JP4637478B2 - Vapor growth equipment - Google Patents

Vapor growth equipment Download PDF

Info

Publication number
JP4637478B2
JP4637478B2 JP2003433187A JP2003433187A JP4637478B2 JP 4637478 B2 JP4637478 B2 JP 4637478B2 JP 2003433187 A JP2003433187 A JP 2003433187A JP 2003433187 A JP2003433187 A JP 2003433187A JP 4637478 B2 JP4637478 B2 JP 4637478B2
Authority
JP
Japan
Prior art keywords
vapor phase
phase growth
susceptor
rotating shaft
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003433187A
Other languages
Japanese (ja)
Other versions
JP2005191414A (en
Inventor
勇吉 高松
義康 石濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP2003433187A priority Critical patent/JP4637478B2/en
Publication of JP2005191414A publication Critical patent/JP2005191414A/en
Application granted granted Critical
Publication of JP4637478B2 publication Critical patent/JP4637478B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

本発明は、半導体膜の気相成長装置に関し、さらに詳細には、基板を載置するサセプタ、基板を加熱するヒータ、原料ガス導入部、反応ガス排出部、及びサセプタを支持するサセプタ回転軸を内蔵する横型あるいは縦型の半導体膜の気相成長装置に関する。   The present invention relates to a semiconductor film vapor phase growth apparatus, and more specifically, a susceptor for mounting a substrate, a heater for heating the substrate, a source gas introduction unit, a reaction gas discharge unit, and a susceptor rotating shaft that supports the susceptor. The present invention relates to a built-in horizontal or vertical semiconductor film vapor phase growth apparatus.

近年、窒化ガリウム系化合物半導体が、発光ダイオードやレーザーダイオード等の素子として、光通信分野を中心に急速に需要が高まっている。窒化ガリウム系化合物半導体の製造方法としては、例えばトリメチルガリウム、トリメチルインジウム、またはトリメチルアルミニウム等の有機金属ガスをIII族金属源として、アンモニアを窒素源として用い、あらかじめ反応室内にセットされたサファイヤ等の基板上に窒化ガリウム系化合物の半導体膜を気相成長させて成膜する方法が知られている。   In recent years, the demand for gallium nitride compound semiconductors has been increasing rapidly as an element such as a light emitting diode or a laser diode, mainly in the optical communication field. As a method for producing a gallium nitride compound semiconductor, for example, an organic metal gas such as trimethylgallium, trimethylindium, or trimethylaluminum is used as a group III metal source, ammonia is used as a nitrogen source, and sapphire or the like is set in a reaction chamber in advance. A method of forming a semiconductor film of a gallium nitride compound on a substrate by vapor growth is known.

また、前記窒化ガリウム系化合物半導体を製造するための装置としては、基板を載置するサセプタ、基板を加熱するヒータ、原料ガス導入部、反応ガス排出部、及びサセプタを支持するサセプタ回転軸を内蔵する横型あるいは縦型の気相成長装置がある。このような気相成長装置においては、基板をサセプタに載せ、ヒータで加熱した後、基板の表面に原料を含むガスを供給するとともに、装置下部の回転駆動器に接続されたサセプタ回転軸を回転させることにより、基板上に半導体膜を均一に気相成長させて成膜する構成となっている。   The apparatus for producing the gallium nitride compound semiconductor includes a susceptor for mounting the substrate, a heater for heating the substrate, a source gas introduction unit, a reaction gas discharge unit, and a susceptor rotating shaft for supporting the susceptor. There are horizontal or vertical vapor phase growth apparatuses. In such a vapor phase growth apparatus, a substrate is placed on a susceptor and heated by a heater, then a gas containing a raw material is supplied to the surface of the substrate, and a susceptor rotating shaft connected to a rotary driver at the bottom of the apparatus is rotated. Thus, a semiconductor film is uniformly grown on the substrate to form a film.

従来から、気相成長装置のサセプタ回転軸の構成材料としては、機械的な強度が高いステンレス鋼が多く用いられてきた。しかし、比較的に高い温度条件(1000℃以上)で気相成長を行なう場合は、短時間の使用でもステンレス鋼がヒータからの伝熱により加熱されて劣化し、そのまま放置すると回転中に偏心を起こすので、頻繁に新規回転軸と交換する必要があった。そのため、例えば、サセプタ回転軸の上部の構成部材に、一般的に耐熱性が優れているとされているカーボンを使用し、下部の構成部材に、ステンレス鋼を使用した気相成長装置が提案されている(実公平6−19570)。
実公平6−19570号公報 特開平3−16122号公報 特開平6−20957号公報
Conventionally, stainless steel having high mechanical strength has been often used as a constituent material of a susceptor rotating shaft of a vapor phase growth apparatus. However, when vapor phase growth is performed under relatively high temperature conditions (1000 ° C. or higher), stainless steel deteriorates due to heat transfer from the heater even when used for a short time, and if left as it is, eccentricity occurs during rotation. Because it happened, it was necessary to replace it with a new rotating shaft frequently. For this reason, for example, a vapor phase growth apparatus has been proposed in which carbon, which is generally considered to have excellent heat resistance, is used for the upper structural member of the susceptor rotating shaft, and stainless steel is used for the lower structural member. (Exact 6-19570).
Japanese Utility Model Publication No. 6-19570 Japanese Patent Laid-Open No. 3-16122 Japanese Patent Laid-Open No. 6-20957

しかしながら、窒化ガリウム系化合物半導体を製造する際、すなわち、原料としてトリメチルガリウム、トリメチルインジウム、トリメチルアルミニウム等と、アンモニア等を用いて気相成長する際には、基板を1000℃以上の高温に加熱する必要があり、また、アンモニア等の腐食性ガスを大量に使用するので、サセプタ回転軸の上部の構成部材としてカーボンを使用しても、徐々に劣化が進行し、表面が粉化、崩壊して回転中に偏心を起こすという不都合が生じた。また、そのほか、ヒータからの熱が、サセプタ回転軸を経由して回転駆動器に伝わり、悪影響を及ぼすという不都合があった。   However, when manufacturing a gallium nitride-based compound semiconductor, that is, when vapor-phase-growing using trimethylgallium, trimethylindium, trimethylaluminum, or the like as a raw material and ammonia, the substrate is heated to a high temperature of 1000 ° C. or higher. In addition, since a large amount of corrosive gas such as ammonia is used, even if carbon is used as the component of the upper part of the susceptor rotating shaft, the deterioration gradually proceeds and the surface is pulverized and collapsed. The inconvenience of causing eccentricity during rotation occurred. In addition, the heat from the heater is transmitted to the rotary driver via the susceptor rotating shaft, which has an inconvenience.

従って、本発明が解決しようとする課題は、窒化ガリウム系化合物半導体の製造において、気相成長温度を高温度に設定するとともに、腐食性ガスとしてアンモニアを大量に使用する気相成長を行なう場合であっても、サセプタ回転軸の劣化、及びヒータからの伝熱による回転駆動器への悪影響を防止することができる気相成長装置を提供することである。 Therefore, the problem to be solved by the present invention is the case where the vapor phase growth temperature is set to a high temperature and the vapor phase growth using a large amount of ammonia as a corrosive gas in the manufacture of the gallium nitride compound semiconductor. Even if it exists, it is providing the vapor phase growth apparatus which can prevent the bad influence to the rotation drive by deterioration of a susceptor rotating shaft and the heat transfer from a heater.

本発明者らは、これらの課題を解決すべく鋭意検討した結果、サセプタ回転軸の上部の構成部材として、窒化物系セラミックス、炭化物系セラミックス、またはホウ化物系セラミックスを用いることにより、さらに好ましくはサセプタ回転軸の下部の構成部材として、酸化物系セラミックスを用いることにより、サセプタ回転軸の劣化、及びヒータからの伝熱による回転駆動器への悪影響を防止できることを見出し、本発明の気相成長装置に到達した。   As a result of intensive studies to solve these problems, the inventors of the present invention more preferably use nitride ceramics, carbide ceramics, or boride ceramics as a constituent member at the top of the susceptor rotation shaft. It has been found that by using oxide-based ceramics as a constituent member of the lower part of the susceptor rotating shaft, it is possible to prevent deterioration of the susceptor rotating shaft and adverse effects on the rotary driver due to heat transfer from the heater. Reached the device.

すなわち本発明は、基板を載置するサセプタ、該基板を加熱するヒータ、原料ガス導入部、反応ガス排出部、及び該サセプタを支持するサセプタ回転軸を内蔵し、1000℃以上の温度で気相成長を行なう窒化ガリウム系化合物半導体の気相成長装置であって、サセプタ回転軸が上下方向に複数の構成部材からなり、その最上部が、窒化物系セラミックスからなる構成、炭化物系セラミックスからなる構成、ホウ化物系セラミックスからなる構成、または該セラミックスを表面に積層した構成であり、最上部以外の少なくとも一部が、酸化物系セラミックスからなる構成であることを特徴とする気相成長装置である。 That is, the present invention has a built-in susceptor for placing a substrate, a heater for heating the substrate, a source gas introduction unit, a reaction gas discharge unit, and a susceptor rotating shaft for supporting the susceptor , and a gas phase at a temperature of 1000 ° C. or higher. A gallium nitride compound semiconductor vapor phase growth apparatus for performing growth, in which the susceptor rotation axis is composed of a plurality of constituent members in the vertical direction, and the uppermost portion is composed of nitride ceramics and carbide ceramics A vapor phase growth apparatus characterized in that the structure is made of boride-based ceramics, or the structure is formed by laminating the ceramics on the surface, and at least a part other than the uppermost part is made of oxide-based ceramics. .

本発明は、基板を載置するサセプタ、該基板を加熱するヒータ、原料ガス導入部、反応ガス排出部、及びサセプタを支持するサセプタ回転軸を内蔵する窒化ガリウム系化合物半導体膜の気相成長装置に適用される。特に気相成長温度を1000℃以上の高温とするに、サセプタ回転軸の劣化、及びヒータから伝熱することによる回転駆動器への悪影響を防止できる点で本発明の効果を充分に発揮させることができる。 The present invention relates to a vapor phase growth apparatus for a gallium nitride compound semiconductor film including a susceptor on which a substrate is mounted, a heater for heating the substrate, a source gas introduction unit, a reaction gas discharge unit, and a susceptor rotating shaft that supports the susceptor. Applies to Particularly when the vapor phase growth temperature and a high temperature of at least 1000 ° C., the deterioration of the susceptor rotating shaft, and to sufficiently exhibit the effect of the present invention in that it can prevent an adverse effect to the rotation driving device due to heat transfer from the heater be able to.

本発明における気相成長としては、トリメチルガリウム、トリエチルガリウム、トリメチルインジウム、トリエチルインジウム、トリメチルアルミニウム、またはトリエチルアルミニウムをIII族金属源とし、アンモニア、モノメチルヒドラジン、ジメチルヒドラジン、tert-ブチルヒドラジン、またはトリメチルアミンを窒素源とする窒化ガリウム系化合物半導体の気相成長を例示することができる。 The vapor phase growth in the present invention includes trimethylgallium, triethylgallium, trimethylindium, triethylindium, trimethylaluminum, or triethylaluminum as a group III metal source, and ammonia, monomethylhydrazine, dimethylhydrazine, tert-butylhydrazine, or trimethylamine. An example is vapor phase growth of a gallium nitride-based compound semiconductor used as a nitrogen source.

以下、本発明の気相成長装置を、図1〜図3に基づいて詳細に説明するが、本発明がこれらにより限定されるものではない。
図1、図2は本発明の気相成長装置の一例を示す垂直断面図である。また、図3は本発明の気相成長装置に用いられるサセプタ回転軸の接続部の構成の一例を示す垂直断面図である。
Hereinafter, although the vapor phase growth apparatus of this invention is demonstrated in detail based on FIGS. 1-3, this invention is not limited by these.
1 and 2 are vertical sectional views showing an example of a vapor phase growth apparatus of the present invention. FIG. 3 is a vertical sectional view showing an example of the configuration of the connecting portion of the susceptor rotating shaft used in the vapor phase growth apparatus of the present invention.

本発明の気相成長装置は図1、図2に示すように、基板1を載置するサセプタ2、基板を加熱するヒータ3、原料ガス導入部4、反応ガス排出部5、及びサセプタを支持するサセプタ回転軸6を内蔵する半導体膜の気相成長装置であって、サセプタ回転軸が上下方向に複数の構成部材からなり、その最上部の構成部材7が、耐腐食性が優れ、熱伝導率が小さい、窒化物系セラミックスからなる構成、炭化物系セラミックスからなる構成、ホウ化物系セラミックスからなる構成、またはこれらのセラミックスを表面に積層した構成である気相成長装置である。   As shown in FIGS. 1 and 2, the vapor phase growth apparatus of the present invention supports a susceptor 2 on which a substrate 1 is placed, a heater 3 that heats the substrate, a source gas introduction unit 4, a reactive gas discharge unit 5, and a susceptor. A semiconductor film vapor phase growth apparatus having a built-in susceptor rotating shaft 6, wherein the susceptor rotating shaft is composed of a plurality of constituent members in the vertical direction, and the uppermost constituent member 7 has excellent corrosion resistance and heat conduction. It is a vapor phase growth apparatus having a low rate, a structure made of nitride ceramics, a structure made of carbide ceramics, a structure made of boride ceramics, or a structure in which these ceramics are laminated on the surface.

また、本発明の気相成長装置においては、好ましくは、サセプタ回転軸の最上部以外の少なくとも一部の構成部材が、熱伝導率がより小さい酸化物系セラミックスからなる構成とされる。例えば、図2に示す気相成長装置においては構成部材8が、図3に示す気相成長装置においては構成部材9及び/または構成部材10が、酸化物系セラミックスからなる構成とされる。本発明において、サセプタ回転軸が上下方向に3個以上の構成部材からなる場合は、前記セラミックス以外の構成材料を使用することができ、その構成材料について特に限定されることはないが、例えばステンレス鋼を使用することができる。   In the vapor phase growth apparatus of the present invention, it is preferable that at least a part of the constituent members other than the uppermost part of the susceptor rotating shaft is made of an oxide ceramic having a lower thermal conductivity. For example, in the vapor phase growth apparatus shown in FIG. 2, the constituent member 8 is configured, and in the vapor phase growth apparatus shown in FIG. 3, the structural member 9 and / or the structural member 10 is configured by oxide ceramics. In the present invention, when the susceptor rotating shaft is composed of three or more constituent members in the vertical direction, constituent materials other than the ceramics can be used, and the constituent materials are not particularly limited. Steel can be used.

本発明に使用される前記の窒化物系セラミックスとしては、窒化ホウ素、窒化ケイ素、窒化ジルコニウム、窒化チタンを、炭化物系セラミックスとしては、炭化ホウ素、炭化ケイ素、炭化ジルコニウム、炭化チタン、炭化タングステンを、ホウ化物系セラミックスとしては、窒化ホウ素、炭化ホウ素、ホウ化チタンを、酸化物系セラミックスとしては、酸化アルミニウム、酸化ケイ素、酸化ジルコニウム、酸化マグネシウム、酸化チタンを例示することができる。   As the nitride-based ceramics used in the present invention, boron nitride, silicon nitride, zirconium nitride, titanium nitride, as the carbide-based ceramics, boron carbide, silicon carbide, zirconium carbide, titanium carbide, tungsten carbide, Examples of boride-based ceramics include boron nitride, boron carbide, and titanium boride. Examples of oxide-based ceramics include aluminum oxide, silicon oxide, zirconium oxide, magnesium oxide, and titanium oxide.

尚、本発明におけるサセプタ回転軸の各構成部材の形状については、特に限定されることはないが、通常は円柱形または円筒形である。サセプタ回転軸は、通常は気相成長装置の下部に設置する回転駆動器11に接続される。
また、本発明の気相成長装置において、前記のような複数の構成部材は、適切な接続手段により互いに接続してサセプタ回転軸とされる。接続手段としては、例えば、図3に示すように、接続金具14を用いて互いに接続することができる。
また、図1、図2は横型の気相成長装置の例を示すものであるが、本発明は縦型の気相成長装置にも適用することができる。
The shape of each component of the susceptor rotating shaft in the present invention is not particularly limited, but is usually a columnar shape or a cylindrical shape. The susceptor rotation shaft is normally connected to a rotation driver 11 installed at the lower part of the vapor phase growth apparatus.
In the vapor phase growth apparatus of the present invention, the plurality of constituent members as described above are connected to each other by an appropriate connecting means to serve as a susceptor rotating shaft. As the connection means, for example, as shown in FIG.
1 and 2 show an example of a horizontal type vapor phase growth apparatus, the present invention can also be applied to a vertical type vapor phase growth apparatus.

図1、図2に示す横型の気相成長装置は、サセプタ、ヒータ、原料ガス導入部、反応ガス排出部、サセプタ回転軸のほか、基板と対向する反応管壁部に押圧ガス導入部12を備え、原料ガス導入部のガス供給口が、仕切板13により上下方向に区切られた構成の気相成長装置である。このような気相成長装置により窒化ガリウム系化合物半導体を製造する場合は、通常は、原料ガス導入部の上部流路から、トリメチルガリウム、トリエチルガリウム、トリメチルインジウム、トリエチルインジウム、トリメチルアルミニウム、またはトリエチルアルミニウムを含むガスが供給され、下部流路から、アンモニア、モノメチルヒドラジン、ジメチルヒドラジン、tert-ブチルヒドラジン、またはトリメチルアミンが供給されるとともに、押圧ガス導入部から不活性ガス等の押圧ガスが、基板と垂直方向に反応管内に供給される。   1 and 2 includes a susceptor, a heater, a source gas introduction unit, a reaction gas discharge unit, a susceptor rotating shaft, and a pressure gas introduction unit 12 on a reaction tube wall facing the substrate. And a gas phase growth apparatus having a structure in which the gas supply port of the raw material gas introduction section is partitioned by the partition plate 13 in the vertical direction. When producing a gallium nitride compound semiconductor by such a vapor phase growth apparatus, usually, trimethylgallium, triethylgallium, trimethylindium, triethylindium, trimethylaluminum, or triethylaluminum is supplied from the upper flow path of the raw material gas introduction part. Gas is supplied, and ammonia, monomethyl hydrazine, dimethyl hydrazine, tert-butyl hydrazine, or trimethylamine is supplied from the lower flow path, and a pressing gas such as an inert gas is perpendicular to the substrate from the pressing gas introduction part. Is fed into the reaction tube in the direction.

前記の気相成長を実施する際は、基板上に均一な半導体膜を効率よく気相成長させるために、基板が載置されたサセプタが、サセプタ回転軸により回転される。サセプタは、基板とともにヒータにより1000℃以上の高温に加熱されるので、サセプタ回転軸の最上部は1000℃前後の高温になる。また、サセプタは回転するので、その側面の間隙を完全にシールすることは難しく、サセプタ回転軸の最上部とアンモニア等の腐食性ガスの接触を防止することは困難である。しかし、本発明の気相成長方法においては、サセプタ回転軸が前述のような構成であるので、サセプタ回転軸の劣化、及びヒータからの伝熱による回転駆動器への悪影響を防止することができる。   When the vapor phase growth is performed, the susceptor on which the substrate is placed is rotated by a susceptor rotating shaft in order to efficiently vapor-phase grow a uniform semiconductor film on the substrate. Since the susceptor is heated to a high temperature of 1000 ° C. or higher by the heater together with the substrate, the uppermost portion of the susceptor rotating shaft has a high temperature of about 1000 ° C. Further, since the susceptor rotates, it is difficult to completely seal the gap between the side surfaces, and it is difficult to prevent the uppermost portion of the susceptor rotation shaft from contacting a corrosive gas such as ammonia. However, in the vapor phase growth method of the present invention, since the susceptor rotating shaft has the above-described configuration, it is possible to prevent the susceptor rotating shaft from deteriorating and adverse effects on the rotary driver due to heat transfer from the heater. .

本発明の気相成長装置は、サセプタ回転軸の最上部の構成部材に、カーボンよりも耐腐食性が優れ、熱伝導率が小さい、窒化物系セラミックス、炭化物系セラミックス、またはホウ化物系セラミックスを用いているので、窒化ガリウム系化合物半導体の製造のように、気相成長温度を高温度に設定するとともに、腐食性ガスを大量に使用する気相成長を行なう場合であっても、サセプタ回転軸が劣化し回転中に偏心を起したり、ヒータからの熱が、サセプタ回転軸を経由して回転駆動器に伝わり、悪影響を及ぼすという従来からの不都合を解消することができる。   In the vapor phase growth apparatus of the present invention, the uppermost constituent member of the susceptor rotating shaft is made of nitride ceramics, carbide ceramics, or boride ceramics, which have better corrosion resistance than carbon and low thermal conductivity. Even if the vapor phase growth temperature is set to a high temperature and the vapor phase growth using a large amount of corrosive gas is performed as in the manufacture of gallium nitride-based compound semiconductors, the susceptor rotating shaft is used. The conventional inconvenience of deteriorating and causing eccentricity during rotation or heat from the heater being transmitted to the rotary drive via the susceptor rotation shaft can be eliminated.

次に、本発明を実施例により具体的に説明するが、本発明がこれらにより限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these.

(気相成長装置の製作)
石英製の横形反応管(内寸法で、幅280mm(押圧ガス導入部の幅)、高さ20mm、長さ1500mm)の内部に、直径260mmのサセプタ、基板を加熱するヒータ、原料ガス導入部、反応ガス排出部を有し、サセプタ回転軸が上下方向に2個の構成部材からなり、上部の構成部材として窒化ホウ素(BN)、下部の構成部材として酸化アルミニウム(Al)を用いた図1に示すような気相成長装置を製作した。サセプタ回転軸の構成部材の形状は、共に内径6mm、外径30mmの円筒形であった。また、サセプタ回転軸の全長は、240mmであった。
(Production of vapor phase growth equipment)
Inside a quartz horizontal reaction tube (internal dimensions, width 280 mm (width of the pressure gas introduction part), height 20 mm, length 1500 mm), a susceptor having a diameter of 260 mm, a heater for heating the substrate, a source gas introduction part, It has a reaction gas discharge part, and the susceptor rotating shaft is composed of two constituent members in the vertical direction. Boron nitride (BN) is used as the upper constituent member, and aluminum oxide (Al 2 O 3 ) is used as the lower constituent member. A vapor phase growth apparatus as shown in FIG. 1 was manufactured. The shapes of the constituent members of the susceptor rotating shaft were both cylindrical with an inner diameter of 6 mm and an outer diameter of 30 mm. The total length of the susceptor rotating shaft was 240 mm.

(サセプタ回転軸の耐久性試験)
サセプタの中心温度が1200℃となるように加熱し安定するまで放置した。次に、ガス導入部の上部ガス流路から水素ガスを30L/minで供給し、下部ガス流路からはアンモニアを30L/minで供給するとともに、サセプタを毎分5回転させた。ガスの供給開始から4時間後、サセプタ回転軸の最上部の腐食状態を観察した結果、及びサセプタ回転軸の最下部の側面における最高到達温度を表1に示す。
(Durability test of susceptor rotating shaft)
The susceptor was heated to a center temperature of 1200 ° C. and allowed to stand until stable. Next, hydrogen gas was supplied at 30 L / min from the upper gas flow path of the gas introduction part, ammonia was supplied from the lower gas flow path at 30 L / min, and the susceptor was rotated 5 times per minute. Table 1 shows the results of observing the corrosion state of the uppermost part of the susceptor rotating shaft and the maximum temperature reached on the side surface of the lowermost part of the susceptor rotating shaft 4 hours after the start of gas supply.

(実施例2)
実施例1の気相成長装置の製作において、サセプタ回転軸の上部の構成部材として炭化ケイ素(SiC)を用いた以外は実施例1と同様にして気相成長装置を製作した。次に、この気相成長装置を用いた以外は実施例1と同様にしてサセプタ回転軸の耐久性試験を行なった。サセプタ回転軸の最上部の腐食状態を観察した結果、及びサセプタ回転軸の最下部の側面における最高到達温度を表1に示す。
(Example 2)
In the production of the vapor phase growth apparatus of Example 1, the vapor phase growth apparatus was produced in the same manner as in Example 1 except that silicon carbide (SiC) was used as the constituent member on the upper part of the susceptor rotation shaft. Next, the durability test of the susceptor rotating shaft was performed in the same manner as in Example 1 except that this vapor phase growth apparatus was used. Table 1 shows the results of observing the corrosion state of the uppermost portion of the susceptor rotating shaft and the highest temperature reached on the lowermost side surface of the susceptor rotating shaft.

(実施例3)
実施例1の気相成長装置の製作において、サセプタ回転軸が上下方向に3個の構成部材からなり、上部の構成部材として窒化ホウ素(BN)、中部の構成部材として酸化アルミニウム(Al)、下部の構成部材としてステンレス鋼を用いた以外は実施例1と同様にして図2に示すような気相成長装置を製作した。(サセプタ回転軸の径、全長は実施例1と同じ。)次に、この気相成長装置を用いた以外は実施例1と同様にしてサセプタ回転軸の耐久性試験を行なった。サセプタ回転軸の最上部の腐食状態を観察した結果、及びサセプタ回転軸の最下部の側面における最高到達温度を表1に示す。
(Example 3)
In the manufacture of the vapor phase growth apparatus of Example 1, the susceptor rotating shaft is composed of three constituent members in the vertical direction, boron nitride (BN) as the upper constituent member, and aluminum oxide (Al 2 O 3 ) as the central constituent member. 2) A vapor phase growth apparatus as shown in FIG. 2 was manufactured in the same manner as in Example 1 except that stainless steel was used as the lower component. (The diameter and total length of the susceptor rotating shaft are the same as in Example 1.) Next, a durability test of the susceptor rotating shaft was performed in the same manner as in Example 1 except that this vapor phase growth apparatus was used. Table 1 shows the results of observing the corrosion state of the uppermost portion of the susceptor rotating shaft and the highest temperature reached on the lowermost side surface of the susceptor rotating shaft.

(実施例4)
実施例3の気相成長装置の製作において、サセプタ回転軸の上部の構成部材として炭化ケイ素(SiC)を用いた以外は実施例3と同様にして気相成長装置を製作した。次に、この気相成長装置を用いた以外は実施例1と同様にしてサセプタ回転軸の耐久性試験を行なった。サセプタ回転軸の最上部の腐食状態を観察した結果、及びサセプタ回転軸の最下部の側面における最高到達温度を表1に示す。
Example 4
In the production of the vapor phase growth apparatus of Example 3, the vapor phase growth apparatus was produced in the same manner as in Example 3 except that silicon carbide (SiC) was used as a constituent member on the upper part of the susceptor rotation shaft. Next, the durability test of the susceptor rotating shaft was performed in the same manner as in Example 1 except that this vapor phase growth apparatus was used. Table 1 shows the results of observing the corrosion state of the uppermost portion of the susceptor rotating shaft and the highest temperature reached on the lowermost side surface of the susceptor rotating shaft.

(比較例1)
実施例1の気相成長装置の製作において、サセプタ回転軸として1個のステンレス鋼からなる回転軸を用いた以外は実施例1と同様にして気相成長装置を製作した。次に、この気相成長装置を用いた以外は実施例1と同様にしてサセプタ回転軸の耐久性試験を行なった。サセプタ回転軸の最上部の腐食状態を観察した結果、及びサセプタ回転軸の最下部の側面における最高到達温度を表1に示す。
(Comparative Example 1)
In the production of the vapor phase growth apparatus of Example 1, the vapor phase growth apparatus was produced in the same manner as in Example 1 except that one rotating shaft made of stainless steel was used as the susceptor rotating shaft. Next, the durability test of the susceptor rotating shaft was performed in the same manner as in Example 1 except that this vapor phase growth apparatus was used. Table 1 shows the results of observing the corrosion state of the uppermost portion of the susceptor rotating shaft and the highest temperature reached on the lowermost side surface of the susceptor rotating shaft.

(比較例2)
実施例1の気相成長装置の製作において、サセプタ回転軸の上部の構成部材としてカーボンを用い、下部の構成部材としてステンレス鋼を用いた以外は実施例1と同様にして気相成長装置を製作した。次に、この気相成長装置を用いた以外は実施例1と同様にしてサセプタ回転軸の耐久性試験を行なった。サセプタ回転軸の最上部の腐食状態を観察した結果、及びサセプタ回転軸の最下部の側面における最高到達温度を表1に示す。
(Comparative Example 2)
In the production of the vapor phase growth apparatus of Example 1, the vapor phase growth apparatus was produced in the same manner as in Example 1 except that carbon was used as the upper structural member of the susceptor rotating shaft and stainless steel was used as the lower structural member. did. Next, the durability test of the susceptor rotating shaft was performed in the same manner as in Example 1 except that this vapor phase growth apparatus was used. Table 1 shows the results of observing the corrosion state of the uppermost portion of the susceptor rotating shaft and the highest temperature reached on the lowermost side surface of the susceptor rotating shaft.

Figure 0004637478
Figure 0004637478

本発明の実施例は、以上のように、気相成長温度を高温度に設定するとともに、腐食性ガスを大量に使用する気相成長を行なう場合であっても、サセプタ回転軸の劣化、及びヒータからの伝熱による回転駆動器への悪影響を防止できることが確認された。   In the embodiment of the present invention, as described above, the vapor phase growth temperature is set to a high temperature, and even when vapor phase growth using a large amount of corrosive gas is performed, deterioration of the susceptor rotating shaft, and It was confirmed that adverse effects on the rotary drive due to heat transfer from the heater could be prevented.

本発明の気相成長装置の一例を示す垂直断面図Vertical sectional view showing an example of the vapor phase growth apparatus of the present invention 本発明の図1以外の気相成長装置の一例を示す垂直断面図Vertical sectional view showing an example of a vapor phase growth apparatus other than FIG. 1 of the present invention サセプタ回転軸の接続部の構成の一例を示す垂直断面図Vertical sectional view showing an example of the configuration of the connecting portion of the susceptor rotating shaft

符号の説明Explanation of symbols

1 基板
2 サセプタ
3 ヒータ
4 原料ガス導入部
5 反応ガス排出部
6 サセプタ回転軸
7 サセプタ回転軸の最上部の構成部材
8 サセプタ回転軸の最上部以外の構成部材
9 サセプタ回転軸の最上部以外の構成部材
10 サセプタ回転軸の最上部以外の構成部材
11 回転駆動器
12 押圧ガス導入部
13 仕切板
14 接続金具
DESCRIPTION OF SYMBOLS 1 Board | substrate 2 Susceptor 3 Heater 4 Raw material gas introduction part 5 Reaction gas discharge part 6 Susceptor rotating shaft 7 The uppermost structural member of a susceptor rotating shaft 8 The structural member other than the uppermost part of a susceptor rotating shaft 9 Other than the uppermost part of a susceptor rotating shaft Constituent member 10 Constituent member other than the uppermost part of the susceptor rotating shaft 11 Rotating driver 12 Pressed gas introducing portion 13 Partition plate 14 Connection fitting

Claims (5)

基板を載置するサセプタ、該基板を加熱するヒータ、原料ガス導入部、反応ガス排出部、及び該サセプタを支持するサセプタ回転軸を内蔵し、1000℃以上の温度で気相成長を行なう窒化ガリウム系化合物半導体の気相成長装置であって、サセプタ回転軸が上下方向に複数の構成部材からなり、その最上部が、窒化物系セラミックスからなる構成、炭化物系セラミックスからなる構成、ホウ化物系セラミックスからなる構成、または該セラミックスを表面に積層した構成であり、最上部以外の少なくとも一部が、酸化物系セラミックスからなる構成であることを特徴とする気相成長装置。 Gallium nitride that incorporates a susceptor for mounting a substrate, a heater for heating the substrate, a source gas introduction unit, a reaction gas discharge unit, and a susceptor rotating shaft that supports the susceptor , and performs vapor phase growth at a temperature of 1000 ° C. or higher -Based compound semiconductor vapor phase growth apparatus, in which the susceptor rotation axis is composed of a plurality of constituent members in the vertical direction, and the uppermost portion is composed of nitride ceramics, carbide ceramics, boride ceramics Or a structure in which the ceramics are laminated on the surface, and at least a part other than the uppermost part is made of an oxide-based ceramic . 窒化物系セラミックスが、窒化ホウ素、窒化ケイ素、窒化ジルコニウム、または窒化チタンである請求項1に記載の気相成長装置。 The vapor phase growth apparatus according to claim 1, wherein the nitride ceramic is boron nitride, silicon nitride, zirconium nitride, or titanium nitride. 炭化物系セラミックスが、炭化ホウ素、炭化ケイ素、炭化ジルコニウム、炭化チタン、または炭化タングステンである請求項1に記載の気相成長装置。 The vapor phase growth apparatus according to claim 1, wherein the carbide ceramic is boron carbide, silicon carbide, zirconium carbide, titanium carbide, or tungsten carbide. ホウ化物系セラミックスが、窒化ホウ素、炭化ホウ素、またはホウ化チタンである請求項1に記載の気相成長装置。 The vapor phase growth apparatus according to claim 1, wherein the boride-based ceramic is boron nitride, boron carbide, or titanium boride. 酸化物系セラミックスが、酸化アルミニウム、酸化ケイ素、酸化ジルコニウム、酸化マグネシウム、または酸化チタンである請求項に記載の気相成長装置。 Oxide ceramics, aluminum oxide, silicon oxide, zirconium oxide, magnesium oxide or chemical vapor deposition apparatus according to claim 1 is titanium oxide.
JP2003433187A 2003-12-26 2003-12-26 Vapor growth equipment Expired - Fee Related JP4637478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003433187A JP4637478B2 (en) 2003-12-26 2003-12-26 Vapor growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003433187A JP4637478B2 (en) 2003-12-26 2003-12-26 Vapor growth equipment

Publications (2)

Publication Number Publication Date
JP2005191414A JP2005191414A (en) 2005-07-14
JP4637478B2 true JP4637478B2 (en) 2011-02-23

Family

ID=34790649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003433187A Expired - Fee Related JP4637478B2 (en) 2003-12-26 2003-12-26 Vapor growth equipment

Country Status (1)

Country Link
JP (1) JP4637478B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006525682A (en) 2003-04-30 2006-11-09 クリー インコーポレイテッド High power solid state light emitting device package
US7005679B2 (en) 2003-05-01 2006-02-28 Cree, Inc. Multiple component solid state white light
US7534633B2 (en) 2004-07-02 2009-05-19 Cree, Inc. LED with substrate modifications for enhanced light extraction and method of making same
KR20090009772A (en) 2005-12-22 2009-01-23 크리 엘이디 라이팅 솔루션즈, 인크. Lighting device
US9431589B2 (en) 2007-12-14 2016-08-30 Cree, Inc. Textured encapsulant surface in LED packages
GB2489474A (en) * 2011-03-29 2012-10-03 Kromek Ltd Crystal growth apparatus
CN104241262B (en) 2013-06-14 2020-11-06 惠州科锐半导体照明有限公司 Light emitting device and display device
CN109957835B (en) * 2017-12-14 2021-08-27 中微半导体设备(上海)股份有限公司 Chemical vapor deposition or epitaxial layer growth reactor and rotating shaft in same

Also Published As

Publication number Publication date
JP2005191414A (en) 2005-07-14

Similar Documents

Publication Publication Date Title
CN102770582B (en) Tantalum carbide-coated carbon material and manufacturing method for same
EP1852528A1 (en) Method and apparatus for aluminum nitride monocrystal boule growth
TWI390078B (en) Gas phase growing apparatus for group iii nitride semiconductor
CN107978552B (en) Vapor phase growth apparatus, ring-shaped support, and vapor phase growth method
CN104641454A (en) Susceptor, crystal growing apparatus, and crystal growing method
JP4637478B2 (en) Vapor growth equipment
US20070277731A1 (en) Method and apparatus for growing GaN bulk single crystals
JP2007273660A (en) Vapor phase growth device
TWI376730B (en)
JP2010083683A (en) Production method of single crystal body and production apparatus for single crystal body
JP7209569B2 (en) Group III nitride substrate manufacturing apparatus and manufacturing method
JP5426337B2 (en) Vapor phase growth apparatus and film forming method
JP2009249202A (en) Method for producing aluminum nitride single crystal
JP5524758B2 (en) Crystal growth equipment
KR20130069192A (en) Apparatus for growing of sic single crystal
JP2016113338A (en) Thermal decomposition boron nitride member and method for manufacturing the same
JP2005228757A (en) Apparatus and method for growing vapor phase
JP2009249201A (en) Apparatus for producing aluminum nitride single crystal
WO2024214391A1 (en) Apparatus for producing group iii nitride crystal
JP2012227231A (en) Vapor-phase growth device of group iii nitride semiconductor
JP2006240968A (en) Single crystal growing method, and group iii nitride single crystal and sic single crystal obtained by using the method
JP2010219225A (en) Vapor growth apparatus of group iii nitride semiconductor
WO2021014834A1 (en) Group iii compound substrate production method and substrate produced by this production method
JP2006105624A (en) Diaphragm chip, pressure sensor using it, and method for manufacturing diaphragm chip
JP2013157502A (en) Substrate holding tool and vapor growth device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081210

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090123

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees