JP2003002661A - Method for producing lithium cobalt composite oxide - Google Patents

Method for producing lithium cobalt composite oxide

Info

Publication number
JP2003002661A
JP2003002661A JP2001185918A JP2001185918A JP2003002661A JP 2003002661 A JP2003002661 A JP 2003002661A JP 2001185918 A JP2001185918 A JP 2001185918A JP 2001185918 A JP2001185918 A JP 2001185918A JP 2003002661 A JP2003002661 A JP 2003002661A
Authority
JP
Japan
Prior art keywords
lithium
composite oxide
cobalt composite
surface area
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001185918A
Other languages
Japanese (ja)
Other versions
JP4777543B2 (en
Inventor
Manabu Kazuhara
学 数原
Takashi Saito
尚 斎藤
Megumi Yugawa
めぐみ 湯川
Kazuo Sunahara
一夫 砂原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seimi Chemical Co Ltd
Original Assignee
Seimi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seimi Chemical Co Ltd filed Critical Seimi Chemical Co Ltd
Priority to JP2001185918A priority Critical patent/JP4777543B2/en
Publication of JP2003002661A publication Critical patent/JP2003002661A/en
Application granted granted Critical
Publication of JP4777543B2 publication Critical patent/JP4777543B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new method for producing a hexagonal lithium cobalt composite oxide for a lithium secondary battery, excellent in a high temperature storage stability, a cyclic characteristic, a weight capacity density, a volume capacity density, safetiness, and an easy mass-production. SOLUTION: An oxy-hydroxy cobalt powder having a weight average particle diameter of 1-20 μm and a specific surface area of 2-200 m<2> /g, and a lithium carbonate powder having a weight average particle diameter of 1-50 μm and a specific surface area of 0.1-10 m<2> /g are mixed and the mixture is calcined in an oxygen-containing atmosphere, thus producing the hexagonal lithium cobalt composite oxide for the lithium secondary battery, having a weight average particle diameter of 5-15 μm, a specific surface area of 0.15-0.60/gm<2> and an alkali content of <0.03 wt.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
の正極活物質として優れた特性を有する六方晶系リチウ
ムコバルト複合酸化物の新規な製造方法に関する。
TECHNICAL FIELD The present invention relates to a novel method for producing a hexagonal lithium cobalt composite oxide having excellent properties as a positive electrode active material for a lithium secondary battery.

【0002】[0002]

【従来の技術】近年、機器のポータブル化、コードレス
化が進むにつれ、更なる小型、軽量でかつ高エネルギー
密度を有する非水電解液二次電池に対する要求が高まっ
ている。非水電解液二次電池用の活物質には、LiCo
2、LiNiO2、LiNi0. 8Co0.22、LiMn2
4、LiMnO2などのリチウムと遷移金属との複合酸
化物が知られている。
2. Description of the Related Art In recent years, with the progress of portable and cordless devices, there is an increasing demand for a non-aqueous electrolyte secondary battery which is further compact, lightweight and has a high energy density. The active material for the non-aqueous electrolyte secondary battery includes LiCo
O 2, LiNiO 2, LiNi 0. 8 Co 0.2 O 2, LiMn 2
Composite oxides of lithium and transition metals such as O 4 and LiMnO 2 are known.

【0003】なかでも、リチウムコバルト複合酸化物
(LiCoO2)を正極活物質として用い、リチウム合
金や、グラファイト、カーボンファイバーなどのカーボ
ンを負極として用いたリチウム二次電池は、4V級の高
い電圧が得られるため、高エネルギー密度を有する電池
として広く使用されている。
Among them, a lithium secondary battery using a lithium cobalt composite oxide (LiCoO 2 ) as a positive electrode active material and a lithium alloy, carbon such as graphite or carbon fiber as a negative electrode has a high voltage of 4V class. Since it can be obtained, it is widely used as a battery having a high energy density.

【0004】しかしながら、電池を充電した状態で比較
的高温保存した後に、容量が低下してしまう高温貯蔵劣
化の問題、充放電サイクルの繰り返しによりその電池放
電容量が徐々に減少するというサイクル特性の劣化問
題、あるいは安全性が不十分である等の問題があった。
また、重量容量密度及び体積容量密度の点でもさらなる
高密度化が求められている。
However, after the battery is stored in a charged state at a relatively high temperature, the capacity of the battery decreases, resulting in deterioration of high temperature storage, and deterioration of the cycle characteristic that the discharge capacity of the battery gradually decreases due to repeated charge and discharge cycles. There were problems, such as insufficient safety.
Further, in terms of weight capacity density and volume capacity density, further densification is required.

【0005】これらの電池特性を改良するために、特開
平10−1316号公報には、サイクル特性等の向上の
ため、コバルトの原子価が3価である水酸化コバルト、
オキシ水酸化コバルト等を水酸化リチウム水溶液中に分
散させた後、加熱処理する製造方法が提案されている。
In order to improve these battery characteristics, Japanese Patent Laid-Open No. 10-1316 discloses a cobalt hydroxide in which the valence of cobalt is trivalent in order to improve cycle characteristics and the like.
A manufacturing method has been proposed in which cobalt oxyhydroxide or the like is dispersed in a lithium hydroxide aqueous solution and then heat-treated.

【0006】また、特開平10−279315号および
特開平11−49519号公報には、コバルトの原子価
が3価であるオキシ水酸化コバルトをリチウム化合物と
250〜1000℃で焼成することにより、高容量かつ
サイクル特性のよい活物質とすることが提案されてい
る。
Further, in JP-A-10-279315 and JP-A-11-49519, cobalt oxyhydroxide in which cobalt has a valence of 3 is fired with a lithium compound at 250 to 1000 ° C. It has been proposed to use an active material having good capacity and good cycle characteristics.

【0007】また、WO9949528号公報には、特
定形状のオキシ水酸化コバルトをリチウム塩と混合焼成
することにより生成する特定形状のLiCoO2を正極
活物質とすることにより、タップ密度が高く、初期容
量、容量維持率または放電特性の良い電池を得ることが
提案されている。
Further, in WO9949528, a specific shape of LiCoO 2 produced by mixing and firing a specific shape of cobalt oxyhydroxide with a lithium salt is used as a positive electrode active material, so that the tap density is high and the initial capacity is high. It has been proposed to obtain a battery having a good capacity retention rate or discharge characteristics.

【0008】また、本発明者らは、WO0127032
号により、オキシ水酸化コバルト粉末と炭酸リチウム粉
末とを乾式混合後、酸素含有雰囲気で焼成してなる、式
LiCoO2で表され、かつCuKαを線源とするX線
回折によって測定される2θ=66.5±1°の(11
0)面回折ピーク半値幅が0.070〜0.110°で
あることを特徴とするリチウム二次電池用六方晶系リチ
ウムコバルト複合酸化物の製造方法を提案した。
[0008] The present inventors have also found that WO0127032.
No. 2θ = cobalt oxyhydroxide powder and lithium carbonate powder are dry-mixed and then fired in an oxygen-containing atmosphere, represented by the formula LiCoO 2 and measured by X-ray diffraction using CuKα as a radiation source. 66.5 ± 1 ° (11
A method for producing a hexagonal lithium cobalt composite oxide for a lithium secondary battery, which is characterized in that the half width of 0) plane diffraction peak is 0.070 to 0.110 °, was proposed.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、LiC
oO2を正極活物質に用いたリチウム二次電池におい
て、これら従来の技術では、高温貯蔵安定性、サイクル
特性、重量容量密度、体積容量密度、安全性、及び量産
が容易性の点で、今なお十分に満足するものがいまだ得
られていないのが実情であり、本発明はこれらを更に改
善し、優れた特性を有するリチウム二次電池用六方晶系
リチウムコバルト複合酸化物の新規な製造方法を提供す
ることを目的とする。
However, LiC
In lithium secondary batteries using oO 2 as a positive electrode active material, these conventional technologies are currently used in terms of high temperature storage stability, cycle characteristics, weight capacity density, volume capacity density, safety, and ease of mass production. The fact is that what has been sufficiently satisfied has not yet been obtained, and the present invention further improves these, and a novel method for producing a hexagonal lithium cobalt composite oxide for a lithium secondary battery having excellent characteristics. The purpose is to provide.

【0010】[0010]

【課題を解決するための手段】そこで、本発明者らは、
鋭意検討した結果、特定の原料物質を用い、これらを、
好ましくは特定の条件下に混合、焼成して製造される特
定の物性を有する六方晶系リチウムコバルト複合酸化物
は、リチウム二次電池の正極活物質として用いた場合
に、大きな容量密度を有するとともに、特段に優れた高
温保存安定性、サイクル特性、重量容量密度、体積容量
密度及び安全性が得られることを見出した。
Therefore, the present inventors have
As a result of diligent study, using specific raw materials,
A hexagonal lithium cobalt composite oxide having specific physical properties, which is preferably produced by mixing and firing under specific conditions, has a large capacity density when used as a positive electrode active material of a lithium secondary battery. It has been found that particularly excellent high temperature storage stability, cycle characteristics, weight capacity density, volume capacity density and safety can be obtained.

【0011】即ち、本発明は以下を要旨とするものであ
る。 (1)重量平均粒径が1〜20μm及び比表面積が2〜
200m2/gであるオキシ水酸化コバルト粉末と、重
量平均粒径が1〜50μm及び比表面積が0.1〜10
2/gである炭酸リチウム粉末とを混合し、該混合物
を酸素含有雰囲気で焼成してなる、重量平均粒径が5〜
15μm、比表面積が0.15〜0.60m2/g、ア
ルカリ含有量が0.03重量%未満であることを特徴と
するリチウム二次電池用六方晶系リチウムコバルト複合
酸化物の製造方法。 (2)前記六方晶系リチウムコバルト複合酸化物が、C
uKαを線源とするX線回折によって測定される2θ=
66.5±1°の(110)面回折ピーク半値幅が0.
070〜0.120°である上記(1)に記載のリチウ
ム二次電池用六方晶系リチウムコバルト複合酸化物の製
造方法。 (3)前記アルカリ含有量のうち、水酸化リチウム含有
量が、0.005質量%未満である上記(1)、(2)
または(3)に記載の二次電池用六方晶系リチウムコバ
ルト複合酸化物の製造方法。 (4)前記リチウムコバルト複合酸化物に含まれるコバ
ルトが、原子比でその1%以下が周期表4族又は5族の
元素で置換されている上記(1)〜(3)のいずれか一
つに記載のリチウム二次電池用六方晶系リチウムコバル
ト複合酸化物の製造方法。 (5)前記リチウムコバルト複合酸化物の充填プレス密
度が2.90〜3.35g/cm3である上記(1)〜
(4)のいずれか一つに記載のリチウム二次電池用六方
晶系リチウムコバルト複合酸化物の製造方法。 (6)前記混合物の酸素含有雰囲気での焼成を970〜
1070℃で4〜60時間で行う上記(1)〜(5)の
いずれか一つに記載のリチウム二次電池用六方晶系リチ
ウムコバルト複合酸化物の製造方法。
That is, the present invention has the following gist. (1) Weight average particle diameter is 1 to 20 μm and specific surface area is 2
Cobalt oxyhydroxide powder of 200 m 2 / g, weight average particle diameter of 1 to 50 μm and specific surface area of 0.1 to 10
m 2 / g of lithium carbonate powder is mixed and the mixture is fired in an oxygen-containing atmosphere.
15. A method for producing a hexagonal lithium cobalt composite oxide for a lithium secondary battery, which has a specific surface area of 15 μm, a specific surface area of 0.15 to 0.60 m 2 / g, and an alkali content of less than 0.03 wt%. (2) The hexagonal lithium cobalt composite oxide is C
2θ = measured by X-ray diffraction using uKα as a radiation source
The half value width of the (110) plane diffraction peak at 66.5 ± 1 ° is 0.
The method for producing a hexagonal lithium cobalt composite oxide for a lithium secondary battery according to (1) above, which has an angle of 070 to 0.120 °. (3) Among the above-mentioned alkali contents, the lithium hydroxide content is less than 0.005 mass% (1) and (2) above.
Alternatively, the method for producing a hexagonal lithium cobalt composite oxide for a secondary battery according to (3). (4) Any one of the above (1) to (3), wherein 1% or less of the cobalt contained in the lithium cobalt composite oxide is replaced by an element of Group 4 or Group 5 of the periodic table in atomic ratio. The method for producing a hexagonal lithium cobalt composite oxide for a lithium secondary battery according to 1. (5) The filling press density of the lithium cobalt composite oxide is 2.90 to 3.35 g / cm 3 (1) to
(4) The method for producing a hexagonal lithium cobalt composite oxide for a lithium secondary battery according to any one of (4). (6) 970 to calcination of the mixture in an oxygen-containing atmosphere
The method for producing a hexagonal lithium cobalt composite oxide for a lithium secondary battery according to any one of (1) to (5) above, which is performed at 1070 ° C. for 4 to 60 hours.

【0012】[0012]

【発明の実施の形態】本発明の製造方法で得られる六方
晶系リチウムコバルト複合酸化物は、重量平均粒径が5
〜15μm、比表面積が0.15〜0.60m2/g、
アルカリ含有量が0.03質量%未満である特徴を有す
る。特に、本発明では、六方晶系リチウムコバルト複合
酸化物が重量平均粒径が特定の範囲であり、かつ該複合
酸化物中の残存アルカリ量と比表面積がいずれも低い組
み合わせが、該複合酸化物をリチウム電池の正極にした
場合における高温貯蔵後の容量維持率の低下に効果に寄
与することを見出した。その作用機構は明らかではない
が、六方晶系リチウムコバルト複合酸化物中の残存アル
カリ量の増大により、正極のコバルト原子が部分的に高
酸化状態になるとともに、比表面積の増大によっても反
応面積が増加し、充電状態での正極の表面がより活性と
なり、正極上で電解液中の溶媒の分解が起こり、炭酸ガ
ス等の発生が起こることが容量維持率低下の原因と考え
られる。
BEST MODE FOR CARRYING OUT THE INVENTION The hexagonal lithium cobalt composite oxide obtained by the production method of the present invention has a weight average particle diameter of 5
˜15 μm, specific surface area 0.15 to 0.60 m 2 / g,
The feature is that the alkali content is less than 0.03 mass%. In particular, in the present invention, the hexagonal lithium cobalt composite oxide has a weight average particle diameter in a specific range, and the combination of the residual alkali content and the specific surface area of the composite oxide is low, the composite oxide It was found that when used as the positive electrode of a lithium battery, it contributes to the effect of reducing the capacity retention rate after high temperature storage. The mechanism of action is not clear, but due to the increase in the amount of residual alkali in the hexagonal lithium-cobalt composite oxide, the cobalt atoms in the positive electrode partly become highly oxidized, and the reaction area also increases due to the increase in the specific surface area. It is considered that the capacity retention rate is lowered by increasing the number of positive electrodes, the surface of the positive electrode in a charged state becomes more active, the solvent in the electrolytic solution is decomposed on the positive electrode, and carbon dioxide gas is generated.

【0013】本発明において、重量平均粒径は質量基準
で粒度分布を求め、全質量を100%とした累積カーブ
において、その累積カーブが50%となる点の粒径であ
る。これを質量基準累積50%径ともいう(例えば、化
学工学便覧「改定5版」(化学工学会編)p220〜2
21の記載参照)。粒径の測定は、水等の媒体に超音波
処理等で充分分散させて粒度分布測定する(例えば、日
機装株式会社製マイクロトラックHRAX−100等を
用いる)ことにより行う。
In the present invention, the weight average particle diameter is the particle diameter at the point where the cumulative curve is 50% in the cumulative curve in which the particle size distribution is determined on the mass basis and the total mass is 100%. This is also referred to as a mass-based cumulative 50% diameter (for example, Chemical Engineering Handbook “Revised 5th Edition” (Chemical Engineering Society), p220-2.
21). The particle size is measured by sufficiently dispersing it in a medium such as water by ultrasonication or the like and measuring the particle size distribution (for example, using Microtrac HRAX-100 manufactured by Nikkiso Co., Ltd.).

【0014】本発明における六方晶系リチウムコバルト
複合酸化物の重量平均粒径は、上記のように5〜15μ
mを有する。重量平均粒径が5μm未満であると、緻密
かつ強固な電極層を形成することが困難となり、一方、
15μmを超えると、電極表面の平滑性を保ちにくくな
るので好ましくない。特に好ましい重量平均粒径は、7
〜12μmである。
The weight average particle diameter of the hexagonal lithium cobalt composite oxide in the present invention is 5 to 15 μm as described above.
have m. When the weight average particle diameter is less than 5 μm, it becomes difficult to form a dense and strong electrode layer, while
When it exceeds 15 μm, it becomes difficult to maintain the smoothness of the electrode surface, which is not preferable. A particularly preferable weight average particle size is 7
-12 μm.

【0015】本発明において、比表面積は正極粉末を窒
素吸着によるBET法で求めた数値を意味する。本発明
における六方晶系リチウムコバルト複合酸化物の比表面
積は上記のように0.15〜0.60m2/gを有す
る。比表面積はが0.15m2/g未満であると充放電
サイクル耐久性が低下したり、大電流充放電特性が低下
するので好ましくない。比表面積が0.6m2/gを超
えると安全性や高温貯蔵安定性が低下するので好ましく
ない。特に好ましい比表面積は0.2〜0.4m2/g
である。
In the present invention, the specific surface area means the numerical value of the positive electrode powder obtained by the BET method by nitrogen adsorption. The specific surface area of the hexagonal lithium cobalt composite oxide in the present invention is 0.15 to 0.60 m 2 / g as described above. When the specific surface area is less than 0.15 m 2 / g, the charge / discharge cycle durability is deteriorated and the high-current charge / discharge characteristics are deteriorated, which is not preferable. When the specific surface area exceeds 0.6 m 2 / g, safety and storage stability at high temperature are deteriorated, which is not preferable. Particularly preferred specific surface area is 0.2 to 0.4 m 2 / g
Is.

【0016】本発明における六方晶系リチウムコバルト
複合酸化物の残存アルカリ量は、該複合酸化物活物質粉
末を純水に投入し、抽出されたアルカリ分を塩酸で中和
滴定して得られる当量数から求められるもので、複合酸
化物単位重量当りの水酸化リチウムと炭酸リチウムの合
計の質量基準の含有量を意味する。なお、ここでいう水
酸化リチウムには、酸化リチウムとして存在するアルカ
リも含まれる。それぞれの含有率は所謂Warder法
として知られるところの逐次滴定法により定量できる。
これを具体的に記述すると、乾燥した試料約10gを精
秤し、100mlのビーカーにいれ、50mlの純水を
加え、ビーカー内を窒素ガスで置換した後、約1時間マ
グネチックスタラーで攪拌し、30分放置後、3500
回転で遠心沈降せしめ、上澄み液30mlをサンプリン
グし、1/10規定塩酸でpH8.0までに中和するの
に要した酸当量と、さらにpH4.0まで中和するのに
要した酸当量から、炭酸リチウム当量と水酸化リチウム
当量を求め、両者のアルカリ当量数から水酸化リチウム
と炭酸リチウムの合計を重量含有率として求める。
The residual alkali content of the hexagonal lithium cobalt composite oxide in the present invention is an equivalent amount obtained by pouring the composite oxide active material powder into pure water and neutralizing and titrating the extracted alkali content with hydrochloric acid. It is obtained from the number and means the total mass-based content of lithium hydroxide and lithium carbonate per unit weight of the composite oxide. It should be noted that the lithium hydroxide mentioned here also includes an alkali existing as lithium oxide. Each content rate can be quantified by the sequential titration method known as the so-called Warder method.
Specifically, about 10 g of a dried sample was precisely weighed, put in a 100 ml beaker, 50 ml of pure water was added, the inside of the beaker was replaced with nitrogen gas, and the mixture was stirred with a magnetic stirrer for about 1 hour. After leaving for 30 minutes, 3500
Centrifuge to settle by spinning, sample 30 ml of the supernatant, and extract from the acid equivalents required to neutralize to pH 8.0 with 1/10 N hydrochloric acid and the acid equivalents required to further neutralize to pH 4.0. Then, the lithium carbonate equivalent and the lithium hydroxide equivalent are determined, and the total of lithium hydroxide and lithium carbonate is determined as the weight content rate from the alkali equivalent numbers of both.

【0017】本発明において、上記残存アルカリ量は、
リチウムコバルト複合酸化物の製造方法で使用されるオ
キシ水酸化コバルト粉末及び炭酸リチウム粉末の有する
重量平均粒径や比表面積の大きさ、その混合比率、混合
物の焼成温度、時間などにより制御される。上記残存ア
ルカリ量が0.03質量%以上であると、高温貯蔵後の
容量維持率が低下したり、高温下での充放電サイクル耐
久性が乏しくなるので好ましくない。pH8.0までの
中和では残存水酸化リチウムと炭酸リチウムを分別して
定量できないので電池性能との相関が乏しいので好まし
くない。本発明において、好ましい残存アルカリ量は
0.02質量%未満であり、特に好ましい残存アルカリ
量は0.01質量%未満である。本発明においては、高
温貯蔵後の容量維持率と高温下での充放電サイクル耐久
性には、残存アルカリ量でも、水酸化リチウムの残存量
の影響が大きいことがわかった。水酸化リチウムの残存
量は0.005質量%以下、なかでも0.001質量%
以下が好ましい。また、炭酸リチウム量は0.02質量
%以下、なかでも炭酸リチウム量は0.01質量%以下
が好ましい。
In the present invention, the above-mentioned residual alkali content is
It is controlled by the weight average particle size and the specific surface area of the cobalt oxyhydroxide powder and the lithium carbonate powder used in the method for producing the lithium-cobalt composite oxide, the mixing ratio thereof, the firing temperature of the mixture, the time, and the like. When the amount of residual alkali is 0.03% by mass or more, the capacity retention rate after high temperature storage is lowered and the charge / discharge cycle durability under high temperature becomes poor, which is not preferable. Neutralization up to pH 8.0 is not preferable because residual lithium hydroxide and lithium carbonate cannot be separated and quantified and the correlation with battery performance is poor. In the present invention, the preferred residual alkali content is less than 0.02% by mass, and the particularly preferred residual alkali content is less than 0.01% by mass. In the present invention, it was found that the capacity retention after high temperature storage and the charge / discharge cycle durability at high temperature are greatly affected by the residual amount of lithium hydroxide even with the residual alkali amount. The remaining amount of lithium hydroxide is 0.005% by mass or less, especially 0.001% by mass
The following are preferred. The amount of lithium carbonate is preferably 0.02% by mass or less, and more preferably 0.01% by mass or less.

【0018】本発明で製造される六方晶系リチウムコバ
ルト複合酸化物は、CuKαを線源とするX線回折によ
って測定される2θ=66.5±1°の(110)面回
折ピーク半値幅が0.070〜0.120°である場
合、リチウム電池の正極活物質として優れた特性を示す
ため特に好ましい。かかる(110)面回折ピーク半値
幅は、リチウム含有複合酸化物の特定方向の結晶子径を
反映し、結晶子径は小さいほど、半値幅が大きくなる関
係にあると思われる。本発明において、半値幅とはピー
ク高さの2分の1におけるピーク幅を意味する。
The hexagonal lithium cobalt composite oxide produced according to the present invention has a half value width of the (110) plane diffraction peak of 2θ = 66.5 ± 1 ° measured by X-ray diffraction using CuKα as a radiation source. The range of 0.070 to 0.120 ° is particularly preferable because it exhibits excellent characteristics as a positive electrode active material of a lithium battery. The half width of the (110) plane diffraction peak reflects the crystallite diameter in a specific direction of the lithium-containing composite oxide, and it is considered that the smaller the crystallite diameter, the larger the half width. In the present invention, the full width at half maximum means the peak width at half the peak height.

【0019】六方晶系リチウムコバルト複合酸化物の上
記(110)面回折ピーク半値幅は、リチウムコバルト
複合酸化物の製造方法で使用されるオキシ水酸化コバル
ト粉末及び炭酸リチウム粉末の有する重量平均粒径や比
表面積の大きさ、その混合比率、混合物の焼成温度、時
間などにより制御される。上記(110)面回折ピーク
半値幅が0.070°未満であると、正極活物質として
用いた二次電池の充放電サイクル耐久性、初期容量、平
均放電電圧、あるいは安全性が低下するので好ましくな
い。また、(110)面の回折ピーク半値幅が0.12
0°を超えると二次電池の初期容量、安全性が低下する
ので好ましくない。特に好ましい回折ピーク半値幅は
0.080〜0.110°である。
The half width of the (110) plane diffraction peak of the hexagonal lithium cobalt composite oxide is the weight average particle diameter of the cobalt oxyhydroxide powder and the lithium carbonate powder used in the method for producing the lithium cobalt composite oxide. And the specific surface area, the mixing ratio thereof, the firing temperature of the mixture, the time, and the like. When the full width at half maximum of the (110) plane diffraction peak is less than 0.070 °, the charge / discharge cycle durability, initial capacity, average discharge voltage, or safety of the secondary battery used as the positive electrode active material decreases, which is preferable. Absent. In addition, the diffraction peak half width of the (110) plane is 0.12.
If the angle exceeds 0 °, the initial capacity and safety of the secondary battery decrease, which is not preferable. A particularly preferable half width of the diffraction peak is 0.080 to 0.110 °.

【0020】上記した特性を有する本発明における六方
晶系リチウムコバルト複合酸化物は特定の大きさの重量
平均粒径及び比表面積を有するオキシ水酸化コバルト粉
末と炭酸リチウム粉末とを混合し、該混合物を酸素含有
雰囲気で焼成することにより製造される。即ち、オキシ
水酸化コバルト粉末は重量平均粒径が1〜20μm、比
表面積が2〜200m2/gを有し、かつ炭酸リチウム
粉末は重量平均粒径1〜50μm、比表面積が0.1〜
10m2/gを有する。
The hexagonal lithium cobalt composite oxide according to the present invention having the above-mentioned characteristics is prepared by mixing a cobalt oxyhydroxide powder having a specific weight average particle diameter and a specific surface area with a lithium carbonate powder, and mixing the mixture. Is baked in an oxygen-containing atmosphere. That is, the cobalt oxyhydroxide powder has a weight average particle diameter of 1 to 20 μm and a specific surface area of 2 to 200 m 2 / g, and the lithium carbonate powder has a weight average particle diameter of 1 to 50 μm and a specific surface area of 0.1 to 0.1 μm.
Having 10 m 2 / g.

【0021】本発明において、オキシ水酸化コバルトの
重量平均粒径が1μm未満であると、電池の安全性が低
下したり、正極電極層の充填密度が低下する結果、体積
当たりの容量が低下するので好ましくない。また、オキ
シ水酸化コバルトの重量平均粒径が20μmを超える
と、初期容量が低下したり、二次電池の大電流での放電
特性が低下するので好ましくない。オキシ水酸化コバル
トの特に好ましい重量平均粒径は4〜15μmである。
In the present invention, when the weight average particle diameter of cobalt oxyhydroxide is less than 1 μm, the safety of the battery is lowered and the packing density of the positive electrode layer is lowered, resulting in a decrease in capacity per volume. It is not preferable. Further, if the weight average particle diameter of cobalt oxyhydroxide exceeds 20 μm, the initial capacity is lowered and the discharge characteristics of the secondary battery at a large current are lowered, which is not preferable. A particularly preferred weight average particle size of cobalt oxyhydroxide is 4 to 15 μm.

【0022】本発明において、オキシ水酸化コバルトの
比表面積が2m2/g未満であると、大電流での放電容
量が低下するので好ましくない。また、オキシ水酸化コ
バルトの比表面積が200m2/gを超えると、正極電
極層の充填密度が低下する結果、体積当たりの容量が低
下するので好ましくない。オキシ水酸化コバルトの特に
好ましい比表面積は20〜100m2/gである。
In the present invention, when the specific surface area of cobalt oxyhydroxide is less than 2 m 2 / g, the discharge capacity at a large current is reduced, which is not preferable. Further, when the specific surface area of cobalt oxyhydroxide exceeds 200 m 2 / g, the packing density of the positive electrode layer decreases, resulting in a decrease in capacity per volume, which is not preferable. A particularly preferred specific surface area of cobalt oxyhydroxide is 20 to 100 m 2 / g.

【0023】なお、オキシ水酸化コバルトは、含水状態
で入手される場合があるが、かかる場合は比表面積の測
定が困難である。そのため、本発明におけるオキシ水酸
化コバルトの比表面積は、含水オキシ水酸化コバルトの
場合は含水物を120℃にて16時間乾燥脱水した後の
粉末についての比表面積を意味する。また、本発明にお
いて、含水オキシ水酸化コバルトを用いる場合は、あら
かじめ乾燥して用いることが好ましく、例えば120℃
で16時間乾燥した後、その粉体を用いるのが好まし
い。
Although cobalt oxyhydroxide may be obtained in a water-containing state, in such a case, it is difficult to measure the specific surface area. Therefore, in the case of hydrous cobalt oxyhydroxide, the specific surface area of the cobalt oxyhydroxide in the present invention means the specific surface area of the powder after the water-containing material is dried and dehydrated at 120 ° C. for 16 hours. Further, in the present invention, when hydrous cobalt oxyhydroxide is used, it is preferably dried in advance and used, for example, 120 ° C.
It is preferable to use the powder after drying for 16 hours.

【0024】本発明において、炭酸リチウムの重量平均
粒径が1μm未満であると粉体の嵩密度が低下し、量産
時の生産性が低下するので好ましくない。また、炭酸リ
チウムの重量平均粒径が50μmを超えると、初期容量
が低下するので好ましくない。炭酸リチウムの特に好ま
しい重量平均粒径は5〜30μmである。また、炭酸リ
チウムの比表面積が0.1m2/g未満であると、単位
重量当たりの初期放電容量が低下するので好ましくな
い。また、炭酸リチウムの比表面積が10m2/gを超
えると、正極電極層の充填密度が低下する結果、体積当
たりの容量が低下するので好ましくない。炭酸リチウム
の特に好ましい比表面積は0.3〜3m2/gである。
In the present invention, if the weight average particle diameter of lithium carbonate is less than 1 μm, the bulk density of the powder is lowered and the productivity during mass production is lowered, which is not preferable. Further, when the weight average particle diameter of lithium carbonate exceeds 50 μm, the initial capacity decreases, which is not preferable. A particularly preferable weight average particle size of lithium carbonate is 5 to 30 μm. Further, if the specific surface area of lithium carbonate is less than 0.1 m 2 / g, the initial discharge capacity per unit weight will decrease, which is not preferable. Further, if the specific surface area of lithium carbonate exceeds 10 m 2 / g, the packing density of the positive electrode layer decreases, resulting in a decrease in capacity per volume, which is not preferable. A particularly preferable specific surface area of lithium carbonate is 0.3 to 3 m 2 / g.

【0025】本発明においては、オキシ水酸化コバルト
粉末と、炭酸リチウム粉末とを乾式混合後、好ましく
は、970〜1070℃で4〜60時間、酸素含有雰囲
気で焼成する。この場合、湿式混合は生産性が低いので
好ましくない。焼成温度が970℃未満であると、安全
性が低下したり、充放電サイクル耐久性が低下するので
好ましくない。焼成温度が1070℃を超えると、初期
容量が低下したり、安全性が低下するので好ましくな
い。特に好ましい焼成温度は1000〜1050℃であ
る。また、焼成時間が4時間未満であると、量産時に焼
成状態が不均一になり特性にバラツキを生じ易いので好
ましくない。一方、60時間以上であると生産性が低下
するので好ましくない。特に好ましくは10〜30時間
の焼成時間が採用される。
In the present invention, the cobalt oxyhydroxide powder and the lithium carbonate powder are dry-mixed and then preferably baked at 970 to 1070 ° C. for 4 to 60 hours in an oxygen-containing atmosphere. In this case, wet mixing is not preferable because of low productivity. If the firing temperature is lower than 970 ° C., the safety is lowered and the charge / discharge cycle durability is lowered, which is not preferable. If the firing temperature exceeds 1070 ° C., the initial capacity is lowered and the safety is lowered, which is not preferable. A particularly preferable firing temperature is 1000 to 1050 ° C. Further, if the firing time is less than 4 hours, the firing state becomes non-uniform during mass production, and the characteristics tend to vary, which is not preferable. On the other hand, if it is 60 hours or more, the productivity is lowered, which is not preferable. Particularly preferably, a firing time of 10 to 30 hours is adopted.

【0026】この焼成は酸素含有雰囲気下で行なうこと
が必要である。酸素濃度は10〜100体積%であり、
特に好ましくは19〜50体積%である。酸素濃度が低
いと活物質の電池性能が低下するので好ましくない。
This firing needs to be performed in an oxygen-containing atmosphere. The oxygen concentration is 10 to 100% by volume,
It is particularly preferably 19 to 50% by volume. When the oxygen concentration is low, the battery performance of the active material is deteriorated, which is not preferable.

【0027】本発明の製造リチウム二次電池は、初期容
量を維持しつつ、従来の活物質より高い安全性、充放電
サイクル耐久性が優れている。本発明によるリチウムコ
バルト複合酸化物のなかでも、リチウム複合酸化物の充
填プレス密度が2.90〜3.35g/cm3である活
物質が、正極の電極層における単位体積当たりの容量密
度を高くできるので好ましい。本発明において、充填プ
レス密度とは、リチウム複合酸化物粉末を0.3t/c
2の荷重でプレスしたときのプレス成形体の見掛け密
度を意味する。
The manufactured lithium secondary battery of the present invention is superior in safety and charge / discharge cycle durability to conventional active materials while maintaining the initial capacity. Among the lithium-cobalt composite oxides according to the present invention, the active material having a lithium composite oxide with a filling press density of 2.90 to 3.35 g / cm 3 has a high capacity density per unit volume in the electrode layer of the positive electrode. It is preferable because it is possible. In the present invention, the filling press density is 0.3 t / c of the lithium composite oxide powder.
It means the apparent density of a press-formed product when pressed under a load of m 2 .

【0028】上記充填プレス密度が2.90g/cm3
未満であると、塗工・プレス時の正極電極層の密度が低
下する結果、体積当たりの容量が低下するので好ましく
ない。充填プレス密度が3.35g/cm3を超える
と、電池の高電流密度での容量発現性が低下するので好
ましくない。リチウム複合酸化物の充填プレス密度は
3.05〜3.25g/cm3が特に好ましい。
The filling press density is 2.90 g / cm 3.
When it is less than the above range, the density of the positive electrode layer during coating / pressing decreases, resulting in a decrease in capacity per volume, which is not preferable. When the filling press density exceeds 3.35 g / cm 3 , the capacity developability at a high current density of the battery decreases, which is not preferable. The filling press density of the lithium composite oxide is particularly preferably 3.05 to 3.25 g / cm 3 .

【0029】上記において、六方晶系リチウムコバルト
複合酸化物の原料として、四三酸化コバルトを用い、こ
れを炭酸リチウムと混合し、これを850℃から107
0℃の焼成によりコバルト酸リチウムを合成し、上記し
た本発明と同じ重量平均粒径、比表面積、残存アルカリ
量、110面回折ピーク半値幅を有するものも合成した
が、得られるコバルト酸リチウムの初期容量、高温貯蔵
安定性、25℃充放電サイクル耐久性、充填密度のいず
れをも同時に満足する活物質は得られなかった。この理
由は明らかでないが、おそらく無定形に近いオキシ水酸
化コバルトを直接に炭酸リチウムと混合焼成することに
より、四三酸化コバルトよりオキシ水酸化コバルトの炭
酸リチウムとのリチウム化反応がより低温で開始される
結果と思われる。
In the above, cobalt trioxide was used as a raw material for the hexagonal lithium cobalt composite oxide, and this was mixed with lithium carbonate, and this was mixed at 850 ° C. to 107 ° C.
Lithium cobalt oxide was synthesized by firing at 0 ° C., and a lithium cobalt oxide having the same weight average particle diameter, specific surface area, residual alkalinity, and half-width of 110-side diffraction peak as that of the present invention was also synthesized. No active material was obtained that simultaneously satisfied all of the initial capacity, high temperature storage stability, 25 ° C charge / discharge cycle durability, and packing density. Although the reason for this is not clear, perhaps by mixing and burning the nearly amorphous cobalt oxyhydroxide directly with lithium carbonate, the lithiation reaction of cobalt oxyhydroxide with lithium carbonate was initiated at a lower temperature than cobalt trioxide. It seems to be the result.

【0030】また、本発明における六方晶系リチウムコ
バルト複合酸化物では、そこに含まれるコバルトの原子
比の1モル%以下、好ましくは、0.05〜0.5モル
%を周期表4族又は5族の元素で置換することもでき
る。かかる場合には、得られる六方晶系リチウムコバル
ト複合酸化物を正極活物質とするリチウム電池の内部抵
抗が低下し、大電流での充放電特性を向上できるので大
電流放電用途の電池には好ましい。周期表4族又は5族
の元素としては、Ti、Nb、Ta、Zrが特に好まし
い。上記の置換が1モル%以上であると電池の初期容量
が低下するので好ましくない。
Further, in the hexagonal lithium cobalt composite oxide of the present invention, 1 mol% or less, preferably 0.05 to 0.5 mol% of the atomic ratio of cobalt contained therein is added to Group 4 or Periodic Table. Substitution with a Group 5 element is also possible. In such a case, the internal resistance of the lithium battery using the obtained hexagonal lithium cobalt composite oxide as the positive electrode active material is reduced, and the charge / discharge characteristics at large current can be improved, which is preferable for batteries for large current discharge. . Ti, Nb, Ta and Zr are particularly preferable as the elements of Group 4 or Group 5 of the periodic table. When the above substitution is 1 mol% or more, the initial capacity of the battery decreases, which is not preferable.

【0031】本発明において、上記周期表4族又は5族
の元素化合物を添加する場合に使用される原料化合物の
例としては、水酸化物、酸化物、塩化物、硝酸塩、硫酸
塩、有機酸塩等が挙げられる。化合物が、水溶性の塩で
ある場合は、金属塩水溶液を上記して製造の過程におい
て、オキシ水酸化コバルトと炭酸リチウムの粉末混合物
に、スプレー噴霧することにより混合添加できる。水酸
化物や酸化物のような難水溶性化合物である場合は、周
期表4族又は5族の元素の水酸化物や酸化物の微粉末を
混合すればよい。
In the present invention, examples of the raw material compounds used when adding the element compounds of Group 4 or Group 5 of the periodic table include hydroxides, oxides, chlorides, nitrates, sulfates and organic acids. Salt etc. are mentioned. When the compound is a water-soluble salt, it can be mixed and added to the powder mixture of cobalt oxyhydroxide and lithium carbonate by spraying the metal salt aqueous solution in the process of production as described above. In the case of a sparingly water-soluble compound such as a hydroxide or an oxide, a fine powder of a hydroxide or an oxide of an element of Group 4 or 5 of the periodic table may be mixed.

【0032】上記のように得られる本発明の六方晶系リ
チウムコバルト複合酸化物からリチウム電極の正極を製
造する場合、該複合酸化物の粉末に、アセチレンブラッ
ク、黒鉛、ケッチエンブラック等のカーボン系導電材と
結合材を混合することにより正極合剤を形成する。結合
材には、ポリフッ化ビニリデン、ポリテトラフルオロエ
チレン、ポリアミド、カルボキシメチルセルロース、ア
クリル樹脂等が用いられる。上記正極合剤及び該合剤中
の結合材の溶媒または分散媒からなる、スラリーまたは
混練物をアルミニウム箔、ステンレス箔等の正極集電体
に塗布/担持させて正極板とする。セパレータには多孔
質ポリエチレンフィルム、多孔質ポリプロピレンフィル
ム等が使用される。
When a positive electrode for a lithium electrode is produced from the hexagonal system lithium cobalt composite oxide of the present invention obtained as described above, the powder of the composite oxide is mixed with a carbon system such as acetylene black, graphite or Ketchen black. The positive electrode mixture is formed by mixing the conductive material and the binder. Polyvinylidene fluoride, polytetrafluoroethylene, polyamide, carboxymethyl cellulose, acrylic resin or the like is used as the binder. A slurry or a kneaded product composed of the positive electrode mixture and the solvent or dispersion medium of the binder in the mixture is applied / supported on a positive electrode current collector such as an aluminum foil or a stainless foil to form a positive electrode plate. A porous polyethylene film, a porous polypropylene film or the like is used for the separator.

【0033】本発明の六方晶系リチウムコバルト複合酸
化物を正極活物質として用いるリチウム電池において、
電解質溶液の溶媒としては炭酸エステルが好ましい。炭
酸エステルは環状、鎖状いずれも使用できる。環状炭酸
エステルとしてはプロピレンカーボネート、エチレンカ
ーボネート(EC)等が例示される。鎖状炭酸エステル
としてはジメチルカーボネート、ジエチルカーボネート
(DEC)、エチルメチルカーボネート(EMC)、メ
チルプロピルカーボネート、メチルイソプロピルカーボ
ネート等が例示される。
In a lithium battery using the hexagonal lithium cobalt composite oxide of the present invention as a positive electrode active material,
Carbonic acid ester is preferable as the solvent of the electrolyte solution. The carbonic acid ester may be cyclic or linear. Examples of the cyclic carbonic acid ester include propylene carbonate and ethylene carbonate (EC). Examples of the chain carbonic acid ester include dimethyl carbonate, diethyl carbonate (DEC), ethylmethyl carbonate (EMC), methylpropyl carbonate, methylisopropyl carbonate and the like.

【0034】本発明では、上記炭酸エステルを単独でま
たは2種以上を混合して使用できる。また、他の溶媒と
混合して使用してもよい。また、負極活物質の材料によ
っては、鎖状炭酸エステルと環状炭酸エステルを併用す
ると、放電特性、サイクル耐久性、充放電効率が改良で
きる場合がある。
In the present invention, the carbonate ester may be used alone or in combination of two or more kinds. Moreover, you may use it, mixing with another solvent. Further, depending on the material of the negative electrode active material, the combined use of a chain carbonic acid ester and a cyclic carbonic acid ester may improve the discharge characteristics, cycle durability, and charge / discharge efficiency.

【0035】また、これらの溶媒にフッ化ビニリデン−
ヘキサフルオロプロピレン共重合体(例えばアトケム社
カイナー)、あるいはフッ化ビニリデン−パーフルオロ
プロピルビニルエーテル共重合体を添加し、下記の溶質
を加えることによりゲルポリマー電解質としても良い。
Further, vinylidene fluoride is added to these solvents.
A gel polymer electrolyte may be prepared by adding a hexafluoropropylene copolymer (for example, Kainer manufactured by Atchem Co., Ltd.) or a vinylidene fluoride-perfluoropropyl vinyl ether copolymer and adding the following solutes.

【0036】電解質溶液またはポリマー電解質の溶質と
しては、ClO4−、CF3SO3−、BF4−、PF
6−、AsF6−、SbF6−、CF3CO2−、(CF3
22N−等をアニオンとするリチウム塩のいずれか1
種以上を使用することが好ましい。上記の電解質溶液ま
たはポリマー電解質中の溶質(例えば上記のリチウム
塩)は0.2〜2.0mol/l(リットル)の濃度と
するのが好ましい。この範囲を逸脱すると、イオン伝導
度が低下し、電解質の電気伝導度が低下する。より好ま
しくは0.5〜1.5mol/lが選定される。また、
いわゆるリチウムイオン導電性の常温溶融塩を電解液と
して用いても良い。常温溶融塩としては、とリメチルプ
ロピルアンモニウム−ビス(トリフルオロメタン−スル
フォニル)イミド−リチウム塩や、1−エチルー3−イ
ミダゾリウム−BF4塩等が例示される。
As the solute of the electrolyte solution or the polymer electrolyte, ClO 4 −, CF 3 SO 3 −, BF 4 −, PF are used.
6 -, AsF 6 -, SbF 6 -, CF 3 CO 2 -, (CF 3 S
Any one of lithium salts having O 2 ) 2 N- or the like as an anion 1
It is preferred to use more than one species. The solute (for example, the lithium salt described above) in the electrolyte solution or polymer electrolyte is preferably at a concentration of 0.2 to 2.0 mol / l (liter). If it deviates from this range, the ionic conductivity will decrease, and the electric conductivity of the electrolyte will decrease. More preferably, 0.5 to 1.5 mol / l is selected. Also,
A so-called lithium ion conductive room temperature molten salt may be used as the electrolytic solution. The room temperature molten salt, a trimethyl propyl ammonium - bis (trifluoromethane - sulfonyl) imide - and a lithium salt, 1-ethyl-3-imidazolium -BF 4 salts, and the like.

【0037】本発明の正極活物質を用いる二次電池にお
いて、負極活物質には、リチウムイオンを吸蔵、放出可
能な材料が用いられる。この負極活物質を形成する材料
は、この性質を有するものであれば特に限定されない
が、例えばリチウム金属、リチウム合金、炭素材料、周
期表14、15族の金属を主体とした酸化物、炭素化合
物、炭化ケイ素化合物、酸化ケイ素化合物、硫化チタ
ン、炭化ホウ素化合物等が挙げられる。
In the secondary battery using the positive electrode active material of the present invention, a material capable of inserting and extracting lithium ions is used as the negative electrode active material. The material forming the negative electrode active material is not particularly limited as long as it has this property, and examples thereof include lithium metal, lithium alloys, carbon materials, oxides and carbon compounds mainly containing metals of Groups 14 and 15 of the periodic table. , Silicon carbide compounds, silicon oxide compounds, titanium sulfide, boron carbide compounds and the like.

【0038】炭素材料としては、様々な熱分解条件で有
機物を熱分解したものや人造黒鉛、天然黒鉛、土壌黒
鉛、膨張黒鉛、鱗片状黒鉛等を使用できる。また、酸化
物としては、酸化スズを主体とする化合物が使用でき
る。負極集電体としては、銅箔、ニッケル箔等が用いら
れる。
As the carbon material, those obtained by thermally decomposing organic matter under various thermal decomposition conditions, artificial graphite, natural graphite, soil graphite, expanded graphite, scaly graphite and the like can be used. Further, as the oxide, a compound mainly containing tin oxide can be used. Copper foil, nickel foil, or the like is used as the negative electrode current collector.

【0039】本発明における正極活物質を用いる二次電
池における正極及び負極は、活物質を有機溶媒と混練し
てスラリーとし、該スラリーを金属箔集電体に塗布、乾
燥、プレスして得ることが好ましい。本発明のリチウム
電池の形状には特に制約はない。シート状(いわゆるフ
イルム状)、折り畳み状、巻回型有底円筒形、ボタン形
等が好ましく挙げられ、用途に応じて選択される。
The positive electrode and the negative electrode in the secondary battery using the positive electrode active material of the present invention are obtained by kneading the active material with an organic solvent to form a slurry, and applying the slurry to a metal foil current collector, drying and pressing. Is preferred. The shape of the lithium battery of the present invention is not particularly limited. A sheet shape (so-called film shape), a folding shape, a winding type bottomed cylindrical shape, a button shape, and the like are preferable, and the shape is selected according to the application.

【0040】[0040]

【実施例】以下に実施例により本発明を具体的に説明す
るが、本発明はこれらの実施例に限定されない。 [実施例1]重量平均粒径15μmかつ比表面積が60
2/gのオキシ水酸化コバルト粉末と、重量平均粒径
15μmかつ比表面積が1.2m2/gの炭酸リチウム
粉末とを混合した。混合比は焼成後LiCoO2となる
ように配合した。これら2種の粉末を乾式混合した後、
空気に酸素ガスを添加することにより酸素濃度を28体
積%とした雰囲気にて、1040℃で16時間焼成し粉
砕した。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. Example 1 A weight average particle size of 15 μm and a specific surface area of 60
m 2 / g of cobalt oxyhydroxide powder was mixed with lithium carbonate powder having a weight average particle diameter of 15 μm and a specific surface area of 1.2 m 2 / g. The mixing ratio was such that LiCoO 2 was obtained after firing. After dry mixing these two powders,
The mixture was fired at 1040 ° C. for 16 hours in an atmosphere having an oxygen concentration of 28% by volume by adding oxygen gas to the air and pulverized.

【0041】得られた焼成粉砕物の重量平均粒径は1
1.5μmであり、比表面積は0.25m2/gであっ
た。残存アルカリ量は0.014質量%であり、残存水
酸化リチウム量は0.001質量%、残存炭酸チリウム
量は0.013質量%であった。
The weight average particle diameter of the obtained fired pulverized product is 1
It was 1.5 μm and the specific surface area was 0.25 m 2 / g. The residual alkali amount was 0.014% by mass, the residual lithium hydroxide amount was 0.001% by mass, and the residual thylium carbonate amount was 0.013% by mass.

【0042】粉砕後の粉末について、X線回折装置(理
学電機製RINT 2100型)を用いてX線回折スペ
クトルを得た。CuKα線を使用したこの粉末X線回折
において、2θ=66.5±1°付近の(110)面の
回折ピーク半値幅は0.090°であった。このリチウ
ムコバルト複合酸化物粉末を0.3t/cm2でプレス
し、その体積と重量から充填プレス密度を求めたとこ
ろ、3.25g/cm3であった。このようにして得た
LiCoO2粉末と、アセチレンブラックと、ポリテト
ラフルオロエチレン粉末とを80/16/4の重量比で
混合し、トルエンを添加しつつ混練、乾燥し、厚さ15
0μmの正極板を作製した。
An X-ray diffraction spectrum of the powder after pulverization was obtained by using an X-ray diffractometer (RINT 2100 manufactured by Rigaku Denki). In this powder X-ray diffraction using CuKα ray, the half value width of the diffraction peak of (110) plane near 2θ = 66.5 ± 1 ° was 0.090 °. This lithium cobalt composite oxide powder was pressed at 0.3 t / cm 2 , and the filling press density was calculated from the volume and weight, and it was 3.25 g / cm 3 . The LiCoO 2 powder thus obtained, acetylene black and polytetrafluoroethylene powder were mixed in a weight ratio of 80/16/4, kneaded while adding toluene and dried to obtain a thickness of 15
A 0 μm positive electrode plate was prepared.

【0043】そして、厚さ20μmのアルミニウム箔を
正極集電体とし、セパレータには厚さ25μmの多孔質
ポリプロピレンを用いた。厚さ500μmの金属リチウ
ム箔を負極に用い、負極集電体にニッケル箔20μmを
使用し、電解液には1M LiPF6/EC+DEC
(1:1)を用いてステンレス製簡易密閉セル型電池を
アルゴングローブボックス内で2個組み立てた。
An aluminum foil having a thickness of 20 μm was used as a positive electrode current collector, and a porous polypropylene having a thickness of 25 μm was used as a separator. A 500 μm thick metallic lithium foil is used for the negative electrode, a nickel foil of 20 μm is used for the negative electrode current collector, and the electrolyte is 1M LiPF 6 / EC + DEC.
Two (1: 1) stainless steel simple closed cell batteries were assembled in an argon glove box.

【0044】その内の1個の電池については、25℃に
て正極活物質1gにつき75mAの負荷電流で4.3V
まで充電し、正極活物質1gにつき75mAの負荷電流
にて2.5Vまで放電して初期放電容量を求めた。さら
に、この電池について、引き続き充放電サイクル試験を
30回行なった。その結果、25℃、2.5〜4.3V
における初期放電容量は150mAh/gであり、30
回充放電サイクル後の容量維持率は96.7%であっ
た。
One of the batteries had a voltage of 4.3 V at a load current of 75 mA / g of positive electrode active material at 25 ° C.
Was charged up to 2.5 V at a load current of 75 mA per 1 g of the positive electrode active material, and the initial discharge capacity was determined. Further, this battery was further subjected to a charge / discharge cycle test 30 times. As a result, 25 ℃, 2.5 ~ 4.3V
The initial discharge capacity at 150 mAh / g was 30
The capacity retention rate after 9 charge / discharge cycles was 96.7%.

【0045】また、他方の電池については、正極面積1
cm2につき定電流0.2mAで4.3Vまで充電し、
アルゴングローブボックス内で解体し、充電後の正極体
シートを取り出し、その正極体シートを洗滌後、径3m
mに打ち抜き、ECとともにアルミカプセルに密閉し、
走査型差動熱量計にて5℃/分の速度で昇温して発熱開
始温度を測定した。その結果、発熱開始温度は162℃
であった。
For the other battery, the positive electrode area is 1
Charge to 4.3V with a constant current of 0.2 mA per cm 2 ,
Disassemble in an argon glove box, take out the positive electrode sheet after charging, wash the positive electrode sheet, and then the diameter is 3 m.
punched out in m, sealed in an aluminum capsule with EC,
The exothermic start temperature was measured by raising the temperature at a rate of 5 ° C./min with a scanning differential calorimeter. As a result, the heat generation start temperature is 162 ° C.
Met.

【0046】また、大阪ガス株式会社製の球状黒鉛(M
CMB)とポリビニリデンフルオライド(PVDF)バ
インダを重量比で90:10とし、MNPを溶媒とし
て、ボールミル混合してスラリーとなし、ドクターブレ
ード法により厚み20μmの銅箔に塗工し、70℃で1
0時間加熱乾燥してNMPを除去した後ロールプレス圧
延して負極シートを得た。
Also, spherical graphite (M
CMB) and polyvinylidene fluoride (PVDF) binder in a weight ratio of 90:10, MNP as a solvent and ball mill mixing to form a slurry, which was applied to a copper foil having a thickness of 20 μm by a doctor blade method, and at 70 ° C. 1
It was heated and dried for 0 hours to remove NMP, and then rolled and rolled to obtain a negative electrode sheet.

【0047】LiCoO2粉末と、アセチレンブラック
と、ポリテトラフルオロエチレン粉末とを80/16/
4の重量比で混合し、トルエンを添加しつつ混練、乾燥
し、厚さ150μmの正極板を作製し、厚さ20μmの
アルミニウム箔を正極集電体とし、セパレータには厚さ
25μmの多孔質ポリプロピレンを用いた。電解液には
1M LiPF6/EC+EMC(1:1)を用いてリ
チウムイオン型ステンレス製コインセル厚さ3mm、径
20mmをアルゴングローブボックス内で組み立てた。
このセルを25℃で4.2Vで10時間充電後0.1C
で放電して初期放電容量をもとめ、再度4.2Vで10
時間充電後、70℃で7日間保存したのち25℃で再度
4.2Vで充電後0.1C放電せしめて初期容量維持率
を求めた。その結果70℃貯蔵後の容量維持率は85%
であった。
80/16 / LiCoO 2 powder, acetylene black and polytetrafluoroethylene powder
The mixture was mixed at a weight ratio of 4 and kneaded while adding toluene and dried to prepare a positive electrode plate having a thickness of 150 μm, an aluminum foil having a thickness of 20 μm was used as a positive electrode current collector, and a separator having a thickness of 25 μm was made of a porous material. Polypropylene was used. Using 1M LiPF 6 / EC + EMC (1: 1) as the electrolytic solution, a lithium ion type stainless steel coin cell having a thickness of 3 mm and a diameter of 20 mm was assembled in an argon glove box.
This cell was charged at 4.2V for 10 hours at 25 ° C, then 0.1C
Discharge at 4.2V to obtain the initial discharge capacity, and again at 4.2V for 10
After charging for an hour, it was stored at 70 ° C. for 7 days, charged again at 25 ° C. at 4.2 V and discharged by 0.1 C to obtain the initial capacity retention rate. As a result, the capacity retention rate after storage at 70 ° C is 85%.
Met.

【0048】[実施例2]重量平均粒径8μmかつ比表
面積が50m2/gのオキシ水酸化コバルト粉末と、重
量平均粒径15μmかつ比表面積が1.2m2/gの炭
酸リチウム粉末とを混合した。混合比は焼成後LiCo
2となるように配合した。これら2種の粉末を乾式混
合した後、空気に酸素ガスを添加することにより酸素濃
度を28体積%とした雰囲気にて、1010℃にて14
時間、焼成粉砕した。
[0048] and [Example 2] The weight average particle size 8μm and a specific surface area of 50 m 2 / g of cobalt oxyhydroxide powder, the weight average particle size 15μm and a specific surface area of lithium carbonate powder of 1.2 m 2 / g Mixed. The mixing ratio is LiCo after firing
It was blended so as to be O 2 . After dry-mixing these two kinds of powders, oxygen gas was added to the air to obtain an oxygen concentration of 28% by volume at 1010 ° C.
Burned and ground for hours.

【0049】得られた焼成物の重量平均粒径は9.6μ
mであり、比表面積は0.36m2/gであった。粉砕
後の粉末について、実施例1と同じX線回折装置を用い
てX線回折スペクトルを得た。CuKα線を使用したこ
の粉末X線回折において、2θ=66.5±1°付近の
(110)面の回折ピーク半値幅は0.095°であっ
た。また、実施例1と同様にして求めた活物質中のアル
カリ含量は0.018質量%であった。残存水酸化リチ
ウム含量は0.002質量%、残存炭酸チリウム含量は
0.016質量%であった。また、上記実施例1と同様
にして、このリチウムコバルト複合酸化物粉末の充填プ
レス密度を求めたところ、3.18g/cm3であっ
た。
The weight average particle diameter of the obtained fired product was 9.6μ.
m, and the specific surface area was 0.36 m 2 / g. An X-ray diffraction spectrum of the powder after pulverization was obtained using the same X-ray diffraction apparatus as in Example 1. In this powder X-ray diffraction using CuKα ray, the half value width of the diffraction peak of (110) plane near 2θ = 66.5 ± 1 ° was 0.095 °. The alkali content in the active material determined in the same manner as in Example 1 was 0.018% by mass. The residual lithium hydroxide content was 0.002% by mass, and the residual thylium carbonate content was 0.016% by mass. Also, the filling press density of this lithium cobalt composite oxide powder was determined in the same manner as in Example 1 above, and it was 3.18 g / cm 3 .

【0050】このようにして得たLiCoO2粉末を用
いた他は、上記実施例1と同様にして、簡易密閉セル型
電池をアルゴングローブボックス内で2個組み立てた。
その内の1個について、上記実施例1と同じく電池の初
期容量と30サイクル後の容量を求めたところ、25
℃、2.5〜4.3Vにおける初期放電容量は151m
Ah/gであり、30回充放電サイクル後の容量維持率
は96.8%であった。
Two simple closed cell batteries were assembled in an argon glove box in the same manner as in Example 1 except that the LiCoO 2 powder thus obtained was used.
For one of them, the initial capacity of the battery and the capacity after 30 cycles were determined in the same manner as in Example 1 above.
The initial discharge capacity at a temperature of 2.5 to 4.3 V is 151 m.
It was Ah / g, and the capacity retention ratio after 30 charge / discharge cycles was 96.8%.

【0051】また、上記実施例1と同様にして、他方の
電池について、充電された正極活物質の電解液との反応
性を求めたところ、発熱開始温度は161℃であった。
また、上記実施例1と同様にして、リチウムイオン型コ
インセルについて評価した結果、70℃貯蔵後の容量維
持率は78%であった。
When the reactivity of the charged positive electrode active material with the electrolytic solution was determined in the same manner as in Example 1 above, the heat generation starting temperature was 161 ° C.
Further, as a result of evaluating the lithium ion type coin cell in the same manner as in Example 1, the capacity retention rate after storage at 70 ° C. was 78%.

【0052】[実施例3]重量平均粒径12μmかつ比
表面積が66m2/gのオキシ水酸化コバルト粉末と、
重量平均粒径28μmかつ比表面積が0.43m2/g
の炭酸リチウム粉末とを混合した。混合比は焼成後Li
CoO2となるように配合した。これら2種の粉末を乾
式混合した後、空気に酸素ガスを添加することにより酸
素濃度を25体積%とした雰囲気にて、1010℃にて
40時間焼成粉砕した。
Example 3 Cobalt oxyhydroxide powder having a weight average particle diameter of 12 μm and a specific surface area of 66 m 2 / g,
Weight average particle diameter 28 μm and specific surface area 0.43 m 2 / g
Of lithium carbonate powder. Mixing ratio is Li after firing
It was blended so as to be CoO 2 . These two kinds of powders were dry-mixed and then fired and pulverized at 1010 ° C. for 40 hours in an atmosphere having an oxygen concentration of 25% by volume by adding oxygen gas to air.

【0053】得られた焼成粉砕物の重量平均粒径は1
0.5μmであり、比表面積は0.28m2/gであっ
た。粉砕後の粉末について、実施例1と同じX線回折装
置を用いてX線回折スペクトルを得た。CuKα線を使
用したこの粉末X線回折において、2θ=66.5±1
°付近の(110)面の回折ピーク半値幅は0.093
°であった。
The weight average particle diameter of the obtained calcined and ground product is 1
It was 0.5 μm and the specific surface area was 0.28 m 2 / g. An X-ray diffraction spectrum of the powder after pulverization was obtained using the same X-ray diffraction apparatus as in Example 1. In this powder X-ray diffraction using CuKα ray, 2θ = 66.5 ± 1
The half value width of the diffraction peak of the (110) plane near 0 ° is 0.093.
It was °.

【0054】また、実施例1と同様にして求めた活物質
中のアルカリ含量は0.010質量%であった。残存水
酸化リチウム含量は0.001質量%未満、残存炭酸チ
リウム含量は0.010質量%であった。また、上記実
施例1と同様にして、このリチウムコバルト複合酸化物
粉末の充填プレス密度を求めたところ、3.22g/c
3であった。
The alkali content in the active material determined in the same manner as in Example 1 was 0.010% by mass. The residual lithium hydroxide content was less than 0.001% by mass and the residual thylium carbonate content was 0.010% by mass. Further, the filling press density of this lithium cobalt composite oxide powder was determined in the same manner as in Example 1 above, and was 3.22 g / c.
It was m 3 .

【0055】このようにして得たLiCoO2粉末を用
いた他は、上記実施例1と同様にして、簡易密閉セル型
電池をアルゴングローブボックス内で2個組み立てた。
その内の1個について、上記実施例1と同じく電池の初
期容量と30サイクル後の容量を求めたところ、25
℃、2.5〜4.3Vにおける初期放電容量は151m
Ah/gであり、30回充放電サイクル後の容量維持率
は96.8%であった。
Two simple sealed cell type batteries were assembled in an argon glove box in the same manner as in Example 1 except that the LiCoO 2 powder thus obtained was used.
For one of them, the initial capacity of the battery and the capacity after 30 cycles were determined in the same manner as in Example 1 above.
The initial discharge capacity at a temperature of 2.5 to 4.3 V is 151 m.
It was Ah / g, and the capacity retention ratio after 30 charge / discharge cycles was 96.8%.

【0056】また、上記実施例1と同様にして、他方の
電池について、充電された正極活物質の電解液との反応
性を求めたところ、発熱開始温度は165℃であった。
また、上記実施例1と同様にして、リチウムイオン型コ
インセルについて評価した結果、70℃貯蔵後の容量維
持率は79%であった。
When the reactivity of the charged positive electrode active material with the electrolytic solution was determined in the same manner as in Example 1 above, the exothermic onset temperature was 165 ° C.
Further, as a result of evaluating the lithium ion coin cell in the same manner as in Example 1, the capacity retention rate after storage at 70 ° C. was 79%.

【0057】[実施例4]重量平均粒径11μmかつ比
表面積が55m2/gのオキシ水酸化コバルト粉末と、
重量平均粒径13μmかつ比表面積が1.4m2/gの
炭酸リチウム粉末と、重量平均粒径0.15μmかつ比
表面積が5.3m2/gの酸化ニオブNb25粉末とを
混合した。これら3種の粉末を乾式混合した後、空気に
酸素ガスを添加することにより酸素濃度を28体積%と
した雰囲気下、1010℃にて16時間焼成後粉砕し
た。
Example 4 Cobalt oxyhydroxide powder having a weight average particle diameter of 11 μm and a specific surface area of 55 m 2 / g,
Lithium carbonate powder having a weight average particle diameter of 13 μm and a specific surface area of 1.4 m 2 / g and niobium oxide Nb 2 O 5 powder having a weight average particle diameter of 0.15 μm and a specific surface area of 5.3 m 2 / g were mixed. . After dry-mixing these three kinds of powders, the mixture was fired at 1010 ° C. for 16 hours in an atmosphere in which oxygen gas was added to the air so that the oxygen concentration was 28% by volume, and then pulverized.

【0058】焼成粉砕後の粉末についての、重量平均粒
径は10.2μmであり、また、実施例1と同様にして
求めた比表面積は0.42m2/gであった。 実施例1
と同じX線回折装置を用いてX線回折スペクトルを得
た。CuKα線を使用したこの粉末X線回折において、
2θ=66.5±1°付近の(110)面の回折ピーク
半値幅は0.110°であった。また、実施例1と同様
にして求めた活物質中のアルカリ含量は0.022質量
%であった。残存水酸化リチウム含量は0.002質量
%、残存炭酸チリウム含量は0.020質量%であっ
た。また、上記実施例1と同様にして、このリチウムコ
バルト複合酸化物粉末の充填プレス密度を求めたとこ
ろ、3.13g/cm3であった。このようにして得た
LiCo0.998Nb0.0022粉末と、アセチレンブラッ
クと、ポリテトラフルオロエチレン粉末とを80/16
/4の重量比で混合し、トルエンを添加しつつ混練、乾
燥し、厚さ150μmの正極板を作製した。
The weight average particle diameter of the powder after firing and pulverization was 10.2 μm, and the specific surface area determined in the same manner as in Example 1 was 0.42 m 2 / g. Example 1
An X-ray diffraction spectrum was obtained using the same X-ray diffractometer. In this powder X-ray diffraction using CuKα ray,
The half value width of the diffraction peak of the (110) plane near 2θ = 66.5 ± 1 ° was 0.110 °. The alkali content in the active material determined in the same manner as in Example 1 was 0.022% by mass. The residual lithium hydroxide content was 0.002% by mass, and the residual thylium carbonate content was 0.020% by mass. The filling press density of this lithium cobalt composite oxide powder was determined in the same manner as in Example 1 above, and it was 3.13 g / cm 3 . 80/16 of the LiCo 0.998 Nb 0.002 O 2 powder thus obtained, acetylene black and polytetrafluoroethylene powder
The mixture was mixed at a weight ratio of / 4, kneaded while adding toluene, and dried to prepare a positive electrode plate having a thickness of 150 μm.

【0059】そして、厚さ20μmのアルミニウム箔を
正極集電体とし、セパレータには厚さ25μmの多孔質
ポリプロピレンを用い、厚さ500μmの金属リチウム
箔を負極に用い、負極集電体にニッケル箔20μmを使
用し、電解液には1MのLiPF6/EC+DEC
(1:1)を用いてステンレス製簡易密閉セルをアルゴ
ングローブボックス内で組み立てた。
An aluminum foil having a thickness of 20 μm was used as a positive electrode current collector, a porous polypropylene having a thickness of 25 μm was used as a separator, a metallic lithium foil having a thickness of 500 μm was used as a negative electrode, and a nickel foil was used as a negative electrode current collector. 20 μm is used, and the electrolyte is 1 M LiPF 6 / EC + DEC
A simple stainless steel closed cell was assembled using (1: 1) in an argon glove box.

【0060】まず、25℃にて正極活物質1gにつき7
5mAの負荷電流で4.3Vまで充電し、正極活物質1
gにつき75mAの負荷電流にて2.5Vまで放電して
初期放電容量を求めた。更に充放電サイクル試験を30
回行った。25℃における2.5〜4.3Vにおける初
期放電容量は150mAh/gであり、30回充放電サ
イクル後の容量維持率は97.1%であった。また、実
施例1と同様にして、リチウム金属負極を用いたステン
レス製簡易密閉セル型電池を評価した結果、発熱開始温
度は160℃であり、リチウムイオン型ステンレス製コ
インセルの70℃貯蔵後の容量維持率は80%であっ
た。
First, 7 g per 1 g of the positive electrode active material at 25 ° C.
Charged up to 4.3V with a load current of 5mA, positive electrode active material 1
The initial discharge capacity was obtained by discharging to 2.5 V at a load current of 75 mA / g. Further charge / discharge cycle test
I went there. The initial discharge capacity at 2.5 to 4.3 V at 25 ° C. was 150 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 97.1%. Further, as a result of evaluating a stainless steel simple closed cell type battery using a lithium metal negative electrode in the same manner as in Example 1, the heat generation starting temperature was 160 ° C., and the capacity of the lithium ion type stainless coin cell after storing at 70 ° C. The maintenance rate was 80%.

【0061】[実施例5]重量平均粒径11μmかつ比
表面積が55m2/gのオキシ水酸化コバルト粉末と、
重量平均粒径13μmかつ比表面積が1.4m2/gの
炭酸リチウム粉末と、重量平均粒径0.22μmかつ比
表面積が9m2/gのアナターゼ型二酸化チタン粉末と
を混合した。これら3種の粉末を乾式混合した後、空気
に酸素ガスを添加することにより酸素濃度を28体積%
とした雰囲気下、1010℃にて16時間焼成後粉砕し
た。
Example 5 Cobalt oxyhydroxide powder having a weight average particle diameter of 11 μm and a specific surface area of 55 m 2 / g,
Lithium carbonate powder having a weight-average particle diameter of 13μm and a specific surface area of 1.4 m 2 / g, weight average particle size 0.22μm and specific surface area was mixed with anatase type titanium dioxide powder of 9m 2 / g. After dry-mixing these three powders, oxygen gas was added to the air to adjust the oxygen concentration to 28% by volume.
In the atmosphere described above, the product was fired at 1010 ° C. for 16 hours and then pulverized.

【0062】焼成粉砕後の粉末についての重量平均粒径
は11.5μmであり、また、実施例1と同様にして求
めた比表面積は0.42m2/gであった。実施例1と
同じX線回折装置を用いてX線回折スペクトルを得た。
CuKα線を使用したこの粉末X線回折において、2θ
=66.5±1°付近の(110)面の回折ピーク半値
幅は0.109°であった。また、実施例1と同様にし
て求めた活物質中のアルカリ含量は0.0024質量%
であった。残存水酸化リチウム含量は0.003質量
%、残存炭酸チリウム含量は0.021質量%であっ
た。また、上記実施例1と同様にして、このリチウムコ
バルト複合酸化物粉末の充填プレス密度を求めたとこ
ろ、3.15g/cm3であった。
The weight average particle diameter of the powder after firing and pulverization was 11.5 μm, and the specific surface area determined in the same manner as in Example 1 was 0.42 m 2 / g. An X-ray diffraction spectrum was obtained using the same X-ray diffraction apparatus as in Example 1.
In this powder X-ray diffraction using CuKα ray, 2θ
The half value width of the diffraction peak of the (110) plane near = 66.5 ± 1 ° was 0.109 °. The alkali content in the active material determined in the same manner as in Example 1 was 0.0024% by mass.
Met. The residual lithium hydroxide content was 0.003% by mass and the residual thylium carbonate content was 0.021% by mass. Further, the filling press density of this lithium cobalt composite oxide powder was determined in the same manner as in Example 1 above, and it was 3.15 g / cm 3 .

【0063】このようにして得たLiCo0.998Ti
0.0022粉末と、アセチレンブラックと、ポリテトラフ
ルオロエチレン粉末とを80/16/4の重量比で混合
し、トルエンを添加しつつ混練、乾燥し、厚さ150μ
mの正極板を作製した。そして、厚さ20μmのアルミ
ニウム箔を正極集電体とし、セパレータには厚さ25μ
mの多孔質ポリプロピレンを用い、厚さ500μmの金
属リチウム箔を負極に用い、負極集電体にニッケル箔2
0μmを使用し、電解液には1M LiPF6/EC+
DEC(1:1)を用いてステンレス製簡易密閉セルを
アルゴングローブボックス内で組み立てた。
LiCo 0.998 Ti thus obtained
0.002 O 2 powder, acetylene black, and polytetrafluoroethylene powder were mixed at a weight ratio of 80/16/4, kneaded while adding toluene, and dried to a thickness of 150 μm.
m positive electrode plate was produced. Then, an aluminum foil having a thickness of 20 μm was used as a positive electrode current collector, and a separator having a thickness of 25 μm was used.
m of porous polypropylene, 500 μm thick metallic lithium foil was used for the negative electrode, and nickel foil 2 was used as the negative electrode current collector.
0 μm is used, and the electrolyte is 1M LiPF6 / EC +
A simple stainless closed cell made of stainless steel was assembled in an argon glove box using DEC (1: 1).

【0064】まず、25℃にて正極活物質1gにつき7
5mAの負荷電流で4.3Vまで充電し、正極活物質1
gにつき75mAの負荷電流にて2.5Vまで放電して
初期放電容量を求めた。更に充放電サイクル試験を30
回行った。25℃における2.5〜4.3Vにおける初
期放電容量は150mAh/gであり、30回充放電サ
イクル後の容量維持率は97.3%であった。また、実
施例1と同様にして、リチウム金属負極を用いたステン
レス製簡易密閉セル型電池を評価した結果、発熱開始温
度は160℃であり、リチウムイオン型ステンレス製コ
インセルの70℃貯蔵後の容量維持率は82%であっ
た。
First, 7 g per 1 g of the positive electrode active material at 25 ° C.
Charged up to 4.3V with a load current of 5mA, positive electrode active material 1
The initial discharge capacity was obtained by discharging to 2.5 V at a load current of 75 mA / g. Further charge / discharge cycle test
I went there. The initial discharge capacity at 2.5 to 4.3 V at 25 ° C. was 150 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 97.3%. Further, as a result of evaluating a stainless steel simple closed cell type battery using a lithium metal negative electrode in the same manner as in Example 1, the heat generation starting temperature was 160 ° C., and the capacity of the lithium ion type stainless coin cell after storing at 70 ° C. The maintenance rate was 82%.

【0065】[比較例1]実施例1において、オキシ水
酸化コバルト粉末と炭酸リチウム粉末の粒径と比表面積
を変え、かつ焼成温度を940℃、8時間としたほかは
実施例1と同様にしてリチウムコバルト複合酸化物を合
成し、活物質物性と電池性能評価を行った。リチウムコ
バルト複合酸化物の比表面積は1.0m2/gであり、
重量平均粒径は9.6μmであった。粉砕後の粉末につ
いて、実施例1と同じX線回折装置を用いてX線回折ス
ペクトルを得た。CuKα線を使用したこの粉末X線回
折において、2θ=66.5±1°付近の(110)面
の回折ピーク半値幅は0.128°であった。
Comparative Example 1 The same as Example 1 except that the particle size and specific surface area of the cobalt oxyhydroxide powder and the lithium carbonate powder were changed and the firing temperature was 940 ° C. for 8 hours. Lithium-cobalt composite oxide was synthesized and the physical properties of the active material and the battery performance were evaluated. The specific surface area of the lithium cobalt composite oxide is 1.0 m 2 / g,
The weight average particle diameter was 9.6 μm. An X-ray diffraction spectrum of the powder after pulverization was obtained using the same X-ray diffraction apparatus as in Example 1. In this powder X-ray diffraction using CuKα ray, the half value width of the diffraction peak of the (110) plane near 2θ = 66.5 ± 1 ° was 0.128 °.

【0066】また、実施例1と同様にして求めた活物質
中のアルカリ含量は0.045質量%であった。残存水
酸化リチウム含量は0.009質量%、残存炭酸チリウ
ム含量は0.036質量%であった。このリチウムコバ
ルト複合酸化物粉末の充填プレス密度を求めたところ、
3.14g/cm3であった。
The alkali content in the active material determined in the same manner as in Example 1 was 0.045% by mass. The residual lithium hydroxide content was 0.009% by mass, and the residual thylium carbonate content was 0.036% by mass. When the filling press density of this lithium cobalt composite oxide powder was determined,
It was 3.14 g / cm 3 .

【0067】実施例1と同様にして、リチウム金属負極
を用いたステンレス製簡易密閉セル型電池を評価した結
果、初期放電容量は151mAh/gであり、30回充
放電サイクル後の容量維持率は96.1%であった。実
施例1と同様にして、リチウム金属負極を用いたステン
レス製簡易密閉セル型電池を評価した結果、発熱開始温
度は160℃であった。実施例1と同様にして、リチウ
ムイオン型ステンレス製コインセルの70℃貯蔵後の容
量維持率は71%であった。
As a result of evaluating a stainless steel simple closed cell type battery using a lithium metal negative electrode in the same manner as in Example 1, the initial discharge capacity was 151 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was It was 96.1%. In the same manner as in Example 1, a stainless steel simple closed cell battery using a lithium metal negative electrode was evaluated. As a result, the heat generation starting temperature was 160 ° C. In the same manner as in Example 1, the capacity retention of the lithium ion type coin cell made of stainless steel after storage at 70 ° C. was 71%.

【0068】[比較例2]実施例2において、焼成温度
を1030℃、28時間とし、原料のオキシ水酸化リチ
ウムと炭酸リチウムの混合比を変えたほかは実施例2と
同様にしてリチウムコバルト複合酸化物を合成し、活物
質物性と電池性能評価を行った。リチウムコバルト複合
酸化物の比表面積は0.37m2/gであった。重量平
均粒径は9.7μmであった。粉砕後の粉末について、
実施例1と同じX線回折装置を用いてX線回折スペクト
ルを得た。CuKα線を使用したこの粉末X線回折にお
いて、2θ=66.5±1°付近の(110)面の回折
ピーク半値幅は0.090°であった。また、実施例1
と同様にして求めた活物質中のアルカリ含量は0.03
8質量%であった。残存水酸化リチウム含量は0.00
4質量%、残存炭酸チリウム含量は0.034質量%で
あった。
[Comparative Example 2] A lithium-cobalt composite was prepared in the same manner as in Example 2 except that the firing temperature was 1030 ° C. for 28 hours, and the mixing ratio of the raw material lithium oxyhydroxide and lithium carbonate was changed. The oxide was synthesized and the physical properties of the active material and the battery performance were evaluated. The specific surface area of the lithium-cobalt composite oxide was 0.37 m 2 / g. The weight average particle diameter was 9.7 μm. Regarding the powder after crushing,
An X-ray diffraction spectrum was obtained using the same X-ray diffraction apparatus as in Example 1. In this powder X-ray diffraction using CuKα ray, the half value width of the diffraction peak of (110) plane near 2θ = 66.5 ± 1 ° was 0.090 °. In addition, Example 1
The alkali content in the active material obtained in the same manner as above is 0.03.
It was 8% by mass. Residual lithium hydroxide content is 0.00
4% by mass, the content of residual thylium carbonate was 0.034% by mass.

【0069】このリチウムコバルト複合酸化物粉末の充
填プレス密度を求めたところ、3.17g/cm3であ
った。このリチウムコバルト複合酸化物粉末の充填プレ
ス密度を求めたところ、3.17g/cm3であった。
実施例1と同様にして、リチウム金属負極を用いたステ
ンレス製簡易密閉セル型電池を評価した結果、初期放電
容量は151mAh/gであり、30回充放電サイクル
後の容量維持率は96.3%であった。実施例1と同様
にして、リチウム金属負極を用いたステンレス製簡易密
閉セル型電池を評価した結果、発熱開始温度は161℃
であった。実施例1と同様にして、リチウムイオン型ス
テンレス製コインセルの70℃貯蔵後の容量維持率は6
6%であった。
When the filling press density of this lithium cobalt composite oxide powder was determined, it was 3.17 g / cm 3 . The filling press density of this lithium cobalt composite oxide powder was determined to be 3.17 g / cm 3 .
As a result of evaluating a stainless steel simple closed cell battery using a lithium metal negative electrode in the same manner as in Example 1, the initial discharge capacity was 151 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 96.3. %Met. As a result of evaluating a stainless steel simple closed cell battery using a lithium metal negative electrode in the same manner as in Example 1, the heat generation start temperature was 161 ° C.
Met. In the same manner as in Example 1, the lithium ion type stainless coin cell had a capacity retention rate of 6 after storage at 70 ° C.
It was 6%.

【0070】[0070]

【発明の効果】本発明の製造方法により得られる六方晶
系リチウムコバルト複合酸化物は、リチウム二次電池用
の正極活物質に用いることにより、広い電圧範囲での使
用を可能とし、重量容量密度、体積容量密度などの大き
な電気容量、優れた高温での貯蔵安定性、充放電サイク
ル耐久性及び安全性などの特性が得られる。
INDUSTRIAL APPLICABILITY By using the hexagonal lithium cobalt composite oxide obtained by the production method of the present invention as a positive electrode active material for a lithium secondary battery, it can be used in a wide voltage range and has a weight capacity density. Characteristics such as large electric capacity such as volumetric capacity density, excellent storage stability at high temperature, charge / discharge cycle durability and safety can be obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 湯川 めぐみ 神奈川県茅ヶ崎市茅ヶ崎三丁目2番10号 セイミケミカル株式会社内 (72)発明者 砂原 一夫 神奈川県茅ヶ崎市茅ヶ崎三丁目2番10号 セイミケミカル株式会社内 Fターム(参考) 4G048 AA04 AB01 AB05 AC06 AD04 AD06 AE05 5H050 AA07 AA08 AA10 AA15 AA19 BA15 CA08 CB02 CB07 CB12 FA17 FA19 GA02 GA05 GA10 GA12 GA27 HA01 HA02 HA05 HA07 HA08 HA13 HA14 HA20   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Megumi Yukawa             3-10 Chigasaki, Chigasaki City, Kanagawa Prefecture             Seimi Chemical Co., Ltd. (72) Inventor Kazuo Sunahara             3-10 Chigasaki, Chigasaki City, Kanagawa Prefecture             Seimi Chemical Co., Ltd. F-term (reference) 4G048 AA04 AB01 AB05 AC06 AD04                       AD06 AE05                 5H050 AA07 AA08 AA10 AA15 AA19                       BA15 CA08 CB02 CB07 CB12                       FA17 FA19 GA02 GA05 GA10                       GA12 GA27 HA01 HA02 HA05                       HA07 HA08 HA13 HA14 HA20

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】重量平均粒径が1〜20μm及び比表面積
が2〜200m2/gであるオキシ水酸化コバルト粉末
と、重量平均粒径が1〜50μm及び比表面積が0.1
〜10m2/gである炭酸リチウム粉末とを混合し、該
混合物を酸素含有雰囲気で焼成してなる、重量平均粒径
が5〜15μm、比表面積が0.15〜0.60m2
g、アルカリ含有量が0.03重量%未満であることを
特徴とするリチウム二次電池用六方晶系リチウムコバル
ト複合酸化物の製造方法。
1. A cobalt oxyhydroxide powder having a weight average particle diameter of 1 to 20 μm and a specific surface area of 2 to 200 m 2 / g, and a weight average particle diameter of 1 to 50 μm and a specific surface area of 0.1.
-10 m 2 / g of lithium carbonate powder is mixed and the mixture is fired in an oxygen-containing atmosphere, the weight average particle diameter is 5 to 15 μm, and the specific surface area is 0.15 to 0.60 m 2 /
g, an alkali content of less than 0.03% by weight, a method for producing a hexagonal lithium cobalt composite oxide for a lithium secondary battery.
【請求項2】前記六方晶系リチウムコバルト複合酸化物
が、CuKαを線源とするX線回折によって測定される
2θ=66.5±1°の(110)面回折ピーク半値幅
が0.070〜0.120°である請求項1に記載のリ
チウム二次電池用六方晶系リチウムコバルト複合酸化物
の製造方法。
2. The half width of the (110) plane diffraction peak at 2θ = 66.5 ± 1 ° of the hexagonal lithium cobalt composite oxide measured by X-ray diffraction using CuKα as a radiation source is 0.070. The method for producing a hexagonal lithium cobalt complex oxide for a lithium secondary battery according to claim 1, wherein the hexagonal lithium cobalt composite oxide is about 0.120 °.
【請求項3】前記アルカリ含有量のうち、水酸化リチウ
ム含有量が、0.005質量%未満である請求項1、2
または3に記載の二次電池用六方晶系リチウムコバルト
複合酸化物の製造方法。
3. The lithium hydroxide content of the alkali content is less than 0.005% by mass.
Alternatively, the method for producing a hexagonal lithium cobalt composite oxide for a secondary battery according to Item 3.
【請求項4】前記リチウムコバルト複合酸化物に含まれ
るコバルトが、原子比でその1%以下が周期表4族又は
5族の元素で置換されている請求項1〜3のいずれか一
つに記載のリチウム二次電池用六方晶系リチウムコバル
ト複合酸化物の製造方法。
4. The cobalt contained in the lithium cobalt composite oxide according to claim 1, wherein 1% or less in atomic ratio of cobalt is substituted with an element of Group 4 or Group 5 of the periodic table. A method for producing a hexagonal lithium cobalt composite oxide for a lithium secondary battery as described above.
【請求項5】前記リチウムコバルト複合酸化物の充填プ
レス密度が2.90〜3.35g/cm3である請求項
1〜4のいずれか一つに記載のリチウム二次電池用六方
晶系リチウムコバルト複合酸化物の製造方法。
5. The hexagonal lithium for a lithium secondary battery according to claim 1, wherein a filling press density of the lithium cobalt composite oxide is 2.90 to 3.35 g / cm 3. Method for producing cobalt composite oxide.
【請求項6】前記混合物の酸素含有雰囲気での焼成を9
70〜1070℃で4〜60時間で行う請求項1〜5の
いずれか一つに記載のリチウム二次電池用六方晶系リチ
ウムコバルト複合酸化物の製造方法。
6. The firing of the mixture in an oxygen-containing atmosphere is performed 9
The method for producing a hexagonal lithium cobalt composite oxide for a lithium secondary battery according to claim 1, which is performed at 70 to 1070 ° C. for 4 to 60 hours.
JP2001185918A 2001-06-20 2001-06-20 Method for producing lithium cobalt composite oxide Expired - Fee Related JP4777543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001185918A JP4777543B2 (en) 2001-06-20 2001-06-20 Method for producing lithium cobalt composite oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001185918A JP4777543B2 (en) 2001-06-20 2001-06-20 Method for producing lithium cobalt composite oxide

Publications (2)

Publication Number Publication Date
JP2003002661A true JP2003002661A (en) 2003-01-08
JP4777543B2 JP4777543B2 (en) 2011-09-21

Family

ID=19025425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001185918A Expired - Fee Related JP4777543B2 (en) 2001-06-20 2001-06-20 Method for producing lithium cobalt composite oxide

Country Status (1)

Country Link
JP (1) JP4777543B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182564A (en) * 2002-12-05 2004-07-02 Nippon Chem Ind Co Ltd Lithium cobaltate, manufacturing method of the same and non-aqueous electrolyte secondary battery
JP2005089225A (en) * 2003-09-16 2005-04-07 Seimi Chem Co Ltd Production method of lithium-nickel-cobalt-manganese-aluminum-containing complex oxide
JPWO2004023583A1 (en) * 2002-09-03 2006-01-05 セイミケミカル株式会社 Method for producing lithium cobalt composite oxide for positive electrode of lithium secondary battery
JP2006062911A (en) * 2004-08-26 2006-03-09 Shin Kobe Electric Mach Co Ltd Multiple oxide material and positive-electrode active material for lithium secondary battery
WO2009119104A1 (en) 2008-03-28 2009-10-01 戸田工業株式会社 Oxycobalt hydroxide particulate powder and manufacturing method therefor, as well as lithium cobaltate particulate powder, manufacturing method therefor, and non-aqueous electrolyte secondary battery using the same
JP2009242135A (en) * 2008-03-28 2009-10-22 Toda Kogyo Corp Cobalt oxyhydroxide particulate powder and production method of the same
JP2010116302A (en) * 2008-11-13 2010-05-27 Toda Kogyo Corp Lithium cobaltate particulate powder and method for producing the same, and non-aqueous electrolyte secondary battery
KR101076549B1 (en) * 2004-03-29 2011-10-24 니폰 가가쿠 고교 가부시키가이샤 Lithium Cobalt Composite Oxide, Method for Preparing the Same and Nonaqueous Electrolyte Secondary Battery
KR101100295B1 (en) * 2004-02-26 2011-12-28 니폰 가가쿠 고교 가부시키가이샤 Manufacturing method of lithium cobalt oxide
CN103151517A (en) * 2013-01-23 2013-06-12 宁波维科电池股份有限公司 Preparation method of lithium cobalt oxide
JP2014514721A (en) * 2011-05-03 2014-06-19 エルジー・ケム・リミテッド Method for surface treatment of positive electrode active material particles and positive electrode active material particles formed therefrom
JP2014194933A (en) * 2013-03-28 2014-10-09 Samsung Sdi Co Ltd Method for manufacturing positive electrode active material for lithium secondary batteries, and lithium secondary battery including positive electrode active material
JP2017134996A (en) * 2016-01-27 2017-08-03 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and method of producing the same, and nonaqueous electrolyte secondary battery including the positive electrode active material
WO2020059471A1 (en) * 2018-09-21 2020-03-26 株式会社田中化学研究所 Positive electrode active material for secondary battery, and method for producing same
JP2020053386A (en) * 2018-09-21 2020-04-02 株式会社田中化学研究所 Positive electrode active material for secondary battery and method of producing the same
JP2020202193A (en) * 2020-09-18 2020-12-17 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery arranged by use thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0456064A (en) * 1990-06-20 1992-02-24 Sony Corp Positive electrode active material licoo2 for lithium secondary battery
JPH06243897A (en) * 1992-12-24 1994-09-02 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH101316A (en) * 1996-06-10 1998-01-06 Sakai Chem Ind Co Ltd Lithium-cobalt multiple oxide and production thereof, and lithium ion secondary battery
JPH10255793A (en) * 1997-03-07 1998-09-25 Sumitomo Metal Mining Co Ltd Manufacture of lithium-cobalt double oxide for use in lithium ion secondary battery
JPH10279315A (en) * 1997-03-31 1998-10-20 Ise Kagaku Kogyo Kk Production of lithium-cobalt multiple oxide
JPH1149519A (en) * 1997-07-30 1999-02-23 Ise Kagaku Kogyo Kk Production of lithium-cobalt multiple oxide
JPH11157844A (en) * 1997-11-28 1999-06-15 Nippon Chem Ind Co Ltd Cobalt oxide for lithium secondary battery positive electrode active material
WO1999049528A1 (en) * 1998-03-23 1999-09-30 Sumitomo Metal Mining Co., Ltd. Active material of positive electrode for non-aqueous electrode secondary battery and method for preparing the same and non-aqueous electrode secondary battery using the same
JP2000154024A (en) * 1998-11-12 2000-06-06 Mitsubishi Cable Ind Ltd PRODUCTION OF Li-Co COMPLEX OXIDE
JP2000313622A (en) * 1999-04-27 2000-11-14 Ise Chemicals Corp Lithium cobalt compound oxide for positive pole active material for secondary battery
WO2001027032A1 (en) * 1999-10-08 2001-04-19 Seimi Chemical Co., Ltd. Lithium-cobalt composite oxide, method for preparing the same, positive electrode for lithium secondary cell and lithium secondary cell using the same
JP2001110419A (en) * 1999-10-13 2001-04-20 Nichia Chem Ind Ltd Evaluation method of safety of overcharge of substance for activating positive electrode for lithium ion secondary battery

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0456064A (en) * 1990-06-20 1992-02-24 Sony Corp Positive electrode active material licoo2 for lithium secondary battery
JPH06243897A (en) * 1992-12-24 1994-09-02 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH101316A (en) * 1996-06-10 1998-01-06 Sakai Chem Ind Co Ltd Lithium-cobalt multiple oxide and production thereof, and lithium ion secondary battery
JPH10255793A (en) * 1997-03-07 1998-09-25 Sumitomo Metal Mining Co Ltd Manufacture of lithium-cobalt double oxide for use in lithium ion secondary battery
JPH10279315A (en) * 1997-03-31 1998-10-20 Ise Kagaku Kogyo Kk Production of lithium-cobalt multiple oxide
JPH1149519A (en) * 1997-07-30 1999-02-23 Ise Kagaku Kogyo Kk Production of lithium-cobalt multiple oxide
JPH11157844A (en) * 1997-11-28 1999-06-15 Nippon Chem Ind Co Ltd Cobalt oxide for lithium secondary battery positive electrode active material
WO1999049528A1 (en) * 1998-03-23 1999-09-30 Sumitomo Metal Mining Co., Ltd. Active material of positive electrode for non-aqueous electrode secondary battery and method for preparing the same and non-aqueous electrode secondary battery using the same
JPH11273678A (en) * 1998-03-23 1999-10-08 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacture, and nonaqueous electrolyte secondary battery using positive electrode active material
JP2000154024A (en) * 1998-11-12 2000-06-06 Mitsubishi Cable Ind Ltd PRODUCTION OF Li-Co COMPLEX OXIDE
JP2000313622A (en) * 1999-04-27 2000-11-14 Ise Chemicals Corp Lithium cobalt compound oxide for positive pole active material for secondary battery
WO2001027032A1 (en) * 1999-10-08 2001-04-19 Seimi Chemical Co., Ltd. Lithium-cobalt composite oxide, method for preparing the same, positive electrode for lithium secondary cell and lithium secondary cell using the same
JP2001110419A (en) * 1999-10-13 2001-04-20 Nichia Chem Ind Ltd Evaluation method of safety of overcharge of substance for activating positive electrode for lithium ion secondary battery

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004023583A1 (en) * 2002-09-03 2006-01-05 セイミケミカル株式会社 Method for producing lithium cobalt composite oxide for positive electrode of lithium secondary battery
JP2004182564A (en) * 2002-12-05 2004-07-02 Nippon Chem Ind Co Ltd Lithium cobaltate, manufacturing method of the same and non-aqueous electrolyte secondary battery
JP2005089225A (en) * 2003-09-16 2005-04-07 Seimi Chem Co Ltd Production method of lithium-nickel-cobalt-manganese-aluminum-containing complex oxide
JP4578790B2 (en) * 2003-09-16 2010-11-10 Agcセイミケミカル株式会社 Method for producing lithium-nickel-cobalt-manganese-aluminum-containing composite oxide
KR101100295B1 (en) * 2004-02-26 2011-12-28 니폰 가가쿠 고교 가부시키가이샤 Manufacturing method of lithium cobalt oxide
KR101076549B1 (en) * 2004-03-29 2011-10-24 니폰 가가쿠 고교 가부시키가이샤 Lithium Cobalt Composite Oxide, Method for Preparing the Same and Nonaqueous Electrolyte Secondary Battery
JP2006062911A (en) * 2004-08-26 2006-03-09 Shin Kobe Electric Mach Co Ltd Multiple oxide material and positive-electrode active material for lithium secondary battery
WO2009119104A1 (en) 2008-03-28 2009-10-01 戸田工業株式会社 Oxycobalt hydroxide particulate powder and manufacturing method therefor, as well as lithium cobaltate particulate powder, manufacturing method therefor, and non-aqueous electrolyte secondary battery using the same
JP2009242135A (en) * 2008-03-28 2009-10-22 Toda Kogyo Corp Cobalt oxyhydroxide particulate powder and production method of the same
JP2010116302A (en) * 2008-11-13 2010-05-27 Toda Kogyo Corp Lithium cobaltate particulate powder and method for producing the same, and non-aqueous electrolyte secondary battery
US9776879B2 (en) 2011-05-03 2017-10-03 Lg Chem, Ltd. Surface-treatment method of cathode active material and cathode active material formed therefrom
JP2014514721A (en) * 2011-05-03 2014-06-19 エルジー・ケム・リミテッド Method for surface treatment of positive electrode active material particles and positive electrode active material particles formed therefrom
CN103151517A (en) * 2013-01-23 2013-06-12 宁波维科电池股份有限公司 Preparation method of lithium cobalt oxide
JP2014194933A (en) * 2013-03-28 2014-10-09 Samsung Sdi Co Ltd Method for manufacturing positive electrode active material for lithium secondary batteries, and lithium secondary battery including positive electrode active material
JP2019040875A (en) * 2013-03-28 2019-03-14 三星エスディアイ株式会社Samsung SDI Co., Ltd. Method for manufacturing positive electrode active material for lithium secondary battery, and lithium secondary battery including the positive electrode active material
JP2017134996A (en) * 2016-01-27 2017-08-03 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and method of producing the same, and nonaqueous electrolyte secondary battery including the positive electrode active material
WO2020059471A1 (en) * 2018-09-21 2020-03-26 株式会社田中化学研究所 Positive electrode active material for secondary battery, and method for producing same
JP2020053386A (en) * 2018-09-21 2020-04-02 株式会社田中化学研究所 Positive electrode active material for secondary battery and method of producing the same
JP2020202193A (en) * 2020-09-18 2020-12-17 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery arranged by use thereof
JP7069534B2 (en) 2020-09-18 2022-05-18 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the positive electrode active material

Also Published As

Publication number Publication date
JP4777543B2 (en) 2011-09-21

Similar Documents

Publication Publication Date Title
JP5081731B2 (en) The manufacturing method of the raw material for positive electrode active materials for lithium secondary batteries.
JP4943145B2 (en) Positive electrode active material powder for lithium secondary battery
JP4909347B2 (en) A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery.
JP4318313B2 (en) Positive electrode active material powder for lithium secondary battery
KR101131479B1 (en) Composite oxide containing lithium, nickel, cobalt, manganese, and fluorine, process for producing the same, and lithium secondary cell employing it
JP4512590B2 (en) Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
JP4109847B2 (en) Lithium-containing transition metal composite oxide and method for producing the same
JP4833058B2 (en) Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
JP5253808B2 (en) Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
JP4276442B2 (en) Positive electrode active material powder for lithium secondary battery
KR100601064B1 (en) Process for producing lithium cobalt composite oxide for positive electrode of lithium secondary battery
JP4444117B2 (en) Method for producing positive electrode active material for lithium secondary battery
US20070111097A1 (en) Lithium-cobalt composite oxide, process for its production, positive electrode for lithium secondary cell employing it, and lithium secondary cell
JP3974420B2 (en) Method for producing positive electrode active material for lithium secondary battery
JPWO2004082046A1 (en) Positive electrode active material powder for lithium secondary battery
JP2004119218A (en) Positive active material for lithium secondary battery and its manufacturing method
JP4268613B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP4777543B2 (en) Method for producing lithium cobalt composite oxide
JP4773636B2 (en) Method for producing lithium cobalt composite oxide
JP3974396B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2002100357A (en) Lithium secondary battery
JP4199506B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP4209646B2 (en) Method for producing lithium cobalt composite oxide for positive electrode of secondary battery
JP4472430B2 (en) Method for producing lithium composite oxide for positive electrode of lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110630

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees