manufactured by Unitika Ltd.) was added to this aqueous solution and allowed to stand for 1 hour. The activated carbon had an iodine adsorption performance measured in accordance with JIS K-1474 of 1580 mg / g and a methylene blue adsorption performance of 310 ml / g. Thereafter, the activated carbon was filtered off, and a 1N aqueous sodium hydroxide solution was added to the aqueous solution to adjust the pH to 4.3, followed by aging for 1 hour. By this aging, crystals of the compound represented by the formula (1) were precipitated. The precipitated crystals were collected by filtration, washed with water and methanol, and dried. The analysis result of the obtained crystal was as follows.
-Z body yield: 92.0%
-E body content: 0.28%
-Phenylacetic acid content (after activated carbon filtration): 3.9%
1 H-NMR (D 2 O / DCl) ppm from TSP
2.52 (s, 3H, CH 3 ), 3.56~3.60 (d, 1H, S-CH (H), 18.3Hz), 3.75~3.78 (d, 1H, S- CH (H), 18.6 Hz), 5.25-5.26 (d, 1H, S-CH, 5.2 Hz), 5.44-5.45 (d, 1H, N-CH, 5.2 Hz) ), 6.78 (s, 2H, CH = CH), 9.78 (s, 1H, S-CH = N)
〔実施例2〕
実施例1の第1工程において、式(5)で表される化合物においてE体の含有率が4.6%のものを用い、実施例1と同様にして第1工程を行った。反応終了後、溶液中にE体を4.6%含有する式(6)の化合物のナトリウム塩が7.0g含まれていた。また、フェニル酢酸が16.7%含まれていた。その後、酵素
酵素を濾別し、第2工程を行った。第2工程においては、液温を20℃以下に保ちながら濃塩酸でpH0.9に調整した。これによって式(6)で表される化合物の塩酸塩の水溶液を得た。次いで、この水溶液に活性炭(味の素ファインテクノ製のCL−KP(商品名))を5.6g添加し、1時間攪拌した。この活性炭のヨウ素吸着性能は1620mg/gであり、メチレンブルー吸着性能は280ml/gであった。その後、活性炭を濾別し、水溶液に1Nの水酸化ナトリウム水溶液を加えてpH4.3に調整し、1時間熟成した。この熟成によって式(1)で表される化合物の結晶が析出した。析出した結晶を濾集し、水及びメタノールで結晶を洗浄、乾燥した。これら以外は実施例1と同様にした。得られた結晶の分析結果は以下のとおりであった。
・Z体収率:91.9%
・E体含有量:0.25%
・フェニル酢酸含有量(活性炭濾別後):3.9%
[Example 2]
In the first step of Example 1, the first step was performed in the same manner as in Example 1 except that the compound represented by formula (5) had an E-form content of 4.6%. After completion of the reaction, 7.0 g of the sodium salt of the compound of the formula (6) containing 4.6% of E isomer was contained in the solution. Moreover, 16.7% of phenylacetic acid was contained. Thereafter, the enzyme enzyme was filtered off and the second step was performed. In the second step, the pH was adjusted to 0.9 with concentrated hydrochloric acid while keeping the liquid temperature at 20 ° C. or lower. This obtained the aqueous solution of hydrochloride of the compound represented by Formula (6). Next, 5.6 g of activated carbon (CL-KP (trade name) manufactured by Ajinomoto Fine-Techno) was added to this aqueous solution and stirred for 1 hour. The activated carbon had an iodine adsorption performance of 1620 mg / g and a methylene blue adsorption performance of 280 ml / g. Thereafter, the activated carbon was filtered off, and a 1N aqueous sodium hydroxide solution was added to the aqueous solution to adjust the pH to 4.3, followed by aging for 1 hour. By this aging, crystals of the compound represented by the formula (1) were precipitated. The precipitated crystals were collected by filtration, washed with water and methanol, and dried. The rest was the same as in Example 1. The analysis result of the obtained crystal was as follows.
-Z body yield: 91.9%
-E body content: 0.25%
-Phenylacetic acid content (after activated carbon filtration): 3.9%
〔実施例3〕
実施例2の第1工程において、式(5)で表される化合物においてE体の含有率が3.5%のものを用い、実施例2と同様にして第1工程を行った。反応終了後、溶液中にE体を3.5%含有する式(6)の化合物のナトリウム塩が7.0g含まれていた。また、フェニル酢酸が16.7%含まれていた。次いで、実施例2の第2工程において濃塩酸の代わりに15%硫酸を用いた。これら以外は実施例2と同様にして式(1)で表される化合物の結晶を得た。これら以外は実施例2と同様にした。得られた結晶の分析結果は以下のとおりであった。
・Z体収率:93.3%
・E体含有量:0.15%
・フェニル酢酸含有量(活性炭濾別後):4.1%
Example 3
In the first step of Example 2, the first step was performed in the same manner as in Example 2 using the compound represented by formula (5) having an E-form content of 3.5%. After completion of the reaction, 7.0 g of the sodium salt of the compound of formula (6) containing 3.5% of E form in the solution was contained. Moreover, 16.7% of phenylacetic acid was contained. Next, 15% sulfuric acid was used in place of concentrated hydrochloric acid in the second step of Example 2. Except for these, crystals of the compound represented by the formula (1) were obtained in the same manner as in Example 2. The rest was the same as in Example 2. The analysis result of the obtained crystal was as follows.
-Z body yield: 93.3%
-E body content: 0.15%
・ Phenylacetic acid content (after activated carbon filtration): 4.1%
〔実施例4〕
実施例2の第1工程において、式(5)で表される化合物においてE体の含有率が3.5%のものを用い、実施例2と同様にして第1工程を行った。反応終了後、溶液中にE体を3.5%含有する式(6)の化合物のナトリウム塩が7.0g含まれていた。また、フェニル酢酸が16.7%含まれていた。この水溶液のpHは7.7〜8.5の間であった。次いで、この水溶液に実施例2で用いた活性炭と同様のものを4.6g添加し、20℃に保ちながら1時間撹拌した。その後、活性炭を濾別し、水溶液に3Nの塩酸を加えてpH 4.3に調整し、1時間熟成した。この熟成によって式(1)で表される化合物の結晶が析出した。析出した結晶を濾集し、水及びメタノールで結晶を洗浄、乾燥した。これら以外は実施例2と同様にした。得られた結晶の分析結果は以下のとおりであった。本実施例においては、活性炭を作用させるときの水溶液のpHがアルカリ域であることに起因して、フェニル酢酸の含有量が実施例2よりも高くなった。
・Z体収率:92.5%
・E体含有量:0.20%
・フェニル酢酸含有量(活性炭濾別後):17.0%
Example 4
In the first step of Example 2, the first step was performed in the same manner as in Example 2 using the compound represented by formula (5) having an E-form content of 3.5%. After completion of the reaction, 7.0 g of the sodium salt of the compound of formula (6) containing 3.5% of E form in the solution was contained. Moreover, 16.7% of phenylacetic acid was contained. The pH of this aqueous solution was between 7.7 and 8.5. Next, 4.6 g of the same activated carbon used in Example 2 was added to this aqueous solution, and the mixture was stirred for 1 hour while maintaining at 20 ° C. Thereafter, the activated carbon was filtered off, and 3N hydrochloric acid was added to the aqueous solution to adjust to pH 4.3, followed by aging for 1 hour. By this aging, crystals of the compound represented by the formula (1) were precipitated. The precipitated crystals were collected by filtration, washed with water and methanol, and dried. The rest was the same as in Example 2. The analysis result of the obtained crystal was as follows. In this example, the content of phenylacetic acid was higher than in Example 2 due to the pH of the aqueous solution when activated carbon was in the alkaline range.
-Z body yield: 92.5%
-E body content: 0.20%
-Phenylacetic acid content (after activated carbon filtration): 17.0%
〔実施例5〕
実施例2の第1工程において、式(5)で表される化合物においてE体の含有率が3.5%のものを用い、実施例1と同様にして第1工程を行った。反応終了後、溶液中にE体を3.5%含有する式(6)の化合物のナトリウム塩が7.0g含まれていた。また、フェニル酢酸が16.8%含まれていた。次いで、実施例2の第2工程と同様の操作を行った。ただし、活性炭の使用量は4.6gとした。これら以外は実施例2と同様にして式(1)で表される化合物の結晶を得た。得られた結晶の分析結果は以下のとおりであった。
・Z体収率:93.7%
・E体含有量:0.12%
・フェニル酢酸含有量(活性炭濾別後):4.0%
Example 5
In the first step of Example 2, the first step was performed in the same manner as in Example 1 except that the compound represented by formula (5) had an E-form content of 3.5%. After completion of the reaction, 7.0 g of the sodium salt of the compound of formula (6) containing 3.5% of E form in the solution was contained. Further, 16.8% of phenylacetic acid was contained. Subsequently, the same operation as the 2nd process of Example 2 was performed. However, the amount of activated carbon used was 4.6 g. Except for these, crystals of the compound represented by the formula (1) were obtained in the same manner as in Example 2. The analysis result of the obtained crystal was as follows.
-Z body yield: 93.7%
-E body content: 0.12%
-Phenylacetic acid content (after activated carbon filtration): 4.0%
〔比較例1〕
実施例1の第1工程と同様の操作を行った。反応終了後、溶液中にE体を3.5%含有する式(6)の化合物のナトリウム塩が6.9g含まれていた。また、フェニル酢酸が16.7%含まれていた。次いで、実施例1の第2工程と同様の操作を行った。ただし、活性炭として、味の素ファインテクノ製のCL−H(商品名)を用いた。この活性炭は、JIS K−1474に従い測定されたヨウ素吸着性能が980mg/gであり、メチレンブルー吸着性能が180ml/gであった。この活性炭の使用量は4.6gとした。これら以外は実施例1と同様にして式(1)で表される化合物の結晶を得た。得られた結晶の分析結果は以下のとおりであった。また、フェニル酢酸含有量は6.2%であった。
・Z体収率:94.2%
・E体含有量:3.0%
[Comparative Example 1]
The same operation as in the first step of Example 1 was performed. After completion of the reaction, the solution contained 6.9 g of a sodium salt of the compound of formula (6) containing 3.5% of E form. Moreover, 16.7% of phenylacetic acid was contained. Subsequently, the same operation as the 2nd process of Example 1 was performed. However, CL-H (trade name) manufactured by Ajinomoto Fine Techno was used as the activated carbon. This activated carbon had an iodine adsorption performance measured in accordance with JIS K-1474 of 980 mg / g and a methylene blue adsorption performance of 180 ml / g. The amount of activated carbon used was 4.6 g. Except for these, crystals of the compound represented by the formula (1) were obtained in the same manner as in Example 1. The analysis result of the obtained crystal was as follows. The phenylacetic acid content was 6.2%.
-Z body yield: 94.2%
E content: 3.0%
〔比較例2〕
実施例1の第1工程と同様の操作を行った。反応終了後、溶液中にE体を3.5%含有する式(6)の化合物のナトリウム塩が7.0g含まれていた。また、フェニル酢酸が16.7%含まれていた。次いで、実施例1の第2工程と同様の操作を行った。ただし、活性炭として、味の素ファインテクノ製のBA−WD(商品名)を用いた。この活性炭は、JIS K−1474に従い測定されたヨウ素吸着性能が970mg/gであり、メチレンブルー吸着性能が180ml/gであった。この活性炭の使用量は4.6gとした。これら以外は実施例1と同様にして式(1)で表される化合物の結晶を得た。得られた結晶の分析結果は以下のとおりであった。また、フェニル酢酸含有量は5.8%であった。
・Z体収率:93.0%
・E体含有量:2.8%
[Comparative Example 2]
The same operation as in the first step of Example 1 was performed. After completion of the reaction, 7.0 g of the sodium salt of the compound of formula (6) containing 3.5% of E form in the solution was contained. Moreover, 16.7% of phenylacetic acid was contained. Subsequently, the same operation as the 2nd process of Example 1 was performed. However, BA-WD (trade name) manufactured by Ajinomoto Fine Techno was used as the activated carbon. This activated carbon had an iodine adsorption performance measured according to JIS K-1474 of 970 mg / g and a methylene blue adsorption performance of 180 ml / g. The amount of activated carbon used was 4.6 g. Except for these, crystals of the compound represented by the formula (1) were obtained in the same manner as in Example 1. The analysis result of the obtained crystal was as follows. The phenylacetic acid content was 5.8%.
-Z body yield: 93.0%
-E body content: 2.8%
以上の結果から明らかなように、本発明に従い特定のヨウ素吸着性能及びメチレンブルー吸着性能を有する活性炭を用いることで、E体を選択的に除去することができる。また、フェニル酢酸も除去することができる。 As is clear from the above results, the E-form can be selectively removed by using activated carbon having specific iodine adsorption performance and methylene blue adsorption performance according to the present invention. Phenylacetic acid can also be removed.
Claims (4)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008184328A JP4659074B2 (en) | 2008-07-15 | 2008-07-15 | Method for producing 3-alkenylcephem compound |
CN200910118652.4A CN101628915B (en) | 2008-07-15 | 2009-02-27 | Method for preparing 3-alkenylcephem compounds |
KR1020090064164A KR20100008351A (en) | 2008-07-15 | 2009-07-14 | Method for preparing 3-alkenylcephem compounds |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008184328A JP4659074B2 (en) | 2008-07-15 | 2008-07-15 | Method for producing 3-alkenylcephem compound |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010024148A JP2010024148A (en) | 2010-02-04 |
JP4659074B2 true JP4659074B2 (en) | 2011-03-30 |
Family
ID=41574209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008184328A Expired - Fee Related JP4659074B2 (en) | 2008-07-15 | 2008-07-15 | Method for producing 3-alkenylcephem compound |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP4659074B2 (en) |
KR (1) | KR20100008351A (en) |
CN (1) | CN101628915B (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005343854A (en) * | 2004-06-04 | 2005-12-15 | Meiji Seika Kaisha Ltd | Method for producing 3-alkenylcephem compound |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69427312T2 (en) * | 1993-11-17 | 2001-08-23 | Biochemie Ges.M.B.H., Kundl | Separation of cephalosporin isomers |
-
2008
- 2008-07-15 JP JP2008184328A patent/JP4659074B2/en not_active Expired - Fee Related
-
2009
- 2009-02-27 CN CN200910118652.4A patent/CN101628915B/en not_active Expired - Fee Related
- 2009-07-14 KR KR1020090064164A patent/KR20100008351A/en not_active Application Discontinuation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005343854A (en) * | 2004-06-04 | 2005-12-15 | Meiji Seika Kaisha Ltd | Method for producing 3-alkenylcephem compound |
Also Published As
Publication number | Publication date |
---|---|
KR20100008351A (en) | 2010-01-25 |
CN101628915B (en) | 2014-04-02 |
JP2010024148A (en) | 2010-02-04 |
CN101628915A (en) | 2010-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPWO2011093294A1 (en) | Method for producing cephalosporin derivative | |
US7459550B2 (en) | Process for the preparation of Cefditoren | |
CA2124322C (en) | Process for the purification of a 3-cephem-4-carboxylic acid derivative | |
FR2517308A1 (en) | PROCESS FOR THE PREPARATION OF 3-ALCOXYMETHYLCEPHALOSPORIN DERIVATIVES | |
JP6374503B2 (en) | Process for the preparation of pyrimidinylcyclopentane compounds | |
JP4659074B2 (en) | Method for producing 3-alkenylcephem compound | |
JP4705199B2 (en) | Method for producing 3-alkenylcephem compound | |
TW434317B (en) | Process for producing cefazolin | |
WO2007013043A2 (en) | Processes for the preparation of 7-amino-3-vinyl cephalosporanic acid | |
JP4046708B2 (en) | Method for producing 3-alkenylcephem compound | |
JP4383557B2 (en) | Method for producing 3-cephem compound | |
JP2001294590A (en) | Method for producing 3-vinyl-cephem compound | |
KR101618874B1 (en) | Process for production of 3-alkenylcephem compounds | |
US20080287673A1 (en) | Cefdinir process | |
EP2723882B1 (en) | Process for preparing 3'-thiosubstituted cephalosporins employing a penicillin g acylase | |
US7662955B2 (en) | Process for the preparation of cefoxitin | |
JP5026833B2 (en) | Process for producing optically active (S) -7-hydroxy-6-methylheptan-2-one and its precursor | |
JP4752285B2 (en) | Efficient optical resolution of trifluorolactic acid | |
JP4919421B2 (en) | Process for producing (R) -3-morpholine carboxylic acid | |
EP2723881A2 (en) | Novel crystalline cefoperazone intermediate | |
JP2002053568A (en) | Method for producing amidothiazole acetic acid derivative | |
KR19980032015A (en) | Sephazoline Manufacturing Method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101021 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20101021 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20101102 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101109 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101125 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101214 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101224 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140107 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4659074 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |