JP2012227231A - Vapor-phase growth device of group iii nitride semiconductor - Google Patents

Vapor-phase growth device of group iii nitride semiconductor Download PDF

Info

Publication number
JP2012227231A
JP2012227231A JP2011091388A JP2011091388A JP2012227231A JP 2012227231 A JP2012227231 A JP 2012227231A JP 2011091388 A JP2011091388 A JP 2011091388A JP 2011091388 A JP2011091388 A JP 2011091388A JP 2012227231 A JP2012227231 A JP 2012227231A
Authority
JP
Japan
Prior art keywords
substrate holder
susceptor
substrate
phase growth
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011091388A
Other languages
Japanese (ja)
Inventor
Yuzuru Takahashi
譲 高橋
Yoshiyasu Ishihama
義康 石濱
Gakuo Yoneyama
岳夫 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP2011091388A priority Critical patent/JP2012227231A/en
Publication of JP2012227231A publication Critical patent/JP2012227231A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vapor-phase growth device of a group III nitride semiconductor, which has a structure in which a susceptor can easily be attached/detached, an excellent maintainability is provided, and heat conduction from a heater to a substrate holder rotation driver and a substrate holder rotation driving shaft can be suppressed, and which comprises: the substrate holder that holds a substrate; the susceptor that rotatably holds the substrate holder; an opposite face of the susceptor; the heater that heats the substrate; a reactor formed by a gap between the susceptor and the opposite face of the susceptor; a raw material gas introduction part for supplying a raw material gas; a reaction gas emission part; and a substrate holder rotation driver.SOLUTION: A plurality of substrate holders that holds a substrate is rotated by a rotation driving force which is transmitted from a substrate holder rotation driver through a substrate holder rotation driving shaft, a plurality of claws provided on the substrate holder rotation driving shaft, and a substrate holder rotation plate that is provided in the center part of a reactor and is attachably and detachably engaged with the claws.

Description

本発明は、基板を保持する基板ホルダー、該基板ホルダーを回転自在に保持するサセプタ、該サセプタの対面、該基板を加熱するためのヒータ、該サセプタと該サセプタの対面の間隙からなる反応炉、該反応炉の中心部から周辺部に向かって原料ガスを供給する原料ガス導入部、反応ガス排出部、及び基板ホルダー回転駆動器を有するIII族窒化物半導体の気相成長装置に関する。   The present invention includes a substrate holder for holding a substrate, a susceptor that rotatably holds the substrate holder, a face of the susceptor, a heater for heating the substrate, a reaction furnace including a gap between the face of the susceptor and the susceptor, The present invention relates to a group III nitride semiconductor vapor phase growth apparatus having a source gas introduction part for supplying a source gas from the central part to the peripheral part of the reaction furnace, a reactive gas discharge part, and a substrate holder rotation driver.

III族窒化物半導体の結晶膜を、シリコン(Si)、サファイア(Al)又は窒化ガリウム(GaN)等の基板上に成長する方法には、化学的気相成長(CVD)法等の方法があり、基板加熱を伴うCVD法には熱CVD法等が知られている。近年、高温条件(例えば1000℃以上)で基板を加熱して行う気相成長工程が増加しており、青色若しくは紫外LED又は青色若しくは紫外レーザーダイオードを製作するためのIII族窒化物半導体の気相成長工程もその一つである。III族窒化物半導体膜の形成は、例えば、トリメチルガリウム、トリメチルインジウム、又はトリメチルアルミニウム等の有機金属ガスをIII族金属源として、アンモニアを窒素源として用い、1000℃程度の高温に加熱された基板上に結晶膜を気相成長する熱CVD法により行われる。 A method for growing a crystal film of a group III nitride semiconductor on a substrate such as silicon (Si), sapphire (Al 2 O 3 ), or gallium nitride (GaN) includes chemical vapor deposition (CVD). There is a method, and a thermal CVD method or the like is known as a CVD method involving substrate heating. In recent years, there has been an increase in the vapor phase growth process performed by heating the substrate under high temperature conditions (for example, 1000 ° C. or higher), and the vapor phase of a group III nitride semiconductor for producing a blue or ultraviolet LED or a blue or ultraviolet laser diode. The growth process is one of them. The formation of the group III nitride semiconductor film is, for example, a substrate heated to a high temperature of about 1000 ° C. using an organometallic gas such as trimethylgallium, trimethylindium, or trimethylaluminum as a group III metal source and ammonia as a nitrogen source. This is performed by a thermal CVD method in which a crystal film is vapor-grown.

III族窒化物半導体の気相成長装置には、基板の結晶成長面を上向きに配置するもの(フェイスアップ型)、基板の結晶成長面を下向きに配置するもの(フェイスダウン型)がある。このような気相成長装置としては、1バッチあたり1枚の基板上に結晶膜を成長させる気相成長装置があるが、生産性を向上するために1バッチあたり複数枚の基板上に結晶膜を成長させる気相成長装置も知られている。
III族窒化物半導体の気相成長装置の構成としては、基板を保持する基板ホルダー、該基板ホルダーを回転自在に保持するサセプタ、該サセプタの対面、該基板を加熱するためのヒータ、該サセプタと該サセプタの対面の間隙からなる反応炉、該反応炉の中心部から周辺部に向かって原料ガスを供給する原料ガス導入部、反応ガス排出部、及び基板ホルダー回転駆動器を有する構成が考えられる。
A group III nitride semiconductor vapor phase growth apparatus includes an apparatus in which the crystal growth surface of the substrate is arranged upward (face-up type) and an apparatus in which the crystal growth surface of the substrate is arranged downward (face-down type). As such a vapor phase growth apparatus, there is a vapor phase growth apparatus that grows a crystal film on one substrate per batch. In order to improve productivity, a crystal film is formed on a plurality of substrates per batch. There is also known a vapor phase growth apparatus that grows the substrate.
The structure of the group III nitride semiconductor vapor phase growth apparatus includes a substrate holder for holding a substrate, a susceptor for rotatably holding the substrate holder, a face of the susceptor, a heater for heating the substrate, and the susceptor. A configuration having a reaction furnace composed of a gap between the surfaces of the susceptor, a raw material gas introduction part for supplying a raw material gas from the central part to the peripheral part of the reaction furnace, a reactive gas discharge part, and a substrate holder rotation driver is conceivable. .

このような気相成長装置において、均一な膜厚及び膜質を得るには、基板を回転させながら結晶膜を成長させることが有効である。1バッチあたり複数枚の基板上に結晶膜を成長させる場合には、反応炉の中心を回転の中心とする公転と、基板の中心を回転の中心とする自転を組み合わせて基板を回転させることにより、各基板間及び同一基板面内において、均一な膜厚及び膜質を得ることができる。一般に、基板を保持する基板ホルダーを回転させる基板ホルダー回転駆動器は、反応炉を内部に含む反応容器の外に設置され、その駆動力は、磁性流体により反応容器の内側と外側を遮蔽する磁性流体シール等を用いて反応容器に対して回転自在に封止された基板ホルダー回転駆動軸により反応容器内部の基板ホルダーに伝達されることが多い。   In such a vapor phase growth apparatus, in order to obtain a uniform film thickness and film quality, it is effective to grow a crystal film while rotating the substrate. When growing crystal films on a plurality of substrates per batch, the substrate is rotated by combining revolutions with the center of the reactor as the center of rotation and rotations with the center of the substrate as the center of rotation. A uniform film thickness and film quality can be obtained between the substrates and within the same substrate surface. In general, a substrate holder rotation driver that rotates a substrate holder that holds a substrate is installed outside a reaction vessel including a reaction furnace, and the driving force is a magnetic fluid that shields the inside and outside of the reaction vessel by a magnetic fluid. In many cases, it is transmitted to the substrate holder inside the reaction vessel by a substrate holder rotation drive shaft which is sealed with respect to the reaction vessel using a fluid seal or the like.

例えば、このような気相成長装置としては、特許文献1に記載の成膜装置があるが、基板の自転速度と公転速度の比率を変化させることができないので成膜条件の最適化が難しいという問題があり、サセプタを取り外す際にも固定ギア(自転発生部)を一旦取り外さなければならないなど、サセプタの脱着が煩雑でメンテナンス性に問題があった。また、基板の自転速度と公転速度の比率を変化させることが可能な半導体製造装置として、特許文献2に記載の半導体製造装置があるが、サセプタを容易に脱着できる構造を提供するまでには至っていなかった。   For example, as such a vapor phase growth apparatus, there is a film forming apparatus described in Patent Document 1, but it is difficult to optimize film forming conditions because the ratio of the rotation speed and revolution speed of the substrate cannot be changed. There is a problem, and when removing the susceptor, the fixed gear (spinning generation part) has to be removed once, so that the susceptor is complicated to attach and detach and has a problem in maintenance. Further, as a semiconductor manufacturing apparatus capable of changing the ratio between the rotation speed and the revolution speed of the substrate, there is a semiconductor manufacturing apparatus described in Patent Document 2, but it has yet to provide a structure in which a susceptor can be easily detached. It wasn't.

また、サセプタを取外し可能としたものに、特許文献3に記載の気相成長装置があるが、基板の自転速度と公転速度の比率を変化させることができず、基板ホルダーと基板ホルダー駆動部の噛み合わせは通常の平歯車構造であり、サセプタ取り付け時において、基板ホルダー駆動部と複数の基板ホルダーの間の噛み合わせを同時にとらなければならない煩雑さが解消されていなかった。さらに、特許文献1〜3に記載の気相成長装置において、回転駆動器及び基板ホルダー回転駆動軸に対する熱伝導を低減する構造は検討されていなかった。   Further, there is a vapor phase growth apparatus described in Patent Document 3 in which the susceptor can be removed, but the ratio between the rotation speed and the revolution speed of the substrate cannot be changed, and the substrate holder and the substrate holder driving unit are not changed. The meshing is an ordinary spur gear structure, and the trouble of having to mesh between the substrate holder driving unit and the plurality of substrate holders at the time of susceptor attachment has not been solved. Furthermore, in the vapor phase growth apparatus described in Patent Documents 1 to 3, a structure for reducing heat conduction with respect to the rotation drive and the substrate holder rotation drive shaft has not been studied.

特許第4537566号公報Japanese Patent No. 4533766 特開第2004−241460号公報JP 2004-241460 A 特開第2009−99770号公報JP 2009-99770 A

III族窒化物半導体の気相成長装置においては、気相成長が高温下で行われるために、原料ガスと接触する部材には原料ガスの分解による付着物が生じやすく、特に、基板に近接する基板ホルダー及びサセプタは頻繁にクリーニングを要するという問題がある。クリーニングは反応容器の外にサセプタを取り出して行う場合が多く、サセプタの脱着が容易な構造とすることでメンテナンス性を向上させた気相成長装置であることが望ましい。
また、III族窒化物半導体の気相成長装置において、基板ホルダー回転駆動器は耐熱性がない場合が多く、基板ホルダー回転駆動軸は高温下でアンモニア等の原料ガス雰囲気下に置かれ劣化が進行しやすい場合が多いことから、これらに対するヒータからの熱伝導を可能な限り抑制できる構造であることが好ましい。
In the group III nitride semiconductor vapor phase growth apparatus, since vapor phase growth is performed at a high temperature, deposits due to decomposition of the raw material gas are likely to occur in the member in contact with the raw material gas, and particularly close to the substrate. There is a problem that the substrate holder and the susceptor require frequent cleaning. Cleaning is often performed by taking the susceptor out of the reaction vessel, and it is desirable that the vapor phase growth apparatus improve the maintainability by adopting a structure in which the susceptor can be easily detached.
In addition, in a group III nitride semiconductor vapor phase growth apparatus, the substrate holder rotation drive is often not heat resistant, and the substrate holder rotation drive shaft is placed in a source gas atmosphere such as ammonia at a high temperature, and deterioration progresses. In many cases, it is preferable to have a structure that can suppress heat conduction from the heater as much as possible.

すなわち、本発明が解決しようとする課題は、基板を保持する基板ホルダー、該基板ホルダーを回転自在に保持するサセプタ、該サセプタの対面、該基板を加熱するためのヒータ、該サセプタと該サセプタの対面の間隙からなる反応炉、該反応炉の中心部から周辺部に向かって原料ガスを供給する原料ガス導入部、反応ガス排出部、及び基板ホルダー回転駆動器を有するIII族窒化物半導体の気相成長装置であって、サセプタの脱着が容易でメンテナンス性に優れ、基板ホルダー回転駆動器及び基板ホルダー回転駆動軸に対するヒータからの熱伝導を抑制できる構造を有するIII族窒化物半導体の気相成長装置を提供することである。   That is, the problems to be solved by the present invention include a substrate holder that holds a substrate, a susceptor that rotatably holds the substrate holder, a face of the susceptor, a heater that heats the substrate, the susceptor and the susceptor. A reactor of a group III nitride semiconductor having a reaction furnace comprising a facing gap, a source gas introduction part for supplying a source gas from the central part to the peripheral part of the reaction furnace, a reaction gas discharge part, and a substrate holder rotation driver Vapor phase growth of III-nitride semiconductors, which is a phase growth apparatus, has a structure that allows easy removal of the susceptor, excellent maintainability, and suppresses heat conduction from the heater to the substrate holder rotation drive and the substrate holder rotation drive shaft. Is to provide a device.

本発明の発明者らは、これらの課題を解決すべく鋭意検討した結果、前述の気相成長装置において、基板ホルダー回転駆動器から、基板ホルダーまでの回転伝達機構の少なくとも一部に断面が小さいツメを用いる構成とすることより、上記の課題を解決できることを見出し、本発明に到達した。   The inventors of the present invention have intensively studied to solve these problems. As a result, in the above-described vapor phase growth apparatus, at least a part of the rotation transmission mechanism from the substrate holder rotation driver to the substrate holder has a small cross section. The inventors have found that the above-described problems can be solved by using a claw and have reached the present invention.

すなわち本発明は、基板を保持する基板ホルダー、該基板ホルダーを回転自在に保持するサセプタ、該サセプタの対面、該基板を加熱するためのヒータ、該サセプタと該サセプタの対面の間隙からなる反応炉、該反応炉の中心部から周辺部に向かって原料ガスを供給する原料ガス導入部、反応ガス排出部、及び基板ホルダー回転駆動器を有し、基板を保持する基板ホルダーが、原料ガス導入部の周囲に複数個備えられたIII族窒化物半導体の気相成長装置であって、基板を保持する複数の基板ホルダーが、基板ホルダー回転駆動器から、基板ホルダー回転駆動軸、該基板ホルダー回転駆動軸に設けられた複数本のツメ、及び反応炉の中心部に設けられ該ツメと脱着可能に噛み合わされた基板ホルダー回転板を介して伝達される回転駆動力により回転する構成であることを特徴とするIII族窒化物半導体の気相成長装置である。   That is, the present invention relates to a reaction furnace comprising a substrate holder for holding a substrate, a susceptor for rotatably holding the substrate holder, a facing surface of the susceptor, a heater for heating the substrate, and a gap between the facing surface of the susceptor and the susceptor. The substrate holder that holds the substrate has a source gas introduction unit that supplies a source gas from the central part to the peripheral part of the reaction furnace, a reaction gas discharge unit, and a substrate holder rotation driver. A plurality of group III nitride semiconductor vapor phase growth apparatuses provided around the substrate, wherein a plurality of substrate holders for holding a substrate are supplied from a substrate holder rotation driver, a substrate holder rotation drive shaft, and the substrate holder rotation drive By a plurality of claws provided on the shaft and a rotational driving force transmitted through a substrate holder rotating plate provided at the center of the reaction furnace and detachably engaged with the claws. A vapor phase growing device for the Group III nitride semiconductor, characterized in that the arrangement of rolling.

本発明により、基板ホルダー回転駆動軸を上下方向に移動させるのみで、基板ホルダー回転板とツメとの噛み合わせを取り外しでき、サセプタ脱着の煩雑さが解消される。したがって、本発明により、サセプタの脱着が容易でメンテナンス性に優れたIII族窒化物半導体の気相成長装置が提供される。
また、本発明の気相成長装置は、基板ホルダー回転板が、断面積が小さいツメと、水平方向及び垂直方向の隙間を持って噛み合わされており、該噛み合わせが形成されるときに、該基板ホルダー回転板の上面と該基板ホルダー回転駆動軸の下面との間に隙間が形成される。これにより、ヒータにより加熱された基板ホルダー回転板から基板ホルダー回転駆動軸への熱の伝達が抑制され、延いては基板ホルダー回転駆動器への熱の伝達が抑制される。
According to the present invention, it is possible to remove the engagement between the substrate holder rotating plate and the claw only by moving the substrate holder rotation driving shaft in the vertical direction, and the trouble of susceptor attachment / detachment is eliminated. Therefore, the present invention provides a group III nitride semiconductor vapor phase growth apparatus in which the susceptor can be easily detached and has excellent maintainability.
In the vapor phase growth apparatus of the present invention, the substrate holder rotating plate is meshed with a claw having a small cross-sectional area with a gap in the horizontal direction and the vertical direction, and when the mesh is formed, A gap is formed between the upper surface of the substrate holder rotating plate and the lower surface of the substrate holder rotation drive shaft. As a result, the transfer of heat from the substrate holder rotating plate heated by the heater to the substrate holder rotating drive shaft is suppressed, and further, the transfer of heat to the substrate holder rotating drive is suppressed.

本発明は、基板を保持する基板ホルダー、該基板ホルダーを回転自在に保持するサセプタ、該サセプタの対面、該基板を加熱するためのヒータ、該サセプタと該サセプタの対面の間隙からなる反応炉、該反応炉の中心部から周辺部に向かって原料ガスを供給する原料ガス導入部、反応ガス排出部、及び基板ホルダー回転駆動器を有し、基板を保持する基板ホルダーが、原料ガス導入部の周囲に複数個備えられたIII族窒化物半導体の気相成長装置に適用される。
以下、本発明の気相成長装置を、図1〜図3に基づいて詳細に説明するが、本発明がこれらにより限定されるものではない。尚、図1は、本発明の気相成長装置の一例を示す垂直断面概略図、図2は、本発明の気相成長装置の水平断面概略図(図1におけるA−A断面)、図3は、本発明の気相成長装置の水平断面概略図(図1におけるB−B断面)である。
The present invention includes a substrate holder for holding a substrate, a susceptor that rotatably holds the substrate holder, a face of the susceptor, a heater for heating the substrate, a reaction furnace including a gap between the face of the susceptor and the susceptor, The substrate holder for holding the substrate has a source gas introduction part for supplying a source gas from the central part of the reaction furnace to the peripheral part, a reaction gas discharge part, and a substrate holder rotation driver. The present invention is applied to a group III nitride semiconductor vapor phase growth apparatus provided around the periphery.
Hereinafter, although the vapor phase growth apparatus of this invention is demonstrated in detail based on FIGS. 1-3, this invention is not limited by these. 1 is a schematic vertical sectional view showing an example of the vapor phase growth apparatus of the present invention, FIG. 2 is a schematic horizontal sectional view of the vapor phase growth apparatus of the present invention (cross section AA in FIG. 1), FIG. These are the horizontal cross-sectional schematic diagrams (BB cross section in FIG. 1) of the vapor phase growth apparatus of this invention.

図1の気相成長装置において、基板1は、成長面を下向きにした状態で基板ホルダー2により保持されている。基板ホルダー2は、直径が2インチ、3インチ、4インチ又は6インチの基板を1枚保持できるが、特にこれらの大きさの基板に限定されない。ここで、ヒータ5からの熱を基板1へ均一に伝達するために、均熱板16を設けてもよい。基板ホルダー2は、基板ホルダー2の下面及びサセプタ3の上面に刻まれたベアリング溝18により挟持されたベアリング17を介して、サセプタ3上に回転自在に保持されている。ベアリング17は、直径3〜10mmの球形であることが好ましい。ベアリング溝18の鉛直方向の断面は、半円形、三角形又は四角形であることが好ましいが、特に限定されない。   In the vapor phase growth apparatus of FIG. 1, the substrate 1 is held by a substrate holder 2 with the growth surface facing downward. The substrate holder 2 can hold one substrate having a diameter of 2 inches, 3 inches, 4 inches, or 6 inches, but is not limited to a substrate of these sizes. Here, in order to uniformly transfer the heat from the heater 5 to the substrate 1, a soaking plate 16 may be provided. The substrate holder 2 is rotatably held on the susceptor 3 via a bearing 17 sandwiched between bearing grooves 18 carved on the lower surface of the substrate holder 2 and the upper surface of the susceptor 3. The bearing 17 is preferably spherical with a diameter of 3 to 10 mm. The cross section in the vertical direction of the bearing groove 18 is preferably a semicircle, a triangle, or a quadrangle, but is not particularly limited.

一方、サセプタ3は、サセプタの対面4とともに反応炉6を形成し、反応炉6は、反応容器19に収められ密封されている。サセプタ3は、直径300〜1000mm、厚さ5〜30mmの円盤状であり、6〜15個の基板ホルダー2を保持できることが好ましいが、特に限定されない。反応炉6において、サセプタ3とサセプタの対面4の間隙は、8mm以下であることが好ましく、5mm以下であることがより好ましいが、特にこれらの大きさの間隙に限定されない。   On the other hand, the susceptor 3 forms a reaction furnace 6 together with the facing 4 of the susceptor, and the reaction furnace 6 is housed in a reaction vessel 19 and sealed. The susceptor 3 has a disk shape with a diameter of 300 to 1000 mm and a thickness of 5 to 30 mm, and can hold 6 to 15 substrate holders 2, but is not particularly limited. In the reaction furnace 6, the gap between the susceptor 3 and the facing surface 4 of the susceptor is preferably 8 mm or less, more preferably 5 mm or less, but the gap is not particularly limited to these sizes.

基板ホルダー回転駆動器9からの回転駆動力は、まず、磁性流体シールを用いて反応容器19に対して回転自在に封止された基板ホルダー回転駆動軸10に伝達される。基板ホルダー回転駆動軸10の基板ホルダー回転板側の先端には複数本のツメ11が設けられており、ツメ11が、基板ホルダー回転板12の上面に設けられた差込口に差し込まれることにより脱着可能に噛み合わさり、回転駆動力が基板ホルダー回転板12に伝達される。   The rotational driving force from the substrate holder rotation driver 9 is first transmitted to a substrate holder rotation driving shaft 10 that is rotatably sealed with respect to the reaction vessel 19 using a magnetic fluid seal. A plurality of claws 11 are provided at the tip of the substrate holder rotation drive shaft 10 on the substrate holder rotation plate side, and the claw 11 is inserted into an insertion port provided on the upper surface of the substrate holder rotation plate 12. Engageably and detachably, the rotational driving force is transmitted to the substrate holder rotating plate 12.

基板ホルダー回転板12は、基板ホルダー回転板12の下面及びサセプタ3上面に刻まれたベアリング溝18により挟持されたベアリング17を介して、サセプタ3により回転自在に保持されている。基板ホルダー2は、原料ガス導入部7の周囲に複数個設けられており、基板ホルダー回転板12の縁部に設けられた平歯車部と各基板ホルダー2の縁部に設けられた平歯車部が噛み合わさることにより各基板ホルダー2に回転駆動力が伝達され、各基板ホルダー2は自転により回転する。   The substrate holder rotating plate 12 is rotatably held by the susceptor 3 through a bearing 17 sandwiched by bearing grooves 18 carved on the lower surface of the substrate holder rotating plate 12 and the upper surface of the susceptor 3. A plurality of substrate holders 2 are provided around the source gas introducing portion 7, and a spur gear portion provided at an edge portion of the substrate holder rotating plate 12 and a spur gear portion provided at an edge portion of each substrate holder 2. , The rotational driving force is transmitted to each substrate holder 2, and each substrate holder 2 rotates by rotation.

基板ホルダー回転板12は、直径100〜500mm、厚さ3〜20mmの円盤状の平歯車構造を有することが好ましいが、特に限定されない。基板ホルダー回転駆動軸10は、直径10〜50mmの円柱状であることが好ましいが、特に限定されない。ツメ11は、円柱、楕円柱、角柱、円錐、角錐、またはこれらに類似する形状、これらを組み合せた形状であるが、直径3〜10mm、長さ10〜30mmの円柱状であることが好ましい。さらに、ツメ11は、基板ホルダー回転板12との噛み合わせが容易となるように、このような大きさの円柱状であって、長さ方向に3〜10mm(円柱状の長さに含まれる)の先端部が円錐状に加工されたものがより好ましい。また、ツメ11は、2〜10本設けられることが好ましいが、特にこれらの本数に限定されない。   The substrate holder rotating plate 12 preferably has a disc-shaped spur gear structure having a diameter of 100 to 500 mm and a thickness of 3 to 20 mm, but is not particularly limited. The substrate holder rotation drive shaft 10 is preferably a cylindrical shape having a diameter of 10 to 50 mm, but is not particularly limited. The claw 11 is a cylinder, an elliptic cylinder, a prism, a cone, a pyramid, or a shape similar to these, or a combination thereof, but is preferably a cylinder having a diameter of 3 to 10 mm and a length of 10 to 30 mm. Furthermore, the claw 11 has a columnar shape of such a size so that the claw 11 can be easily engaged with the substrate holder rotating plate 12, and is 3 to 10 mm in the length direction (included in the columnar length). More preferably, the tip end of) is processed into a conical shape. Moreover, although it is preferable that 2-10 claws 11 are provided, it is not limited to these numbers in particular.

また、すべてのツメ11の断面積の合計は、基板ホルダー回転駆動軸10の断面積よりも小さく、(すべてのツメ11の断面積の合計)/(基板ホルダー回転駆動軸10の断面積)の比が、0.1〜0.5であることがより好ましいが、特にこの範囲の比に限定されない。基板ホルダー回転板12の上面に設けられるツメ11の差込口24は、基板ホルダー回転板12の下面にまで貫通した貫通穴でも、貫通しない凹部でもよい。ツメ11の差込口は、ツメ1個につき1箇所ずつ設けられ、直径6〜30mm、深さ5〜20mmの凹部であることがより好ましいが、特に限定されない。   Further, the sum of the cross-sectional areas of all the claws 11 is smaller than the cross-sectional area of the substrate holder rotation driving shaft 10 and is (total of the cross-sectional areas of all the claws 11) / (the cross-sectional area of the substrate holder rotation driving shaft 10). The ratio is more preferably 0.1 to 0.5, but the ratio is not particularly limited to this range. The insertion port 24 of the claw 11 provided on the upper surface of the substrate holder rotating plate 12 may be a through-hole penetrating to the lower surface of the substrate holder rotating plate 12 or a recess that does not penetrate. The insertion hole of the claw 11 is provided at one place for each claw and is preferably a recess having a diameter of 6 to 30 mm and a depth of 5 to 20 mm, but is not particularly limited.

また、噛み合わせが形成されるときに、基板ホルダー回転板12の上面と基板ホルダー回転駆動軸10の下面との間に隙間を有することが好ましい。隙間がない場合は、加熱された際に基板ホルダー回転駆動軸が熱膨張し、基板ホルダー回転板を下側に加圧して不具合を起す虞がある。間隙は1〜20mm程度であることが好ましいが、特に限定されない。さらに、基板ホルダー回転板とツメが噛み合わされるとき、基板ホルダー回転板に設けられた差込口の内面とツメの先端との間に、水平方向及び垂直方向の間隙が形成されることが好ましい。特に差込口24が貫通しない凹部である場合、垂直方向(差込口の底面とツメの先端との間)に隙間がない場合は、加熱された際に基板ホルダー回転駆動軸が熱膨張し、基板ホルダー回転板を下側に加圧して不具合を起す虞がある。間隙は、水平方向に1〜20mm、垂直方向に1mm以上であることが好ましいが、特に限定されない。   Further, it is preferable that there is a gap between the upper surface of the substrate holder rotating plate 12 and the lower surface of the substrate holder rotation drive shaft 10 when the engagement is formed. If there is no gap, the substrate holder rotation drive shaft may thermally expand when heated, and the substrate holder rotation plate may be pressed downward to cause a malfunction. The gap is preferably about 1 to 20 mm, but is not particularly limited. Further, when the substrate holder rotating plate and the claw are engaged with each other, a horizontal and vertical gap is preferably formed between the inner surface of the insertion port provided in the substrate holder rotating plate and the tip of the claw. . In particular, when the insertion port 24 is a recess that does not penetrate, and there is no gap in the vertical direction (between the bottom surface of the insertion port and the tip of the claw), the substrate holder rotation drive shaft thermally expands when heated. The substrate holder rotating plate may be pressed downward to cause a malfunction. The gap is preferably 1 to 20 mm in the horizontal direction and 1 mm or more in the vertical direction, but is not particularly limited.

また、本発明の気相成長装置は、サセプタがサセプタ支持プレート上に設置され、該サセプタ支持プレートが回転自在に保持され、サセプタ回転駆動器から伝達される回転駆動力による該サセプタ支持プレートの回転に伴って該サセプタが回転する構成であることが好ましい。これにより、基板を公転させることにより、同一基板面内だけでなく、各基板間においても均一な膜厚及び膜質を得ることができる。すなわち、サセプタ3をサセプタ支持プレート20上に設置し、サセプタ支持プレート20の下面及び基台21の上面に刻まれたベアリング溝18により挟持されたベアリング17を介して、サセプタ支持プレート20を基台21により回転自在に保持する。サセプタ支持プレート20は、基台21の上に、嵌め合わせ等の方法により位置ずれが生じないように設置されることが好ましい。このとき、サセプタ回転駆動器13からの回転駆動力は、サセプタ回転駆動軸14に伝達され、サセプタ回転駆動軸14のサセプタ支持プレート側先端に固定されたサセプタ回転板15の縁部に設けられた平歯車部とサセプタ支持プレート20の縁部に設けられた平歯車部が噛み合わさることによりサセプタ支持プレート20に回転駆動力が伝達され、サセプタ支持プレート20が回転する。同時に、サセプタ支持プレート20の上に設置されたサセプタ3も回転し、サセプタ3上に配置された基板ホルダー2は公転する。気相成長反応中は、基板ホルダー2を常時公転させることが好ましい。   In the vapor phase growth apparatus of the present invention, the susceptor is installed on the susceptor support plate, the susceptor support plate is rotatably held, and the susceptor support plate is rotated by a rotational driving force transmitted from the susceptor rotation driver. Accordingly, it is preferable that the susceptor rotate. Thereby, by revolving the substrate, a uniform film thickness and film quality can be obtained not only within the same substrate plane but also between the substrates. That is, the susceptor 3 is installed on the susceptor support plate 20, and the susceptor support plate 20 is mounted on the base via the bearing 17 sandwiched by the bearing grooves 18 carved on the lower surface of the susceptor support plate 20 and the upper surface of the base 21. 21 is rotatably held. The susceptor support plate 20 is preferably installed on the base 21 so as not to be displaced by a method such as fitting. At this time, the rotational driving force from the susceptor rotation drive unit 13 is transmitted to the susceptor rotation drive shaft 14 and provided at the edge of the susceptor rotation plate 15 fixed to the susceptor support plate side tip of the susceptor rotation drive shaft 14. When the spur gear portion and the spur gear portion provided at the edge of the susceptor support plate 20 are engaged with each other, a rotational driving force is transmitted to the susceptor support plate 20 and the susceptor support plate 20 rotates. At the same time, the susceptor 3 installed on the susceptor support plate 20 also rotates, and the substrate holder 2 disposed on the susceptor 3 revolves. It is preferable to always revolve the substrate holder 2 during the vapor phase growth reaction.

基板ホルダー2及びサセプタ3の回転方向及び回転速度は、それぞれ、基板ホルダー回転駆動器9及びサセプタ回転駆動器13の回転方向及び回転速度を変化させることにより、任意に設定することができる。基板ホルダー回転軸10を上下に移動させることにより、基板ホルダー回転板12に設けた差込口からツメ11を引き抜くことができるように、伸縮可能な蛇腹管22を設けてもよい。サセプタ3を取り出し易いように、上下動によりサセプタ3を昇降させるサセプタ昇降機構23を設けてもよい。   The rotation direction and rotation speed of the substrate holder 2 and the susceptor 3 can be arbitrarily set by changing the rotation direction and rotation speed of the substrate holder rotation driver 9 and the susceptor rotation driver 13, respectively. An extendable bellows tube 22 may be provided so that the claw 11 can be pulled out from the insertion port provided in the substrate holder rotating plate 12 by moving the substrate holder rotating shaft 10 up and down. A susceptor elevating mechanism 23 for elevating the susceptor 3 by moving up and down may be provided so that the susceptor 3 can be easily taken out.

反応炉6の中心部には原料ガス導入部7が設けられ、原料ガスは、原料ガス導入部7から放射状に吹き出し、基板1の成長面に対して水平に供給される。気相成長反応は、反応炉6において、ヒータ5により基板1を加熱しながら、原料ガス導入部7から原料ガスを供給することにより行われ、基板1の成長面にはIII族窒化物半導体の結晶膜が形成される。気相成長反応に用いられた原料ガスは、そのまま反応ガスとして反応ガス排出部8から排出される。気相成長反応中は、基板ホルダー2を常時自転させることが好ましい。各基板間において均一な膜厚及び膜質を得るためには、各基板ホルダー2を反応炉の中心に対して同一円周上に配置して、原料ガス導入部からの距離を等しくすることが好ましいが、特に限定されない。   A source gas introduction unit 7 is provided at the center of the reaction furnace 6, and the source gas is blown out radially from the source gas introduction unit 7 and supplied horizontally to the growth surface of the substrate 1. The vapor phase growth reaction is performed by supplying the source gas from the source gas introduction unit 7 while heating the substrate 1 with the heater 5 in the reaction furnace 6, and the growth surface of the substrate 1 is made of a group III nitride semiconductor. A crystal film is formed. The raw material gas used for the vapor phase growth reaction is directly discharged from the reaction gas discharge unit 8 as a reaction gas. It is preferable to always rotate the substrate holder 2 during the vapor phase growth reaction. In order to obtain a uniform film thickness and film quality between the substrates, it is preferable to arrange the substrate holders 2 on the same circumference with respect to the center of the reaction furnace so that the distances from the raw material gas introduction portions are equal. However, it is not particularly limited.

基板ホルダー2、サセプタ3、及び基板ホルダー回転板12は、カーボン系材料又はカーボン系材料をセラミック材料でコーティングしたものが好ましいが、特に限定されない。基板ホルダー回転駆動軸10及びツメ11は、金属、合金、金属酸化物、カーボン系材料、セラミック系材料、カーボン系材料をセラミック材料でコーティングしたもの、又はこれらの組み合わせが好ましいが、特に限定されない。ベアリング17は、セラミック材料であることが好ましいが、特に限定されない。ここで、合金の例には、ステンレス又はインコネルがあるが、特に限定されない。カーボン系材料の例には、カーボン、パイオロリティックグラファイト(PG)、グラッシカーボン(GC)等があるが、特に限定されない。セラミックス系材料の例には、アルミナ、炭化ケイ素(SiC)、窒化ケイ素(SiN)、窒化ホウ素(BN)等があるが、特に限定されない。   The substrate holder 2, the susceptor 3, and the substrate holder rotating plate 12 are preferably carbon materials or carbon materials coated with a ceramic material, but are not particularly limited. The substrate holder rotation drive shaft 10 and the claw 11 are preferably metal, alloy, metal oxide, carbon-based material, ceramic-based material, carbon-based material coated with a ceramic material, or a combination thereof, but is not particularly limited. The bearing 17 is preferably made of a ceramic material, but is not particularly limited. Here, examples of the alloy include stainless steel and inconel, but are not particularly limited. Examples of the carbon-based material include, but are not particularly limited to, carbon, pyrolytic graphite (PG), and glassy carbon (GC). Examples of the ceramic material include alumina, silicon carbide (SiC), silicon nitride (SiN), boron nitride (BN), and the like, but are not particularly limited.

特に、基板ホルダー2、サセプタ3及び基板ホルダー回転板12は、SiCコートカーボン、ベアリング17は、アルミナであることが好ましいが、特に限定されない。基板ホルダー回転駆動軸10は、強度を確保するために基板ホルダー回転駆動器側部分をインコネル製とし、基板ホルダー回転板12との噛み合わせを取る際の破損等を防止するために基板ホルダー回転板側部分をSiCコートカーボン製とし、ネジ等で両者を固定することにより一体化したものが好ましく、ツメ11は、SiCコートカーボン製で、基板ホルダー回転駆動軸の基板ホルダー回転板側部分の端面にあらかじめ一体として形成されていることが好ましい。
尚、図1〜3においては、本発明の気相成長装置の一例(フェイスダウン型)を示したが、本発明の実施形態としては、本発明の範囲内におけるフェイスアップ型の気相成長装置も適用できる。
In particular, the substrate holder 2, the susceptor 3 and the substrate holder rotating plate 12 are preferably SiC-coated carbon, and the bearing 17 is alumina, but is not particularly limited. The substrate holder rotation drive shaft 10 is made of Inconel on the side of the substrate holder rotation drive to ensure strength, and the substrate holder rotation plate is used to prevent breakage when engaging with the substrate holder rotation plate 12. It is preferable that the side portion is made of SiC coated carbon and is integrated by fixing both with screws or the like. The claw 11 is made of SiC coated carbon and is formed on the end surface of the substrate holder rotating plate side portion of the substrate holder rotating drive shaft. It is preferable that they are integrally formed in advance.
1 to 3 show an example of the vapor phase growth apparatus of the present invention (face-down type), but an embodiment of the present invention is a face-up type vapor phase growth apparatus within the scope of the present invention. Is also applicable.

次に、本発明を実施例により具体的に説明するが、本発明がこれらにより限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these.

[実施例1]
(気相成長装置の製作)
図1〜図3に示すような気相成長装置を製作した。直径3インチのサファイア基板を1枚保持可能である基板ホルダー2(SiCコートカーボン製)8個と、基板ホルダー回転板12(SiCコートカーボン製、直径200mm、厚さ15mm)を、サセプタ3(SiCコートカーボン製、直径600mm、厚さ20mm、3インチの基板を8枚保持可能)により、ベアリング17を介して保持し、基板ホルダー2と基板ホルダー回転板12の平歯車部を噛み合わせた。
[Example 1]
(Production of vapor phase growth equipment)
A vapor phase growth apparatus as shown in FIGS. 1 to 3 was manufactured. Eight substrate holders 2 (SiC coated carbon) capable of holding one 3 inch diameter sapphire substrate and a substrate holder rotating plate 12 (SiC coated carbon, diameter 200 mm, thickness 15 mm) are connected to a susceptor 3 (SiC The substrate holder 2 and the spur gear portion of the substrate holder rotating plate 12 are engaged with each other by holding the substrate 17 through a bearing carbon 17 (made of coated carbon, 600 mm in diameter, 20 mm in thickness, and capable of holding three 3-inch substrates).

ツメ11は、先端部3mmが円錐状に加工された、断面の直径5mm、長さ12mm(円錐状の部分を含む)の円柱状であり、断面の直径20mmの基板ホルダー回転駆動軸10の先端に等間隔で3本設けた。ツメ11の差込口24として、基板ホルダー回転板12の上面に、直径10mm、深さ12mmの円柱状の凹部を、各ツメに対して1つずつ設けた。ツメ11と凹部の間には、水平方向に最大5mmの間隙が生じ、垂直方向に5mmの間隙を設けたため、基板ホルダー回転板の上面と基板ホルダー回転駆動軸の下面との間には5mmの間隙が生じた。   The claw 11 has a cylindrical shape with a cross-sectional diameter of 5 mm and a length of 12 mm (including a conical portion), the tip of which is processed into a conical shape, and the front end of the substrate holder rotary drive shaft 10 having a cross-sectional diameter of 20 mm. Three were provided at regular intervals. As the insertion port 24 of the claw 11, a cylindrical recess having a diameter of 10 mm and a depth of 12 mm was provided on the upper surface of the substrate holder rotating plate 12, one for each claw. Between the claw 11 and the recess, a maximum gap of 5 mm is generated in the horizontal direction and a gap of 5 mm is provided in the vertical direction. Therefore, a gap of 5 mm is provided between the upper surface of the substrate holder rotating plate and the lower surface of the substrate holder rotating drive shaft. A gap was created.

基板ホルダー回転駆動軸10はインコネル及びSiCコートカーボンからなり、基板ホルダー回転駆動器側部分をインコネル製(直径20mm、長さ270mmの円柱状)とし、基板ホルダー回転板側部分をSiCコートカーボン製(直径20mm、長さ30mmの円柱状)とし、両者をカーボン製のネジで固定することにより一体化して基板ホルダー回転駆動軸10とした。ツメ11はSiCコートカーボン製であり、基板ホルダー回転駆動軸10の下面にあらかじめ一体として形成した。サセプタの対面4、サセプタ支持プレート20及び基台21はカーボン製とし、反応容器19はステンレス製とした。   The substrate holder rotation drive shaft 10 is made of Inconel and SiC coated carbon, the substrate holder rotation drive side portion is made of Inconel (columnar shape with a diameter of 20 mm and a length of 270 mm), and the substrate holder rotation plate side portion is made of SiC coated carbon ( The substrate holder rotating drive shaft 10 was integrated by fixing both with a carbon screw. The claw 11 is made of SiC-coated carbon, and is integrally formed in advance on the lower surface of the substrate holder rotation drive shaft 10. The facing surface 4 of the susceptor, the susceptor support plate 20 and the base 21 were made of carbon, and the reaction vessel 19 was made of stainless steel.

(温度測定)
このような気相成長装置を用いて、基板ホルダー回転駆動軸の温度測定を行った。まず、基板ホルダーに基板(直径3インチ、サファイア)をセットし、基板ホルダー回転駆動器は停止させ、基板ホルダー回転駆動軸が自由に回転できないように処置した。その後、サセプタ回転駆動器のみの稼働により、基板を公転(1rpm)させたが、それに伴って基板も自転した。なお、温度測定が終了するまでこの状態を維持し、反応容器内を大気圧に保った。次に、原料ガス導入部から水素を流しながら基板の温度を1050℃まで昇温させ、基板ホルダー回転駆動軸の上面(基板ホルダー回転駆動器側)の温度を測定したところ41℃であった。
(Temperature measurement)
Using such a vapor phase growth apparatus, the temperature of the substrate holder rotation drive shaft was measured. First, a substrate (diameter 3 inches, sapphire) was set on the substrate holder, the substrate holder rotation drive unit was stopped, and treatment was performed so that the substrate holder rotation drive shaft could not rotate freely. After that, the substrate was revolved (1 rpm) by operating only the susceptor rotation driver, and the substrate also rotated along with it. This state was maintained until the temperature measurement was completed, and the inside of the reaction vessel was kept at atmospheric pressure. Next, the temperature of the substrate was raised to 1050 ° C. while flowing hydrogen from the source gas introduction part, and the temperature of the upper surface of the substrate holder rotation drive shaft (substrate holder rotation drive side) was measured to be 41 ° C.

(気相成長実験)
このような気相成長装置を用いて、基板の表面に窒化ガリウム(GaN)の成長を行った。まず、基板ホルダーに基板(直径3インチ、サファイア)基板をセットし、基板ホルダー回転駆動器及びサセプタ回転駆動器を稼働させて、基板の自転(10rpm)及び公転(1rpm)を開始した。なお、すべての成長が終了後、ヒータ温度が室温付近に下がるまで、基板の自転及び公転をこれらの速度で継続し、反応容器内を大気圧に保った。
(Vapor phase growth experiment)
Using such a vapor phase growth apparatus, gallium nitride (GaN) was grown on the surface of the substrate. First, a substrate (3-inch diameter, sapphire) substrate was set in the substrate holder, the substrate holder rotation driver and the susceptor rotation driver were operated, and rotation (10 rpm) and revolution (1 rpm) of the substrate were started. After all the growth was completed, the rotation and revolution of the substrate were continued at these speeds until the heater temperature decreased to around room temperature, and the inside of the reaction vessel was kept at atmospheric pressure.

次に、原料ガス導入部から水素を流しながら基板の温度を1050℃まで昇温させ、基板のクリーニングを行った。続いて、ヒータ温度を510℃まで下げて、原料ガスとしてトリメチルガリウム(TMG)とアンモニア、キャリアガスとして水素を用いて、サファイア基板上にGaNからなる膜厚20μmのバッファー層の成長を行い、バッファー層成長後に、TMGのみ供給を停止し、ヒータ温度を1050℃まで上昇させた。その後、原料ガス導入部から、TMGとアンモニアの他に、キャリアガスとして水素と窒素を供給して、アンドープGaNの成長を1時間行った。   Next, the temperature of the substrate was raised to 1050 ° C. while flowing hydrogen from the source gas introduction part, and the substrate was cleaned. Subsequently, the heater temperature is lowered to 510 ° C., and a buffer layer having a thickness of 20 μm made of GaN is grown on the sapphire substrate using trimethylgallium (TMG) and ammonia as source gases and hydrogen as a carrier gas. After the layer growth, the supply of only TMG was stopped, and the heater temperature was raised to 1050 ° C. Thereafter, hydrogen and nitrogen were supplied as carrier gases in addition to TMG and ammonia from the source gas introduction part, and undoped GaN was grown for 1 hour.

以上のようにIII族窒化物半導体を成長させた後、室温付近まで放冷させ、基板を反応容器から取り出した。基板の自転及び公転の開始から終了まで、基板ホルダー回転駆動器及びサセプタ回転駆動器は正常に作動し、放冷後に、反応容器内の各部品を目視で点検したところ、腐食、破損等の異常はなかった。   After the group III nitride semiconductor was grown as described above, it was allowed to cool to near room temperature, and the substrate was taken out from the reaction vessel. The substrate holder rotation drive and the susceptor rotation drive operate normally from the start to the end of rotation and revolution of the substrate. After standing to cool, each component in the reaction vessel was visually inspected. There was no.

(サセプタの脱着)
気相成長実験終了後、基板を室温付近まで放冷してから反応容器内を開放し、基板ホルダー回転駆動軸を上方に移動させ、ツメを基板ホルダー回転板の凹部から引き抜いた。その後、サセプタ昇降機構によりサセプタを持ち上げ、人手により取り出したところ、基板ホルダー、基板ホルダー回転板及びベアリングを保持させたままでサセプタを反応容器の外に容易に取り出すことができた。
(Removal of susceptor)
After completion of the vapor phase growth experiment, the substrate was allowed to cool to near room temperature, then the reaction vessel was opened, the substrate holder rotation drive shaft was moved upward, and the claw was pulled out from the recess of the substrate holder rotation plate. Thereafter, when the susceptor was lifted by the susceptor lifting mechanism and removed manually, the susceptor could be easily taken out of the reaction vessel while holding the substrate holder, the substrate holder rotating plate and the bearing.

また、反応容器の外で基板ホルダー及びサセプタ等のクリーニングを行った後に基板ホルダー、基板ホルダー回転板及びベアリングを保持したサセプタを人手により反応容器内に設置し、サセプタ昇降機構により基台の上の所定の位置に戻した。基板ホルダー回転駆動軸を当初の位置に戻してから、反応容器を密閉し、上記の気相成長実験を再度行った。基板の自転及び公転の開始から終了まで、基板ホルダー回転駆動器及びサセプタ回転駆動器は正常に作動し、放冷後に、反応容器内の各部品を目視で点検したところ、腐食、破損等の異常はなかった。   After cleaning the substrate holder, susceptor, etc. outside the reaction vessel, the substrate holder, the substrate holder rotating plate, and the susceptor holding the bearing are manually installed in the reaction vessel, and the susceptor lifting mechanism is installed on the base. Returned to place. After returning the substrate holder rotation drive shaft to the initial position, the reaction vessel was sealed, and the vapor phase growth experiment was performed again. The substrate holder rotation drive and the susceptor rotation drive operate normally from the start to the end of rotation and revolution of the substrate. After standing to cool, each component in the reaction vessel was visually inspected. There was no.

[実施例2]
(気相成長装置の製作)
ツメの差込口として、基板ホルダー回転板を貫通する直径10mmの貫通穴を、各ツメに対して1つずつ設けた。ツメ11と貫通穴の間には、水平方向に最大5mmの間隙が生じ、基板ホルダー回転板の上面と基板ホルダー回転駆動軸の下面との間には5mmの間隙を設けた。それ以外は、実施例1の気相成長装置と同様のものを製作した。
[Example 2]
(Production of vapor phase growth equipment)
As a claw insertion port, a through hole having a diameter of 10 mm that penetrates the substrate holder rotating plate was provided for each claw. A gap of 5 mm at maximum is generated between the claw 11 and the through hole in the horizontal direction, and a gap of 5 mm is provided between the upper surface of the substrate holder rotating plate and the lower surface of the substrate holder rotation drive shaft. Other than that, the thing similar to the vapor phase growth apparatus of Example 1 was produced.

(温度測定)
このような気相成長装置を用いて、実施例1と同様の温度測定を行ったところ、基板ホルダー回転駆動軸の上面の温度は40℃であった。
(気相成長実験)
このような気相成長装置を用いて、実施例1と同様の気相成長実験を行った。その結果、基板の自転及び公転の開始から終了まで、基板ホルダー回転駆動器及びサセプタ回転駆動器は正常に作動し、放冷後に、反応容器内の各部品を目視で点検したところ、腐食、破損等の異常はなかった。
(Temperature measurement)
Using such a vapor phase growth apparatus, the same temperature measurement as in Example 1 was performed. As a result, the temperature of the upper surface of the substrate holder rotation drive shaft was 40 ° C.
(Vapor phase growth experiment)
Using such a vapor phase growth apparatus, the same vapor phase growth experiment as in Example 1 was performed. As a result, from the start to the end of rotation and revolution of the substrate, the substrate holder rotation drive and the susceptor rotation drive operated normally. There was no abnormality.

(サセプタの脱着)
気相成長実験終了後、実施例1と同様にサセプタを取り出したところ、基板ホルダー、基板ホルダー回転板及びベアリングを保持させたままでサセプタを反応容器の外に容易に取り出すことができた。
また、実施例1と同様の操作でサセプタを反応容器内の所定の位置に戻し、基板ホルダー回転駆動軸を当初の位置に戻してから、反応容器を密閉し、実施例1と同様の気相成長実験を再度行った。基板の自転及び公転の開始から終了まで、基板ホルダー回転駆動器及びサセプタ回転駆動器は正常に作動し、放冷後に、反応容器内の各部品を目視で点検したところ、腐食、破損等の異常はなかった。
(Removal of susceptor)
After completion of the vapor phase growth experiment, the susceptor was taken out in the same manner as in Example 1. As a result, the susceptor could be easily taken out of the reaction vessel while holding the substrate holder, the substrate holder rotating plate, and the bearing.
Further, the susceptor is returned to a predetermined position in the reaction vessel by the same operation as in Example 1, the substrate holder rotation drive shaft is returned to the original position, the reaction vessel is sealed, and the gas phase similar to that in Example 1 is obtained. The growth experiment was performed again. The substrate holder rotation drive and the susceptor rotation drive operate normally from the start to the end of rotation and revolution of the substrate. After standing to cool, each component in the reaction vessel was visually inspected. There was no.

[比較例1]
(気相成長装置の製作)
基板ホルダー回転板の上面と基板ホルダー回転駆動軸の下面との間に間隙が生じないように両者を接触させ、ツメの先端と凹部の底面を接触させた他は、実施例1と同様の気相成長装置を製作した。
(温度測定)
このような気相成長装置を用いて、実施例1と同様の温度測定を行ったところ、基板ホルダー回転駆動軸の上面の温度は53℃であった。
[Comparative Example 1]
(Production of vapor phase growth equipment)
Except that both are brought into contact with each other so that no gap is formed between the upper surface of the substrate holder rotating plate and the lower surface of the substrate holder rotation drive shaft, and the tips of the claws are brought into contact with the bottom surfaces of the recesses, the same as in the first embodiment A phase growth device was fabricated.
(Temperature measurement)
Using such a vapor phase growth apparatus, the same temperature measurement as in Example 1 was performed. As a result, the temperature of the upper surface of the substrate holder rotation drive shaft was 53 ° C.

[比較例2]
(気相成長装置の製作)
基板ホルダー回転板の上面と基板ホルダー回転駆動軸の下面との間に間隙が生じないように両者を接触させた他は、実施例2と同様の気相成長装置を製作した。
(温度測定)
このような気相成長装置を用いて、実施例2と同様の温度測定を行ったところ、基板ホルダー回転駆動軸の上面の温度は49℃であった。
[Comparative Example 2]
(Production of vapor phase growth equipment)
A vapor phase growth apparatus similar to that of Example 2 was manufactured, except that the gap between the upper surface of the substrate holder rotating plate and the lower surface of the substrate holder rotation drive shaft was not in contact with each other.
(Temperature measurement)
Using such a vapor phase growth apparatus, the same temperature measurement as in Example 2 was performed. As a result, the temperature of the upper surface of the substrate holder rotation drive shaft was 49 ° C.

以上のように、本発明の気相成長装置は、サセプタの脱着が容易でメンテナンス性に優れ、基板ホルダー回転駆動器及び基板ホルダー回転駆動軸に対するヒータからの熱伝導を抑制できる。   As described above, the vapor phase growth apparatus of the present invention is easy to attach and detach the susceptor, has excellent maintainability, and can suppress heat conduction from the heater to the substrate holder rotation drive unit and the substrate holder rotation drive shaft.

本発明の気相成長装置の一例を示す垂直断面概略図である。It is the vertical cross-sectional schematic which shows an example of the vapor phase growth apparatus of this invention. 本発明の気相成長装置の水平断面概略図(図1におけるA−A断面)である。It is a horizontal section schematic diagram (AA section in Drawing 1) of the vapor phase growth apparatus of the present invention. 本発明の気相成長装置の水平断面概略図(図1におけるB−B断面)である。It is a horizontal section schematic diagram (BB section in Drawing 1) of the vapor phase growth apparatus of the present invention.

1 基板
2 基板ホルダー
3 サセプタ
4 サセプタの対面
5 ヒータ
6 反応炉
7 原料ガス導入部
8 反応ガス排出部
9 基板ホルダー回転駆動器
10 基板ホルダー回転駆動軸
11 ツメ
12 基板ホルダー回転板
13 サセプタ回転駆動器
14 サセプタ回転駆動軸
15 サセプタ回転板
16 均熱板
17 ベアリング
18 ベアリング溝
19 反応容器
20 サセプタ支持プレート
21 基台
22 蛇腹管
23 サセプタ昇降機構
24 差込口
DESCRIPTION OF SYMBOLS 1 Substrate 2 Substrate holder 3 Susceptor 4 Face of susceptor 5 Heater 6 Reaction furnace 7 Raw material gas introduction part 8 Reaction gas discharge part 9 Substrate holder rotation drive 10 Substrate holder rotation drive shaft 11 Claw 12 Substrate holder rotation plate 13 Susceptor rotation drive Reference Signs List 14 susceptor rotation drive shaft 15 susceptor rotation plate 16 heat equalizing plate 17 bearing 18 bearing groove 19 reaction vessel 20 susceptor support plate 21 base 22 bellows tube 23 susceptor elevating mechanism 24 outlet

Claims (7)

基板を保持する基板ホルダー、該基板ホルダーを回転自在に保持するサセプタ、該サセプタの対面、該基板を加熱するためのヒータ、該サセプタと該サセプタの対面の間隙からなる反応炉、該反応炉の中心部から周辺部に向かって原料ガスを供給する原料ガス導入部、反応ガス排出部、及び基板ホルダー回転駆動器を有し、基板を保持する基板ホルダーが、原料ガス導入部の周囲に複数個備えられたIII族窒化物半導体の気相成長装置であって、基板を保持する複数の基板ホルダーが、基板ホルダー回転駆動器から、基板ホルダー回転駆動軸、該基板ホルダー回転駆動軸に設けられた複数本のツメ、及び反応炉の中心部に設けられ該ツメと脱着可能に噛み合わされた基板ホルダー回転板を介して伝達される回転駆動力により回転する構成であることを特徴とするIII族窒化物半導体の気相成長装置。   A substrate holder for holding a substrate, a susceptor for rotatably holding the substrate holder, a facing surface of the susceptor, a heater for heating the substrate, a reaction furnace comprising a gap between the facing surface of the susceptor and the susceptor, There are a plurality of substrate holders around the source gas introduction part that have a source gas introduction part for supplying a source gas from the central part to the peripheral part, a reaction gas discharge part, and a substrate holder rotation drive. A group III nitride semiconductor vapor phase growth apparatus provided, wherein a plurality of substrate holders for holding a substrate are provided from a substrate holder rotation drive unit to a substrate holder rotation drive shaft and the substrate holder rotation drive shaft It is configured to rotate by a rotational driving force transmitted through a plurality of claws and a substrate holder rotating plate that is provided at the center of the reactor and is detachably engaged with the claws. Preparative III nitride semiconductor of the vapor phase growth apparatus according to claim. サセプタが、サセプタ回転駆動器から、サセプタ回転駆動軸、サセプタ回転板、及び該サセプタを保持するサセプタ支持プレートを介して伝達される回転駆動力により回転する構成である請求項1に記載の気相成長装置。   2. The gas phase according to claim 1, wherein the susceptor is configured to rotate by a rotational driving force transmitted from the susceptor rotation driver through a susceptor rotation drive shaft, a susceptor rotation plate, and a susceptor support plate that holds the susceptor. Growth equipment. 基板ホルダー回転板とツメが噛み合わされるとき、基板ホルダー回転板の上面と基板ホルダー回転駆動軸の下面との間に間隙が形成される請求項1に記載の気相成長装置。   The vapor phase growth apparatus according to claim 1, wherein when the substrate holder rotating plate and the claw are engaged with each other, a gap is formed between the upper surface of the substrate holder rotating plate and the lower surface of the substrate holder rotation drive shaft. 基板ホルダー回転板の上部に、ツメの差込口が設けられた請求項1に記載の気相成長装置。   The vapor phase growth apparatus according to claim 1, wherein a claw insertion port is provided on an upper portion of the substrate holder rotating plate. 基板ホルダー回転板とツメが噛み合わされるとき、基板ホルダー回転板に設けられた差込口の底面とツメの先端との間に間隙が形成される請求項4に記載の気相成長装置。   5. The vapor phase growth apparatus according to claim 4, wherein when the substrate holder rotating plate and the claw are engaged with each other, a gap is formed between the bottom surface of the insertion port provided in the substrate holder rotating plate and the tip of the claw. 基板ホルダー回転板とツメが噛み合わされるとき、基板ホルダー回転板に設けられた差込口の内面とツメの先端との間に、水平方向及び垂直方向の間隙が形成される請求項4に記載の気相成長装置。   The horizontal and vertical gaps are formed between the inner surface of the insertion port provided in the substrate holder rotating plate and the tip of the claw when the substrate holder rotating plate and the claw are engaged with each other. Vapor growth equipment. ツメの差込口が、基板ホルダー回転板を貫通した貫通穴である請求項4に記載の気相成長装置。   The vapor phase growth apparatus according to claim 4, wherein the insertion hole of the claw is a through hole penetrating the substrate holder rotating plate.
JP2011091388A 2011-04-15 2011-04-15 Vapor-phase growth device of group iii nitride semiconductor Pending JP2012227231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011091388A JP2012227231A (en) 2011-04-15 2011-04-15 Vapor-phase growth device of group iii nitride semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011091388A JP2012227231A (en) 2011-04-15 2011-04-15 Vapor-phase growth device of group iii nitride semiconductor

Publications (1)

Publication Number Publication Date
JP2012227231A true JP2012227231A (en) 2012-11-15

Family

ID=47277095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011091388A Pending JP2012227231A (en) 2011-04-15 2011-04-15 Vapor-phase growth device of group iii nitride semiconductor

Country Status (1)

Country Link
JP (1) JP2012227231A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5727073B1 (en) * 2014-06-03 2015-06-03 株式会社シンクロン Portable rotating apparatus and film forming apparatus
CN115885057A (en) * 2020-06-03 2023-03-31 应用材料公司 Deposition apparatus, processing system, and method of fabricating a photovoltaic device layer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055636A (en) * 2002-07-17 2004-02-19 Sumitomo Chem Co Ltd Vapor phase epitaxial growth system
JP2004525056A (en) * 2001-02-07 2004-08-19 エムコア・コーポレイション Apparatus and method for growing an epitaxial layer on a wafer by chemical vapor deposition
JP2006114547A (en) * 2004-10-12 2006-04-27 Hitachi Cable Ltd Vapor growth device
JP2009099770A (en) * 2007-10-17 2009-05-07 Hitachi Cable Ltd Vapor deposition apparatus
JP2010272708A (en) * 2009-05-22 2010-12-02 Taiyo Nippon Sanso Corp Vapor phase growth apparatus
JP2011032544A (en) * 2009-08-03 2011-02-17 Tokuyama Corp Device for rotating substrate in chamber and method of rotating substrate in chamber
JP2011044532A (en) * 2009-08-20 2011-03-03 Varios Kk Device for rotationally holding semiconductor substrate
JP2013004956A (en) * 2011-06-16 2013-01-07 Pinecone Energies Inc Rotation system for forming thin film and method for the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004525056A (en) * 2001-02-07 2004-08-19 エムコア・コーポレイション Apparatus and method for growing an epitaxial layer on a wafer by chemical vapor deposition
JP2004055636A (en) * 2002-07-17 2004-02-19 Sumitomo Chem Co Ltd Vapor phase epitaxial growth system
JP2006114547A (en) * 2004-10-12 2006-04-27 Hitachi Cable Ltd Vapor growth device
JP2009099770A (en) * 2007-10-17 2009-05-07 Hitachi Cable Ltd Vapor deposition apparatus
JP2010272708A (en) * 2009-05-22 2010-12-02 Taiyo Nippon Sanso Corp Vapor phase growth apparatus
JP2011032544A (en) * 2009-08-03 2011-02-17 Tokuyama Corp Device for rotating substrate in chamber and method of rotating substrate in chamber
JP2011044532A (en) * 2009-08-20 2011-03-03 Varios Kk Device for rotationally holding semiconductor substrate
JP2013004956A (en) * 2011-06-16 2013-01-07 Pinecone Energies Inc Rotation system for forming thin film and method for the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5727073B1 (en) * 2014-06-03 2015-06-03 株式会社シンクロン Portable rotating apparatus and film forming apparatus
WO2015186702A1 (en) * 2014-06-03 2015-12-10 株式会社シンクロン Portable rotary apparatus and film formation apparatus
CN105324513A (en) * 2014-06-03 2016-02-10 株式会社新柯隆 Portable rotary apparatus and film formation apparatus
CN105324513B (en) * 2014-06-03 2017-03-15 株式会社新柯隆 Movable whirligig and film formation device
CN115885057A (en) * 2020-06-03 2023-03-31 应用材料公司 Deposition apparatus, processing system, and method of fabricating a photovoltaic device layer

Similar Documents

Publication Publication Date Title
JP5347288B2 (en) Manufacturing method of silicon epitaxial wafer
JP2012227231A (en) Vapor-phase growth device of group iii nitride semiconductor
JP5409413B2 (en) III-nitride semiconductor vapor phase growth system
JP2011044532A (en) Device for rotationally holding semiconductor substrate
JP2010174338A (en) Cvd apparatus
JP2013239579A (en) Vapor deposition device
TWI679683B (en) Vapor phase growth method
WO2012104928A1 (en) Rotating and holding device and transport device for semiconductor substrate
JP2008262967A (en) Vapor phase deposition method, and apparatus using the same
JP2014207357A (en) Susceptor and vapor phase growth device employing the same
JP2008177187A (en) Vapor phase epitaxial growth device and method
JP2013136475A (en) Vapor phase growth apparatus
JP5867913B2 (en) Silicon carbide film CVD system
JP5459257B2 (en) Manufacturing method of silicon epitaxial wafer
KR20130034603A (en) Cleaning apparatus and cleaning method for components of metal organic chemical vapor deposition device
JP2017017084A (en) Method for manufacturing silicon carbide epitaxial substrate and epitaxial growth apparatus
JP2013016549A (en) Vapor phase growth apparatus
JP6335683B2 (en) SiC epitaxial wafer manufacturing equipment
JP2014212204A (en) Vapor phase epitaxial growth device
JP2015119049A (en) Mechanism for rotating and revolving susceptor and chemical vapor phase growth method and chemical vapor growth device using the same
JP2013157502A (en) Substrate holding tool and vapor growth device using the same
JP2013030633A (en) Vapor growth device
JP6196859B2 (en) Wafer mounting material
JP2014204066A (en) Vapor growth device
JP2010219225A (en) Vapor growth apparatus of group iii nitride semiconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141127