JP4578790B2 - Method for producing lithium-nickel-cobalt-manganese-aluminum-containing composite oxide - Google Patents
Method for producing lithium-nickel-cobalt-manganese-aluminum-containing composite oxide Download PDFInfo
- Publication number
- JP4578790B2 JP4578790B2 JP2003323426A JP2003323426A JP4578790B2 JP 4578790 B2 JP4578790 B2 JP 4578790B2 JP 2003323426 A JP2003323426 A JP 2003323426A JP 2003323426 A JP2003323426 A JP 2003323426A JP 4578790 B2 JP4578790 B2 JP 4578790B2
- Authority
- JP
- Japan
- Prior art keywords
- nickel
- cobalt
- manganese
- lithium
- aluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、リチウム二次電池の正極活物質として好適な改良されたリチウム−ニッケル−コバルト−マンガン−アルミニウム含有複合酸化物の製造方法に関するものである。 The present invention relates to a method for producing an improved lithium-nickel-cobalt-manganese-aluminum-containing composite oxide suitable as a positive electrode active material for a lithium secondary battery.
近年、機器のポータブル化、コードレス化が進むにつれ、小型、軽量でかつ高エネルギー密度を有する非水電解液二次電池に対する期待が高まっている。非水電解液二次電池用の活物質としては、LiCoO2、LiNiO2、LiMn2O4、LiMnO2等の、リチウムと遷移金属との複合酸化物が知られている。 In recent years, as devices become portable and cordless, expectations for non-aqueous electrolyte secondary batteries that are small, lightweight, and have high energy density are increasing. As active materials for non-aqueous electrolyte secondary batteries, composite oxides of lithium and transition metals, such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 2 , are known.
その中で特に最近では、安全性が高くかつ安価な材料として、リチウムとマンガンの複合酸化物の研究が盛んに行なわれており、これらを正極活物質に用いて、リチウムを吸蔵、放出することができる炭素材料等の負極活物質とを組み合わせることによる、高電圧、高エネルギー密度の非水電解液二次電池の開発が進められている。 Recently, research on lithium-manganese composite oxides has been actively conducted as a highly safe and inexpensive material, and these materials are used as positive electrode active materials to occlude and release lithium. Development of a high-voltage, high-energy density non-aqueous electrolyte secondary battery by combining with a negative electrode active material such as a carbon material that can be used is underway.
一般に、非水電解液二次電池に用いられる正極活物質は、主活物質であるリチウムにコバルト,ニッケル,マンガンをはじめとする遷移金属を固溶させた複合酸化物からなり、その用いられる遷移金属の種類によって、電気容量,可逆性,作動電圧,安全性などの電極特性が異なる。 In general, the positive electrode active material used in non-aqueous electrolyte secondary batteries is composed of a complex oxide in which transition metals such as cobalt, nickel, and manganese are solid-dissolved in lithium, which is the main active material, and the transition used. Depending on the type of metal, electrode characteristics such as electric capacity, reversibility, operating voltage, and safety are different.
例えば、LiCoO2,LiNi0.8Co0.2O2のように、コバルトやニッケルを固溶させたR−3m菱面体岩塩層状複合酸化物を正極活物質に用いた非水電解液二次電池は、それぞれ140〜160mAh/gおよび180〜200mAh/gと比較的高い容量密度を達成できるとともに、2.7〜4.3Vといった高い電圧域で良好な可逆性を示す。 For example, a non-aqueous electrolyte secondary that uses an R-3m rhombohedral rock salt layered complex oxide in which cobalt or nickel is dissolved as a positive electrode active material, such as LiCoO 2 and LiNi 0.8 Co 0.2 O 2 The battery can achieve a relatively high capacity density of 140 to 160 mAh / g and 180 to 200 mAh / g, respectively, and exhibits good reversibility in a high voltage range of 2.7 to 4.3 V.
しかしながら、電池を加温した際に、充電時の正極活物質と電解液溶媒との反応により電池が発熱しやすくなるという問題や、原料となるコバルトやニッケルが高価であるので活物質のコストが高くなる問題がある。 However, when the battery is heated, there is a problem that the battery easily generates heat due to the reaction between the positive electrode active material and the electrolyte solvent during charging, and the cost of the active material is low because cobalt and nickel as raw materials are expensive. There is a problem of getting higher.
特許文献1には、LiNi0.8Co0.2O2の特性を改良すべく、例えばLiNi0.75Co0.20Mn0.05O2の提案と、その正極活物質中間体のアンモニウム錯体を利用した製造方法の開示がなされている。また、特許文献2には、特定の粒度分布を有するリチウム電池用ニッケル−マンガン2元系水酸化物原料のキレート剤を用いた製造方法について提案がなされているが、いずれのものにおいても、充放電容量とサイクル耐久性と安全性の3者を同時に満足する正極活物質は得られていない。 In Patent Document 1, in order to improve the characteristics of LiNi 0.8 Co 0.2 O 2 , for example, a proposal of LiNi 0.75 Co 0.20 Mn 0.05 O 2 and ammonium as the positive electrode active material intermediate are disclosed. A manufacturing method using a complex has been disclosed. Patent Document 2 proposes a manufacturing method using a chelating agent of a nickel-manganese binary hydroxide raw material for a lithium battery having a specific particle size distribution. A positive electrode active material that satisfies the three requirements of discharge capacity, cycle durability and safety at the same time has not been obtained.
また、特許文献3および特許文献4には、リチウム−ニッケル−コバルト−マンガン含有複合酸化物の原料としてニッケル−コバルト−マンガン共沈水酸化物を用いることが提案されている。しかしながら、ニッケル−コバルト−マンガン共沈水酸化物をリチウム化合物と反応させて目的とするリチウム−ニッケル−コバルト−マンガン含有複合酸化物を製造するにあたり、リチウム化合物として水酸化リチウムを使用すると、リチウム化は比較的速やかに進行するが、水酸化リチウムを使用する場合は、1段の800〜1000℃の焼成では焼結が進みすぎ、均一なリチウム化が困難であり、得られたリチウム含有複合酸化物の初期の充放電効率,初期放電容量,充放電サイクル耐久性が劣る問題があった。 Patent Document 3 and Patent Document 4 propose using nickel-cobalt-manganese coprecipitated hydroxide as a raw material for a lithium-nickel-cobalt-manganese-containing composite oxide. However, in producing a target lithium-nickel-cobalt-manganese-containing composite oxide by reacting nickel-cobalt-manganese coprecipitated hydroxide with a lithium compound, when lithium hydroxide is used as the lithium compound, lithiation is When lithium hydroxide is used, the lithium-containing composite oxide is obtained when sintering is performed at a temperature of 800 to 1000 ° C. and sintering is excessively performed and uniform lithiation is difficult. The initial charge / discharge efficiency, initial discharge capacity, and charge / discharge cycle durability were inferior.
これを避けるためには、一旦500〜700℃で焼成し、続いて焼成体を解砕した後、さらに800〜1000℃で焼成する必要があった。また、水酸化リチウムは炭酸リチウムに較べ高価であるばかりでなく、中間解砕や多段焼成等のプロセスコストが高い問題があった。一方、リチウム化合物として安価な炭酸リチウムを用いた場合は、リチウム化の反応が遅く、所望の電池特性を有するリチウム−ニッケル−コバルト−マンガン含有複合酸化物を工業的に製造するのが困難であった。 In order to avoid this, it was necessary to first calcinate at 500 to 700 ° C., then crush the fired body, and then further calcinate at 800 to 1000 ° C. In addition, lithium hydroxide is not only more expensive than lithium carbonate, but also has a problem of high process costs such as intermediate crushing and multistage firing. On the other hand, when inexpensive lithium carbonate is used as the lithium compound, the lithiation reaction is slow, and it is difficult to industrially produce a lithium-nickel-cobalt-manganese-containing composite oxide having desired battery characteristics. It was.
また、特許文献5には、ニッケル−マンガン−コバルト複合水酸化物を400℃で5時間焼成し、水酸化リチウムと混合した後焼成する方法が提案されている。しかしながら、この合成法は原料水酸化物の焼成工程があるために、その分、工程が複雑になるとともに製造コストが高くなり、また、原料コストの高い水酸化リチウムを使用するなどの難点がある。 Patent Document 5 proposes a method in which a nickel-manganese-cobalt composite hydroxide is fired at 400 ° C. for 5 hours, mixed with lithium hydroxide and then fired. However, since this synthesis method includes a raw material hydroxide firing step, the process is complicated and the manufacturing cost is increased, and there is a difficulty in using lithium hydroxide having a high raw material cost. .
また、特許文献6には、ニッケル−マンガン−コバルト複合水酸化物を水酸化リチウムと混合した後、焼成する方法が提案されている。リチウム源は水酸化リチウムの方が炭酸リチウムより粒子形状の制御や結晶性の制御などの面で有利であるとしている。また、ニッケル−マンガン−コバルト複合水酸化物を酸化物化した後、水酸化リチウムと混合後、焼成することも提案されている。しかしながら、いずれの方法も原料コストの高い水酸化リチウムを使用する難点がある。 Patent Document 6 proposes a method in which nickel-manganese-cobalt composite hydroxide is mixed with lithium hydroxide and then fired. As the lithium source, lithium hydroxide is more advantageous than lithium carbonate in terms of particle shape control and crystallinity control. It has also been proposed to oxidize a nickel-manganese-cobalt composite hydroxide, mix it with lithium hydroxide, and fire it. However, each method has a difficulty in using lithium hydroxide having a high raw material cost.
他方において、比較的安価なマンガンを原料とするLiMn2O4からなるスピネル型複合酸化物を活物質に用いた非水電解液二次電池は、充電時の正極活物質と電解液溶媒との反応による電池の発熱が比較的発生しにくいものの、容量が上述のコバルト系およびニッケル系活物質にくらべ100〜120mAh/gと低く、充放電サイクル耐久性が乏しいという課題があるとともに、3V未満の低い電圧領域で急速に劣化する課題もある。 On the other hand, a non-aqueous electrolyte secondary battery using, as an active material, a spinel-type composite oxide composed of LiMn 2 O 4 made of relatively inexpensive manganese as a raw material is a mixture of a positive electrode active material and an electrolyte solvent during charging. Although heat generation of the battery due to the reaction is relatively difficult to generate, there is a problem that the capacity is as low as 100 to 120 mAh / g compared with the above-described cobalt-based and nickel-based active materials, and the charge / discharge cycle durability is poor, and less than 3V There is also a problem of rapidly deteriorating in a low voltage region.
また、斜方晶Pmnm系あるいは単斜晶C2/m系のLiMnO2、LiMn0.95Cr0.05O2あるいはLiMn0.9Al0.1O2等を用いた電池は、安全性は高く、初期容量が高く発現する例はあるものの、充放電サイクルにともなう結晶構造の変化が起こりやすく、サイクル耐久性が不充分となる問題がある。 In addition, batteries using orthorhombic Pmnm or monoclinic C2 / m series LiMnO 2 , LiMn 0.95 Cr 0.05 O 2, LiMn 0.9 Al 0.1 O 2, etc. Although there are examples where the initial capacity is high and the initial capacity is high, there is a problem that the crystal structure is easily changed with the charge / discharge cycle and the cycle durability is insufficient.
したがって、本発明の課題は、リチウム二次電池の正極活物質に利用した際に、広い電圧範囲での使用が可能となり、初期充放電効率が高く、重量容量密度が高く、体積容量密度が高く、大電流放電特性に優れ、しかも安全性の高い電池が得られるリチウム−ニッケル−コバルト−マンガン−アルミニウム含有複合酸化物粒子を安価なリチウム源を用いて簡便なプロセスで製造する新規な方法を提供することにある。 Therefore, the problem of the present invention is that when used as a positive electrode active material of a lithium secondary battery, it can be used in a wide voltage range, has high initial charge / discharge efficiency, high weight capacity density, and high volume capacity density. Provides a new method for producing lithium-nickel-cobalt-manganese-aluminum-containing composite oxide particles by a simple process using an inexpensive lithium source, which provides a battery with excellent high-current discharge characteristics and high safety. There is to do.
本発明は、ニッケル−コバルト−マンガン複合オキシ水酸化物凝集粒子と炭酸リチウム粒子と含アルミニウム化合物粒子と含フッ素化合物とを乾式混合し酸素含有雰囲気で焼成する工程を含むことを特徴とする、一般式LipNixMn1−x−y-zCoyAlzO2-qFq
(ただし、0.98≦p≦1.07,0.32≦x≦0.42,0.1≦y≦0.38,0<z≦0.05,0.001≦q≦0.01、かつ、Ni/Mnの原子比が1±0.05である)で表される組成を有し、R−3m菱面体構造であるリチウム−ニッケル−コバルト−マンガン−アルミニウム含有複合酸化物の製造方法を提供する。
The present invention is characterized by comprising a step of dry-mixing nickel-cobalt-manganese composite oxyhydroxide aggregated particles, lithium carbonate particles, aluminum-containing compound particles, and a fluorine-containing compound and firing in an oxygen-containing atmosphere, formula Li p Ni x Mn 1-x -y-z Co y Al z O 2-q F q
(However, 0.98 ≦ p ≦ 1.07, 0.32 ≦ x ≦ 0.42 , 0.1 ≦ y ≦ 0.38, 0 <z ≦ 0.05, 0.001 ≦ q ≦ 0.01 And a lithium-nickel-cobalt-manganese-aluminum-containing composite oxide having an R-3m rhombohedral structure. Provide a method.
また、本発明はニッケル−コバルト−マンガン複合オキシ水酸化物凝集粒子の比表面積が4〜30m2/gであるリチウム−ニッケル−コバルト−マンガン−アルミニウム含有複合酸化物の製造方法を提供する。 The present invention also provides a method for producing a lithium-nickel-cobalt-manganese-aluminum-containing composite oxide in which the specific surface area of the nickel-cobalt-manganese composite oxyhydroxide aggregated particles is 4 to 30 m 2 / g.
また、本発明はニッケル−コバルト−マンガン複合オキシ水酸化物凝集粒子の0.96t/cm 2 の圧力での粉体プレス密度が2.0g/cm3以上であるリチウム−ニッケル−コバルト−マンガン−アルミニウム含有複合酸化物の製造方法を提供する。 The present invention also relates to lithium-nickel-cobalt-manganese- in which the powder press density of nickel-cobalt-manganese composite oxyhydroxide aggregate particles at a pressure of 0.96 t / cm 2 is 2.0 g / cm 3 or more. A method for producing an aluminum-containing composite oxide is provided.
また、本発明はニッケル−コバルト−マンガン複合オキシ水酸化物凝集粒子のCu−Kα線を使用したX線回折において2θが19±1゜の回折ピークの半値幅が0.3〜0.5゜であるリチウム−ニッケル−コバルト−マンガン−アルミニウム含有複合酸化物の製造方法を提供する。 Further, in the present invention, in the X-ray diffraction using Cu-Kα rays of the nickel-cobalt-manganese composite oxyhydroxide aggregated particles, the half width of the diffraction peak at 2θ of 19 ± 1 ° is 0.3 to 0.5 °. A method for producing a lithium-nickel-cobalt-manganese-aluminum-containing composite oxide is provided.
また、本発明はzが0.001〜0.02であるリチウム−ニッケル−コバルト−マンガン−アルミニウム含有複合酸化物の製造方法を提供する。 The present invention also provides a method for producing a lithium-nickel-cobalt-manganese-aluminum-containing composite oxide having z of 0.001 to 0.02 .
本発明によれば、使用可能な電圧範囲が広く、充放電サイクル耐久性が高く、容量が高くかつ安全性の高いリチウム二次電池用正極活物質を入手容易なリチウム源を用い簡便なプロセスで製造することが可能となる。 According to the present invention, the usable voltage range is wide, the charge / discharge cycle durability is high, the capacity is high, and the safety is high. It can be manufactured.
本発明により製造されるリチウム−ニッケル−コバルト−マンガン−アルミニウム含有複合酸化物は粒子状で、一般式LipNixMn1−x−y-zCoyAlzO2-qFq(ただし、0.98≦p≦1.07,0.32≦x≦0.42,0.1≦y≦0.38,0<z≦0.05,0.001≦q≦0.01、かつ、Ni/Mnの原子比が1±0.05である)で表される組成を有することが重要である。 Lithium is produced by the present invention - nickel - cobalt - manganese - aluminum-containing composite oxide is in particulate form, the general formula Li p Ni x Mn 1-x -y-z Co y Al z O 2-q F q ( but 0.98 ≦ p ≦ 1.07, 0.32 ≦ x ≦ 0.42 , 0.1 ≦ y ≦ 0.38, 0 <z ≦ 0.05, 0.001 ≦ q ≦ 0.01, and It is important that the Ni / Mn atomic ratio is 1 ± 0.05 .
上記一般式において、pが0.98未満では放電容量が低下し、1.07超では放電容量が低下したり、充電時の電池内部のガス発生が多くなるのでともに不都合である。xが0.3未満では安定なR−3m菱面体構造をとりにくくなり、0.5を超えると安全性が低下するので採用できない。xの好ましい範囲は0.32〜0.42である。yが0.1未満であると初期充放電効率や大電流放電特性が低下するので好ましくなく、0.38超であると安全性が低下するので好ましくない。yの好ましい範囲は0.23〜0.35である。zが0.05超であると初期放電容量が低下するので好ましくない。安全性向上効果を発現させるために、zの好ましくい範囲は0.001〜0.02である。 In the above general formula, if p is less than 0.98, the discharge capacity decreases, and if it exceeds 1.07, the discharge capacity decreases, or gas generation inside the battery at the time of charging increases. If x is less than 0.3, it is difficult to obtain a stable R-3m rhombohedral structure, and if it exceeds 0.5, the safety is lowered and thus cannot be adopted. A preferable range of x is 0.32 to 0.42. If y is less than 0.1, the initial charge / discharge efficiency and large current discharge characteristics are undesirably deteriorated. The preferred range for y is 0.23 to 0.35. If z is more than 0.05, the initial discharge capacity is lowered, which is not preferable. In order to express the safety improvement effect, a preferable range of z is 0.001 to 0.02.
フッ素は安全性、初期充放電効率さらには大電流放電特性の改善を図るために含有させられるが、qが0.05以下であることが重要である。qが0.05超であると、放電容量が低下するので好ましくない。qの好ましい範囲は0.001〜0.01である。さらに本発明では、NiとMnの原子比は1±0.05であると電池特性が向上するので好ましい。 Fluorine is included to improve safety, initial charge / discharge efficiency, and large current discharge characteristics, but it is important that q is 0.05 or less. If q is more than 0.05, the discharge capacity decreases, which is not preferable. A preferred range for q is 0.001 to 0.01. Furthermore, in the present invention, it is preferable that the atomic ratio of Ni and Mn is 1 ± 0.05 because battery characteristics are improved.
本発明において主要原料となるニッケル−コバルト−マンガン複合オキシ水酸化物凝集粒子は、例えば、以下のようにして製造可能である。ニッケル−コバルト−マンガン塩水溶液と、アルカリ金属水酸化物水溶液と、アンモニウムイオン供給体とをそれぞれ連続的または間欠的に反応系に供給し、その反応系の温度を30〜70℃の範囲内のほぼ一定温度とし、かつ、pHを10〜13の範囲内のほぼ一定値に保持した状態で反応を進行させ、ニッケル−コバルト−マンガン複合水酸化物を折出させて得られる一次粒子が凝集して二次粒子を形成したニッケル−コバルト−マンガン複合水酸化物凝集粒子を合成し、これに酸化剤を作用させる方法である。 The nickel-cobalt-manganese composite oxyhydroxide aggregated particles as the main raw material in the present invention can be produced, for example, as follows. A nickel-cobalt-manganese salt aqueous solution, an alkali metal hydroxide aqueous solution, and an ammonium ion supplier are continuously or intermittently supplied to the reaction system, and the temperature of the reaction system is within a range of 30 to 70 ° C. The primary particles obtained by advancing the reaction at a substantially constant temperature and maintaining the pH at a substantially constant value in the range of 10 to 13 and folding out the nickel-cobalt-manganese composite hydroxide aggregate. In this method, nickel-cobalt-manganese composite hydroxide aggregated particles in which secondary particles are formed are synthesized and an oxidizing agent is allowed to act on the particles.
上記ニッケル−コバルト−マンガン複合水酸化物凝集粒子の合成に用いられるニッケル−コバルト−マンガン塩水溶液としては、硫酸塩混合水溶液,硝酸塩混合水溶液,蓚酸塩混合水溶液,塩化物混合水溶液等が例示される。反応系に供給されるニッケル−コバルト−マンガン塩混合水溶液における金属塩の濃度は、合計で0.5〜2.5モル/L(リットル)が好ましい。 Examples of the nickel-cobalt-manganese salt aqueous solution used for the synthesis of the nickel-cobalt-manganese composite hydroxide aggregated particles include sulfate mixed aqueous solution, nitrate mixed aqueous solution, oxalate mixed aqueous solution, and chloride mixed aqueous solution. . The concentration of the metal salt in the nickel-cobalt-manganese salt mixed aqueous solution supplied to the reaction system is preferably 0.5 to 2.5 mol / L (liter) in total.
また、反応系に供給されるアルカリ金属水酸化物水溶液としては、水酸化ナトリウム水溶液,水酸化カリウム水溶液,水酸化リチウム水溶液が好ましく例示される。このアルカリ金属水酸化物水溶液の濃度は、15〜35モル/Lが好ましい。 Moreover, preferable examples of the aqueous alkali metal hydroxide solution supplied to the reaction system include an aqueous sodium hydroxide solution, an aqueous potassium hydroxide solution, and an aqueous lithium hydroxide solution. The concentration of the alkali metal hydroxide aqueous solution is preferably 15 to 35 mol / L.
アンモニウムイオン供給体は、ニッケル等と錯塩を形成することにより、緻密かつ球状の複合水酸化物を得るために機能する。アンモニウムイオン供給体としては、アンモニア水,硫酸アンモニウム塩水溶液または硝酸アンモニウム塩等が好ましく例示される。アンモニアまたはアンモニウムイオンの濃度は2〜20モル/Lが好ましい。 The ammonium ion supplier functions to obtain a dense and spherical composite hydroxide by forming a complex salt with nickel or the like. Preferred examples of the ammonium ion supplier include ammonia water, ammonium sulfate aqueous solution, ammonium nitrate salt and the like. The concentration of ammonia or ammonium ions is preferably 2 to 20 mol / L.
ニッケル−コバルト−マンガン複合水酸化物凝集粒子の製法を、より具体的に説明すると、ニッケル−コバルト−マンガン塩混合水溶液と、アルカリ金属水酸化物水溶液と、アンモニウムイオン供給体とを連続的もしくは間欠的に反応槽に供給し、反応槽のスラリーを強力に攪拌しつつ、反応槽のスラリーの温度を30〜70℃の範囲内の一定温度(変動幅:±2℃好ましくは±0.5℃)に制御する。温度30℃未満では析出反応が遅く、球状の粒子を得にくくなる。70℃超ではエネルギーが多量に必要となるので好ましくない。特に好ましい反応温度は40〜60℃の範囲内の一定温度が選ばれる。 The manufacturing method of the nickel-cobalt-manganese composite hydroxide aggregated particles will be described more specifically. A nickel-cobalt-manganese salt mixed aqueous solution, an alkali metal hydroxide aqueous solution, and an ammonium ion supplier are continuously or intermittently used. The temperature of the slurry in the reaction tank is a constant temperature within the range of 30 to 70 ° C. (variation range: ± 2 ° C., preferably ± 0.5 ° C.). ) To control. If the temperature is lower than 30 ° C., the precipitation reaction is slow, and it becomes difficult to obtain spherical particles. If it exceeds 70 ° C, a large amount of energy is required, which is not preferable. A particularly preferred reaction temperature is a constant temperature within the range of 40-60 ° C.
また、反応槽のスラリーのpHは、10〜13の範囲内の一定pH(変動幅:±0.1、好ましくは±0.05)になるようにアルカリ金属水酸化物水溶液の供給速度を制御することにより保持する。pHが10未満であると結晶が成長し過ぎるので好ましくない。pHが13を超えるとアンモニアが揮散しやすくなるとともに微粒子が多くなるので好ましくない。 Further, the supply rate of the aqueous alkali metal hydroxide solution is controlled so that the pH of the slurry in the reaction tank is a constant pH (variation range: ± 0.1, preferably ± 0.05) within the range of 10 to 13. Hold by. A pH of less than 10 is not preferable because crystals grow too much. A pH exceeding 13 is not preferable because ammonia tends to be volatilized and fine particles increase.
反応槽における滞留時間は、0.5〜30時間が好ましく、特に5〜15時間が好ましい。スラリー濃度は500〜1200g/Lとするのが好ましい。スラリー濃度が500g/L未満であると、生成粒子の充填性が低下するので好ましくない。1200g/Lを超えると、スラリーの攪拌が困難となるので好ましくない。スラリー中のニッケルイオン濃度は、好ましくは100ppm以下、特に好ましくは30ppm以下である。ニッケルイオン濃度が高すぎると結晶が成長し過ぎるので好ましくない。 The residence time in the reaction vessel is preferably 0.5 to 30 hours, particularly preferably 5 to 15 hours. The slurry concentration is preferably 500 to 1200 g / L. If the slurry concentration is less than 500 g / L, the product particle filling property is lowered, which is not preferable. If it exceeds 1200 g / L, stirring of the slurry becomes difficult, which is not preferable. The nickel ion concentration in the slurry is preferably 100 ppm or less, particularly preferably 30 ppm or less. If the nickel ion concentration is too high, the crystal grows too much, which is not preferable.
温度,pH,滞留時間,スラリー濃度およびスラリー中イオン濃度を適宜制御することにより、所望の平均粒径,粒径分布,粒子密度を有するニッケル−コバルト−マンガン複合水酸化物凝集粒子を得ることができる。反応は1段で行なう方法よりも多段で反応させる方法が、緻密かつ平均粒径4〜12μmの球状であり、かつ、粒度分布の好ましい中間体が得られる。 By appropriately controlling the temperature, pH, residence time, slurry concentration and ion concentration in the slurry, nickel-cobalt-manganese composite hydroxide aggregated particles having a desired average particle size, particle size distribution, and particle density can be obtained. it can. The reaction in a multi-stage reaction is more dense and spherical with an average particle diameter of 4 to 12 μm, and an intermediate having a preferable particle size distribution can be obtained rather than a single-stage reaction.
ニッケル−コバルト−マンガン塩水溶液と、アルカリ金属水酸化物水溶液と、アンモニウムイオン供給体とをそれぞれ連続的もしくは間欠的に反応槽に供給し、反応によって生成されるニッケル−コバルト−マンガン複合水酸化物粒子を含むスラリーを、反応槽より連続的あるいは間欠的にオーバーフローあるいは抜き出し、これを濾過,水洗することにより、粉末状(粒子状)のニッケル−コバルト−マンガン複合水酸化物が得られる。生成物のニッケル−コバルト−マンガン複合水酸化物粒子は、生成粒子性状を制御するために一部を反応槽に戻してもよい。 Nickel-cobalt-manganese salt aqueous solution, alkali metal hydroxide aqueous solution, and ammonium ion supplier are supplied to the reaction vessel continuously or intermittently, and nickel-cobalt-manganese composite hydroxide produced by the reaction The slurry containing particles is overflowed or extracted continuously or intermittently from the reaction tank, and this is filtered and washed with water, whereby a powdery (particulate) nickel-cobalt-manganese composite hydroxide is obtained. Part of the product nickel-cobalt-manganese composite hydroxide particles may be returned to the reaction vessel to control the product particle properties.
ニッケル−コバルト−マンガン複合オキシ水酸化物凝集粒子は、上記ニッケル−コバルト−マンガン複合水酸化物凝集粒子に酸化剤を作用させることにより得られる。具体例としては、ニッケル−コバルト−マンガン複合水酸化物合成反応槽のスラリー中に溶存空気等の酸化剤を共存させるか、あるいはニッケル−コバルト−マンガン複合水酸化物を水溶液に分散させてスラリーとし、酸化剤として、空気,次亜塩素酸ソーダ,過酸化水素水,過硫酸カリ,臭素等を供給し、10〜60℃で5〜20時間反応させ、得られた複合オキシ水酸化物凝集粒子を濾過水洗して合成される。次亜塩素酸ソーダ,過硫酸カリ,臭素等を酸化剤とするときは、平均金属価数が約3であるオキシ化されたNix・Mn1−x−y・CoyOOH共沈体が得られる。 The nickel-cobalt-manganese composite oxyhydroxide aggregated particles are obtained by allowing an oxidizing agent to act on the nickel-cobalt-manganese composite hydroxide aggregated particles. As a specific example, an oxidizing agent such as dissolved air is allowed to coexist in the slurry of the nickel-cobalt-manganese composite hydroxide synthesis reaction tank, or nickel-cobalt-manganese composite hydroxide is dispersed in an aqueous solution to form a slurry. Then, air, sodium hypochlorite, hydrogen peroxide, potassium persulfate, bromine, etc. are supplied as oxidizers and reacted at 10-60 ° C. for 5-20 hours. The resulting composite oxyhydroxide aggregated particles Is synthesized by washing with filtered water. When sodium hypochlorite, potassium persulfate, bromine or the like is used as an oxidizing agent, an oxidized Ni x .Mn 1- xy .co y OOH coprecipitate having an average metal valence of about 3 is obtained. can get.
ニッケル−コバルト−マンガン複合オキシ水酸化物凝集粒子の粉体プレス密度は2.0g/cm3以上が好ましい。粉体プレス密度が2.0g/cm3未満であると、リチウム塩と焼成した際のプレス密度を高くするのが困難となるので好ましくない。特に好ましい粉体プレス密度は2.2g/cm3以上である。また、このニッケル−コバルト−マンガン複合オキシ水酸化物凝集粒子は略球状であることが望ましく、その平均粒径D50は3〜15μmが好ましい。さらに、このニッケル−コバルト−マンガン複合オキシ水酸化物凝集粒子は、Cu−Kα線を使用したX線回折において、2θが19±1゜の回折ピークの半値幅が0.3〜0.5゜であることが好ましい。 The powder press density of the nickel-cobalt-manganese composite oxyhydroxide aggregated particles is preferably 2.0 g / cm 3 or more. If the powder press density is less than 2.0 g / cm 3, it is difficult to increase the press density when firing with the lithium salt, which is not preferable. A particularly preferable powder press density is 2.2 g / cm 3 or more. The nickel-cobalt-manganese composite oxyhydroxide aggregated particles are preferably substantially spherical, and the average particle size D50 is preferably 3 to 15 μm. Further, this nickel-cobalt-manganese composite oxyhydroxide aggregated particle has an X-ray diffraction using Cu—Kα ray and the half width of the diffraction peak at 2θ of 19 ± 1 ° is 0.3 to 0.5 °. It is preferable that
また、上記ニッケル−コバルト−マンガン複合オキシ水酸化物凝集粒子の金属の平均価数は2.6以上が好ましい。平均価数が2.6未満であると炭酸リチウムとの反応速度が低下するので好ましくない。平均価数は特に好ましくは2.8〜3.2である。 The average valence of the metal in the nickel-cobalt-manganese composite oxyhydroxide aggregated particles is preferably 2.6 or more. If the average valence is less than 2.6, the reaction rate with lithium carbonate decreases, which is not preferable. The average valence is particularly preferably 2.8 to 3.2.
本発明においては、製造プロセスの簡便性・操作性および原料の入手性を高める観点から、リチウム源として炭酸リチウムを用いることが重要である。炭酸リチウムの形態としては、主に操作性の面から平均粒径1〜50μmの粉体が好ましい。 In the present invention, it is important to use lithium carbonate as a lithium source from the viewpoint of improving the simplicity and operability of the production process and the availability of raw materials. As a form of lithium carbonate, a powder having an average particle diameter of 1 to 50 μm is preferred mainly from the viewpoint of operability.
本発明で製造されるリチウム−ニッケル−コバルト−マンガン−アルミニウム含有複合酸化物の粉末を0.96t/cm2の圧力でプレス充填したときの粉体プレス密度は2.6g/cm3以上であることが好ましく、これによれば、活物質粉末にバインダと溶剤とを混合してスラリーとなして集電体アルミ箔に塗工・乾燥・プレスした際に体積当たりの容量を高くすることができる。特に好ましくい粉体プレス密度は2.9g/cm3以上であるが、このような粉体プレス密度は、粉体の粒径分布を適正化することにより達成される。すなわち、粒径分布に幅があり、少粒径の体積分率が20〜50%であり、大粒径の粒径分布を狭くすること等により高密度化が図れる。 The powder press density when the lithium-nickel-cobalt-manganese-aluminum-containing composite oxide powder produced in the present invention is press-filled at a pressure of 0.96 t / cm 2 is 2.6 g / cm 3 or more. Preferably, according to this, when the active material powder is mixed with a binder and a solvent to form a slurry, the capacity per volume can be increased when the current collector aluminum foil is coated, dried and pressed. . A particularly preferable powder press density is 2.9 g / cm 3 or more. Such a powder press density is achieved by optimizing the particle size distribution of the powder. That is, the particle size distribution is wide, the volume fraction of small particles is 20 to 50%, and the density can be increased by narrowing the particle size distribution of large particles.
本発明によるリチウム−ニッケル−コバルト−マンガン−アルミニウム含有複合酸化物において、酸素原子の一部をフッ素で置換する場合は、炭酸リチウムに加えてフッ素化合物を添加した混合物を使用して焼成する。フッ素化合物としては、フッ化リチウム,フッ化アンモニウム,フッ化ニッケル,フッ化コバルトを例示することができる。また、塩化フッ素やフッ素ガス,フッ化水素ガス,三フッ化チッソ等のフッ素化剤を反応させてもよい。 In the lithium-nickel-cobalt-manganese-aluminum-containing composite oxide according to the present invention, when a part of oxygen atoms is substituted with fluorine, the mixture is fired using a mixture in which a fluorine compound is added in addition to lithium carbonate. Examples of the fluorine compound include lithium fluoride, ammonium fluoride, nickel fluoride, and cobalt fluoride. Further, a fluorinating agent such as fluorine chloride, fluorine gas, hydrogen fluoride gas, or nitrogen trifluoride may be reacted.
本発明によるリチウム−ニッケル−コバルト−マンガン−アルミニウム含有複合酸化物は、一例として、上記ニッケル−コバルト−マンガン複合オキシ水酸化物粒子と炭酸リチウム粒子と含アルミニウム化合物粒子との混合物を酸素含有雰囲気中で固相法800〜1050℃にて4〜40時間焼成することにより得られる。焼成は必要により、多段焼成で行ってもよい。 The lithium-nickel-cobalt-manganese-aluminum-containing composite oxide according to the present invention includes, as an example, a mixture of the nickel-cobalt-manganese composite oxyhydroxide particles, lithium carbonate particles, and aluminum-containing compound particles in an oxygen-containing atmosphere. Obtained by baking at 800 to 1050 ° C. for 4 to 40 hours. If necessary, the firing may be performed by multi-stage firing.
このリチウム二次電池用のリチウム含有複合酸化物は、特に充放電サイクル安定性の面から、R−3m菱面体構造を有する活物質であることが必要である。また、焼成雰囲気は酸素含有雰囲気であることが必要である。こうすることで高性能の電池特性が得られる。大気中でもリチウム化反応自体は進行するが、酸素濃度は25%以上が電池特性向上のために好ましく、特に好ましくは40%以上である。 The lithium-containing composite oxide for a lithium secondary battery needs to be an active material having an R-3m rhombohedral structure, particularly from the viewpoint of charge / discharge cycle stability. The firing atmosphere must be an oxygen-containing atmosphere. In this way, high performance battery characteristics can be obtained. Although the lithiation reaction itself proceeds in the air, the oxygen concentration is preferably 25% or more for improving battery characteristics, particularly preferably 40% or more.
本発明のリチウム含有複合酸化物の粉末に、アセチレンブラック,黒鉛,ケッチエンブラック等のカーボン系導電材と結合材を混合することにより正極合剤が形成される。結合材には、ポリフッ化ビニリデン,ポリテトラフルオロエチレン,ポリアミド,カルボキシメチルセルロース,アクリル樹脂等が用いられる。本発明のリチウム含有複合酸化物の粉末と導電材と結合材ならびに結合材の溶媒または分散媒からなるスラリーをアルミニウム箔等の正極集電体に塗工・乾燥およびプレス圧延せしめて正極活物質層を正極集電体上に形成する。 The positive electrode mixture is formed by mixing the lithium-containing composite oxide powder of the present invention with a carbon conductive material such as acetylene black, graphite, Ketchen black and a binder. As the binder, polyvinylidene fluoride, polytetrafluoroethylene, polyamide, carboxymethyl cellulose, acrylic resin, or the like is used. The positive electrode active material layer is prepared by coating, drying and press rolling a slurry comprising the lithium-containing composite oxide powder of the present invention, a conductive material, a binder, and a solvent or dispersion medium of the binder on a positive electrode current collector such as an aluminum foil. Is formed on the positive electrode current collector.
上記正極活物質層を備えたリチウム電池において、電解質溶液の溶媒としては炭酸エステルが好ましく採用される。炭酸エステルは環状,鎖状いずれも使用できる。環状炭酸エステルとしてはプロピレンカーボネート,エチレンカーボネート(EC)等が例示される。鎖状炭酸エステルとしてはジメチルカーボネート,ジエチルカーボネート(DEC),エチルメチルカーボネート,メチルプロピルカーボネート,メチルイソプロピルカーボネート等が例示される。 In the lithium battery including the positive electrode active material layer, a carbonate is preferably employed as a solvent for the electrolyte solution. Carbonates can be either cyclic or chain. Examples of cyclic carbonates include propylene carbonate and ethylene carbonate (EC). Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate (DEC), ethyl methyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate and the like.
上記炭酸エステルは単独使用でも2種以上の混合使用でもよい。また、他の溶媒と混合して使用してもよい。また、負極活物質の材料によっては、鎖状炭酸エステルと環状炭酸エステルを併用すると、放電特性,サイクル耐久性,充放電効率が改良できる場合がある。また、これらの有機溶媒にフッ化ビニリデン−ヘキサフルオロプロピレン共重合体(例えばアトケム社カイナー),フッ化ビニリデン−パーフルオロプロピルビニルエーテル共重合体等を添加し、下記の溶質を加えることによりゲルポリマー電解質としてもよい。 The carbonate ester may be used alone or in combination of two or more. Moreover, you may mix and use with another solvent. Depending on the material of the negative electrode active material, the combined use of a chain carbonate ester and a cyclic carbonate ester may improve the discharge characteristics, cycle durability, and charge / discharge efficiency. Further, by adding a vinylidene fluoride-hexafluoropropylene copolymer (for example, Akechem Kyner), a vinylidene fluoride-perfluoropropyl vinyl ether copolymer or the like to these organic solvents, and adding the following solute, the gel polymer electrolyte It is good.
溶質としては、ClO4−,CF3SO3−,BF4−,PF6−,AsF6−,SbF6−,CF3CO2−,(CF3SO2)2N−等をアニオンとするリチウム塩のいずれか1種以上を使用することが好ましい。上記の電解質溶液またはポリマー電解質は、リチウム塩からなる電解質を前記溶媒または溶媒含有ポリマーに0.2〜2.0mol/Lの濃度で添加するのが好ましい。この範囲を逸脱すると、イオン伝導度が低下し、電解質の電気伝導度が低下する。より好ましくは0.5〜1.5mol/Lが選定される。セパレータには多孔質ポリエチレン、多孔質ポリプロピレンフィルムが使用される。 As solutes, ClO 4 −, CF 3 SO 3 −, BF 4 −, PF 6 −, AsF 6 −, SbF 6 −, CF 3 CO 2 −, (CF 3 SO 2 ) 2 N— and the like are used as anions. It is preferable to use any one or more of lithium salts. In the above electrolyte solution or polymer electrolyte, an electrolyte composed of a lithium salt is preferably added to the solvent or the solvent-containing polymer at a concentration of 0.2 to 2.0 mol / L. If it deviates from this range, the ionic conductivity is lowered, and the electrical conductivity of the electrolyte is lowered. More preferably, 0.5 to 1.5 mol / L is selected. For the separator, porous polyethylene or porous polypropylene film is used.
負極活物質には、リチウムイオンを吸蔵,放出可能な材料が用いられる。この負極活物質を形成する材料は特に限定されないが、例えばリチウム金属,リチウム合金,炭素材料,周期表14,15族の金属を主体とした酸化物,炭素化合物,炭化ケイ素化合物,酸化ケイ素化合物,硫化チタン,炭化ホウ素化合物等が挙げられる。 For the negative electrode active material, a material capable of inserting and extracting lithium ions is used. The material for forming the negative electrode active material is not particularly limited. For example, lithium metal, lithium alloy, carbon material, periodic table 14 and group 15 metal group oxide, carbon compound, silicon carbide compound, silicon oxide compound, Examples thereof include titanium sulfide and boron carbide compounds.
炭素材料としては、さまざまな熱分解条件で有機物を熱分解したものや人造黒鉛,天然黒鉛,土壌黒鉛,膨張黒鉛,鱗片状黒鉛等を使用できる。また、酸化物としては、酸化スズを主体とする化合物が使用できる。負極集電体としては、銅箔、ニッケル箔などが用いられる。 As the carbon material, those obtained by pyrolyzing organic substances under various pyrolysis conditions, artificial graphite, natural graphite, soil graphite, expanded graphite, scale-like graphite, and the like can be used. As the oxide, a compound mainly composed of tin oxide can be used. As the negative electrode current collector, a copper foil, a nickel foil, or the like is used.
正極および負極は、活物質を有機溶媒と混練してスラリーとし、該スラリーを金属箔集電体に塗布,乾燥,プレスして得ることが好ましい。リチウム電池の形状についても特に制約はない。シート状(いわゆるフイルム状),折り畳み状,巻回型有底円筒形,ボタン形等が用途に応じて選択される。 The positive electrode and the negative electrode are preferably obtained by kneading an active material with an organic solvent to form a slurry, and applying, drying and pressing the slurry to a metal foil current collector. There are no particular restrictions on the shape of the lithium battery. A sheet shape (so-called film shape), a folded shape, a wound-type bottomed cylindrical shape, a button shape, or the like is selected depending on the application.
2L(リットル)の反応槽内に、イオン交換水を入れ内温を50±1℃に保持しつつ400rpmで攪拌した。これに1.5モル/Lの硫酸ニッケル,1.5モル/Lの硫酸マンガン,1.5モル/Lの硫酸コバルトを含有する金属硫酸塩水溶液を0.4L/hr、また、1.5モル/Lの硫酸アンモニウム水溶液を0.03L/hrの割合で同時に供給しつつ、18モル/L苛性ソーダ水溶液を反応槽内のpHが10.85±0.05を保たれるように連続的に供給した。定期的に反応槽内の母液を抜き出し、最終的にスラリー濃度が約720g/Lとなるまでスラリーを濃縮した。目標のスラリー濃度となった後、50℃で5時間熟成した後、濾過・水洗を繰り返して球状で平均粒径9μmのニッケル−マンガン−コバルト共沈水酸化物凝集粒子を得た。 Ion exchange water was put into a 2 L (liter) reaction vessel and stirred at 400 rpm while maintaining the internal temperature at 50 ± 1 ° C. A metal sulfate aqueous solution containing 1.5 mol / L nickel sulfate, 1.5 mol / L manganese sulfate, and 1.5 mol / L cobalt sulfate was added to 0.4 L / hr, and 1.5 mol / L manganese sulfate. While supplying a mol / L ammonium sulfate aqueous solution at a rate of 0.03 L / hr simultaneously, an 18 mol / L sodium hydroxide aqueous solution is continuously supplied so that the pH in the reaction vessel is maintained at 10.85 ± 0.05. did. The mother liquor in the reaction tank was periodically extracted, and the slurry was concentrated until the final slurry concentration was about 720 g / L. After reaching the target slurry concentration, after aging at 50 ° C. for 5 hours, filtration and washing were repeated to obtain nickel-manganese-cobalt coprecipitated hydroxide aggregated particles having a spherical shape and an average particle size of 9 μm.
0.071モル/Lのペルオキソ二硫酸カリウムと、1モル/Lの水酸化ナトリウムとを含有する水溶液60重量部に対して、このニッケル−マンガン−コバルト共沈水酸化物凝集粒子を1重量部の割合で混合し、15℃で8時間攪拌混合した。反応後、濾過・水洗を繰り返し行い、乾燥することによりニッケル−マンガン−コバルト共沈オキシ水酸化物凝集粒子粉末Ni1/3Mn1/3Co1/3OOHを得た。 To 60 parts by weight of an aqueous solution containing 0.071 mol / L potassium peroxodisulfate and 1 mol / L sodium hydroxide, 1 part by weight of this nickel-manganese-cobalt coprecipitated hydroxide aggregated particle was added. The mixture was mixed at a ratio and stirred at 15 ° C. for 8 hours. After the reaction, filtration, washing with water were repeated, and drying was performed to obtain nickel-manganese-cobalt coprecipitated oxyhydroxide aggregated particle powder Ni 1/3 Mn 1/3 Co 1/3 OOH.
この粉末について、X線回折装置(理学電機社製RINT2100型)を用いてCu−Kα線を使用し、40KV−40mA,サンプリング間隔0.020°,フーリエ変換積算時間2.0秒での粉末X線回折において得られたXRD回折スペクトルによりCoOOHに類似の回折スペクトルが確認できた。また、2θが19゜付近の回折ピークの半値幅は0.400゜であった。また、20wt%硫酸水溶液中で、Fe2+共存下においてニッケル−マンガン−コバルト共沈オキシ水酸化物凝集粒子粉末を溶解し、ついで0.1モル/LのKMn2O7溶液にて滴定を行った結果より、得られたニッケル−マンガン−コバルト共沈オキシ水酸化物凝集粒子粉末の平均価数は2.99であり、オキシ水酸化物を主体とする組成であることが確認できた。 About this powder, using an X-ray diffractometer (RINT2100 type, manufactured by Rigaku Corporation), Cu-Kα rays were used, and powder X at 40 KV-40 mA, sampling interval 0.020 °, and Fourier transform integration time 2.0 seconds A diffraction spectrum similar to CoOOH was confirmed by the XRD diffraction spectrum obtained in the line diffraction. The half width of the diffraction peak at 2θ around 19 ° was 0.400 °. Further, nickel-manganese-cobalt coprecipitated oxyhydroxide aggregated particle powder was dissolved in a 20 wt% sulfuric acid aqueous solution in the presence of Fe 2+ , and then titrated with a 0.1 mol / L KMn 2 O 7 solution. From the results, it was confirmed that the obtained nickel-manganese-cobalt coprecipitated oxyhydroxide aggregated particle powder had an average valence of 2.99 and a composition mainly composed of oxyhydroxide.
このニッケル−マンガン−コバルト共沈オキシ水酸化物凝集粒子粉末の平均粒径は9μmであった。また、BET法による比表面積は13.3m2/gであった。この粉末のSEM写真により、0.1〜0.5μmの鱗片状一次粒子が多数凝集して二次粒子を形成していることが分かった。また、このニッケル−マンガン−コバルト共沈オキシ水酸化物凝集粒子粉末を0.96t/cm2の圧力で油圧プレスして体積と重量とから粉末プレス密度を求めたところ、2.18g/cm3であった。 The average particle diameter of this nickel-manganese-cobalt coprecipitated oxyhydroxide aggregated particle powder was 9 μm. Moreover, the specific surface area by BET method was 13.3 m < 2 > / g. From the SEM photograph of this powder, it was found that many scaly primary particles of 0.1 to 0.5 μm aggregated to form secondary particles. Moreover, when this nickel-manganese-cobalt coprecipitated oxyhydroxide aggregated particle powder was hydraulically pressed at a pressure of 0.96 t / cm 2 and the powder press density was determined from the volume and weight, it was found to be 2.18 g / cm 3. Met.
このニッケル−マンガン−コバルト共沈オキシ水酸化物凝集粒子粉末と炭酸リチウム粉末と水酸化アルミニウム粉末を混合し、酸素濃度40積%の雰囲気中900℃で10時間焼成・粉砕して平均粒径9.5μmの複合酸化物粉末を合成した。複合酸化物を元素分析分析した結果、この複合酸化物はLi1.04(Ni1/3Mn1/3Co1/3)0.99Al0.01O2であった。 This nickel-manganese-cobalt coprecipitated oxyhydroxide aggregated particle powder, lithium carbonate powder, and aluminum hydroxide powder are mixed, calcined and pulverized at 900 ° C. for 10 hours in an atmosphere having an oxygen concentration of 40 volume%, and an average particle size of 9 A composite oxide powder of 0.5 μm was synthesized. As a result of elemental analysis of the composite oxide, this composite oxide was Li 1.04 (Ni 1/3 Mn 1/3 Co 1/3 ) 0.99 Al 0.01 O 2 .
この粉末のCu−KαによるX線回折分析を上記共沈オキシ水酸化物のX線回折と同じ条件で測定した結果、R−3m菱面体層状岩塩型構造であり、かつ2θが65±0.5゜の(110)面の回折ピークの半値幅が0.248°であり、2θが19±1゜の(003)面の回折ピークの半値幅は0.170°であることが分かった。また、比表面積は0.50m2/gであった。a軸の格子定数は2.862Å、c軸の格子定数は14.239Åであった。得られた複合酸化物粉末について、島津製作所の微小圧縮試験機 MCT-W500を用いて圧縮破壊強度を測定した。即ち、試験荷重を100mN、負荷速度3.874mN/secとし、直径50μmの平面タイプの圧子を用いて、粒径既知の任意の粒子10個について測定し、破壊強度を求めた結果102MPaであった。 As a result of measuring X-ray diffraction analysis of this powder by Cu-Kα under the same conditions as the X-ray diffraction of the coprecipitated oxyhydroxide, it was an R-3m rhombohedral layered rock salt structure and 2θ was 65 ± 0.00. It was found that the half-value width of the diffraction peak of the 5 ° (110) plane was 0.248 °, and the half-value width of the diffraction peak of the (003) plane having 2θ of 19 ± 1 ° was 0.170 °. The specific surface area was 0.50 m 2 / g. The a-axis lattice constant was 2.862 Å, and the c-axis lattice constant was 14.239 Å. About the obtained complex oxide powder, the compression fracture strength was measured using the micro compression tester MCT-W500 of Shimadzu Corporation. That is, a test load was set to 100 mN, a load speed of 3.874 mN / sec, a flat type indenter with a diameter of 50 μm was used to measure 10 arbitrary particles having a known particle size, and the fracture strength was found to be 102 MPa. .
また、このLi1.04(Ni1/3Mn1/3Co1/3)0.99Al0.01O2粉末を0.96t/cm2の圧力で油圧プレスして体積と重量とから粉末プレス密度を求めたところ、2.92g/cm3であった。このLi1.04(Ni1/3Mn1/3Co1/3)0.99Al0.01O2粉末と、アセチレンブラックとポリフッ化ビニリデンとを83/10/7の重量比でN−メチルピロリドンに加えつつボールミル混合しスラリーとした。このスラリーを厚さ20μmのアルミニウム箔正極集電体上に塗布し、150℃にて乾燥してN−メチルピロリドンを除去した。しかる後に、ロールプレス圧延をして正極体を得た。 セパレータには厚さ25μmの多孔質ポリエチレンを用い、厚さ300μmの金属リチウム箔を負極に用いて負極集電体にニッケル箔を使用し、電解液には1M LiPF6/EC+DEC(1:1)を用いてコインセル2030型をアルゴングローブボックス内で組立てた。 Further, this Li 1.04 (Ni 1/3 Mn 1/3 Co 1/3 ) 0.99 Al 0.01 O 2 powder was hydraulically pressed at a pressure of 0.96 t / cm 2 to determine the volume and weight. The powder press density was determined to be 2.92 g / cm 3 . This Li 1.04 (Ni 1/3 Mn 1/3 Co 1/3 ) 0.99 Al 0.01 O 2 powder, acetylene black and polyvinylidene fluoride in a weight ratio of 83/10/7 are N- A ball mill was mixed with methylpyrrolidone to make a slurry. This slurry was applied onto an aluminum foil positive electrode current collector having a thickness of 20 μm and dried at 150 ° C. to remove N-methylpyrrolidone. Thereafter, roll press rolling was performed to obtain a positive electrode body. 25 μm thick porous polyethylene is used for the separator, 300 μm thick metal lithium foil is used for the negative electrode, nickel foil is used for the negative electrode current collector, and 1M LiPF 6 / EC + DEC (1: 1) is used for the electrolyte. Was used to assemble the coin cell 2030 type in an argon glove box.
そして、25℃の温度雰囲気下で、正極活物質1gにつき10mAで4.3Vまで定電流充電し、正極活物質1gにつき10mAにて2.7Vまで定電流放電して充放電試験を行ない、初回充放電時の放電容量および充放電効率と、150mA/gで充放電試験を行い、放電容量を求めた。また、25℃の温度雰囲気下で、電池安全性評価のため、4.3V充電後のセルを解体し、正極をエチレンカーボネートとともに密閉容器に入れて試料となし、示差走査熱量測定装置を用い、昇温させたときの発熱ピーク温度を求めた。10mA/gでの初期充放電効率は91.8%かつ初期放電容量は163mAh/g,150mA/gでの初期放電容量は143mAh/g,発熱ピーク温度は272℃であった。 Then, under a temperature atmosphere of 25 ° C., a constant current charge is performed up to 4.3 V at 10 mA per 1 g of the positive electrode active material, a constant current discharge is performed up to 2.7 V at 10 mA per 1 g of the positive electrode active material, and a charge / discharge test is performed. A charge / discharge test was conducted at a discharge capacity and charge / discharge efficiency at the time of charge / discharge of 150 mA / g to obtain a discharge capacity. Also, for battery safety evaluation under a temperature atmosphere of 25 ° C., the cell after 4.3 V charging was disassembled, and the positive electrode was put together with ethylene carbonate in a sealed container as a sample, using a differential scanning calorimeter, The exothermic peak temperature when the temperature was raised was determined. The initial charge / discharge efficiency at 10 mA / g was 91.8%, the initial discharge capacity was 163 mAh / g, the initial discharge capacity at 150 mA / g was 143 mAh / g, and the exothermic peak temperature was 272 ° C.
上記参考実施例1において、水酸化アルミニウムの添加量を変えた他は、上記参考実施例1と同様にしてLi1.04(Ni1/3Mn1/3Co1/3)0.95Al0.05O2を合成した。この粉末のCu−KαによるX線回折分析の結果、R−3m菱面体層状岩塩型構造であることが分かった。2θが65±0.5゜の(110)面の回折ピークの半値幅が0.248°であり、2θが19±1゜の(003)面の回折ピークの半値幅は0.170°であることが分かった。また、比表面積は0.50m2/gであった。a軸の格子定数は2.862Å、c軸の格子定数は14.239Åであった。平均粒径は9.7μmであった。そして、参考実施例1と同様にして測定した破壊強度は82MPaであった。また、このLi1.04(Ni1/3Mn1/3Co1/3)0.95Al0.05O2粉末を0.96t/cm2の圧力で油圧プレスして体積と重量とから粉末プレス密度を求めたところ、2.98g/cm3であった。このLi1.04(Ni1/3Mn1/3Co1/3)0.95Al0.05O2粉末を用いて、上記参考実施例1と同様にして電池性能と安全性を評価した結果、10mA/gでの初期充放電効率は92,3%かつ初期放電容量は159mAh/g,150mA/gでの初期放電容量は139mAh/g,発熱ピーク温度は276℃であった。 In the above-mentioned Reference Example 1, except for changing the addition amount of aluminum hydroxide, Li 1.04 (Ni 1/3 Mn 1/3 Co 1/3) in the same manner as in Reference Example 1 0.95 Al 0.05 O 2 was synthesized. As a result of X-ray diffraction analysis of this powder by Cu-Kα, it was found to be an R-3m rhombohedral layered rock salt structure. The half width of the diffraction peak of the (110) plane with 2θ of 65 ± 0.5 ° is 0.248 °, and the half width of the diffraction peak of the (003) plane with 2θ of 19 ± 1 ° is 0.170 °. I found out. The specific surface area was 0.50 m 2 / g. The a-axis lattice constant was 2.862 Å, and the c-axis lattice constant was 14.239 Å. The average particle size was 9.7 μm. The fracture strength measured in the same manner as in Reference Example 1 was 82 MPa. In addition, this Li 1.04 (Ni 1/3 Mn 1/3 Co 1/3 ) 0.95 Al 0.05 O 2 powder was hydraulically pressed at a pressure of 0.96 t / cm 2 to determine the volume and weight. The powder press density was determined to be 2.98 g / cm 3 . Using this Li 1.04 (Ni 1/3 Mn 1/3 Co 1/3 ) 0.95 Al 0.05 O 2 powder, battery performance and safety were evaluated in the same manner as in Reference Example 1 above. As a result, the initial charge / discharge efficiency at 10 mA / g was 92,3%, the initial discharge capacity was 159 mAh / g, the initial discharge capacity at 150 mA / g was 139 mAh / g, and the exothermic peak temperature was 276 ° C.
上記参考実施例1において、水酸化アルミニウムに加えてフッ化リチウム粉末を添加した他は、上記参考実施例1と同様にしてLi1.04(Ni1/3Mn1/3Co1/3)0.99Al0.01O1.998F0.002を合成した。この粉末のCu−KαによるX線回折分析の結果、R−3m菱面体層状岩塩型構造であることが分かった。2θが65±0.5゜の(110)面の回折ピークの半値幅が0.193°であり、2θが19±1゜の(003)面の回折ピークの半値幅は0.139°であることが分かった。また、比表面積は0.68m2/gであった。a軸の格子定数は2.863Å、c軸の格子定数は14.241Åであった。平均粒径は9.6μmであった。また、このLi1.04(Ni1/3Mn1/3Co1/3)0.99Al0.01O1.998F0.002粉末を0.96t/cm2の圧力で油圧プレスして体積と重量とからプレス密度を求めた結果、2.93g/cm3であった。このLi1.04(Ni1/3Mn1/3Co1/3)0.99Al0.01O1.998F0.002粉末を用いて、上記参考実施例1と同様にして電池性能と安全性を評価した結果、10mA/gでの初期充放電効率は93.0%かつ初期放電容量は165mAh/g,150mA/gでの初期放電容量は149mAh/g,発熱ピーク温度は273℃であった。 In the above-mentioned Reference Example 1, except that in addition to the aluminum hydroxide was added lithium fluoride powder in the same manner as in Reference Example 1 Li 1.04 (Ni 1/3 Mn 1/3 Co 1/3) 0.99 Al 0.01 O 1.998 F 0.002 was synthesized. As a result of X-ray diffraction analysis of this powder by Cu-Kα, it was found to be an R-3m rhombohedral layered rock salt structure. The half-value width of the (110) plane diffraction peak with 2θ of 65 ± 0.5 ° is 0.193 °, and the half-value width of the (003) plane with 2θ of 19 ± 1 ° is 0.139 °. I found out. The specific surface area was 0.68 m 2 / g. The lattice constant of the a axis was 2.863 Å, and the lattice constant of the c axis was 14.241 Å. The average particle size was 9.6 μm. Also, this Li 1.04 (Ni 1/3 Mn 1/3 Co 1/3 ) 0.99 Al 0.01 O 1.998 F 0.002 powder was hydraulically pressed at a pressure of 0.96 t / cm 2. The press density obtained from the volume and weight was 2.93 g / cm 3 . Using this Li 1.04 (Ni 1/3 Mn 1/3 Co 1/3 ) 0.99 Al 0.01 O 1.998 F 0.002 powder, battery performance was obtained in the same manner as in Reference Example 1 above. As a result, the initial charge / discharge efficiency at 10 mA / g was 93.0%, the initial discharge capacity was 165 mAh / g, the initial discharge capacity at 150 mA / g was 149 mAh / g, and the exothermic peak temperature was 273 ° C. Met.
上記参考実施例1において、水酸化アルミニウムの代わりにフッ化アルミニウムを添加した他は、上記参考実施例1と同様にして正極活物質粉末を合成し、その粉末物性と電池性能を求めた。正極活物質粉末の平均粒径は11.1μmであった。この複合酸化物はLi1.04(Ni1/3Co1/3Mn1/3)0.995Al0.005O1.99F0.01であった。この粉末のCu−KαによるX線回折分析の結果、R−3m菱面体層状岩塩型構造であり、かつ2θが65±0.5゜の(110)面の回折ピークの半値幅が0.205°であり、2θが19±1゜の(003)面の回折ピークの半値幅は0.137°であることが分かった。また、比表面積は0.52m2/gであった。粉体ブレス密度を求めたところ、2.93g/cm3であった。a軸の格子定数は2.863Å、c軸の格子定数は14.250Åであった。この複合酸化物粉末の破壊強度は111Mpaであった。10mA/gでの初期充放電効率は92.8%かつ初期放電容量は164mAh/g,150mA/gでの初期放電容量は149mAh/g,発熱ピーク温度は282℃であった。 In the above Reference Example 1, except that aluminum fluoride was added instead of aluminum hydroxide, a positive electrode active material powder was synthesized in the same manner as in the above Reference Example 1, and its powder properties and battery performance were determined. The average particle diameter of the positive electrode active material powder was 11.1 μm. This composite oxide was Li 1.04 (Ni 1/3 Co 1/3 Mn 1/3 ) 0.995 Al 0.005 O 1.99 F 0.01 . As a result of X-ray diffraction analysis of Cu—Kα of this powder, the half-value width of the diffraction peak on the (110) plane having an R-3m rhombohedral layered rock salt structure and 2θ of 65 ± 0.5 ° was 0.205. It was found that the half width of the diffraction peak of the (003) plane with 2θ of 19 ± 1 ° was 0.137 °. The specific surface area was 0.52 m 2 / g. The powder breath density was determined to be 2.93 g / cm 3 . The lattice constant of the a axis was 2.86386, and the lattice constant of the c axis was 14.250Å. The fracture strength of this composite oxide powder was 111 MPa. The initial charge and discharge efficiency at 10 mA / g was 92.8%, the initial discharge capacity was 164 mAh / g, the initial discharge capacity at 150 mA / g was 149 mAh / g, and the exothermic peak temperature was 282 ° C.
上記参考実施例1において、水酸化アルミニウム粉末を添加しなかった他は、上記参考実施例1と同様に正極活物質粉末を合成し、その粉末物性と、電池性能を求めた。正極活物質粉末の平均粒径は9.5μmであった。この複合酸化物はLi1.04Ni1/3Mn1/3Co1/3O2であった。この粉末のCu−KαによるX線回折分析の結果、R−3m菱面体層状岩塩型構造であり、かつ2θが65±0.5゜の(110)面の回折ピークの半値幅が0.290°であり、2θが19±1゜の(003)面の回折ピークの半値幅は0.201°であることが分かった。また、比表面積は0.45m2/gであった。粉末プレス密度を求めたところ、2.76g/cm3であった。a軸の格子定数は2.862Å、c軸の格子定数は14.240Åであった。この複合酸化物粉末の粒子の破壊強度は105Mpaであった。10mA/gでの初期充放電効率は90.4%かつ初期放電容量は162mAh/g,150mA/gでの初期放電容量は143mAh/g,発熱ピーク温度は239℃であった。 In the above Reference Example 1, except that the aluminum hydroxide powder was not added, a positive electrode active material powder was synthesized in the same manner as in the above Reference Example 1, and the powder properties and battery performance were determined. The average particle diameter of the positive electrode active material powder was 9.5 μm. This composite oxide was Li 1.04 Ni 1/3 Mn 1/3 Co 1/3 O 2 . As a result of X-ray diffraction analysis of this powder by Cu-Kα, the half-value width of the diffraction peak of the (110) plane having an R-3m rhombohedral layered rock salt structure and 2θ of 65 ± 0.5 ° is 0.290. It was found that the half-value width of the diffraction peak on the (003) plane with 2θ of 19 ± 1 ° was 0.201 °. The specific surface area was 0.45 m 2 / g. The powder press density was determined to be 2.76 g / cm 3 . The a-axis lattice constant was 2.86286, and the c-axis lattice constant was 14.240Å. The fracture strength of the particles of this composite oxide powder was 105 MPa. The initial charge / discharge efficiency at 10 mA / g was 90.4%, the initial discharge capacity was 162 mAh / g, the initial discharge capacity at 150 mA / g was 143 mAh / g, and the exothermic peak temperature was 239 ° C.
本発明によれば、の正極活物質に利用した際に、広い電圧範囲で使用可能であり、初期充放電効率、重量容量密度および体積容量密度がいずれも高く、大電流放電特性に優れ、しかも安全性および入手性に優れたリチウム二次電池を実現できる。 According to the present invention, when used as a positive electrode active material, it can be used in a wide voltage range, the initial charge / discharge efficiency, the weight capacity density and the volume capacity density are all high, and it has excellent large current discharge characteristics, A lithium secondary battery excellent in safety and availability can be realized.
Claims (5)
一般式LipNixMn1−x−y-zCoyAlzO2-qFq
(ただし、0.98≦p≦1.07,0.32≦x≦0.42,0.1≦y≦0.38,0<z≦0.05,0.001≦q≦0.01、かつ、Ni/Mnの原子比が1±0.05である)で表される組成を有し、R−3m菱面体構造であるリチウム−ニッケル−コバルト−マンガン−アルミニウム含有複合酸化物の製造方法。 Characterized in that it includes a step of dry mixing nickel-cobalt-manganese composite oxyhydroxide aggregated particles, lithium carbonate particles, aluminum-containing compound particles and fluorine-containing compound and firing in an oxygen-containing atmosphere.
Formula Li p Ni x Mn 1-x -y-z Co y Al z O 2-q F q
(However, 0.98 ≦ p ≦ 1.07, 0.32 ≦ x ≦ 0.42 , 0.1 ≦ y ≦ 0.38, 0 <z ≦ 0.05, 0.001 ≦ q ≦ 0.01 And a lithium-nickel-cobalt-manganese-aluminum-containing composite oxide having an R-3m rhombohedral structure. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003323426A JP4578790B2 (en) | 2003-09-16 | 2003-09-16 | Method for producing lithium-nickel-cobalt-manganese-aluminum-containing composite oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003323426A JP4578790B2 (en) | 2003-09-16 | 2003-09-16 | Method for producing lithium-nickel-cobalt-manganese-aluminum-containing composite oxide |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005089225A JP2005089225A (en) | 2005-04-07 |
JP4578790B2 true JP4578790B2 (en) | 2010-11-10 |
Family
ID=34454511
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003323426A Expired - Fee Related JP4578790B2 (en) | 2003-09-16 | 2003-09-16 | Method for producing lithium-nickel-cobalt-manganese-aluminum-containing composite oxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4578790B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9853286B2 (en) | 2013-09-30 | 2017-12-26 | Panasonic Corporation | Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100548988B1 (en) | 2003-11-26 | 2006-02-02 | 학교법인 한양학원 | Manufacturing process of cathodes materials of lithium second battery, the reactor used therein and cathodes materials of lithium second battery manufactured thereby |
WO2007010915A1 (en) * | 2005-07-21 | 2007-01-25 | Matsushita Electric Industrial Co., Ltd. | Nonaqueous electrolyte secondary battery and method for manufacturing same |
JP5063948B2 (en) * | 2005-07-21 | 2012-10-31 | パナソニック株式会社 | Non-aqueous electrolyte secondary battery and manufacturing method thereof |
JP4846309B2 (en) * | 2005-09-09 | 2011-12-28 | 株式会社田中化学研究所 | Method for producing nickel manganese cobalt composite oxide |
JP4979319B2 (en) * | 2005-09-29 | 2012-07-18 | Agcセイミケミカル株式会社 | Method for producing lithium-containing composite oxide |
JP5228292B2 (en) * | 2006-07-06 | 2013-07-03 | 東ソー株式会社 | A method for producing a lithium-nickel-manganese-cobalt composite oxide. |
KR20110076955A (en) * | 2008-09-30 | 2011-07-06 | 엔비아 시스템즈 인코포레이티드 | Fluorine doped lithium rich metal oxide positive electrode battery materials with high specific capacity and corresponding batteries |
FR2937633B1 (en) | 2008-10-24 | 2010-11-19 | Saft Groupe Sa | POSITIVE ELECTRODE MATERIAL FOR LITHIUM ION BATTERY |
KR101062404B1 (en) | 2008-11-26 | 2011-09-05 | 주식회사 에너세라믹 | Copulation reactor |
JP5626245B2 (en) * | 2012-03-13 | 2014-11-19 | 東ソー株式会社 | Lithium-nickel-manganese-cobalt composite oxide, method for producing the same, and use thereof |
JP5204913B1 (en) * | 2012-04-27 | 2013-06-05 | 三井金属鉱業株式会社 | Lithium metal composite oxide with layer structure |
JP6486653B2 (en) * | 2014-01-31 | 2019-03-20 | パナソニック株式会社 | Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
JP6655282B2 (en) * | 2014-12-02 | 2020-02-26 | ユミコア | Method for producing nickel-lithium metal composite oxide, nickel-lithium metal composite oxide obtained by the production method, and positive electrode active material comprising the same |
JP2016136489A (en) * | 2015-01-23 | 2016-07-28 | 株式会社豊田自動織機 | Positive electrode and lithium ion secondary electrode |
CN109843811B (en) * | 2016-07-29 | 2022-08-26 | 住友金属矿山株式会社 | Nickel-manganese composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same |
JP6836369B2 (en) * | 2016-10-31 | 2021-03-03 | 住友化学株式会社 | Method for manufacturing positive electrode active material precursor for lithium secondary battery and positive electrode active material for lithium secondary battery |
JP6256956B1 (en) * | 2016-12-14 | 2018-01-10 | 住友化学株式会社 | Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery |
CN106898747A (en) * | 2017-03-16 | 2017-06-27 | 成都新柯力化工科技有限公司 | The nickle cobalt lithium manganate ternary anode material of lithium battery and preparation method of a kind of abnormity distribution |
KR102227313B1 (en) | 2017-11-21 | 2021-03-15 | 주식회사 엘지화학 | Positive electrode material for secondary battery and lithium secondary battery comprising the same |
WO2024136522A1 (en) * | 2022-12-23 | 2024-06-27 | 주식회사 엘지에너지솔루션 | Cathode active material, and cathode and lithium secondary battery comprising same |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09237631A (en) * | 1995-12-29 | 1997-09-09 | Japan Storage Battery Co Ltd | Positive electrode active substance for lithium secondary battery, manufacture thereof and lithium secondary battery |
JPH10302768A (en) * | 1997-04-24 | 1998-11-13 | Fuji Photo Film Co Ltd | Lithium ion nonaqueous electrolytic secondary battery |
JP2000128539A (en) * | 1998-10-19 | 2000-05-09 | Ube Ind Ltd | Lithium transition metal based halogenated oxide and its production and its utilization |
JP2001250549A (en) * | 2000-03-03 | 2001-09-14 | Nissan Motor Co Ltd | Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery |
JP2001291518A (en) * | 2000-03-13 | 2001-10-19 | Samsung Sdi Co Ltd | Positive active material for lithium secondary battery |
JP2002184402A (en) * | 2000-12-11 | 2002-06-28 | Mitsui Chemicals Inc | Positive electrode active material for lithium secondary battery, and battery |
WO2002073718A1 (en) * | 2001-03-14 | 2002-09-19 | Yuasa Corporation | Positive electrode active material and nonaqueous electrolyte secondary cell comprising the same |
JP2003002661A (en) * | 2001-06-20 | 2003-01-08 | Seimi Chem Co Ltd | Method for producing lithium cobalt composite oxide |
JP2003017052A (en) * | 2001-06-27 | 2003-01-17 | Matsushita Electric Ind Co Ltd | Positive electrode active material and non-aqueous electrolyte secondary battery containing the same |
JP2003031219A (en) * | 2001-07-13 | 2003-01-31 | Yuasa Corp | Positive active material and nonaqueous electrolyte secondary battery using the same |
JP2003242976A (en) * | 2002-02-18 | 2003-08-29 | Seimi Chem Co Ltd | Manufacturing method of positive active material for lithium secondary battery |
WO2004092073A1 (en) * | 2003-04-17 | 2004-10-28 | Seimi Chemical Co. Ltd. | Lithium-nickel-cobalt-manganese containing composite oxide, material for positive electrode active material for lithium secondary battery, and methods for producing these |
-
2003
- 2003-09-16 JP JP2003323426A patent/JP4578790B2/en not_active Expired - Fee Related
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09237631A (en) * | 1995-12-29 | 1997-09-09 | Japan Storage Battery Co Ltd | Positive electrode active substance for lithium secondary battery, manufacture thereof and lithium secondary battery |
JPH10302768A (en) * | 1997-04-24 | 1998-11-13 | Fuji Photo Film Co Ltd | Lithium ion nonaqueous electrolytic secondary battery |
JP2000128539A (en) * | 1998-10-19 | 2000-05-09 | Ube Ind Ltd | Lithium transition metal based halogenated oxide and its production and its utilization |
JP2001250549A (en) * | 2000-03-03 | 2001-09-14 | Nissan Motor Co Ltd | Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery |
JP2001291518A (en) * | 2000-03-13 | 2001-10-19 | Samsung Sdi Co Ltd | Positive active material for lithium secondary battery |
JP2002184402A (en) * | 2000-12-11 | 2002-06-28 | Mitsui Chemicals Inc | Positive electrode active material for lithium secondary battery, and battery |
WO2002073718A1 (en) * | 2001-03-14 | 2002-09-19 | Yuasa Corporation | Positive electrode active material and nonaqueous electrolyte secondary cell comprising the same |
JP2003002661A (en) * | 2001-06-20 | 2003-01-08 | Seimi Chem Co Ltd | Method for producing lithium cobalt composite oxide |
JP2003017052A (en) * | 2001-06-27 | 2003-01-17 | Matsushita Electric Ind Co Ltd | Positive electrode active material and non-aqueous electrolyte secondary battery containing the same |
JP2003031219A (en) * | 2001-07-13 | 2003-01-31 | Yuasa Corp | Positive active material and nonaqueous electrolyte secondary battery using the same |
JP2003242976A (en) * | 2002-02-18 | 2003-08-29 | Seimi Chem Co Ltd | Manufacturing method of positive active material for lithium secondary battery |
WO2004092073A1 (en) * | 2003-04-17 | 2004-10-28 | Seimi Chemical Co. Ltd. | Lithium-nickel-cobalt-manganese containing composite oxide, material for positive electrode active material for lithium secondary battery, and methods for producing these |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9853286B2 (en) | 2013-09-30 | 2017-12-26 | Panasonic Corporation | Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
US10601040B2 (en) | 2013-09-30 | 2020-03-24 | Panasonic Corporation | Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
US11588153B2 (en) | 2013-09-30 | 2023-02-21 | Panasonic Holdings Corporation | Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JP2005089225A (en) | 2005-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4217712B2 (en) | Lithium-nickel-cobalt-manganese-fluorine-containing composite oxide, method for producing the same, and lithium secondary battery using the same | |
JP5081731B2 (en) | The manufacturing method of the raw material for positive electrode active materials for lithium secondary batteries. | |
JP4578790B2 (en) | Method for producing lithium-nickel-cobalt-manganese-aluminum-containing composite oxide | |
JP4318313B2 (en) | Positive electrode active material powder for lithium secondary battery | |
JP5253808B2 (en) | Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery | |
JP4211865B2 (en) | Li-Ni composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery | |
JP4943145B2 (en) | Positive electrode active material powder for lithium secondary battery | |
JP4512590B2 (en) | Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery | |
JP3974420B2 (en) | Method for producing positive electrode active material for lithium secondary battery | |
JP5720899B2 (en) | Manganese nickel composite oxide particle powder and method for producing the same, method for producing positive electrode active material particle powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery | |
JP2002145623A (en) | Lithium-containing transition metal multiple oxide and manufacturing method thereof | |
JPWO2004082046A1 (en) | Positive electrode active material powder for lithium secondary battery | |
JP4927369B2 (en) | Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery | |
JP3974396B2 (en) | Method for producing positive electrode active material for lithium secondary battery | |
JP2003002660A (en) | Method for producing lithium cobalt composite oxide | |
JP2003002661A (en) | Method for producing lithium cobalt composite oxide | |
JP6155957B2 (en) | Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery | |
JP4199506B2 (en) | Method for producing positive electrode active material for lithium secondary battery | |
JP2001126731A (en) | Positive electrode material for lithium secondary cell, positive electrode for lithium secondary cell, and the lithium secondary cell | |
JP4472430B2 (en) | Method for producing lithium composite oxide for positive electrode of lithium secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060731 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080408 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090729 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090928 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100728 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100825 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130903 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4578790 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |